

UNIVERSITI PUTRA MALAYSIA

PEEL STRENGTH AND OTHER RELATED MECHANICAL PROPERTIES OF COMPOSITE SANDWICH STRUCTURES

ZAHURIN BINTI HALIM

FK 2002 88

PEEL STRENGTH AND OTHER RELATED MECHANICAL PROPERTIES OF COMPOSITE SANDWICH STRUCTURES

By

ZAHURIN BINTI HALIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

November 2002

To My Husband, Parents, Family and Friends

Thank you for being my inspiration and motivator....

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PEEL STRENGTH AND OTHER RELATED MECHANICAL PROPERTIES OF COMPOSITE SANDWICH STRUCTURES

By

ZAHURIN BINTI HALIM

November 2002

Chairman: Professor ShahNor Bin Basri, Ph.D, PEng

Faculty: Engineering

An experimental and numerical investigation of the peel strength and other mechanical properties of composite sandwich structures were conducted. The composite sandwich structure consists of carbon fibre and aramid fibre as facings with either a honeycomb or foam core.

The peel strength of both types of composite sandwich structure for use at the flap and aileron was studied. The peel tests showed that the composite sandwich structure with a honeycomb core is stronger than the composite sandwich structure with a foam core. The modes of failures or possible path of crack propagation were also studied. The most critical modes of failure were the adhesion failure to the facing and the adhesion failure to the core.

A peel modelling was developed using interface elements and the effect of various modes of failures on the strain energy release rate was evaluated by finite element analysis using LUSAS, a commercial finite element code. A numerical scheme called

virtual crack closure scheme was used to calculate the strain energy release rate at the peel front in a peel test specimen.

To complement the results on the peel strength, investigations on other related mechanical properties were conducted and comparisons were made with previous works in the reference. The important parameters studied were bending, shear and compression as all of them has a static condition. The results show that experimental, numerical and validations with parametric studies agree well. The tensile test was also conducted experimentally to obtain modulus of elasticity that was required in the computational calculations.

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KEKUATAN LEKANG DAN SIFAT-SIFAT MEKANIKAL YANG BERKAITAN UNTUK STRUKTUR KOMPOSIT TERAPIT

Oleh

ZAHURIN BINTI HALIM

November 2002

Pengerusi: Profesor ShahNor Bin Basri, Ph.D, PEng

Fakulti: Kejuruteraan

Kajian eksperimen dan berangka telah dijalankan ke atas kekuatan lekang struktur komposit terapit. Struktur komposit terapit tersebut terdiri daripada gentian karbon dan gentian aramid sebagai permukaan atas dan samada busa atau indung madu sebagai teras. Dua bahagian yang paling dipengaruhi oleh kesan lekang di dalam sesebuah kapalterbang adalah aileron dan kepak dan kajian terperinci ke atas keduadua bahagian dijalankan.

Ujian lekang telah menunjukkan bahawa struktur komposit terapit dengan teras indung madu adalah lebih kuat daripada struktur komposit terapit dengan teras busa. Mod kegagalan atau laluan yang mungkin bagi perambatan retak juga telah diselidiki. Mod kegagalan yang paling kritikal adalah kegagalan rekatan pada permukaan atas serta kegagalan rekatan pada teras.

Model baru untuk proses lekang dengan menggunakan elemen antaramuka telah di bangunkan dan kesan pelbagai mod kegagalan ke atas kadar pelepasan tenaga terikan telah dinilai dengan menggunakan kaedah analisis unsur terhingga dengan menggunakan kod komersil analisis unsur LUSAS. Skim berangka yang dipanggil skim penutupan retak maya digunakan untuk mengira kadar pelepasan tenaga terikan pada permukaan hadapan lekang dalam spesimen ujian lekang.

