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Copper oxide (CuO) nanoparticles were prepared using waste-derived
cellulose from bamboo biomass as a functional additive. The cellulose,
recovered from an alkaline dissolution process, enhanced the dispersion
and structural integrity of CuO nanoparticles (NPs). The CuO prepared in
the presence of waste cellulose (CuO-C) exhibited a specific surface area
of 32 m?/g, compared to 7 m?g for pure CuO. Scanning electron
microscopy (SEM) revealed a feather-like CuO structure influenced by the
presence of the waste-derived cellulose matrix. The catalytic activity of
CuO-C was tested through the reduction of 4-nitrophenol (4-NP) to 4-
aminophenol (4-AP), achieving complete conversion within 15 min. The
synthesis cost of CuO-C was approximately RM 3.30 per gram.
Antibacterial tests confirmed activity against both Staphylococcus aureus
and Klebsiella pneumoniae. These findings demonstrate the feasibility of
using a highly alkaline solution from the cellulose dissolution process to
produce low-cost CuO with improved catalytic and antibacterial properties.
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INTRODUCTION

The increasing demand for sustainable and efficient materials has driven significant
research interest in the development of nanostructured catalysts for environmental and
industrial applications. Among various candidates, copper oxide (CuO) has emerged as a
highly promising material due to its unique physicochemical properties, including high
surface reactivity, thermal stability, and semiconducting behavior (Tran and Nguyen 2014;
Naz et al. 2023; Devaraji et al. 2024). CuO-based materials have been widely explored for
applications such as catalysis (Poreddy et al. 2015; Zedan et al. 2018; Bhaskar et al. 2024),
gas sensing (Wang et al. 2016; Steinhauer 2021; Bhat ef al. 2023), photocatalysis (Raizada
et al. 2020; Nazim et al. 2021; Sibhatu et al. 2022), and environmental remediation (Saif
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et al. 2021; Chakrabarty et al. 2023). However, the scalability and economic feasibility of
CuO synthesis remain critical challenges, necessitating innovative approaches that
integrate cost-effective and sustainable resources.

Cellulose, the most abundant biopolymer on Earth, presents an attractive solution
to these challenges. As a renewable and biodegradable material, cellulose has gained
considerable attention for its ability to act as a structural and functional additive in
nanomaterial synthesis (Mekhzoum et al. 2021; Kassie et al. 2024). Notably, waste-derived
cellulose offers additional benefits, as it reduces environmental burden while providing a
virtually cost-free raw material. Incorporating cellulose into CuO synthesis not only
enhances the material’s sustainability but also improves its textural and morphological
properties, such as increased surface area and porosity (Zhou et al. 2013). Moreover, the
use of structural additives such as cellulose during synthesis offers a sustainable pathway
not only to control nanoparticle morphology but also to facilitate downstream recovery.
Despite these advantages, the integration of waste-derived cellulose in the synthesis of CuO
nanostructures has been underexplored.

Water pollution poses a significant threat to environmental sustainability and public
health, with industrial activities being one of the primary contributors to the contamination
of aquatic ecosystems. Among various pollutants, organic compounds such as 4-
nitrophenol (4-NP) have garnered considerable attention due to their widespread use and
toxicity (Zhao et al. 2010; Xu et al. 2024b). 4-NP, a priority pollutant identified by the
United States Environmental Protection Agency (EPA), is commonly utilized in the
production of pesticides, dyes, and pharmaceuticals. Its high solubility in water and
resistance to natural degradation processes exacerbate its environmental persistence,
leading to the contamination of surface and groundwater resources. The accumulation of
4-NP in water bodies poses severe risks to aquatic life and human health, as it is both
carcinogenic and mutagenic at elevated concentrations (Panigrahy et al. 2022).

