

UNIVERSITI PUTRA MALAYSIA

COIR FIBRE-LOW DENSITY POLYETHYLENE COMPOSITE AS A PACKAGING MATERIAL

ROSNITA A. TALIB

FK 2002 81

COIR FIBRE-LOW DENSITY POLYETHYLENE COMPOSITE AS A PACKAGING MATERIAL

.

By

ROSNITA A. TALIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fullfilment of the Partial Requirement for the Degree Master of Science

July 2002

-

DEDICATION

To my beloved husband, Mirul;

My loving son, Afiq;

My parent, sisters and brothers.

Thanks for your patience, encouragement and loving support.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the partial requirement for the degree of Master of Science

COIR FIBRE-LOW DENSITY POLYETHYLNE COMPOSITE AS A PACKAGING MATERIAL

By

ROSNITA BINTI A. TALIB

July 2002

Chairman: Associate Professor Mohd Nordin Bin Ibrahim, Ph.D.

Faculty: Engineering

The overall goal of current research was to produce a polymer composite consisting of coir fibre (CF) ie. coconut palm fruit fibre and low density polyethylene (LDPE) that would be suitable for food packaging application. CF and LDPE coupled with and without maleated polyethylene (MAPE) materials have been compounded using a twin screw extruder. The mechanical and physical properties of both composite systems were compared. The effect of fibre and MAPE loading on those properties have also been analyzed. In addition, maleated polyethylene with two different molecular weight (M_w) but having the same acid number have also been incorporated into composites to study the effect of molecular weight on the properties of composites. The incorporation of CF into LDPE matrix has resulted in the positive improvement in the tensile and flexural strength and moduli. Whereas, unnotched impact strength (IS), density, water absorption

and thickness swelling decreased as the fibre loading was increased. It was observed that the tensile and flexural strength, unnotched IS and elongation at break of composites have been improved almost doubled that of uncoupled composite. The dimensional stability of composites had also improved after addition of MAPE. Mechanical and physical properties of composites were found to depend strongly on the M_w and sufficient maleic anhydride content of the functionalized polyethylene. Environmental scanning electron microscopy (ESEM) displayed that the adhesion between fibre and matrix had been improved at interfacial region. The ESEM micrographs exhibited evidence that an even fibre distribution might play a dominant role on the properties.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian daripada keperluan untuk ijazah Master Sains

KOMPOSIT SERABUT KELAPA-POLIETILENA BERKETUMPATAN RENDAH SEBAGAI BAHAN PEMBUNGKUSAN

Oleh

ROSNITA A. TALIB

Julai 2002

Pengerusi: Profesor Madya Mohd Nordin Bin Ibrahim, Ph.D.

Fakulti: Kejuruteraan

Tujuan penyelidikan ini dilakukan adalah untuk menghasilkan komposit polimer yang terdiri daripada serabut kelapa (CF) dan polietilena berketumpatan rendah (LDPE) yang sesuai diguna sebagai pembungkus makanan. CF dan LDPE digabungkan bersama bahan atau tanpa bahan maleated polietilena (MAPE) dengan menggunakan penyemperit skru berkembar. Sifat mekanikal dan fizikal kedua-dua sistem komposit ini kemudiannya dibandingkan. Kesan penambahan serabut kelapa dan MAPE terhadap sifat-sifat komposit turut dianalisa. Di dalam kajian ini, MAPE yang mengandungi dua berat molekul yang berbeza tetapi nombor asid yang sama ditambahkan ke dalam komposit untuk menentukan kesan berat molekul terhadap sifat-sifat komposit. Penambahan serabut kelapa ke dalam matriks LDPE menghasilkan peningkatan positif