Kajian ke atas sifat-sifat mekanikal yang lain dijalankan untuk mensahihkan model lekang dan perbandingan dibuat dengan kajian-kajian terdahulu dalam rujukan. Parameter penting yang dikaji adalah lenturan, ricihan dan mampatan. Daripada keputusan yang diperolehi, ianya menunjukkan bahawa kajian eksperimen, kajian berangka dan kajian sifat-sifat mekanikal untuk pengsahihan adalah sepakat. Ujian tegangan juga dijalankan secara eksperimen untuk memperolehi modulus elastik yang diperlukan dalam pengiraan berangka.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah s.w.t for the completion of this thesis. I would like to thank my supervisor Prof. Dr. ShahNor Basri for his complete support and advice throughout the course of my degree. Many ideas originate in our frequent discussion and his constant patience over the years has been of invaluable help.

I am also grateful to co-supervisor Associate Prof. Col. Ramly Ajir and Associate Prof. Dr. Mohammad Nor Berhan for their helpful advice. My deep thanks to Dr. Waqar, Faizal, Aznijar, Encik Ropie and the rest of the staff in Aerospace Engineering for their continuous support and kind words. To my wonderful friends, Dayang, Wan, Kak Ina, Ila, Milah, Rosnah and Harlisya, thank you for your help, advice, support and companionship. It is the most memorable and happiest time in UPM. Also to my best friends Ajie and Aju, thank you for the moral support, encouragement and shoulders to cry on.

And last but not least, to my wonderful family especially my husband, Kamaludin and children, Khairunnas, Khalkhalas and Khaliskhilfi, your unfailing love and support have encourage me throughout the years. I will always cherish them.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xix

CHAPTER

1	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Scope and Objectives of Research	8
	1.3	Research Achievement	9
2	LITE	ERATURE REVIEW	10
	2.1	An Overview	10
	2.2	The Experimental and Numerical Peel Test	16
	2.3	Other Mechanical Properties	23
	2.4	Closure	34
3	THE	EORY	35
	3.1	Peeling - Fundamental	35
	3.2	Peel Fracture	39
		3.2.1 Mechanics of The Peel Test	40
		3.2.2 Determination of Longitudinal Modulus	41
	3.3	Other Mechanical Properties	43
		3.3.1 Bending	43
		3.3.2 Shearing	46
		3.3.3 Compression	48
	3.4	Closure	52
4	МО	DELLING AND NUMERICAL ANALYSIS	53
	4.1	Theory	53
		4.1.1 Composite Models	53
		4.1.2 Local Coordinate System	54
		4.1.3 Constitutive Law	54
		4.1.4 Integration of Element Matrices	56
		4.1.5 Non-Linear Formulation	58
		4.1.6 Non-Linear Solution Procedures	60
		4.1.7 Iterative Procedures	60
		4.1.7.1 Newton Iteration	61
		4.1.7.2 Convergence	62

4.2	Peel Modelling	64
	4.2.1 Theory-Element Description	64
	4.2.2 2D Plane Strain Continuum Elements (QPN8)	04 66
	4.2.2.1 Evaluation of Success	68
	4.2.5 Interface Models	60
	4.2.5 Delamination Damage Model	70
	4.2.6 Strain Energy Calculation	72
4.3	LUSAS Peel Modelling	74
	4.3.1 Analysis Control	78
4.4	Bending Modelling	80
4.5	Shear Modelling	81
4.6	Compression Modelling	81
4.7	Closure	82
MA	TERIALS AND EXPERIMENTAL METHODS	83
5.1	Materials Description	83
5.2	Fabrication Process – Hand Lay-Up	86
	5.2.1 Testing Machine Apparatus	87
	5.2.2 Peeling Apparatus	88
5.3	Calibration of Test Apparatus	89
5.4	Experimental Procedures	89
5.5 5.4	Calculation Tomoile Test	90
5.0	5.6.1 Test Method	91
5.7	Closure	91 91
EXPI 6.1 6.2	ERIMENTAL RESULTS AND DISCUSSION Peel Failure Tensile Tests	93 93 104
63	0.2.1 Calculation Validation of Pagulta	104
6.4	Closure	107
RESI	ULTS AND DISCUSSION ON NUMERICAL ANALYSIS	109
7.1	Peel	109
7.2	Other Mechanical Properties	116
	7.2.1 Bending	116
	7.2.2 Shear	120
	7.2.3 Compression	124
7.3	Comparison with Published Work	128
7.4	Closure	129
GEN	ERAL APPROACH IN DESIGNING	
COM	POSITE SANDWICH STRUCTURES	137
8.1	Relevant Fracture Mechanics	138
a -	8.1.1 The Energy Release Rate	138
8.2	Approach	139