The catalytic reduction of 4-NP serves as a model reaction for evaluating the
efficiency of nanostructured catalysts (Menumerov ef al. 2016; Ehsani et al. 2023; Zheng
et al. 2024). This reaction holds significant industrial relevance, as 4-AP is a key
intermediate in the production of pharmaceuticals, dyes, and agrochemicals (Li et al.
2021). Traditionally, noble metals such as platinum (Pt) (Li ez al. 2014; Xu et al. 2024a),
palladium (Pd) (Jadbabaei et al. 2017; Su et al. 2016), silver (Ag) (Késtner and Thiinemann
2016; Sudhakar and Soni 2018) and gold (Au) (Neal et al. 2019; Noél et al. 2020) have
been employed as catalysts for the reduction of 4-NP due to their exceptional catalytic
efficiency and stability. However, the high cost and limited availability of noble metals
have hindered their large-scale application, prompting the search for cost-effective and
sustainable alternatives. Previously, Bekru reported on CuO NPs synthesized via plant
extract for 4-NP reduction (Bekru et al. 2021). CuO NPs synthesized using Cordia africana
Lam. leaf extract exhibited a better reducing capacity with an activity parameter constant
of 75.8 min'-g~!. CuO/kaolin NC was also reported for demonstrated superior catalytic
performance with high 4-NP conversion into 4-AP (Asmare et al. 2024).

This work presents a sustainable route to synthesize CuO using cellulose extracted
from bamboo biomass waste. The alkaline solution retained from the cellulose extraction
process is reused directly as the reaction medium for CuO precipitation. This strategy
eliminates the need for purified cellulose or external templating agents, integrating waste
valorization into the material design process. The reduction of 4-NP to 4-AP is employed
as a model reaction to evaluate catalytic performance. Antibacterial properties are also
assessed. Additionally, this work provides a cost analysis to demonstrate the economic
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feasibility of this method. This study highlights the functional and economic benefits of
coupling metal oxide synthesis with waste-derived biomass resources.

EXPERIMENTAL

Materials

Copper (II) sulfate pentahydrate (CuSOa4-5H20, >99.5%) and sodium hydroxide
(NaOH, >97.0%) were purchased from Fujifilm Wako Pure Chemical Corporation, Japan.
All reagents were used without further purification. Deionized water was used for all
preparations.

Cellulose Extraction

Cellulose was extracted from bamboo biomass using a multistep pretreatment and
hydrothermal process. The biomass was milled and boiled in 0.5 M nitric acid at 121 °C
for 30 min to remove lignin and hemicellulose. The sample was then subjected to
superheated steam at 265 °C for 5 min. The solid fraction was bleached with sodium
chlorite and treated with 8.8 wt% NaOH to remove residual lignin. The recovered cellulose
(degree of polymerization: 312) was filtered and dried. The alkaline solution retained from
this process was stored for use in CuO synthesis. This combination of nitric acid boiling
and alkaline extraction has been shown to remove up to 90% of lignin and a significant
portion of hemicellulose, resulting in cellulose-enriched biomass suitable for further

processing (Liu et al. 2020).
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Fig. 1. Waste cellulose extraction procedure for the synthesis of CuO-C
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Preparation of CuO and CuO-C

For CuO, 2.5 g of CuSO4-5H20 was dissolved in 100 mL of deionized water. A
NaOH solution (1 g/mL) was added dropwise under vigorous stirring at 70 °C to initiate
precipitation. For CuO-C, the cellulose-rich alkaline solution from the extraction step was
used in place of deionized water and NaOH. The Cu precursor was added to this solution
under identical stirring and temperature conditions. After reaction, the products were
centrifuged at 4500 rpm for 15 min, washed with deionized water and ethanol, then dried
at 70 °C for 24 h. Thermal treatment was performed at 500 °C for 2 h to remove residual
cellulosic content.

Characterization

The CuO and CuO-C were characterized to assess their morphological, optical,
structural, and chemical properties. Morphological analysis was performed using a JEOL
6000 scanning electron microscope (SEM) equipped with an energy-dispersive X-ray
analyzer (EDX) operated at 10 kV accelerating voltage. Crystallographic structures were
examined using a Rigaku X-ray diffractometer with Cu K-a radiation at 40 kV and 15 mA
with a scan rate of 10°/min. ATR-FTIR spectra were recorded on a Nicolet iS5
spectrometer (Thermo Fisher Scientific, Wisconsin, USA) to analyze functional groups.
Thermal stability was assessed using an EXSTAR TG/DTA7000 instrument (Hitachi High-
Tech, Tokyo, Japan) under a continuous N- stream. Raman spectra were obtained with a
JASCO NRS-5100 Laser Raman Spectrometer (JASCO International Co., Ltd., Tokyo,
Japan) using a 532 nm excitation wavelength and a 2.5 mW laser power beam. Surface
area and pore size distribution were calculated using N2 adsorption-desorption isotherms
and the DFT method on a Quantachrome Instruments Surface Area and Pore Size Analyzer
(Boynton Beach, Florida, USA).