terhadap kekuatan dan modulus bagi tegangan dan lenturan. Sebaliknya, penambahan serabut kelapa mengakibatkan pengurangan terhadap kekuatan impak tanpa lekuk, ketumpatan, kekuatan, serapan air dan ketebalan pembengkakan. Berdasarkan pemerhatian, didapati kekuatan tegangan dan lenturan, kekuatan impak tanpa lekuk dan pemanjangan pada titik kegagalan telah meningkat hampir dua kali ganda berbanding komposit tanpa bahan penambah. Penambahan MAPE juga meningkatkan kestabilan dimensi komposit. Didapati, sifat-sifat mekanikal dan fizikal amat bergantung terhadap berat molekul dan kandungan maleik anhidrat yang mencukupi bagi polietilena berfungsi. Pengimbas elektron mikroskopi alam sekitar (ESEM) menunjukkan peningkatan terhadap pelekatan antara serabut kalapa dan matrik pada kawasan antara muka. Mikrograf-mikrograf ESEM menunjukkan bukti bahawa penyebaran sekata serabut memainkan peranan besar terhadap sifat-sifat komposit.

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest praise to Allah S.W.T. who has given me the patience, strength, determination and courage to complete this thesis.

This work could not have been completed without the aid and direction of several people. Firstly, I would like to acknowledge Associate Professor Dr. Mohd Nordin Ibrahim, my main supervisor. He has been my advisor and mentor throughout my graduate education. I would also like to thank Associate Professor Dr. Rozman Hj. Din, who has been very patient and helpful especially during the preparation of my samples. Not forgotten, my acknowledgement to Dr. Wan Mohammad Wan Abdulah whose encouragement and understanding is very much appreciated. They have contributed greatly to my professional and personal growth. Without their commitments, timely editing and insightful comments this project would never have been finished.

Another thank you goes to technicians: Mr Kamarulzaman, Nasharuddin and Anuar for your help and assistance throughout the experimental work. A special thanks goes to Mr. Meor Razlan for his assistance and patience during the mechanical testing of samples.

I would like to thank the staff of SIRIM especially Mr. Rahmad and Mr. Mohd Hafizi for sharing their outstanding knowledge and conducting the preparation process of testing samples. Also a special thanks goes to Mr. Zam for his assistance and patience during the extrusion process of samples in University Science of Malaysia (USM). My gratitude also goes to my friend and colleagues for their support and patience throughout this process.

Finally, I give special thanks to my loving husband and son, and family for their support from the beginning of this thesis project throughout the long hours it has taken to complete it. Their patience and sacrifice throughout this entire process may never be completely appreciated.

Thanks again to you all. I could not have completed this without each of you.

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other instituitions.

ROSNITA A. TALIB

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	ix
DECLARATION FORM	xi
LIST OF TABLES	xv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INTF	RODUCTION	1
	1.1	Overview	1
	1.2	Advantages of Plastics in Food Packages	2
	1.3	The Need for New Plastic Composites from Renewable	4
		Sources	
	1.4	Objectives	5
2	LITE	CRATURE REVIEW	6
	2.1	Potential Composites From Natural Fibre Resources in Food	6
		Packaging Applications	
	2.2	Thermoplastic Matrix	7
	2.3	Low Density Polyethylene In Food Packaging	8
	2.4	Natural Fibres	9
	2.5	Natural Fibres and Their Chemical Compositions	10
		2.5.1 Cellulose	11
		2.5.2 Further Components	13
	2.6	Coir Fibre	14
	2.7	Compatibility of Natural Fibres in Polymeric Composites	16
	2.8	Methods for Surface Modification of Lignocellulosic FIBREs	18
		2.8.1 Chemical methods	19
		2.8.1.1 Coupling Agents	19
		2.8.1.2 Other Chemical Modifications of	25
		Lignocellulosic Fibre	
		2.8.2 Physical Methods	25
	2.9	Properties of Lignocellulosic Polymer Composites	26
		2.9.1 Mechanical Properties	26
		2.9.2 Density	27
		2.9.3 Water Absorption and Thickness Swelling	28

