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Previous studies have highlighted the significant role of historical water level data in flood
forecasting. In this study, we compare two standalone models, Support Vector Machine
(SVM) and Least Squares Support Vector Machine (LSSVM), with hybrid models that
integrate Ensemble Empirical Mode Decomposition (EEMD) with SVM and LSSVM, aim-
ing to develop a more effective forecasting approach for hydrological data. Particle Swarm
Optimization (PSO) is incorporated into these hybrid models to optimize the parameters
of SVM and LSSVM, resulting in four models: SVM-PSO, LSSVM-PSO, EEMD-SVM-
PSO, and EEMD-LSSVM-PSO. This study focuses on forecasting water levels in Sungai
Gombak, Malaysia. The performance of the proposed models is evaluated and compared
using several metrics, including RMSE, MSE, MAPE, and the squared correlation coeffi-
cient. Results indicate that the EEMD-LSSVM-PSO model outperforms the other models,
demonstrating the highest forecasting accuracy for Sungai Gombak, Malaysia, with the
lowest RMSE, MSE, and MAPE values and the squared correlation coefficient value close
to 1 for the testing data.

Keywords: machine learning; predictive model; statistical method; water level prediction;
flood forecasting.
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1. Introduction

Floods are one of the most frequent natural disasters in Malaysia, causing significant economic damage,
particularly in areas such as Sri Muda, Sungai Gombak, and Mentakab. These events are primarily
driven by rising water levels during heavy rainfall, which exceed the capacity of catchment areas.
Developing reliable early warning systems is crucial to protecting lives and minimizing damage in
flood-prone regions [1-4].

Accurate prediction of hydrological data, such as water levels [5-7], is essential for effective flood
forecasting. Traditional statistical methods, such as the autoregressive integrated moving average
(ARIMA) [8] model, have been widely used, but they often struggle with the complexities of nonlinear
and nonstationary data. In recent years, machine learning techniques [9,10] have gained prominence
for their ability to process such complex datasets. Among these, the Support Vector Machine (SVM)
has proven to be a powerful tool due to its strong predictive capabilities and its ability to handle both
linear and nonlinear data [11-13]. However, SVM has limitations, including slow convergence and high
computational costs, which can hinder its performance in large-scale applications.

To address these issues, the Least Squares Support Vector Machine (LSSVM) [14] was developed as
an extension of SVM, offering improved computational efficiency by transforming inequality constraints
into equality constraints, using a Radial Basis Function (RBF) kernel [15,16]. While LSSVM has
shown promise in hydrological predictions, its performance highly depends on the optimization of its
hyperparameters [17].
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Project Code: FRGS/1/2022/STG06/USM/03/1

384 (© 2025 Lviv Polytechnic National University



Hybrid least squares support vector machine for water level forecasting 385

Particle Swarm Optimization (PSO), a global optimization algorithm inspired by swarm intelli-
gence, has emerged as an effective method for optimizing the parameters of machine learning models
like SVM and LSSVM. PSO’s ability to quickly converge to optimal solutions makes it a suitable choice
for enhancing the predictive accuracy of these models [18-24].

In addition to optimization, data decomposition techniques, such as Empirical Mode Decomposi-
tion (EMD) [25,26] and its advanced form, Ensemble Empirical Mode Decomposition (EEMD) [27],
have been successfully applied to improve the prediction of nonlinear and nonstationary time series
data. EEMD addresses the mode mixing problem inherent in EMD, making it particularly useful
for preprocessing hydrological data to enhance forecasting accuracy. Prior research has consistently
demonstrated the superior performance of hybrid models that incorporate empirical mode decompo-
sition (EMD) over single-model approaches in various field research in predicting a range of nonlinear
phenomena, including runoff [28-30], wind speed [31], wave height [32|, streamflow [33,34], and vege-
tation dynamics [35]. Table 1 below shows the list of related research.

This study aims to combine the strengths of these approaches by developing hybrid models that
integrate EEMD with SVM and LSSVM, which are optimized by PSO. The proposed models, EEMD-
SVM-PSO and EEMD-LSSVM-PSO, are designed to enhance the accuracy of water level forecasting,
thereby improving flood early warning systems in Malaysia. The objectives of this research are as
follows:

1. To develop and evaluate the performance of hybrid models that combine EEMD with SVM and
LSSVM, which are optimized by PSO, for water level prediction.

2. To optimize the hyperparameters of SVM and LSSVM using PSO to enhance their predictive
accuracy.

3. To compare the performance of these hybrid models with standalone SVM and LSSVM models in
forecasting water levels using nonlinear and stationary hydrological data.

The remainder of this paper is organized as follows: Section 2 provides a brief introduction to SVM,
LSSVM, PSO, and EEMD methodologies. Section 3 details the performance metrics used in this study.
Section 4 presents the study area, the results, and a detailed analysis of the proposed models. Finally,
conclusions are drawn in Section 5.

2. Methodology

2.1. Ensemble empirical mode decomposition (EEMD)

EMD is an effective technique often used for the analysis of nonlinear data sets [40,41]. It works by
breaking down the original data into distinct components, generating numerous sets of Intrinsic Mode
Functions (IMFs). The IMFs act as basis functions, which are determined by the signal itself, rather
than by pre-determined kernels. The IMFs produced must satisfy two conditions [42]. Firstly, based
on the original data set, the number of extremes and zeros must either be equal or differ by at most
one. Secondly, the mean of the upper and lower envelopes must be zero at any point. The generated
IMFs encompass a range of frequency bands, from high to low. Let s(t) = (¢ = 1,2,...,1) denote an
initial time series from the dataset. The steps for the EMD methods are as follows [43]:

Step 1: Find both local maxima and minima within the time series.