Catalytic Activity Test

The preliminary catalytic activities of CuO and CuO-C were evaluated using the
reduction of 4-NP to 4-AP as a model reaction. The reaction was carried out in a flask
containing 50 mL of 10 mg/L 4-NP solution. To this, 50 mg of NaBH4 and 10 mg of the
catalyst were added. At regular intervals, 1 mL of the reaction mixture was sampled and
diluted to 10 mL with deionized water. The progress of the reaction was monitored using
a SHIMADZU UV-1800 spectrophotometer by measuring the absorbance of 4-NP at 401
nm. The reduction process was further verified by the appearance of a new absorption peak
at 298 nm corresponding to 4-AP. To illustrate the time-resolved catalytic transformation,
representative samples were taken at 2-minute intervals to observe the conversion of 4-NP
to 4-AP.

Antibacterial Test

The antibacterial activity of CuO and CuO-C samples was evaluated against
Staphylococcus aureus ATCC 6538P and Klebsiella pneumoniae using method reported
previously (Zheng et al. 2022). A single bacterial colony was inoculated into 10 mL of
Luria—Bertani (LB) broth and incubated overnight at 37 °C under aerobic conditions.
Subsequently, 200 uL of the overnight culture was transferred to 20 mL of fresh LB broth
and incubated at 37 °C until the optical density at 600 nm (OD600) reached approximately
0.5. The bacterial cells were then harvested by centrifugation at 13,000 rpm for 1 min,
washed four times to remove residual growth medium, and diluted 1:50 in phosphate-
buffered saline (PBS; 50 mM sodium phosphate, pH 7.5, containing 150 mM NaCl). The
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CuO and CuO-C samples were dispersed in PBS containing 10° CFU/mL bacterial
suspension in sterilized conical flasks and incubated for 2h at room temperature with
shaking at 200 rpm. After incubation, serial 10-fold dilutions of the bacterial suspensions
were prepared and plated onto LB agar using the spot test method. Bacterial growth was
assessed by photographing the plates after overnight incubation at 37 °C, and colony-
forming units (CFUs) were quantified using Imagel] software, with manual counting
performed to validate the software results. Each experiment was conducted in triplicate,
with three plates used per bacterial concentration.

RESULTS AND DISCUSSION

The XRD patterns of CuO and CuO-C are shown in Fig. 2(a). The XRD patterns
confirmed the monoclinic phase of CuO for both samples, with peaks matching JCPDS
card no. 48-1548. The observed peaks at 26 values of approximately 32.5°, 35.5°, 38.7°,
48.7°, 53.6°, 58.3°, 61.5°, 66.3°, 68.1°, and 75.1° correspond to the (110), (111), (112),
(202), (020), (113), (311), (220), (311), and (004) planes, respectively (Hong et al. 2009;
Peng et al. 2020). The sharp and well-defined peaks indicate the high crystallinity of the
synthesized CuO.
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Fig. 2. (a) XRD and (b) Raman spectrum of the synthesized CuO nanostructures

For the CuO-C, the XRD pattern exhibits similar characteristic peaks of CuO,
suggesting that the incorporation of cellulose does not alter the monoclinic crystal structure
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of CuO. However, the slight broadening of the peaks and a marginal decrease in peak
intensity in the CuO-C sample imply a reduction in crystallite size or partial amorphization
due to the interaction with cellulose during crystal growth (Warren and LaJeunesse 2019).
The Scherrer equation was employed to estimate the crystallite size using the full-width at
half-maximum (FWHM) of the most intense diffraction peaks. The calculated crystallite
size for pure CuO was found to be approximately 6.14 nm, while the crystallite size for the
CuO-C was 7.18 nm. The larger crystallite size observed for CuO-C can be attributed to
the stabilizing effect of the waste-derived cellulose, which prevents excessive NP
agglomeration and maintains discrete NP structures.