FUTI	URE WORK	14
9.1	Computational Results	142
9.2	Recommendation for Future Work	143

REFERENCES

9

144

APPEN	NDIX	148
Al	Three Common Forms of Modified Newton-Raphson	148
A2	Incrementation Method	150
A3	Modified Arc Length Control (Crisfield's Method)	153
A4	Arc Length Control (Relative Displacement Method)	155
A5	Material Cartesian System	157
A6	Constitutive Relationship	159
B1	Peel Strength And Modes of Failure for Aileron	162
B2	Peel Strength And Modes of Failure for Flap	166
С	Results from Tensile Tests	170
D1	An Example of LUSAS's Stress Results	174
D2	An Example of LUSAS's Output Files	200

VITA

234

LIST OF TABLES

Table		Page
1.1	Advantages and Disadvantages of Composite Sandwich	
	Structures	3
3.1	Equations for Beam Loading	37
3.2	Sandwich Panel Failure Modes under Edgewise-Compression	
	Loading	38
4.1	Stress and Strain Output	67
4.2	Properties of Laminated Composites	76
4.3	Interface Material Attributes	76
4.4	Analysis Control Table in Non-Linear Problem	78
5.1	Materials for Test Specimen	85
5.2	Typical Fabric Laminate Properties	86
7.1	Mechanical Properties of Sandwich Panels	129
B1-1	Peel Strength and modes of Failure for Aileron	162
B2-1	Peel Strength and modes of Failure for Flap	166
D1-1	An Example of LUSAS's Stress Results	174

LIST OF FIGURES

Figure		Page
1.1	Components of Composite Materials	2
1.2	Composite Sandwich Structures	2
1.3	Peel Failure in Composite Sandwich Structures	5
3.1	Some Sandwich Panel Failure Modes under	38
	Edgewise-Compression Load	
3.2	Peel Mechanics (Mode 1, Opening) at the Peel Front	40
3.3	Dimensions of Sandwich Beams	44
3.4	Sign Conventions. Left, Positive Deflection, Slope and Curvature;	
	Negative Bending Moment. Right, Positive Shear Force, Shear	
	Stress and Shear Strain	45
3.5	Shear Stress Distribution in Homogeneous I-Beam	47
3.6	True Shear Stress Distribution in Sandwich Beam	48
3.7	Two Possible Buckling Modes	51
4.1	Definition of An Orthotropic Material in a 2-D	
	Using an Angle of Orthotrophy	55
4.2	Definition of An Orthotropic Material in a 3-D	
	Using Cartesian Set	55
4.3	An Incremental-Iterative Method – a Solution Procedure	61
4.4	Nodal Configuration for 8 Node Quadrilateral	65
4.5	Sign Convention for Stress/Strain Output	67

4.6	Interface Elements IPN6	68
4.7	Delamination Damage Model	71
4.8	Fracture Modes	72
4.9	The Geometry of the Sample and Support Positions	74
4.10	The Peel Model	75
4.11	A Prescribed Displacement	77
4.12	Computational Procedure of the Main Program in LUSAS	79
4.13	The Bending Model	80
4.14	The Shear Model	81
4.15	Compression Numerical Model	82
5.1	Dimensions and Configurations for a Peel Test Specimen	84
5.2	Test Specimen with Foam Core	84
5.3	Universal Testing Machine	87
5.4	Assembly of Peeling Apparatus	88
6.1	Modes of Failure in Composite Sandwich Structures	94
6.2	Mode 3 in Honeycomb Core	95
6.3	Mode 3 in Foam Core	96
6.4	Mode 2 in Honeycomb Core	97
6.5	Load versus Crosshead for Flap and Aileron	99
6.6	Load versus Crosshead for Flap	100
6.7	Load versus Crosshead for Aileron	101
6.8	Load versus Crosshead for Honeycomb and Foam Core	102
6.9	Load versus Crosshead for Flap and Aileron	103