Step 2: Create upper and lower envelopes for the time series by connecting all local maxima and
minima using cubic spline interpolation.

Step 3: Find the average envelope using the upper and lower envelopes according to equation (1),

provided below,

mit) M (1)

Step 4: The difference between the original time series and the average envelope computed in Step 3
using equation (2) provided below:

h(t) = s(t) — m(t). (2)
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Table 1. Summary of related studies.
Author(s) Data Source Location Detail of the Findings Limitations
Studies
[14] Survey NA The authors made The authors This research only
a comparison concluded that utilizes single
between SVM and LSSVM is method models
LSSVM preferred for
large-scale
problems
[8] Official data Segamat River, This study The best ARIMA This study does
Malaysia forecast flood model is not compare
with ARIMA concluded in this ARIMA model
model by using study with other single
rainfall and benchmark
streamflow data models
set
[2] Official data Red River, This study The study shows This research does
Vietnam proposed a LSTM the forecast not compare with
model to forecast length one day other machine
flowrate for one, gives better learning models
two and three prediction than
days in advance two days and
three days
prediction
[3] Official data Silchar and This study The research This research
Dholai, India proposed a SVM concluded both does not imply
model combined SVM-FA and developed SVM
with Firefly SVM models which is LSSVM
Algorithm outperformed for nonlinear data
(SVM-FA) to Radial Basis
predict monthly Function (RBF)
river flow models
[13] Official data Wadi Ouahrane The authors The results This paper only
basin, Algeria proposed various showed SVM utilizes linear
types of ML model has SVM to deal with
models for outperformed nonlinear data
prediction of other ML models
hydrological in predicting
drought hydrological
drought
[15] Official data Yellow River, The authors The performance This study does
China proposed of proposed model | not apply PSO to
Complete has outperformed optimize the
ensemble single LSSVM parameters of
empirical mode model with high SVM
decomposition accuracy
(CEEMDAN)
with LSSVM and
grey model in
predicting rainfall
and runoff
[36] Official data Kelantan River, The authors SVM has This study does
Malaysia proposed SVM outperformed not use any
using radial basis Neural Network optimize
function (RBF) to models techniques
forecast flood
[37] Official data Yangtze River, The authors PSO-SVM This study does
China proposed PSO outperformed not utilize
with SVM to SVM in decomposition
predict river forecasting river method
water level water level
[38] Official data Mahanadi basin, The study SVM-FFAPSO This study does
India proposed FFA performs the best not utilize
with PSO to to predict ground decomposition
forecast ground water level method
water level
[39] Official data Clackamas River The study EMD based This study does
proposed EMD to model achieved not utilize SVM
improve superiority among | as forecasting tool
forecasting model other models
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Step 5: Verify whether h(t) satisfies the characteristics of IMFs. If yes, s(t) is the first IMF and s(t) is
replaced by the residuals r(t) = s(t) — h(t). If not r = s(t), replace with h(t) .
Step 6: Repeat Steps 1 to 5, continuing until the termination condition is met.

Additionally, this also means that the shifting process of EMD will stop when the residual becomes
a monotonic function, where IMF extraction is no longer possible. The outcome of the EMD decompo-
sition includes a series of IMFs and a residual component derived from the original data, as indicated
in equation (3),

s(t) = 3 Ci(t) + rald), 3)
=1

where n is the number of IMFs, r,,(¢) represents the final residuals, which depict a trend and act as the
central tendency of the signal s(t) = (¢t = 1,2,...,1). The term ¢(t) = (t = 1,2,...,1) represents the
Intrinsic Mode Functions (IMFs), which exhibit periodicity and are nearly orthogonal to each other.
Each IMF independently characterizes the local properties of the original signal when describing them.
The frequency of each IMFs varies high to low. The versatility of the EMD has been demonstrated
across various applications for signal extraction from noisy and non-linear data [40]. However, a
significant limitation of EMD is the frequent occurrence of mode mixing, which happens when a single
IMF contains signals of greatly different scales or when a signal of the same scale appears in multiple
IMFs [27].

To address this issue, Wu [27] introduced the Ensemble Empirical Mode Decomposition (EEMD).
EEMD mitigates mode mixing by incorporating a finite amount of Gaussian white noise into the data
series before computing the overall average, which effectively reduces mode mixing [27]. In summary,
EEMD, an extension of the EMD method, aims to eliminate mode mixing by introducing white noise
into the data prior to analysis [44]. The process of EEMD is briefly explained below.