The Raman spectra of CuO and CuO-C are presented in Fig. 2(b). The spectra for
both samples exhibit distinct peaks characteristic of monoclinic CuO at approximately 283
cm™, 332 cm™, and 619 cm™" correspond to the vibrational modes Ag, Bg! and Bg? (Xu et
al. 1999). In the CuO-C spectrum, a slight shift in the vibrational bands was observed. The
shift in Raman peaks is caused by point-like lattice impurities in crystalline NPs
(Koniakhin et al. 2024). This shift is indicative of an interaction between the Cu precursor
and the waste-derived cellulose matrix, likely from hydrogen bonding or coordination
interactions. The broadening of the Raman peaks in the CuO-C compared to pure CuO is
consistent with the partial amorphization and reduced crystallite size inferred from the
XRD results (Wang et al. 2012). This indicates that cellulose acts as a stabilizing agent,
influencing the structural and vibrational properties of CuO NPs.

Figure 3(a) illustrates the N2 adsorption-desorption isotherms of CuO and CuO-C,
while Fig. 3(b) presents their pore size distributions obtained via Density Functional
Theory (DFT) analysis. The isotherms for both samples exhibit type-1V characteristics with
hysteresis loops, indicative of mesoporous structures (Shimizu and Matubayasi 2024).
However, the CuO-C demonstrated a significantly higher adsorption volume compared to
pure CuO, highlighting an enhanced surface area and porosity due to the influence of the
waste-derived cellulose. The specific surface area (SSA) was 32 and 7 m?/g for CuO-C and
CuO, respectively. This significant increase in SSA can be attributed to the inhibition of
particle agglomeration and enhancement of the dispersion of CuO NPs. The cellulose likely
serves as a structural template, creating additional surface area by forming interconnected
pores and reducing particle aggregation (Ajiz et al. 2024). Consequently, the CuO-C
benefits from improved textural properties, including enhanced porosity and surface area,
which are advantageous for applications such as adsorption, catalysis, and environmental
remediation. The average pore size further supports this observation, revealing a pore size
of 3.1 nm for CuO and a slightly reduced size for CuO-C as shown in Table 1.

Table 1. SSA, Pore Volume and Pore Size Obtained for the CuO and CuO-C

Material Sget Pore volume Average pore size
(m*g) (cc/g) (nm)
CuO 7.33 0.035 3.10
CuO-C 31.62 0.148 2.84

The findings show that waste-derived cellulose likely prevented excessive particle
aggregation while creating a more open structure during CuO formation, as evidenced by
the significant increase in pore volume and surface area.
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Fig. 3. (a) N2 adsorption-desorption isotherm (b) DFT pore size distribution of the synthesized
CuO nanostructures

The UV-DRS absorption spectra and Tauc plots for the CuO and CuO-C are shown
in Fig. 4(a) and 4(b), respectively.
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Fig. 4. (a) UV-DRS absorbance (b) energy band gap of the prepared CuO nanostructures
The absorbance spectrum of pure CuO exhibited a broad absorption band extending

from the UV to the visible region, with a maximum absorbance edge around 272 nm. In
contrast, the CuO-C showed a red-shifted absorbance edge, with enhanced absorption

Zheng et al. (2025). “CuO-cellulose nanoparticles,” BioResources 20(4), 9148-9166. 9154



PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

intensity in the visible region. This shows that the waste-derived cellulose modified the
electronic environment around the CuO NPs. The band gap energy (Eg) was estimated
using the Tauc plot method. Pure CuO exhibited an Eg of 2.63 eV, confirming its
semiconducting nature. The CuO—C sample showed a lower band gap of 2.05eV. This
reduction may have resulted from electronic interactions between CuO and the cellulose
phase, which could introduce defect states, enhance carrier delocalization, or facilitate band
tailing due to structural disorder during synthesis (Aggarwal ef al. 2024).

