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Faculty: Engineering

An experimental and numerical investigation of the peel strength and other
mechanical properties of composite sandwich structures were conducted. The
composite sandwich structure consists of carbon fibre and aramid fibre as facings with

either a honeycomb or foam core.

The peel strength of both types of composite sandwich structure for use at the flap and
aileron was studied. The peel tests showed that the composite sandwich structure
with a honeycomb core is stronger than the composite sandwich structure with a foam
core. The modes of failures or possible path of crack propagation were also studied.
The most critical modes of failure were the adhesion failure to the facing and the

adhesion failure to the core.

A peel modelling was developed using interface elements and the effect of various
modes of failures on the strain energy release rate was evaluated by finite element

analysis using LUSAS, a commercial finite element code. A numerical scheme called
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virtual crack closure scheme was used to calculate the strain energy release rate at the

peel front in a peel test specimen.

To complement the results on the peel strength, investigations on other related
mechanical properties were conducted and comparisons were made with previous
works in the reference. The important parameters studied were bending, shear and
compression as all of them has a static condition. The results show that experimental,
numerical and validations with parametric studies agree well. The tensile test was
also conducted experimentally to obtain modulus of elasticity that was required in the

computational calculations.
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Kajian eksperimen dan berangka telah dijalankan ke atas kekuatan lekang struktur
komposit terapit. Struktur komposit terapit tersebut terdiri daripada gentian karbon
dan gentian aramid sebagai permukaan atas dan samada busa atau indung madu
sebagai teras. Dua bahagian yang paling dipengaruhi oleh kesan lekang di dalam
sesebuah kapalterbang adalah aileron dan kepak dan kajian terperinci ke atas kedua-

dua bahagian dijalankan.

Ujian lekang telah menunjukkan bahawa struktur komposit terapit dengan teras
indung madu adalah lebih kuat daripada struktur komposit terapit dengan teras busa.
Mod kegagalan atau laluan yang mungkin bagi perambatan retak juga telah
diselidiki. Mod kegagalan yang paling kritikal adalah kegagalan rekatan pada

permukaan atas serta kegagalan rekatan pada teras.

Model baru untuk proses lekang dengan menggunakan elemen antaramuka telah di
bangunkan dan kesan pelbagai mod kegagalan ke atas kadar pelepasan tenaga terikan

telah dinilai dengan menggunakan kaedah analisis unsur terhingga dengan
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menggunakan kod komersil analisis unsur LUSAS. Skim berangka yang dipanggil

skim penutupan retak maya digunakan untuk mengira kadar pelepasan tenaga terikan

pada permukaan hadapan lekang dalam spesimen ujian lekang.

Kajian ke atas sifat-sifat mekanikal yang lain dijalankan untuk mensahihkan model
lekang dan perbandingan dibuat dengan kajian-kajian terdahulu dalam rujukan.
Parameter penting yang dikaji adalah lenturan, ricihan dan mampatan. Daripada
keputusan yang diperolehi, ianya menunjukkan bahawa kajian eksperimen, kajian
berangka dan kajian sifat-sifat mekanikal untuk pengsahihan adalah sepakat. Ujian
tegangan juga dijalankan secara eksperimen untuk memperolehi modulus elastik

yang diperlukan dalam pengiraan berangka.
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CHAPTER 1

INTRODUCTION

1.1 Background

Structural materials can be divided into four basic categories: metals, polymers,
ceramics and composites. Composites, which consist of two or more separate materials
combined in a macroscopic structural unit, are made from various combinations of the
three materials. For over 60 years, composite materials have proven to be very
successfully utilized in structural applications. They are used in stiffness-critical
aerospace structures, offshore structures, marine, automotive industries and also in

medical, sports and electrical applications.

Composite materials can be divided into two main groups i.e. particle composites and
fibre-reinforced composites. The detailed types of composite construction are shown in
Figure 1.1[1]. In this present work only composite sandwich structures will be discussed
thoroughly. The American Society for Testing and Materials (ASTM) defines for a
composite sandwich structure as a construction which consists of high strength
composite facing sheets bonded to a lightweight foam or honeycomb core as shown in

Figure 1.2[2].