Step 1: Initialize the ensemble number, M, and the noise amplitude and let m = 1.
Step 2: Introduce a white noise series n,,(t) into the original dataset s(¢) and obtain the below equation
Sm(t) = s(t) + np(t).
Step 3: Perform data decomposition on s,,(t) using EMD to obtain Intrinsic Mode Functions (IMFs),
considering the added white noise.
Step 4: Repeat these two steps iteratively until the residue r(t) either becomes a monotonic function
or contains at most one local extreme point, indicating that no more IMFs can be extracted. Crucially,
use m = m + 1 white noise series for each repetition if m < M; otherwise proceed with Step 5.
Step 5: Compute the ensemble mean, y,(t) of the corresponding IMFs from all decompositions to
obtain the final IMFs and residual, u

Yn = % Z Cnm- (4)

m=1

2.2. Support vector machine
Vapnik [12] originally proposed SVM to address problems in both regression and classification domains.
This increased interest in SVM can be attributed to its robust mathematical foundation, rooted in the
principles of Structural Risk Minimization (SRM) and Empirical Risk Minimization (ERM). In this
SVM model, let the training sets be S = {(x;,v;) | i =1,2,3,..., N}, ; = R", y; = R. Next, the high
dimensional feature space will contain the optimal decision function. Equation (5) shows the decision
function used in this paper,

f(x) = (w, ¢(x)) + b, (5)

where ¢(x) represents the high-dimensional feature space that derives a nonlinear mapping from the
input space; w is the weight, and b is the bias. The parameters w and b in the equation (5) is derived
from solving the constrained minimization problem originally introduced by Vapnik [12] shown in
equations (6) and (7),

N
I S T+ -
minimize §||w|| —|—C’i_gl(§i +&), (6)
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_l’_ —

Fe o
In the above expressions, the constant C' > 0 serves as a parameter regulating the penalty level for
instances surpassing the error threshold and represents the error tolerance. Furthermore, fj‘ and §;
are positive variables, where §Z-+ denotes the upper excess deviation and §; signifies the lower excess
deviation. Incorporating Lagrange multipliers, the problem expressed in equation (6) is subsequently
converted into a dual space in equation (8) and equation (9) below:

W(a; —aj) = _% DO (ai—af) (a; — af) (@), b(x5)) — EZ; (0 —af) + 2_; (a; —a7) (8

i=1 j=1
such that

e> (ai—af)=0, o €[0,C], (9)
=1

where a; and a] are Lagrange multipliers. Lagrange multipliers, subject to the imposed constraints,

must adhere to the conditions. The resultant solution is presented in equation (10):
n

f(x) = (ai— o) ($lwi), o(x;)) + b. (10)
i=1
The inner product (¢(z;),¢(x;)) is defined by the kernel function K(z;,x). Therefore, the equation

can be define as in equation (11):
n

fla) =" (a —af) K(xs,2) +. (11)

1=1
Equation (12) specifies the radial basis function (RBF) as the kernel function selected for the SVM
model in this paper, ” 2
Ty — XIyg
Ksym(zi,2;) = exp <_T2vnj> ) (12)

where ogym is the width of the kernel function. Hence, the cost parameter y and kernel parameter ogym
of SVM need to be optimized.

2.3. Least squared support vector machine

LSSVM is a developed method from support vector machine (SVM) [4,14]. Previously, SVM was used
to deal with small sample of the problem which were said to be difficult to forecast. Therefore, LSSVM
was introduced to solve nonlinear problems in high dimensional problem and also minimize the squared
error [15]. In order to reduce the complexity of the computational process, the inequality constraints
are replaced with equality constraints that transforms the quadratic programming problem to a system
of linear equations. In the function estimation LSSVM model, equation (13) and equation (14) present
the optimization problem as follows:

N
1
minimize Z(w,b,e) = §Hw\|2 + % Ze? (13)
i=1

such that

yi = (w,d(x;)) +b+e;, i=1,2,... N, (14)
where Z is the loss function, e; is the error, v > 0 is the regularization constant. Equation (13)
can be addressed through the Lagrange function and Karush-Kuhn-Tucker (KKT) conditions, while
equation (15) demonstrates the structure of this Lagrange function,

N N
1
L(w,b,&,A) = 5[lw]* + %;e? - ; A ((w, o(wi)) + b+ e; = s). (15)
Next, determine the partial derivatives of using the expression provided in equation (16) and following
the principles of the Karush-Kuhn-Tucker (KKT) conditions,
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oL N

0 O0=w= ZZ:;/\2¢(332)7

oL N

—=0= )\Z’:O,

ob ZZ:; (16)
oL

8—ei—OZ>)\i—’Y€i—O,

oL

o, =0= (w,¢(z;)) +b+e; —y; =0.

Equation (16) facilitates transforming the optimization problem into solving a series of linear equations,

detailed in equation (17):
1 = )
1 I+ A T |y

where I is dimensional column vector, A = [A;, A2, ..., A\]T, y = [y1,92, ..., un) T, Jid = d(x:)T o) =
Kissym (24, 25). The kernel function satisfying the Mercer condition, forms the core of the LSSVM
model, as depicted in equation (18),

F@) = A # Kigum (@i, 25) + b. (18)
i=1
Equation (19) presents the kernel function chosen in this paper for the LSSVM model, which is the
radial basis function (RBF) [45],

2

Ti — Ts

Klssvm($i7xj) = €Xp <_H2227]H> ) (19)
Olssvm

where 0lsgym is the width of the kernel function. Hence, the cost parameter y and kernel parameter
Olssym Of LSSVM need to be optimized.

