© ()

HLA-B*58:01 screening in Asia-Pacific is an ethical imperative – not just a cost question

Wei Leik Ng¹, Emily Tsui Yee Tse², Prawira Oka^{3,4}, Hooi Min Lim¹, Sky Wei Chee Koh^{5,6}, Rizawati Ramli¹, Hung Chiun Lau⁷, Benjamin Chih Chiang Lam⁸, Laurie J Goldsmith^{5,6}, Adina Abdullah¹, Lay Hoon Goh^{5,6},

Allopurinol remains the first-line treatment for gout; however, it carries a risk of severe cutaneous adverse reactions (SCARs), particularly among carriers of the HLA-B*58:01 allele. In the Asia-Pacific region, screening practices vary widely due to infrastructure gaps, cost concerns, and differing health policies. For example, while cost-effectiveness analyses have influenced screening decisions in some countries, they often overlook long-term health system burdens and ethical imperatives. Therefore, screenings should not be withheld solely on economic grounds, especially when they can prevent life-threatening outcomes. For that reason, a targeted, risk-based approach that integrates genetic and clinical factors could offer a practical and equitable path forward, improving pharmacogenomic literacy, expanding access to testing, developing regional data-sharing platforms, and involving patients in co-designing screening strategies. Rapid point-of-care testing and integration of screening process with existing care pathway may further support this implementation. However, a coordinated regional effort is needed to ensure safer prescribing and equitable access to pharmacogenomic screening across diverse healthcare settings.

BURDEN OF ALLOPURINOL-INDUCED SEVERE CUTANEOUS ADVERSE REACTION

out affects 1–6.8% of the global population and is becoming more prevalent due to metabolic syndrome and dietary changes [1]. Allopurinol remains the first-line treatment, but it can cause severe cutaneous adverse reactions (SCAR), including Stevens-Johnson syndrome

¹Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia

²Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

³SingHealth Polyclinics, Singapore, Singapore

⁴SingHealth-Duke NUS Family Medicine Academic Clinical Program, Singapore, Singapore

⁵National University Polyclinics, National University Health System, Singapore, Singapore

⁶Division of Family Medicine, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia

⁸Family and Community Medicine Section, Department of General Medicine, Khoo Teck Puat Hospital, Singapore, Singapore *Joint senior authorship.

(SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS). Allopurinol-induced SCAR poses a significant burden in the Asia-Pacific region [2], with Malaysia and Singapore reporting annual incidence rates of 2.5–2.6 per 1000 users – relatively high for a rare, but serious reaction [3,4]. Though uncommon, SCAR can be fatal, with mortality rates of 2–10% for SJS and DRESS, and up to 30% for TEN [5,6].

GENETIC SCREENING AND THE CASE FOR TARGETED SCREENING

Allopurinol-induced SCAR is strongly associated with the HLA-B*58:01 allele, with studies from several Asia-Pacific countries reporting odds ratios up to 393 [7-11]. The allele is most prevalent among individuals of Chinese ethnicity (12-22%), with consistent rates across Malaysia, Singapore, and Hong Kong [12-14]. Other populations, including Thai, Korean, and Javanese Indonesians, also carry the allele (typically 5-12%) [15-17]. The prevalence of the HLA-B*58:01 allele corresponds with the higher incidence of allopurinol-induced SCAR observed in countries such as Malaysia and Singapore [3,4]. Chinese patients are disproportionately affected in both settings; however, Malays also exhibit a significant risk and should be considered in screening strategies. In contrast, SCAR cases among Indian populations are less frequently reported, which is consistent with the lower prevalence of the allele in this group. There is currently no evidence linking HLA-B*58:01 to SCAR among the Malay ethnic group in Indonesia, despite such associations being observed among Malays in Malaysia [18]. Data from certain countries such as India and the Philippines is limited. This highlights the ethnic diversity across the Asia-Pacific region and the incomplete evidence base for all populations. These gaps underscore the need for more population-specific research to establish genetic risk and support a targeted screening approach adapted to local epidemiology. Importantly, some HLA-B*58:01 carriers tolerate allopurinol without adverse effects [14], while other factors, such as age, sex, renal impairment and initial dosage, also contribute to elevated SCAR risk [9,19]. These complexities highlight the need for a multifactorial risk assessment that integrates both genetic and clinical factors.