	2.10	The Effects of Coupling Agents on Lignocellulosic	28
		Composites	20
		2.10.1 Mechanical Properties	28
		2.10.2 Water Sorption and Thickness Swelling2.10.3 Fracture Surface Morphology	30
	2.11		30
	2.11	The Effects of Coupling Agent with Different M _w on Machanical Properties of Lizzane Walesia Compositor	31
	2.12	Mechanical Properties of Lignocellulosic Composites	35
		Extrusion Processing Technique of Thermoplastic Composites Mechanical Behaviour of Polymeric Materials	
	2.13	2.13.1 Tensile behaviour	37
			41
		2.13.2 Flexural behaviour	42 43
	2.14	2.13.3 Impact Properties	
	2.14	Water Absorption and Dimensional Stability	45 46
	2.15	Density	
	2.16	Fracture Surface Morphology	47
3	MET	HODOLOGY	48
	3.1	Introduction	48
	3.2	Materials	49
	3.3	Methods	49
		3.3.1 Preparation of Coir Fibre (CF)	49
		3.3.2 Weighing of Materials	50
		3.3.3 Extrusion of CF-LDPE Composites	50
		3.3.4 Compression and Milling of Composites	50
		3.3.5 Conditioning of Samples	51
		3.3.6 Measurement Mechanical Properties of Samples	51
		3.3.6.1 Tensile Test (ASTM D638-90)	51
		3.3.6.2 Flexural Test (ASTM 790-90)	52
		3.3.6.3 Izod Impact Test (ASTM D256-90b)	52
		3.3.7 Measurement of Water Absorption and Thickness Swelling	53
		3.3.8 Measurement of Density	53
	3.4	ESEM Fracture Surface Morphological Study	53
4	RESI	ILTS AND DISCUSSIONS	55
-	4.1	The Effect of Fibre Loading on Mechanical Properties of	55
		Composites	
	4.2	The Effect of Fibre Loading on Physical Properties of	58
		Composites	
	4.3	The Effect of MAPE Loading on Mechanical Properties of	62
		Composites	
	4.4	The Effect of MAPE Loading on Physical Properties of	74
		Composites	

Page

Page

	4.5	The Effect of MAPE with Different Molecular Weight (M _w) on Mechanical and Physical Properties of Composites	76
	4.6	ESEM Morphological Study	82
5	CON	CLUSIONS AND RECOMMENDATIONS	87
	5.1	Conclusions	87
	5.2	Recommendations for Future Work	89
	FERE		91
	TA TA		98

LIST OF TABLES

Table		Page
1.1	Selected Precursor Developments in the Contemporary Use of Plastics and Other Organic Polymers in Food Packages	3
2.1	Composition of Different Cellulose Based Natural Fibres (Percent on Dry Basis)	11
2.2	Main Properties of Coir and Sisal Fibres	16

LIST OF FIGURES

Figures		Page
2.1	The Structure of LDPE	8
2.2	The Structure of Cellulose	12
2.3	Reaction Mechanism of Maleated PP with the Surface of the Lignocellulosic Fibre	18
2.4	A Typical Stress-Strain Curve of Plastic Material	39
2.5	Extension Types (a) Bond Bonding, (b) Uncoiling, (c) Slippage	39
2.6	Forces Involved in Bending a Simple Beam	42
4.1	Tensile and Flexural Strength of CF-LDPE Composite with Different Fibre Loading	57
4.2	Tensile and Flexural Modulus of CF-LDPE Composites with Different of Fibre Loading	57
4.3	Elongation at Break of CF-LDPE Composites with Different of Fibre Loading	59
4.4	Unnotched Impact Strength of CF-LDPE Composites with Different of Fibre Loading	59
4.5	Densities of CF-LDPE Composites with Different Fibre Loading	61
4.6	Water Absorption of CF-LDPE composites With Different Fibre Loading	61
4.7	Thickness Swelling of CF-LDPE Composites with Different Fibre Loading	62
4.8 (a)	Effect of C16 on Tensile Strength of Composites	64
4.8 (b)	Effect of C18 on Tensile Strength of Composites	65
4.9 (a)	Effect of C16 on Tensile Modulus of Composites	65
4.9 (b)	Effect of C18 on Tensile Modulus of Composites	66

•.