2.4. Particle swarm optimization

The Particle Swarm Optimization (PSO) algorithm was initially introduced by Kennedy and Eber-
hart [46]. PSO is inspired by the coordinated movement observed in natural phenomena like bird
flocking, bee swarming, and fish schooling. Renowned for its simplicity in coding, cost-effectiveness,
and consistent performance, PSO has established itself as a powerful algorithm for solving optimiza-
tion problems [47]. In PSO, individuals within the population are referred to as particles, collectively
forming a swarm. These particles commence their optimization journey with random initial positions
and velocities. Throughout the optimization process, particles adapt their positions and velocities as
they navigate the search space. Additionally, each particle retains memory of the best position it has
encountered in the search space. The parameters of SVM and LSSVM will be optimized using the
PSO algorithm. Initially, upper and lower bounds are defined for the SVM parameters and LSSVM
parameters. Subsequently, random values within these bounds are generated for each particle, which
are then employed as inputs for the SVM and LSSVM model. Following this, the fitness function is
applied, with this study utilizing Mean Absolute Percentage Error (MAPE) as the fitness criterion
to determine suitable SVM and LSSVM model parameters. The MAPE value for each particle is

calculated using the fitness function in equation (20),
w

TIMAPE = % Z

i=1

Yi — Ui

Yi ’ (20)

where w represents the number of subsets, y; denotes the actual value, §j; denotes the predicted value,
and D is the dimension defining the length of each particle. Each member of the swarm, referred to
as a particle, is represented as a vector X; encompassing the parameters targeted for optimization
within the objective function. In the multidimensional search space, denoted as m, the position
X; = (zi1, ®i2, 43, . .., xip) and velocity V; = (vi1,vi2,vi3, ..., v;p) of the i-th particle are initialized
randomly within the range of possible solutions. To enhance the optimization process, the algorithm
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computes the objective function value for each particle, subsequently updating both their velocities
and positions in accordance with specific equations as in equation (21) and equation (22),

v = woly+er 1 (pia — 2ly) +ea o (pga — 2ly) (21)
t+1 t+1
xijl— =iy + ”i; : (22)
The ideal location of the particle represents as P; = (P;1, P2, Pi3, ..., P;p). Optimal swarm location

is Py = (Pig, Pag, Pag, ..., Ppg). Under i-th particle condition at t-th iteration, a:fd and vfd are d-th
position and constituent of speed. Positive coefficient ¢q, co, 71 and ro, where 71 and 7y are distributed
evenly within the range of 0 to 1, ¢; and ¢y represent constants. The procedure of PSO optimizing the
SVM and LSSVM parameters described as follows:

Step 1: Initialise the parameters of PSO.

Step 2: The collective of particles begins its journey with randomly assigned individual velocities and
positions.

Step 3: Fitness evaluation: The various initialized parameters are fed into LSSVM, and then the fitness
value of each particle is evaluated using the fitness function of PSO by using equation (20).

Step 4: Update both the global and individual best values based on the outcomes of the fitness value.
Step 5: Velocity computation: The particle moves towards a new position by updating its velocity.
The velocity for each particle is derived using equation (21).

Step 6: Position Update: Each particle transitions to its subsequent position following the guidelines
outlined in equation (22).

Step 7: Termination: Continue iterating through Steps 3 to 7 until the specified termination criteria
are met.

2.5. EEMD-LSSVM-PSO

As previously mentioned, water level data exhibits high nonlinearity and nonstationarity, making
accurate water level forecasting challenging. To address this, the proposed EEMD-LSSVM-PSO model
is utilized based on the principle of decomposition and ensemble learning. The detailed steps are
outlined below.

Step 1: Data Preparation by using initial water level data.

Step 2: Using Ensemble Empirical Mode Decomposition (EEMD), the original water level data is
broken down into a finite number of Intrinsic Mode Functions (IMFs) and a residue.

Step 3: For constructing the EEMD-LSSVM-PSO forecasting model, employ LSSVM to develop a
forecasting model for each obtained IMF and residue. Consequently, obtain the forecasting values for
all IMF and residue components from the model.

Step 4: PSO is used within the proposed EEMD-LSSVM model to optimize the parameter selection.
Determine the ranges of penalty coefficient C' and kernel parameter of the LSSVM. Where penalty
parameter ranges [1,100], kernel parameters of radial basis function ranges [0.01, 10].

Step 5: Utilize LSSVM methods to train the initialized particles, calculate their individual fitness
values, and update both the global optimal value and the optimal value for each individual particle.
Step 6: Define the stopping criterion: stop iterations upon reaching the maximum number; otherwise,
generate a new group based on the velocity equation and return to Step 5, continuing until termination
conditions are met. Ultimately, identify the particle with the lowest fitness value in the group as the
optimal solution sought.

Step 7: Confirm whether the maximum iteration is achieved, and if so, end the iteration and retrieve
the optimized parameters of LSSVM.

Step 8: Obtain the optimal parameter of each IMF and residual of EEMD-LSSVM-PSO and then use
EEMD-LSSVM-PSO model to test the sample water level data set. These procedures allow EEMD
to identify distinct information scales in the original load data. Furthermore, since each IMF shares
similar frequency characteristics, the hybrid model can reduce the complexity of the LSSVM model
and improve its forecasting efficiency and accuracy.
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Fig.1. The flowchart of proposed model EEMD-SVM-PSO and EEMD-LSSVM-PSO.

