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Tensile test on unidirectional Oil Palm Fruit Bunch (OPFB) fibre/epoxy composite 

and unidirectional Carbon Fibre (CF)/epoxy composite were conducted to determine 

their ultimate tensile stress, the Young's modulus and elongation at fracture Two 

different fibre volume fractions of 35'1"0 and 55% were studied in OPFB fibre/epoxy 

composite. The fibre volume fraction of CF/epoxy composite studied was 42%. 

The ultimate tensile stress determined from the tensile tests were then used to 

determine the maximum stress levels, Smax of fatigue tests for CF and OPFB 

fibre/epoxy composites. 

Two parameters were studied in fatigue test, which were stress ratio, R (0.1 and 0.5) 

and fibre volume fraction, Vr (35% and 55%). All Fatigue tests were performed at 

constant stress amplitude, at an air-conditioned room temperature of 20°C and at a 

frequency of 20 Hz. Observation on fractured surface of tensile and fatigue tested 

specimens were also done. 
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The ultimate tensile stress of CF/epoxy composite is 247.0 MPa. OPFB fibre/epoxy 

composite with fibre volume fraction of 35% and 55% have ultimate tensile stress of 

47.8 MPa and 46.1 Mpa, respectively. 

The observation on fractured surface of tensile tested specimens showed that CF and 

OPFB fibre/epoxy composites failed in a brittle manner. Fatigue behaviour of 

CF/epoxy composite shows a reduction in fatigue resistance with decreasing stress 

ratio. Three specimens survived 1 million cycles, which were cycled at stress ratio 

of 0.1 and ma;ximum stress leveL Smax of 0.65. There was no indication of fatigue 

limit shown by S-N curves for OPFB fibre/epoxy composite for both fibre volume 

fractions. However the S-N curves of OPFB fibre/epoxy composite showed a 

decrease of fatigue resistance with the increase offibre volume fraction from 35% to 

55%. 

Two types of fractured surface were observed on the CF/epoxy composite failed in 

fatigue test, which were brittle and delamination. Meanwhile the fractured surface 

of OPFB fibre/epoxy composite showed brittle, delamination and fibre pull-out. 
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Ujian tegangan telah dijalankan keatas komposit berserat searah dari tandan kelapa 

sawit (OPFB)/epoxy dan serat karbon (CF)/epoxy untuk menentukan tegasan 

tegangan muktamad, modulus Young dan pemanjangan pada mas a patah. Bahan 

komposit OPFB/epoxy yang dikaji mempunyai pecahan isipadu serat yang berbeza 

iaitu 35% dan 55%. Manakala pecahan isipadu serat bagi komposit CF/epoxy 

adalah 42%. Tegasan tegangan muktamad yang telah didapati dari ujian tegangan 

akan digunakan untuk menentukan paras tegasan maksima yang dikenakan dalam 

ujian kelesuan bagi kedua-dua komposit. 

Dua parameter yang dikaji dalam ujian kelesuan adalah nisbah tegasan, R (0.1 dan 

0.5) dan juga pecahan isipadu serat, Vr (35% dan 55%). Semua ujian kelesuan 

dijalankan pada amplitud tegasan yang malar, di dalam bilik berpendingin hawa 

pada suhu 20°C dan frekuensi 20 Hz. Pemerhatian ke atas bahagian permukaan 

spesimen yang patah dalam ujian tegangan dan ujian kelesuan juga dilakukan. 
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Nilai tegasan tegangan muktamad yang didapati dari ujian tegangan bagi komposit 

CF/epoxy adalah 247.0 MPa. Manakala komposit OPFB fibre/epoxy yang 

mempunyai pecahan isipadu serat 35% dan 55% masing-masing menunjukkan nilai 

tegasan tegangan muktamad 47.8 MPa dan 46.1 MPa. 

Pemerhatian keatas bahagian permukaan yang patah dalam uJlan tegangan 

menunjukkan komposit CF/epoxy dan OPFB/epoxy patah secara rapuh. Kelakuan 

kelesuan bagi komposit CF/epoxy menunjukkan pengurangan dalam rintangan 

kelesuan terhadap penurunan nisbah tegasan. Tiga spesimen yang dikitar pada 

nisbah tegasan 0.1 dan paras tegasan maksimum 0.65 telah bertahan tanpa patah 

sehingga 1 juta kitaran. Tiada tanda had kelesuan ditunjukkan oleh lengkuk S-N 

bagi kedua-dua komposit OPFB/epoxy. Walaubagaimanapun lengkuk S-N bagi 

komposit OPFB/epoxy menunjukkan pengurangan rintangan kelesuan terhadap 

pertambahan pecahan isipadu serat dari 35% ke 55%. 