LOCAL GUIDELINES AND THE INFLUENCE OF COST-EFFECTIVENESS

International guidelines generally support HLA-B*58:01 screening before starting allopurinol, but stop short of recommending universal testing. The American College of Rheumatology advises screening for high-risk groups, such as Southeast Asians and African Americans [20], while the Clinical Pharmacogenetics Implementation Consortium and the Dutch Pharmacogenetics Working Group recommend targeted screening without specifying populations [21,22].

In the Asia-Pacific region, national approaches vary. Singapore's guidelines cite low predictive value and the role of non-genetic risk factors, suggesting screening only among high-risk individuals, such as the elderly or those with kidney disease, while considering the screening cost [23]. Malaysia acknowledges the genetic risk but does not support routine screening due to cost concerns and lacks specific guidance for high-risk groups [24]. In contrast, Hong Kong's 2023 guideline recommends screening for certain Asian and African American patients, especially those above 60 years of age or with renal impairment [25].

Most guidelines emphasise ethnicity and renal function, but often overlook individual drug tolerance, multiethnic variation, equity concerns, and practical implementation challenges. Costeffectiveness remains a central consideration, particularly in Malaysia and Singapore, where earlier studies concluded that HLA-B*58:01 screening was not cost-effective, even among patients with renal impairment [26,27]. These recommendations often focussed on the limited predictive value of the test, using this as a rationale against broader screening. However, past evaluations omit the long-term costs associated with severe SCAR outcomes, including dialysis and chronic care. By excluding these downstream impacts, current models may underestimate the true value of targeted screening, especially for high-risk groups.

SCREENING FOR HLA-B*58:01 IN THE ASIA PACIFIC REGION: VARIATION IN PRACTICE

Across the Asia-Pacific region, HLA-B*58:01 screening is not routinely performed before initiating allopurinol, barring a few exceptions. For instance, Korea and Thailand support universal

HLA-B*58:01 testing through public insurance. Specifically, Thailand's primary care is mainly hospital-based, thus screening may be conducted onsite or referred to larger hospitals, depending on local infrastructure.

Hong Kong has taken more systematic steps by implementing universal screening in its public healthcare system since March 2023, following a sentinel SCAR-related death. Its electronic prescribing system prompts clinicians to order HLA-B*58:01 testing before initiating allopurinol. In Singapore, routine screening is not performed in primary care but may be offered in tertiary centres for high-risk patients. Meanwhile, in Malaysia, screening is uncommon in both public and private practices, often requiring special arrangements and incurring additional costs.

Despite strong genetic associations with SCAR, adoption of HLA-B*58:01 screening remains uneven across the region due to multiple interrelated challenges. Implementation is often inconsistent, shaped by a lack of physician awareness, resource availability, and local workflows. Primary care infrastructure frequently lacks capacity for genetic testing, with services concentrated in tertiary centres. Physicians face uncertainty about whom to screen and how to manage positive results, reflecting gaps in clinical protocols and pharmacogenomic literacy. Patient awareness is low, and reluctance to pay out-of-pocket further limits uptake in countries where screening is not supported by national health insurance or public funding, such as Malaysia and Singapore. Even when screening is available, access to safer alternatives like febuxostat is constrained by cost and limited availability in public clinics. While febuxostat demonstrates better efficacy and safety compared to other second-line urate-lowering agents, it carries an US Food and Drug Administration (FDA) black-box warning for increased cardiovascular events and death [20]. Although Mackenzie and colleagues suggest no greater cardiovascular risk with febuxostat, neither the European Medicines Agency nor the FDA have revised their warnings, continuing to advise against prescribing febuxostat to patients with a history of cardiovascular events [28]. These regulatory barriers, combined with fragmented funding, contribute to sporadic screening implementation.