2.6. Stationarity tests

Autocorrelation is computed to determine how the observation are correlated in the time series. Au-
tocorrelation function (ACF) used as a first attempt in determining the stationarity and to identify
the existence of the seasonality [48]. For further confirmation, Augmented Dickey Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are chosen to analyze the stationarity of the datasets.
We implemented these methods in R software. ADF test is also called as unit root test. The null hy-
pothesis of the test is that if the time series can be presented by a unit root, it is not stationary.
Otherwise, the alternative hypothesis indicates that the data is stationary. The mathematical descrip-
tion of this test is explained in [49]. In KPSS test, the null hypothesis states that there is no unit root
and the alternative hypothesis states that a unit root exists, meaning the data is non-stationary. The
test confirms the non-stationarity of the data when the p-value is less than the significance level of
0.05. The equation of KPSS can be seen in detail in [50]. The flowchart in Figure 1 briefly illustrates
EEMD-SVM-PSO and EEMD-LSSVM-PSO models.

3. Performance metrices

In this study, four different common indices are employed to assess the precision of SVM-PSO, LSSV M-
PSO, EEMD-SVM-PSO and EEMD-LSSVM-PSO models. The error evaluation methods chosen are
root mean square error (RMSE), mean squared error (MSE), mean absolute percentage error (MAPE)
and squared correlation coefficient (R?). The best prediction model will have the lowest value for
RMSE, MSE and MAPE and R? value that almost reaches one.

3.1. Root Mean Squared Error (RMSE), Mean Squared Error (MAE), Mean Absolute Percentage
Error (MAPE)

RMSE is widely utilized to gauge the discrepancy between model-predicted and observed actual water

level data [51]. Essentially, RMSE, MSE and MAPE assesses the performance quality [36]. Equa-

tion (23), (24) and (25) shows the equation of RMSE, MSE and MAPE respectively. z; is the observed

value, Z; is the predicted value and n is number of data,

n

_ ! 52
RMSE = n;(zl %)?, (23)
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1 — >
MSE = = i — %)%, 24
SE= 2 (e 2) (24)
1<z — 3
MAPE = — KB b 25
";_1 - (25)

3.2. Squared correlation coefficient (R2?)

R? is computed to evaluate how well models explain variance, as depicted in equation (26). Recently,
has proven effective in analyzing wind power forecasting, according to [52],

A2
> i (2 — z)?’
where Z is mean value of water level data.

4. Results and discussion

4.1. Study area and data set

The study focuses on Sungai Gombak, spanning Se-
— traiming Data langor and Kuala Lumpur in Malaysia. Hydrological
— Testing Data data provided by the Department of Irrigation and
Drainage Malaysia covers the years 1960 to 2010, to-
taling 600 data points. The dataset was divided into
monthly series to enhance prediction accuracy. For
model development, 80 % of the data (from January
1960 to December 1990) was allocated to training
SVM and LSSVM models, with the remaining 20 %
(from January 2000 to January 2010) reserved for val-
idation. The forecasting model uses 480 months of
training data to predict water levels for 120 months
of testing data. Monthly water level series for Sun-
gai Gombak are depicted in Figure 2. In this region,
© flood alerts are categorized into normal, alert, warn-

T T T T T T I
0 100 200 800 400 500 600 ing, and danger levels, triggered by water levels ex-
Fig. 2. The monthly water level time series ceeding 29.0 m, 30.0 m, 30.5m, and 31.0 m respec-

at Sungai Gombak. tively. Accurate water level prediction models are

crucial for flood warning systems to alert authorities and protect residents. All the models will run a

program by using R Software.
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4.2. Descriptive statistic of the water level data

Descriptive statistics has been calculated to understand the water level data. The number of observa-
tions for this study is 600 months. The lowest water level recorded is 0.79, while the highest is 98.96.
The average value of the water level data is determined for 600 months. The average water level data is
12.1721 and the standard deviation value 8.1766. The distribution skewness is 3.4638 which indicates
the tail to the right and the Kurtosis of 25.3845 supports our conclusion that the distribution of water
level is not normal and heavy-tailed.

4.3. Stationarity analysis
Figure 3 depicts the ACF plot for monthly water level data. An important aspect of these figures is that
each sample variable exhibited both high and low volatility over time, indicating that the variability
remained consistent throughout the period.

The suggestive linear trend lines in the water level plot indicate the sequence is stationary. For
most of the cases, the ACF plot displayed a rapid decay for the lags. Hence, the ACF of water level
data shows the presence of stationarity.
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For further confirmation of presence or ab- Autocorrelation Function For Monthly Water Level Data
sence of stationarity of the water level data,
ADF and KPSS tests have been chosen to test
the existence of unit root in the data or not [53].
The null hypothesis of ADF test indicates that
the data has unit root. The p-value of the water
level data is 0.01 for ADF test. Since this value
is less than 0.05, the null hypothesis is rejected.
Next, the null hypothesis for KPSS test is that
the water level data is stationary. Therefore, the [l
p-value of the water level data is 0.1 for KPSS
test. The null hypothesis is not rejected. Thus, R
the results of ADF and KPSS test showed that w w w w w w w
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the observed water level data is stationary and Lag
has a predictable trend. Fig. 3. The autocorrelation function plot.