The FTIR spectra of CuO and CuO-C are presented in Fig. 5(a). For pure CuO, the
peaks at 3442 cm™ and 491 cm ™' correspond to the stretching vibration of surface hydroxyl
groups and Cu-O bonds, respectively (Mistry ef al. 2024). In the CuO-C sample, the peak
at 495 cm™! corresponds to the Cu—O bond and shows a slight shift, indicating hydrogen
interaction between CuO and residual carbon. The absence of significant additional peaks
in the CuO-C spectrum suggests that the waste-derived cellulose did not chemically alter
the CuO NP. These interactions contribute to the stability and dispersibility of the CuO,
enhancing its functional properties for various applications. Notably, the FT-IR further
confirms that all cellulosic materials were removed during the thermal treatment process
which supports the XRD result (absence of amorphous peaks for cellulose).

The TGA thermogram of CuO and CuO-C is shown in Fig. 5(b). For pure CuO,
minimal weight loss was observed, indicating high thermal stability. The CuO-C exhibited
a more pronounced weight loss, particularly in the temperature range of 200 to 400°C,
which can be attributed to the thermal decomposition of the residual waste-derived
cellulose. The initial weight loss below 200 °C for both samples corresponded to the
removal of adsorbed moisture and surface hydroxyl groups (Apaydin Varol and Mutlu
2023). The CuO-C showed a residual weight loss at higher temperatures compared to pure
CuO, suggesting that the residual cellulose underwent degradation, forming stable char
residues.
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Fig. 5. (a) FTIR spectra and (b) TGA thermogram of the CuO and CuO-C
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The SEM micrographs of CuO and CuO-C at varying magnifications are shown in
Fig. 6. For CuO (Fig. 6a and 6b), a compact and aggregated morphology was observed,
with densely packed NPs forming irregular clusters (Chan ef al. 2022). The NP size is
consistent with the crystallite size estimated from XRD analysis, confirming the nanoscale
structure of the CuO material. In contrast, the CuO-C (Fig. 6¢ and 6d) exhibited a more
dispersed and fibrous morphology. The waste-derived cellulose acts as a support structure,
facilitating uniform distribution of CuO NPs and preventing their agglomeration. This
morphology enhances the surface area and accessibility of active sites, corroborating the
results of the nitrogen adsorption-desorption isotherms. The unique fibrous architecture of
the CuO-C obtained suggests the role of waste-derived cellulose as a morphology tuner.

Highvie, SEINPLCstd, 5KV,

Fig. 6. SEM image of CuO (a,b) and CuO-C (c,d) at magnification of xX5000 and x9000

The elemental composition of the CuO and CuO-C samples was investigated using
EDX analysis, as shown in Fig. 7. For the pure CuO (Fig. 7a), the EDX spectrum revealed
only Cu (72.52 at.%) and O (27.48 at.%), which is consistent with stoichiometric CuO. For
the CuO-C (Fig. 7b), Cu (30.67 at.%) and O (51.44 at.%) remained dominant, with a
detectable C signal (17.15 at.%) attributed to surface-adsorbed carbonaceous fragments,
which likely originating from residual organics during cellulose-templated synthesis. Trace
CI (0.74 at.%) was also detected, possibly from the precursor salt. These results confirm
that cellulose acted as a structural modulator, improving particle dispersion and porosity,
but was not preserved as a bulk component in the final thermally treated CuO-C.
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The catalytic performance of CuO and CuO-C is shown in Fig. 8. The UV-Vis
absorption spectrum (Fig. 8(a)) showed a significant decrease in the 4-NP peak at 400 nm
and the appearance of a new peak at 300 nm, corresponding to 4-AP, upon catalytic
reduction (Banou et al. 2023). The stepwise reduction process using CuO-C is shown in
Fig. 8(b), where the gradual decrease of the 4-NP peak and the concurrent increase of the
4-AP peak confirm the efficient catalytic conversion. The time-dependent reduction
profiles (Fig. 8b) demonstrate that CuO-C exhibited superior catalytic activity compared
to pure CuO and the control without any catalyst. The C/Co ratio for 4-NP decreased more
rapidly in the presence of CuO-C, with nearly complete conversion achieved within 15
min. In contrast, CuO required a longer reaction time to reach the same level of reduction,
while the absence of a catalyst resulted in negligible conversion. This highlights the
enhanced catalytic efficiency of CuO-C, which was likely due to its higher surface area
and improved electron transfer capabilities.
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spectra of 4-NP to 4-AP using CuO-C as catalyst; (c) Time dependent reduction profile; (d) Pseudo-
first-order kinetic plots of 4-NP reduction using CuO and CuO-C