6.10	Load versus Displacement for Sample with Honeycomb Core	105
6.11	Stress versus Strain Curve for Composite Sandwich	
	Structures	106
7.1	The Deformed Mesh for the Peel Modelling	110
7.2	Stress Contour in the X-Direction	111
7.3	Stress Distribution along the Length of a Peel	
	Test Specimen at the Facings/Core Interface	113
7.4	Displacement versus Strain Energy Numerically	114
7.5	Displacement versus Strain Energy Experimentally	115
7.6	The Deformed Mesh for the Bending Modelling	116
7.7	Stress Contour in the X-Direction	117
7.8	Stress Distribution along the Length of the Bending Model	118
7.9	Strain Distribution along the Length of the Bending Model	119
7.10	The Deformed Mesh for the Shear Modelling	120
7.11	Stress Contour in the Shear Model	121
7.12	Stress Distribution along the Length of the Shear Model	122
7.13	Strain Distribution along the Length of the Shear Model	123
7.14	The Deformed Mesh for the Compression Modelling	124
7.15	Stress Contour in X Direction	125
7.16	Stress Distribution along the Length of the Compression Model	126
7.17	Strain Distribution along the Length of the Compression Model	127
7.18	Stress Contour in Peeling at Load 2.5 X 10 ⁻⁴ kN	130
7.19	Stress Contour in Peeling at Load 5.0 X 10 ⁻⁵ kN	131

7.20	Stress Contour in Peeling at Load 7.5 X 10 ⁻⁴ kN	132
7.21	Stress Contour in Peeling at Load 1.0 X 10 ⁻³ kN	133
7.22	Stress distribution in Peeling at Various Loads	134
7.23	Stress Contour in Peeling of E-Glass at Load 1.0 X 10 ⁻³ kN	135
7.24	Strain Energy Release Rate for Various Modes of Failure	136
A1-1	Common Forms of Modified Newton Iteration	149
A2-1	Constant Load Level Incremental/Iterative Procedure	150
A2-2	Illustration of Limit Points for A One Degree of Freedom Response	151
A3-1	Modified Arc Length Load Incrementation for A One Degree	
	of Freedom Response	153
A5-1	Material Cartesian for Interface Model	157
A5-2	Element Topology Defining the In-Plane and Out-of-Plane	
	Directions for the Interface Model	158
A6-1	Yield Surface for the Interface Model	160
C-1	Load-Displacement Curves for Sandwich Structure with	
	Honeycomb Core	170
C-2	Load-Displacement Curves for Sandwich Structure with	
	Foam Core	171
C-3	Stress-Strain Curves for Sandwich Structure with	
	Honeycomb Core	172
C-4	Stress-Strain Curves for Sandwich Structure with	
	Honeycomb Core	173

LIST OF ABBREVIATIONS

_

A _f	net cross-sectional area of fibre
A _i	cross-sectional area of lamina i
A _m	net cross-sectional area of matrix
D	flexural rigidity
E	modulus of elasticity
En	longitudinal elastic modulus of composite facings
Ec	modulus of elasticity of the core
E _f	modulus of elasticity of the facings
E _{fi}	fibre Young's Modulus
Ei	modulus of elasticity of lamina I
E _m	matrix Young's Modulus
E _x	modulus of elasticity of lamina at distance x from neutral axis
F(σ)	yield surface
$F_1(\sigma)$	limited tension criterion
$F_2(\sigma)$	Mohr-Coulomb criterion
Fo	load required to overcome resisting load
F _p	average load required to bend and peel adherend
G	strain energy release rate
Gc	shear modulus of core
I	second moment of area
Ii	second moment of area of lamina I about neutral axis