4.4. Decomposition by ensemble empirical mode decomposition

The EEMD technique is utilized to decompose the original water level time series into multiple inde-
pendent Intrinsic Mode Functions (IMFs) along with one residue component. The EEMD technique
plays a pivotal role in preprocessing the monthly water level of Sungai Gombak, Malaysia from 1960 to
2010. Before applying EEMD it is essential to configure two key parameters, in this study, 100 chosen
for the ensemble size, and each ensemble member is enriched with white noise featuring a standard
deviation of 0.2. It is worth noting that these parameter settings align with those previously employed
by [27]. The paper analyses the impact of noise and selection ensemble parameter on decomposition.
Therefore, we refrain from duplicating these details here. The outcomes of the decomposition process
are visually represented in Figure 4 and Figure 5. The water level data was decomposed into eight
(8) Intrinsic Mode Function (IMF) components and one residual component. These components are
organized in a sequence based on their frequency, passing from high to low. Figures 4 and 5 illustrate
that the periodicity of these eight IMFs gradually increases as their frequency decreases, while their
amplitudes exhibit a corresponding decrease [40]. The graph displays a time series from 1960 to 2010
on the x-axis, representing monthly intervals. The y-axis shows the water level data, which has been
decomposed. The outcome of EEMD which are the IMFs and residual becomes the input variables for
forecasting water levels.
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after EEMD decomposition. obtained after EEMD decomposition.
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4.5. Particle swarm optimization analysis

The SVM-PSO and EEMD-SVM-PSO models employ the Radial Basis Function (RBF) as their ker-
nel function, necessitating the selection of two crucial parameters: the regularization parameter and
the kernel function parameter for SVM. The LSSVM-PSO and EEMD-LSSVM-PSO models employ
the Radial Basis Function (RBF) as their kernel function, requiring the selection of two crucial pa-
rameters: the regularization parameter and the kernel function parameter for LSSVM. Notably, prior
studies have suggested that varying kernel functions have a minimal impact on performance, under-
scoring the significance of the kernel parameter in SVM and LSSVM performance. Between these
two parameters, kernel parameter plays a pivotal role in precisely defining the structure of high-
dimensional space, thereby controlling the complexity of the ultimate solution. On the other hand,
cost parameter governs the model’s complexity and the degree of penalization for fitting deviations.

) During the training phase, we begin by
Table 2. Parameter settings of the methods.

optimizing the SVM model’s parameters

Methods Parameters Value and the LSSVM model’s parameters for
Population Size 25 each IMF and the residual using PSO. The

PSO Maximum Iteration 150 bounds (initial ranges) of the solution space
Acceleration constants (c1,c2) | (1,6) used in the PSO technique, as well as the

SVM Cost [1,100] upper and lower limits of the proposed
Kernel [0.01,1] methods, are shown in Table;2. We evalu-

LSSVM Cost [1,100] ate the validation error using equation (20)
Kernel [0.01,1] and identify the parameters that yield the

lowest validation error as the most suitable

ones for EEMD-SVM-PSO and EEMD-LSSVM-PSO, as detailed in Table;3, and for SVM-PSO and
LSSVM-PSO in Table;4. Subsequently, we employ these optimal parameters to train corresponding
SVM-PSO, LSSVM-PSO, EEMD-SVM-PSO and EEMD-LSSVM-PSO models.

Table 3. The optimized value for hyperparameters of SVM and LSSVM models based EEMD.

EEMD outcomes | EEMD-SVM-PSO parameters | EEMD-LSSVM-PSO parameters

C Osvm Y Olssvm

Imf 1 9.565 0.265 15.495 0.903
Imf 2 7.659 0.766 15.032 0.886
Imf 3 5.659 0.258 4.984 0.786
Imf 4 5.698 0.289 3.197 0.319
Imf 5 4.265 0.167 8.065 0.194
Imf 6 4.159 0.749 9.936 0.495
Imf 7 4.058 0.411 7.597 0.334
Imf 8 3.019 0.564 6.968 0.612
Residual 2.148 0.496 6.749 0.789

Table 4. The optimized value for hyperparameters of SVM and LSSVM models.

SVM-PSO parameters

LSSVM-PSO parameters

C Usvm

o

Olssvm

15.549 0.964

18.659

0.580

4.6. Discussion of experimental results of different methods

The experimental results will be discussed in detail in this section. This paper claims that EEMD
decomposition method has performed effectively to verify the superiority of the EEMD-SVM-PSO
and EEMD-LSSVM-PSO for the model to predict the future water level. Four forecasting models
will be compared, namely SVM-PSO, LSSVM-PSO, EEMD-SVM-PSO, and EEMD-LSSVM-PSO, to
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determine the best model that improves forecasting accuracy. Figure 6 shows a radar plot of RMSE
values of IMFs and residual of SVM and LSSVM. Figure 7 shows radar plot of RMSE, MAPE, MSE
and R? values in testing phase of all proposed models.

RMSE MAPE
RMSE MAPE SWM SVM
IMF1 E IMF1 @ ce:
IMF2 Residual IMF2 Residual
IMF3 IMF§  IMF3 IMF3
38VM EEMD-L¢  3SVM EEMD-L¢
IMF4 IMF7 IMF4 IMF7
IMF5 IMF6 IMF5 IMF6 EEMD-SVM EEMD-SVM
MSE R-Squared
MSE R-Squared o A
IMF1 IMF1 S o
IMF2 Residual IMF2 Residual
IMF3 IMF§ IMF3 IMF3
3SVM EEMD-L¢  3SVM
IMF4 IMF7 IMF4 IMF7

IMF5 IMF6 IMF5 IMF6 EEMD-SVM EEMD-SVM

Fig.6. Radar plot of RMSE, MAPE, MSE and R2  Fig. 7. Radar plot by using RMSE, MAPE, MSE and
values of IMFs and residual of EEMD-SVM-PSO and  R-squared values in testing phase of proposed models.
EEMD-LSSVM-PSO.