BALANCING ETHICS, EQUITY, AND PRACTICALITY IN SCREENING IMPLEMENTATION

From an ethical standpoint, it is neither justifiable nor equitable to forgo HLA-B*58:01 screening solely due to cost, especially when existing cost-effectiveness analyses may underestimate long-term health system burdens and when patients are expected to pay out-of-pocket. Financial barriers disproportionately affect vulnerable populations and undermine equitable access to safe treatment. However, ethical action must also be context sensitive. In resource-limited settings or among populations with demonstrated tolerance to allopurinol despite HLA-B*58:01 positivity, universal screening may not be the most practical or just approach. Evidence shows that individuals carrying this allele tolerate allopurinol without adverse effects [14], and that blanket exclusion could deny access to an affordable and effective therapy, particularly where alternatives like febuxostat are costly or carry additional risks. Therefore, a comprehensive economic evaluation that incorporates long-term health system costs is needed to assess the value of this screening approach, while cost-effectiveness may also increase as generic febuxostat prices decline in the future.

Moreover, a risk-based approach that considers non-genetic factors such as age, renal function, ethnicity, and genetic markers could optimise screening safety without overburdening the system. Developing a robust risk prediction model that incorporates both genetic and non-genetic factors would be valuable in this sense. However, regional pharmacovigilance data remain fragmented and incomplete; although existing platforms share genetic data such as HLA allele prevalence, broader pharmacovigilance reporting is not yet harmonised. Efforts are ongoing to foster regional collaboration in pharmacogenomics, but have yet to mature into sustained data-sharing systems. Establishing an Asia-Pacific regional registry that incorporates pharmacovigilance data and genetic markers would improve data quality and support the development of more accurate and cost-effective screening models. In Malaysia and Singapore, screening strategies should also consider clinical and demographic factors beyond ethnicity and kidney disease to enhance relevance and cost-effectiveness.

Importantly, patients should be involved in co-designing screening strategies to ensure alignment with their values and experiences. Collaboration with gout advocacy groups could lead to more

inclusive policies, such as subsidised genetic testing, public education on SCAR, and routine use of pharmacogenomic safety measures. This involvement is especially vital in low- and middle-income countries (LMICs), where access and awareness are limited.

Tiered screening for HLA-B*58:01 may be feasible in LMICs, and rural areas with limited access to genetic testing facilities. These settings could consider the deployment of point-of-care (POC) tests, with positive results referred to advanced centres for confirmatory testing. To our knowledge, no POC kits have received regulatory approval, though several are in development and may enable safer prescribing once validated. Integration into routine care workflows is also essential. Hong Kong's electronic medical record alert system, which prompts HLA-B*58:01 testing before allopurinol initiation, serves as a model for embedding pharmacogenomic safety into clinical decision-making.

Finally, we call on the US FDA to re-evaluate its boxed warning on febuxostat to address the conflicting findings in the Cardiovascular Safety of Febuxostat and Allopurinol in Patients with Gout and Cardiovascular Morbidities *vs.* Febuxostat *vs.* Allopurinol Streamlined Trial [28,29]. Given the limited Asian representation in earlier trials, a population-specific review is warranted to ensure equitable access to alternative urate-lowering therapies for high-risk groups.

CONCLUSIONS

Addressing the burden of allopurinol-induced SCAR in the Asia-Pacific region requires a multifaceted strategy that incorporates genetic screening, assessment of clinical risk factors, and ensures equitable access to safer therapeutic alternatives. Regional collaboration, improved pharmacovigilance, and patient-centred approaches, including advocacy and co-design, could help shape inclusive, cost-effective screening policies.

Acknowledgements: The authors would like to acknowledge the Asia-Pacific Academic Primary Care Group (AAPCG) for providing the collaborative platform that facilitated the development of this article. We used Microsoft Copilot to assist with English grammar verification and enhancement. The authors manually reviewed the final version for accuracy and take full accountability for its content.

Funding: The authors received no funding for this work. The article processing charge was partially funded by Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.

Authorship contributions: All authors conceptualised the content of this manuscript. WLN, ETYT, PO, HML, SWCK, RR, HCL and BCCL collected the materials and references for the manuscript. LHG, AA and LJG provided guidance on the project. WLN drafted the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. LHG and AA supervised the project and share joint senior authorship.

Disclosure of interest: The authors completed the ICMJE Disclosure of Interest Form (available upon request from the corresponding author) and disclose no relevant interests.