Komposit CF/epoxy yang patah dalam UJlan kelesuan menunjukkan dua jenis 

permukaan patah iaitu secara rapuh dan sedikit tanda penyahlapisan. Manakala 

komposit OPFB/epoxy menunjukkan permukaan patah secara rapuh, sedikit 

penyahlapisan dan juga lolosan serat. 
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CHAPTERl 

INTRODUCTION 

The present trend in the design of engineering components is towards using fibrous 

composite especially for structural applications in the aircraft and automotive 

industries. These industries need materials that are light in terms of weight but stiff 

in terms of strength, which is synonymous with composite materials. Amongst the 

popular form of fibres used are glass, carbon, boron and kevlar as reinforcing 

materials in fibre reinforced plastics (FRP) , which have been widely accepted as 

materials for structural and non-structural applications. 

In Malaysia, these fibres are generally imported in the form of woven roving, 

chopped strand mat and filament wind roving. However, these materials are very 

expensive and their use is justified only in aerospace applications. Mallick ( 1991 )  

has stated one major obstacle to the widespread use of  advanced composites i s  their 

costs. Therefore natural fibres like banana, cotton, sisal, coir, oil palm empty fruit 

bunch and jute have attracted the attention of many researchers as an alternative 

fibre especially for application in consumer goods, low-cost housing and other civil 

structures. 

At the same time, the recent trend in environmental awareness has contributed to a 

great interest in the development, improvement and use of natural fibres as the 

reinforcing materials in polymeric composites. Rayet. al (2001 )  have stated that the 

attractive features of natural fibres are their low cost, lightweight, high specific 

modulus, renewability and biodegradability. Composites reinforced with such 
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natural fibres have been the subject of intense study for low cost application in 

contrast to the synthetic fibre-reinforced composites. 

According to Stowell (2001 )  Malaysia produces 1 6.5 million tonnes of oil palm fruit 

bunch (OPFB) fibre processed in oil palm mill a year. Based on this figures, 

Malaysia has a great potential in turning its abundant supply of oil palm industry by

products into value-added products such as using the OPFB fibre as reinforcement 

or fillers in composite material. Therefore a lot of research work and studies need to 

be done on this to provide sufficient information of the material. 

Before discussing any further about this project some understanding on several 

keywords such as composite, carbon fibre, oil palm fruit bunch, thermoset polymer 

and fatigue behaviour must be acquired. The word composite is always related to a 

newly developed or modem material but the fact is composites have been used since 

the beginning of human civilisation in the form of natural resources. Natural 

resources such as wood, bamboo and rattan are known as natural composite or 

traditional composite. The advantages obtained from these natural composites, 

evolved the idea of developing Artificial Composites, which are widely used 

nowadays. 

In general composite materials are combinations of materials put together to achieve 

a particular function. The combinations may be materials of the same class or of 

different class. The fibres are the principal load-carrying members, while the 

surrounding matrix keeps them in the desired location and orientation, acts as a load 
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transfer medium between them and protects them from environmental damages due 

to elevated temperatures and humidity. 

According to Mallick ( 199 1 ), a composite material is a combination of two or more 

chemically different materials with a distinct interface between them. The 

constituent materials maintain their separate identities in the composite and their 

combination produces properties and characteristics that are different from those of 

the constituents. 

Gowda et. al ( 1999) observed that, the main reason for the interest in FRP (fibre 

reinforced plastic) is due to their high specific modulus, high stiffuess to weight 

ratio and high strength to weight ratio compared to conventional materials. The 

higher specific modulus and specific strength of composite materials means that the 

weight of components can be reduced. This is a factor of great importance in 

moving components especially in all forms of transport where reduction in weight 

result in greater efficiency and energy saving. 

Polymer matrix composites (PMC) are fibre-reinforced polymers in which either a 

thermoset or a thermoplastic polymer is used as the matrix. According to 

Stinchcomb (1990) the development of PMCs for structural applications started in 

the 1950s, and they are the most common fibre-reinforced composite in use today. 

One reason for their growing use is that their processing method is relatively simple 

and does not require very high temperatures and pressures. The equipment required 

for processing PMCs is also relatively simple and less expensive than that required 

for other types of composites 
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The thennoplastics soften upon heating and can be reshaped with heat and pressure. 

Thennoplastic polymers used for composites include polypropylene, polyvinyl 

chloride, nylon, polyurethane, poly-ether-ether-ketone (PEEK), polyphenylene 

sulfide (PPS) and polusulfone. The thennoplastic composites offer the potential for 

the higher toughness and high volume, low cost processing. They have a useful 

temperature range upwards of 225°e, (Herakovich, 1 998). 

Thennoset polymers become cross-linked during fabrication and do not soften upon 

reheating. The most common thennoset polymer matrix materials are polyesters, 

epoxies and polyimides. Polyesters are used extensively with glass fibres. They are 

inexpensive, lightweight, have a useful temperature range up to 1000e and are 

somewhat resistant to environmental exposures. Epoxies are more expensive but 

have better moisture resistance and lower shrinkage on curing. They can withstand 

a maximum temperature in the vicinity of 1 75°e. Polyimides can withstand a higher 

temperature 3000e but are more difficult to fabricate (Herakovich, 1 998). 