A radar plot, also known as a spider plot or star plot, is an effective visualization tool for comparing
multiple variables across different categories. The radar plot in Figure 6 illustrates the RMSE, MAPE,
and MSE values on each subplot, representing the performance of two models across various Intrinsic
Mode Functions (IMFs). Each subplot corresponds to one of the error metrics (RMSE, MAPE, MSE,
R3), while the lines represent the performance of the two decomposition models (EEMD-SVM-PSO
and EEMD-LSSVM-PSO). The RMSE, MAPE, MSE values for the EEMD-SVM-PSO and EEMD-
LSSVM-PSO models decrease from IMF1 to IMFS8. These values represent the error in predicting each
IMF'. The higher RMSE in IMF1 suggests that the model struggles more with predicting high-frequency
components, which are typically noisier and more volatile. Conversely, the lower RMSE, MAPE, MSE
values for the subsequent IMFs indicate better prediction accuracy for lower frequency components.
The residual RMSE is relatively low after applying the SVM and LSSVM models to each. This indicates
a highly effective decomposition and prediction process where most of the variability in the data is
captured by the model. Both models show higher RMSE, MAPE, MSE values for high-frequency
IMFs and lower RMSE, MAPE, MSE values for low-frequency IMFs. This is expected, as high-
frequency components are more challenging to predict due to their noise. The EEMD-LSSVM-PSO
model, however, demonstrates a superior ability to handle these complex, high-frequency components
more effectively than the EEMD-SVM-PSO model. Each model’s Ry value represents the proportion
of variance in the water level data explained by the model. The distance from the center of the
plot to each data point on the axis represents the Ry value for that model. A longer distance from
the center indicates a higher Rs value, indicating better performance in explaining variance in the
data. The Ry radar graph clearly demonstrates that the EEMD-LSSVM-PSO model provides the
best performance in predicting water levels in Sungai Gombak. Its high Ry value indicates a robust
capability to explain a significant proportion of the variance in the water level data, making it a reliable
tool for accurate forecasting. The integration of EEMD enhances the model by decomposing the time
series into more manageable components, while LSSVM improves the model’s predictive accuracy,
and PSO optimization further refines the model’s performance. This study highlights the importance
of combining advanced decomposition techniques with powerful predictive models and optimization
strategies to achieve high accuracy in water level predictions.
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Fig. 9. Comparison of observed and predicted
water level of proposed models.

Figure 8 shows the scatterplots of actual val-
ues and predicted values. By comparing the
single models, namely SVM-PSO and LSSVM-
PSO, the R? of the testing data shows that
LSSVM-PSO has performed more effectively
than SVM-PSO. Therefore, this proves that sin-
gle LSSVM-PSO model can result in better fore-
casting model compared to single SVM-PSO
model [14]. This is due to LSSVM-PSO high ef-
ficiency for large scale problems with parameter
optimization compared to SVM-PSO and also
with the help of PSO to optimize the parame-
ters of LSSVM. To focus on the SVM models,
the combined decomposition method with SVM
which is called as EEMD-SVM-PSO has im-
proved the R? for testing data by 65%. This in-
dicates a good prediction by proposing EEMD-

SVM-PSO that outperformed single SVM-PSO model. Next, according to the LSSVM models, after
the data were decomposed by EEMD-LSSVM-PSO has better results of R? for testing phase enhanced
by 64%. This indicates a good prediction by proposing EEMD-LSSVM-PSO that outperformed single
LSSVM model [15]. Hence, the combined models (EEMD-SVM-PSO and EEMD-LSSVM-PSO) work
effectively in decomposing the data by EEMD and optimize the SVM and LSSVM parameters by PSO
enhances the forecasting model. The EEMD-LSSVM-PSO model exhibits the highest R-squared value
among all models, indicating superior performance. Approximately 87.05% of the variance in the water
level data is explained by this model. The combination of EEMD with LSSVM, further optimized by
PSO, results in a model that captures the underlying patterns in the data exceptionally well.
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Scatterplots comparing actual and predicted values for each model (SVM-PSO, LSSVM-PSO,
EEMD-SVM-PSO, and EEMD-LSSVM-PSO) are crucial for visually assessing the performance of
these predictive models. Each scatterplot typically displays the actual water level values and the pre-
dicted values. A well-performing model would have points lying close to the 45-degree line (y = z),
indicating that the predicted values match the actual values closely. The scatterplots for the four mod-
els reveal varying levels of prediction accuracy, with the EEMD-LSSVM-PSO model demonstrating
superior performance. This model’s ability to produce predicted values closely aligned with actual val-
ues highlights its effectiveness in dealing with complex, nonlinear time series data. The visual analysis
complements the RMSE values, providing a comprehensive understanding of each model’s strengths
and limitations in predicting water levels in Sungai Gombak. Figure 9 illustrates the comparison of
water level prediction by the proposed models with the observed water level.