- 1 Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16:380–90. Medline:32541923 doi:10.1038/s41584-020-0441-1
- 2 Health Sciences Authority of Singapore. Allopurinol-induced severe cutaneous adverse reactions and the role of HLA-B*5801 genotyping a reminder. 21 December 2021. Available: https://www.hsa.gov.sg/announcements/safety-alert/allopurinol-induced-severe-cutaneous-adverse-reactions-and-the-role-of-hla-b-5801-genotyping-a-reminder. Accessed: 23 February 2025.
- 3 Health Sciences Authority of Singapore. A Guide on Severe Cutaneous Adverse Reactions. Singapore: Health Sciences Authority of Singapore; 2024. Available: https://www.hsa.gov.sg/docs/default-source/hprg-vcb/adverse-events/severe-cutaneous-adverse-reactions-(scar)-guide_wbv2.pdf. Accessed: 12 August 2025.
- 4 Ng WL, Lim KS, Hariraj V, Lee SC, Wo WK, Ramli A, et al. Incidence of allopurinol-induced severe cutaneous adverse drug reaction in Malaysia. Br J Clin Pharmacol. 2022;88:3782–8. Medline:35318720 doi:10.1111/bcp.15327
- 5 Finkelstein Y, Macdonald EM, Li P, Hutson JR, Juurlink DN. Recurrence and Mortality Following Severe Cutaneous Adverse Reactions. JAMA. 2014;311:2231–2. Medline:24893093 doi:10.1001/jama.2014.839

- 6 Huang PW, Chiou MH, Chien MY, Chen WW, Chu CY. Analysis of severe cutaneous adverse reactions (SCARs) in Taiwan drug-injury relief system: 18-year results. J Formos Med Assoc. 2022;121:1397–405. Medline:34674904 doi:10.1016/j.jfma.2021.09.025
- 7 Chiu MLS, Hu M, Ng MHL, Yeung CK, Chan JCY, Chang MM, et al. Association between HLA-B*58:01 allele and severe cutaneous adverse reactions with allopurinol in Han Chinese in Hong Kong. Br J Dermatol. 2012;167:44–9. Medline:22348415 doi:10.1111/j.1365-2133.2012.10894.x
- 8 Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102:4134–9. Medline:15743917 doi:10.1073/pnas.0409500102
- 9 Low DE, Nurul-Aain AF, Tan WC, Tang JJ, Bakhtiar MF, Murad S, et al. HLA-B*58:01 association in allopurinol-induced severe cutaneous adverse reactions: The implication of ethnicity and clinical phenotypes in multiethnic Malaysia. Pharmacogenet Genomics. 2020;30:153–60. Medline:32433341 doi:10.1097/FPC.000000000000000408
- 10 Tan-Koi WC, Sung C, Chong YY, Lateef A, Pang SM, Vasudevan A, et al. Tailoring of recommendations to reduce serious cutaneous adverse drug reactions: a pharmacogenomics approach. Pharmacogenomics. 2017;18:881–90. Medline:28594314 doi:10.2217/pgs-2017-0016
- 11 Tassaneeyakul W, Jantararoungtong T, Chen P, Lin P-Y, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19:704–9. Medline:19696695 doi:10.1097/FPC.0b013e328330a3b8
- 12 Dong D, Tan-Koi WC, Teng GG, Finkelstein E, Sung C. Cost-effectiveness analysis of genotyping for HLA-B*5801 and an enhanced safety program in gout patients starting allopurinol in Singapore. Pharmacogenomics. 2015;16:1781–93. Medline:26554739 doi:10.2217/pgs.15.125
- 13 Middleton D, Hawkins BR, Williams F, Meenagh A, Moscoso J, Zamora J, et al. HLA class I allele distribution of a Hong Kong Chinese population based on high-resolution PCR-SSOP typing. Tissue Antigens. 2004;63:555–61. Medline:15140031 doi:10.1111/j.0001-2815.2004.00234.x
- 14 Ng WL, Kee BP, Hussein N, Ng CJ, Kuan SW, Mohd Zaidan FZ, et al. Prevalence of HLA-B*58:01 allele among Malay, Chinese and Indian ethnic patients with gout attending primary care clinics in Malaysia. J Community Genet. 2025;16:37–45. Medline:39586937 doi:10.1007/s12687-024-00753-4
- 15 Puangpetch A, Koomdee N, Chamnanphol M, Jantararoungtong T, Santon S, Prommas S, et al. HLA-B allele and haplotype diversity among Thai patients identified by PCR-SSOP: evidence for high risk of drug-induced hypersensitivity. Front Genet. 2015;5:478. Medline:25657656 doi:10.3389/fgene.2014.00478
- 16 Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA Allele Frequencies in 5802 Koreans: Varied Allele Types Associated with SJS/TEN According to Culprit Drugs. Yonsei Med J. 2016;57:118–26. Medline:26632391 doi:10.3349/ymj.2016.57.1.118
- 17 Ferdiana A, Fachiroh J, Oktarina DAM, Irwanto A, Mahendra C, Febriana SA, et al. Allopurinol-Induced Stevens-Johnson Syndrome in Javanese Men With Positive HLA-B*58:01. Front Genet. 2022;13:839154. Medline:35769987 doi:10.3389/fgene.2022.839154
- 18 Yuliwulandari R, Prayuni K, Viyati K, Mahasirimongkol S, Wichukchinda N. Frequencies of HLA-B alleles in Indonesian Malay Ethnic. Heliyon. 2024;10:e26713. Medline:38439829 doi:10.1016/j.heliyon.2024.e26713
- 19 Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet. 2011;12:118. Medline:21906289 doi:10.1186/1471-2350-12-118
- 20 FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res (Hoboken). 2020;72:744–60. Medline:32391934 doi:10.1002/acr.24180
- 21 Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther. 2016;99:36–7. Medline:26094938 doi:10.1002/cpt.161
- 22 van der Pol KH, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk AM, Guchelaar HJ, et al. Dutch pharmacogenetics working group guideline for the gene-drug interaction of ABCG2, HLA-B and Allopurinol, and MTHFR, folic acid and methotrexate. Eur J Hum Genet. 2024;32:155–62. Medline:36056234 doi:10.1038/s41431-022-01180-0
- 23 Singapore Agency for Care Effectiveness. Gout achieving the management goal. Singapore: Ministry of Health Singapore; 2023. Available: https://isomer-user-content.by.gov.sg/68/5eec6994-d9c0-4533-bdf7-94ad65af2e70/gout-achieving-the-management-goal-dec2023.pdf. Accessed: 12 August 2025
- 24 Malaysian Health Technology Assessment Section, Medical Development Division, Ministry of Health Malaysia. Clinical Practice Guidelines Management of Gout. 2nd edition ed. Putrajaya, Malaysia: Malaysian Health Technology Assessment Section; 2021. Available: https://www.moh.gov.my/moh/resources/Penerbitan/CPG/Rheumatology/e-CPG_Management_of_Gout_(Second_Edition).pdf. Accessed: 12 August 2025.