According to Mall ( 1990), graphite fibres (carbon) are lighter than glass fibres, and 

therefore they are preferred in applications where fatigue and weight are of primary 

concern such as in aerospace applications. Some of the attributes of carbon fibres 

such as high specific strength and stiffness, low coefficient of thennal expansion and 

low abrasion, biological and chemical inertness, X-ray permeability, fatigue 

resistance, self-lubrication, high damping, high corrosion resistance, and electrical 

conductivity are significant in the selection of fibre as reinforcement. There are 

three main routes for producing carbon fibres; namely, orientation of polymer 
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precursor by stretching, orientation by spinning and orientation during carbonisation 

and graphitisation. 

Oil palm fruit bunch fibre is a non-hazardous biodegradable material extracted from 

oil palm's vascular bundles in the empty fruit bunch through a patented (MY-

304644-A) decortation process. The fibres are clean, non-carcinogenic, free from 

pesticides and almost free from soft parenchyma cells, (Sabutek 2002). According 

to Ridzuan et. al (2002) oil palm fruit bunch fibre can be used as filler in plastic to 

reduce its cost, where plastic on the other hand is increasingly expensive especially 

with the high petroleum price. Gowda et. al ( 1 999) also found that natural fibre 

composites possess better electrical resistance, good thermal and acoustic insulating 

properties and higher resistance to fracture. 

Understanding the material behaviour is fundamental to the design of new products, 

especially when using complex materials such as composites. There are only limited 

research works being carried out on oil palm fruit bunch fibre. In order to promote 

the use of this material, there must be sufficient information of the material 

especially on the mechanical properties and its fatigue behaviour. The mechanical 

properties and fatigue behaviour of composites can vary significantly with factors 

such as temperature, load rate, pre-cycling and environmental exposure, (Mallick, 

1 991) .  In order to determine the mechanical and physical properties of the material 

several tests should be conducted and among them are tensile, compression, bending 

and fatigue tests. 
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Hull ( 198 1 )  has defined Fatigue as the ultimate failure of a material or component 

by the application of a varying load whose maximum amplitude, if continuously 

applied, is insufficient to cause failure. According to Mallick ( 1 998), the fatigue 

properties of a material represent its response to cyclic loading, which is a common 

occurrence in many practical applications. It is well recognised that the strength of a 

material is significantly reduced under cyclic loads. The cycle to failure depends on 

a number of variables, such as stress level, stress state, mode of cycling, process 

history, material composition and environmental conditions. The key point is that 

the loads must change with time in order to have "fatigue" as described above. 

The results of fatigue tests are typically presented as a plot of applied stress against 

number of cycles to failure. This graph is called an S-N curve as shown in Figure 

1 . 1 .  This diagram is obtained by testing a number of specimens at various stress 

levels under certain loading conditions. The ordinate is generally the stress or strain 

amplitude or the maximum applied stress or strain in a cycle and is plotted on a 

linear scale. The abscissa is the number of cycles to failure for a fixed stress cycle 

and is plotted on a logarithmic scale. 

Fatigue or endurance limit 

Log cycles to failure (Log Nr) 

Figure 1 . 1 :  A Typical S-N curve 
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The damage in composites due to fatigue is limited to a range of stress. This 

phenomenon is known as the endurance or fatigue limit, shown schematically in 

Figure 1 . 1 .  The slope of the S-N curve is a measure of the resistance of the material 

to fatigue and the actual shape varies from one material to another. For a majority of 

materials, the cycle to failure increases continuously as the stress level is reduced 

(Mallick, 1 988). 

Fracture of components due to fatigue is the most common type of in service failure. 

Particularly in shafts, axles, aircraft wings, where cyclic stressing is taking place. 

This makes fatigue a widespread phenomenon in technological society nowadays, 

where countless devices, from the space shuttle to many children's toys, are 

subjected to loads whose amplitudes and forms change with time. 

Fatigue failures can and often do occur under loading conditions where the 

fluctuating stress is below the tensile strength and, in some materials, even below the 

elastic limit. Because of its importance, the subject has extensively being studied 

over the past one hundred years but even today one still occasionally hears of the 

disaster in which fatigue is a prime contributing factor. 

In general there are three primary fatigue analysis methods, which are usually used 

by researchers (Bannantine et. ai, 1 990). They are the stress-life, the strain-life and 

the fracture mechanics approaches. These methods have their own region of 

application with some degree of overlapping. The understanding of any of these 

methods provides a technique, which may be used to perform a fatigue analysis. 

However it is the insights gained from the understanding of all three methods, which 
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