5. Conclusion

Flooding has increasingly impacted various regions over the past few decades, highlighting the urgent
need for accurate forecasting models as part of an effective early warning system. In this study, we
developed and evaluated a hybrid forecasting model integrating EEMD, LSSVM, and PSO to predict
monthly water levels. This model harnesses the power of EEMD to decompose the data, reducing noise
and capturing nonlinear variations, which are then processed by an LSSVM model optimized through
PSO.

Our findings demonstrate that the EEMD-LSSVM-PSO model significantly enhances forecasting
accuracy compared to traditional single models. Specifically, the EEMD-LSSVM-PSO model achieved
the lowest values in RMSE, MAE, and MAPE, and an R-squared value nearing 1, outperforming the
SVM-PSO and LSSVM-PSO models. This suggests that the integration of EEMD for data decompo-
sition, coupled with LSSVM and PSO, provides a robust approach for accurate water level prediction.
However, while the EEMD-LSSVM-PSO model shows promising results, it is essential to recognize
its limitations and explore its performance across different contexts. Future work should address the
following aspects:

(i) Advanced Decomposition Techniques: Further research could investigate the application of Com-
plete Ensemble Empirical Mode Decomposition (CEEMD) or other advanced decomposition structures.
(ii) Alternative Optimization Algorithms: Exploring different metaheuristic algorithms such as Grey
Wolf Optimization, Bat Algorithm, and Artificial Bee Colony could offer new insights into optimizing
SVM and LSSVM parameters, potentially improving model performance further.

(iii) Comparative Analysis with Other Models: Comparative studies involving other machine learning
models, such as Radial Basis Neural Networks and Artificial Neural Networks, could provide a broader
perspective on the effectiveness and limitations of different forecasting approaches.

(iv) Practical Implementation Challenges: Future research should also consider practical aspects of
deploying these models in real-world scenarios, including computational efficiency, scalability, and
integration with existing flood management systems.

By addressing these areas, future research can build on the current findings to develop more so-
phisticated, adaptable, and practical forecasting solutions, ultimately contributing to more effective
flood management and disaster preparedness.
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MNOpunaHa MawmHa ONOPHNX BEKTOPIB 3 HaliMEeHW UMM KBagpaTamMu

A5 NPpoOorHo3yBaHHA piBHSI BOOWU

Comerepam B.', Mapcani M. ®@.1, Kacimymnain M. C. M.', Bampi H. E.2

ITkona mamemamuvrux nayk, Ynisepcumem Catine Manatsii,
11800 USM, Ilenane, Manatizis
2Kaedpa mamemamury ma cCmamucmury, Gaxyivmem npupooruMus Hayx,
Ywisepcumem Ilympa Manatisii,
48400 UPM, Cepdane, Ceaarneop, Manatizis

Ilonepemni mocaizKeHHs MAKPECTUIN 3HAYHY POJIb iICHYIOUNX JIAHUX IIPO PiBEHb BOJU B
MIPOTHO3YBAHHI MTOBEHEH. ¥ IHOMY JOCJIiT2KEHHI TOPIiBHIOIOTHCS JIBI aBTOHOMHI MOJIe/i, Ma-
mKHY oHOpHUX BeKTopiB (SVM) i ManiuHy onopHUX BEKTODPIB 3 HANMEHIIUMU KBaPaTaMu
(LSSVM) 3 ri6puganmu Mozmessimu Ensemble Empirical Mode Decomposition 3 SVM i
LSSVM, 1m06 pospoburu 6ibin edeKTUBHY MOJIEIb IIPOTHO3YBAHHS JJIs TiIPOJIOTTIHIX
nanux. Onrumizaris pois gacruaok (PSO) Britouena B 1i ribpuini Mojesi i ONTUMI-
zarmil mapamerpiB SVM i LSSVM, y pe3yabrari 9010 CTBOPIOIOTHCS MOJEJI TIiJ] HA3BAME
SVM-PSO, LSSVM-PSO, EEMD-SVM-PSO i EEMD-LSSVM-PSO. Ile gocimxenns 30-
cepeKeHO Ha nporHosyBanHi piBHst Bogu B Cynraii T'ombak, MaJiaiizis. EdexkrupHicTb
3aIPOIIOHOBAHUX MOJIeJIell Oysia OIiHeHa Ta MOPIBHsIHA 3a JOMOMOIOI0 KIJIbKOX MOKA3HUKIB,
srmouaroun RMSE, MSE, MAPE ra kBajparuunuii kKoedirienr kopessiii. Pe3yabraTn
oKazyTh, 1o Moaenab EEMD-LSSVM-PSO nepesepiiuia inmi Mozmesi, TpOIeMOHCTDY-
BaBIIIY HANBUIILy TOYHICTH Iporuo3yBanust st CyHraii [ombak, MaJiaiisis, 3 HATHIK IIMU
suauenHssMu RMSE, MSE, MAPE ra kBajparudauM KoedillieHTOM KOPeJIsIiil, OJIu3bKUM
10 1 11 TeCTOBUX JTAHUX.

Knrouosi cnoBa: mawurte Haguarma; npoerodti Modeat; cmamucmushull mMemod; npo-
2103 PieHA 600U; NPOZHO3YBAHHA NOGEHE.
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