L	beam length
М	bending moment
Ν	shear stiffness of core
N _i , ξ, η	element shape function
Р	peel strength
<u>P</u>	vector of internal forces
<u>P</u> _b	vectors of the bottom displacements
P _{cr}	critical buckling load
Pec	edge compressive load
Pp	point load
<u>P</u> t	vectors of the top displacements
Pt	tensile force
Q	shear force
S	first moment of area
U	strain energy in the facing at the strain $\boldsymbol{\epsilon}_{11}$
U, V	the nodal degrees of freedom
W	work
W _k	mid-ordinate integration weights
<u>B</u>	strain displacement
<u>B'</u>	local strain global displacement
<u>D</u>	stiffness matrix
<u>D'</u>	matrix of elastic properties

<u>H</u>	shape function matrix
<u>J</u>	Jacobian matrix
K	element stiffness matrix
<u>R</u>	load vector
\overline{x}	neutral axis location
1/R	curvature
<u>a</u>	global displacement
а	spacing between points of honeycomb core support for the facings
b	width of beam
c	thickness of the core
c _s	cohesive strength
d	distance between the centre lines of the upper and lower facings
f	thickness of the facing
h	overall depth of the beam
h _k	thickness of the k th layer
k _b , k _s	constants dependent on the beam loading
k _d	theoretical or experimental dimpling coeffecient
k _w	theoretical or empirical buckling coefficient
r _i	radius of drum
r _o	radius of flange
t	the total thickness of the shell
<u>u</u>	displacement field
<u>u</u> _b	bottom displacement

<u>u</u> t	top displacement
v _f	fibre volume fraction
v _m	matrix volume fraction
W	width of the facing
Z	depth below the centroid of the cross-section
α	peel angle
δ	deflection
ε ₁₁	tensile strain in fibre direction in the facing
ε _c	longitudinal strain in composite
ε _m	longitudinal strain in matrix
<u>8, </u> <u>0</u>	total strains and stresses
<u>ε', σ</u> '	local strain and stress vector
<u>ε</u> ₀ , <u>σ</u> ₀	initial strains and stresses
ϕ	friction angle
λ	an angle of orthotrophy
ν	Poisson's ratio
v _c	Poisson ratio of core
ν_{f}	Poisson ratio of faces
σ11	tensile stress in fibre direction in the facing
σ_{co}	average tensile stress in the composite
$\sigma_{\rm fi}$	fibre stress
σ _m	matrix stress
σ	bending stress

•

σ'c	compressive stress in core
σ' _f	compressive stress in faces
σ _c	bending stress in core, at extreme fibre
σ_{f}	bending stress in faces
σ_n	compressive stress in core
σ _t	threshold strength
σ_w	wrinkling of compressive force
τ	shear stress
τ _c	shear stress of the core
ξ, η, ζ	parent coordinates in a mapped element
ξ _k	within the k_{th} layer of an element
$\underline{\Psi}$	residual force vector

CHAPTER 1

INTRODUCTION

1.1 Background

Structural materials can be divided into four basic categories: metals, polymers, ceramics and composites. Composites, which consist of two or more separate materials combined in a macroscopic structural unit, are made from various combinations of the three materials. For over 60 years, composite materials have proven to be very successfully utilized in structural applications. They are used in stiffness-critical aerospace structures, offshore structures, marine, automotive industries and also in medical, sports and electrical applications.

Composite materials can be divided into two main groups i.e. particle composites and fibre-reinforced composites. The detailed types of composite construction are shown in Figure 1.1[1]. In this present work only composite sandwich structures will be discussed thoroughly. The American Society for Testing and Materials (ASTM) defines for a composite sandwich structure as a construction which consists of high strength composite facing sheets bonded to a lightweight foam or honeycomb core as shown in Figure 1.2[2].