- 25 Yip RML, Cheung TT, So H, Chan JPS, Ho CTK, Tsang HHL, et al. The Hong Kong Society of Rheumatology consensus recommendations for the management of gout. Clin Rheumatol. 2023;42:2013–27. Medline:37014501 doi:10.1007/s10067-023-06578-9
- 26 Chong HY, Lim YH, Prawjaeng J, Tassaneeyakul W, Mohamed Z, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*58: 01 genetic testing before initiation of allopurinol therapy to prevent allopurinol-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in a Malaysian population. Pharmacogenet Genomics. 2018;28:56–67. Medline:29176400 doi:10.1097/FPC.00000000000000319
- 27 Teng GG, Tan-Koi WC, Dong D, Sung C. Is HLA-B*58:01 genotyping cost effective in guiding allopurinol use in gout patients with chronic kidney disease? Pharmacogenomics. 2020;21:279–91. Medline:32180492 doi:10.2217/pgs-2019-0160
- 28 Mackenzie IS, Ford I, Nuki G, Hallas J, Hawkey CJ, Webster J, et al. Long-term cardiovascular safety of febuxo-stat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396:1745–57. Medline:33181081 doi:10.1016/S0140-6736(20)32234-0
- 29 White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N Engl J Med. 2018;378:1200–10. Medline:29527974 doi:10.1056/NEJMoa1710895

Correspondence to:

Wei Leik Ng Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya 50603 Kuala Lumpur Malaysia wlng@ummc.edu.my