To quantify the catalytic efficiency of the samples, pseudo-first-order rate constants
(kapp) Were determined using the linearized form of -In(C/Co) versus time for the 4-NP
reduction, as shown in Fig. 8(d). The CuO-C exhibited a kapp of 0.153 min~!, which was
approximately 2.72 times higher than that of pure CuO (0.0563 min™"). This enhanced
catalytic efficiency is consistent with the BET results, where CuO-C displayed a markedly
larger surface area (32 m?/g) compared to CuO (7 m?/g), providing more accessible active
sites and improved electron transfer during the reduction process. These results highlight
the potential of CuO-C as a highly efficient catalyst for environmental and industrial
applications, particularly in pollutant remediation and fine chemical synthesis.

The antibacterial results demonstrated distinct differences in efficacy among the
samples as shown in Fig. 9. For S. aureus, the CuO exhibited partial inhibition, with visible
bacterial colonies reduced compared to the control. In contrast, the CuO-C demonstrated
enhanced antibacterial activity, with negligible to no bacterial growth observed even at
lower concentrations (x1 to x3 dilutions). This enhanced activity is likely attributable to
the synergistic effects of CuO NPs, which generate reactive oxygen species (ROS),
combined with their high surface area and improved interaction with bacterial cell walls
(Khairy et al. 2024). A similar trend was observed for K. pneumoniae, where CuO only
showed weak antibacterial activity. CuO-C, however, completely inhibited bacterial
growth at higher concentrations (x1 to x2 dilutions) and only showed minimal growth at
the lowest concentration (x4 dilution). In comparison, the control sample showed robust
bacterial growth across all dilutions, confirming the lack of antibacterial activity of
ethylene glycol.
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Interestingly, the antibacterial activity was more pronounced against S. aureus than
K. pneumoniae. This difference is likely due to the structural differences in the bacterial
cell walls. S. aureus, a Gram-positive bacterium, has a thick peptidoglycan layer that is
more permeable to reactive oxygen species and metal ions. In contrast, K. pneumoniae, a
Gram-negative bacterium, has an additional outer membrane that limits the penetration of
antibacterial agents and provides greater resistance (Banou et al. 2023; Slavin et al. 2017).
The combination of ROS production from CuO-C and physical disruption (feather-like
morphology) contributes to its enhanced bactericidal efficacy. These findings suggest that
CuO-C is a promising candidate for antibacterial applications in biomedical coatings, food
packaging, and water treatment, offering an eco-friendly and effective alternative to
traditional antibacterial agents.

To contextualize the antibacterial performance of CuO-C, a comparison with
previously reported CuO-based materials is presented in Table 3.

Table 3. Comparison of Antibacterial Activity of CuO-C with Previously Reported
CuO-based Materials

Material Bacterial Strain Method Performance | Reference

MIC (broth) (Martinez-Corona
CuO S. aureus 0.625 mg/mL et al. 2025)
CuO by Opuntia (Soliman and
ficus indica S. aureus MIC (broth) | 0.300 mg/mL Salem 2025)
CuO (microwave-
biogenic) by .
Lepidum sativum L. S. aureus MIC (broth) 0.075 mg/mL (Ibrahim 2025)
extract
CuO (microwave-
biogenic) by . .
Lepidum sativum L. K. pneumoniae MIC (broth) 0.075 mg/mL (Ibrahim 2025)
extract
CuO by Aegle . e (Thirunavukkarasu
marmelos extract S. aureus Disk diffusion 13 mm et al. 2025)
CuO NPs by (Khairy et al
ethanolic Neem S. aureus Disk diffusion | 32 +2.12 mm Y ’

2024)
extract
CuO NPs by . P (Khairy et al.
Jojoba extracts S. aureus Disk diffusion | 28 +2.12 mm 2024)
CuO NPs by
Moringa Oleifera S. aureus Disk diffusion 8 mm (Bai et al. 2022)
leaf extract
CuO NPs . P (Ngamsurach and
(mechanochemical) S. aureus Disk diffusion | 11.3—-12.4 mm Praipipat 2022)
108 CFU/mL
CuO-C S. aureus Spot test (total This work
inhibition)
108 CFU/mL
CuO-C K. pneumoniae Spot test (total This work
inhibition)
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Fig. 9. Antibacterial test on (a) Staphylococcus aureus and (b) Klebsiella pneumoniae using CuO,
CuO-C and control (ethylene glycol)

To evaluate the economic feasibility of the CuO-C, a cost analysis was performed
based on the materials and processes used. The waste-derived cellulose was sourced as a
byproduct from dissolution of cellulose process, making it cost-free. Other materials, such
as CuSOa-5H20, NaOH, and ethanol, were included in the cost assessment. The analysis
also accounted for energy consumption during the drying and thermal treatment steps. The
total cost of producing CuO-C was approximately RM 3.30 per gram, assuming similar
preparation conditions for both materials. The negligible cost of waste-derived cellulose
significantly reduces the overall expense of CuO-C synthesis compared to other potential
additives. The cost analysis highlights the economic advantage of utilizing waste-derived
cellulose for the synthesis of CuO-C. Moreover, the energy consumption during thermal
treatment represents a significant portion of the total cost, suggesting potential optimization
strategies for further cost reduction in future studies. Table 4 highlights the cost estimation
for CuO-C preparation.

Table 4. Cost Analysis for the Synthesis of CuO and CuO-C

Item Quantity t.l;hl;)Cost {;lbla)l Cost Remarks

Raw Materials

CuS0,-5H,0 25¢g 88.00/1 kg 0.22 Used for CuQ precursor

NaOH 8849 106.00/1 kg | 0.93 Base for reaction

Ethanol 10 mL 225.00/2.5 L | 0.90 Used for washing of CuO
and CuO-C

Waste-derived

cellulose* (Bamboo | - - 0.00 gepurpgsed from the

Biomass) issolution of cellulose

Total Chemical cost 2.05

Synthesis Costs

Oven Drying (70 °C) :]i g\évlr(]v)\;hm EV'\\;IhO*;SQ Per | 14.04 Post-reaction drying

Thermal treatment 1.8 kWh X 2 RM 0.39 per 1.40 High-temperature

(500 °C) h =3.6 kWh kWh** ) treatment

Total Synthesis cost 15.44

Total Cost of Goods Sold 17.49 Synthesis of 5.3 g of CuO
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CONCLUSIONS

1. The incorporation of a highly alkaline solution from the cellulose extraction process
into the precipitation synthesis of CuO enhanced both its structural and catalytic
properties.

2. Additionally, the use of waste-derived cellulose also minimizes potential concerns
related to nanoparticle leaching in practical applications. Thus, the cellulose-templated
approach offers a dual benefit of promoting sustainability while improving the
functional integrity of CuO-based materials.

3. CuO-C exhibited superior catalytic performance, achieving complete conversion of 4-
NP to 4-AP within 15 min due to improved electron transfer and reactant adsorption.

4. The use of waste-derived cellulose as an additive not only aligns with principles of
sustainability and circular economy but also substantially reduced material synthesis
costs, with CuO-C costing RM 17.49 per batch, demonstrating its economic feasibility
for scalable production.

5. BET surface area analysis confirmed a significant increase in specific surface area,
from 7 m*g for pure CuO to 32 m?g for CuO-C, which contributed to enhanced
catalytic efficiency.

6. The thermal treatment process effectively removed residual cellulosic contents,
ensuring the purity and structural stability of the synthesized materials.

7. This study demonstrated the successful application of waste-derived cellulose,
providing a cost-effective and environmentally responsible method for fabricating high
performing CuO-based catalyst.

8. Future research should focus on optimizing synthesis parameters and investigating
other waste-derived biomaterials, potentially broadening the applicability of such
sustainable material in catalysis and environmental remediation.
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