4.10 (a)	Effect of C16 on Elongation at Break of Composites	66
4.10 (b)	Effect of C18 on Elongation at Break of Composites	67
4.11 (a)	Effect of C16 on Flexural Strength of Composites	70
4.11 (b)	Effect of C18 on Flexural Strength of Composites	70
4.12	The Possible Chemical Reaction Between Functional Group in MAPE with CF Surfaces	71
4.13 (a)	Effect of C16 on Flexural Modulus of Composites	71
4.13 (b)	Effect of C18 on Flexural Modulus of Composites	72
4.14 (a)	Effect of C16 on Unnotched Impact Strength of Composites	72
4.14 (b)	Effect of C18 on Unnotched Impact Strength of Composites	73
4.15 (a)	Effect of C16 on Density of Composites	73
4.15 (b)	Effect of C18 on Density of Composites	74
4.16 (a)	Effect of C16 on Water Absorption of Composites	79
4.16 (b)	Effect of C18 on Water Absorption of Composites	79
4.17 (a)	Effect of C16 on Thickness Swelling of Composites	80
4.17 (b)	Effect of C18 on Thickness Swelling of Composites	81
4.18 (a)	Fibre Distribution in 40% Fibre and 60% LDPE Composite	83
4.18 (b)	Fibre Distribution in 60% Fibre and 40% LDPE Composite	84
4.19 (a)	The Occurance of Fibre Pull-Out and Debonding in 40% CF and 60% LDPE	84
4.19 (b)	The Fracture Surface of 40% CF and 60% LDPE	85
4.20 (a)	Fibre Distribution in 40% Fibre and 60% LDPE Added with 1% C16	85
4.20 (b)	Fibre Distribution in 40% Fibre and 60% LDPE Added with 1% C18	86

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials	
Α	Area	
APE	3-aminopropyltriethoxysilane	
APM	3-aminopropyltrimethoxysilane	
C 18	Maleated Polyethylene with M _w of 26,000	
C16	Maleated Polyethylene with M _w of 15,000	
CF	Coir Fibre	
EFB	Empty Fruit Bunch	
ESCA	Electron Spectroscopy for Chemical Analysis	
ESEM	Environmental Scanning Electron Microscpy	
F	Force	
FS	Flexural Strength	
HDPE	High Density Polyethylene	
IR	Infrared	
IS	Impact Strength	
LDPE	Low Density Polyethylene	
LLDPE	Linear Low Density Polyethylene	
MA	Maleic anhydride	
MAH-PP	Polypropylene-maleic anhydride	
MAPE	Maleated Polyethylene	
MOE	Modulus of Elasticity	
MOR	Modulus of Rupture	

Mw	Molecular Weight	
NMR	Nuclear Magnetic Resonance	
ОН	Hydroxyl	
OP-EFB	Oil Palm- Empty Fruit Bunch	
PMMA	p-methoxymethylamphetamine	
PMPPIC	Polymethylene-polyphenyl-isocyanate	
PP	Polypropylene	
PS	Polystyrene	
PVC	Polyvinyl chloride	
SEM	Scanning Electron Microscpy	
SIRIM	Standards and Industrial Research Institute	
	Transmission Electron Microscopy-Electron Dispersive X-Ray Analysis	
TEM-EDXA	Transmission Electron Microscopy-Electron Dispersive X-Ray Analysis	
TEM-EDXA T _g	Transmission Electron Microscopy-Electron Dispersive X-Ray Analysis Glass Transition Temperature	
Tg	Glass Transition Temperature	
T _g TM	Glass Transition Temperature Tensile Modulus	
T _g TM TPM	Glass Transition Temperature Tensile Modulus 3-trimethoxysilyl-propylmethacrylate	
Tg TM TPM TS	Glass Transition Temperature Tensile Modulus 3-trimethoxysilyl-propylmethacrylate Tensile Strength	
Tg TM TPM TS TSw	Glass Transition Temperature Tensile Modulus 3-trimethoxysilyl-propylmethacrylate Tensile Strength Thickness Swelling	
Tg TM TPM TS TSw UP	Glass Transition Temperature Tensile Modulus 3-trimethoxysilyl-propylmethacrylate Tensile Strength Thickness Swelling Unsaturated polyester	
Tg TM TPM TS TSw UP USM	Glass Transition Temperature Tensile Modulus 3-trimethoxysilyl-propylmethacrylate Tensile Strength Thickness Swelling Unsaturated polyester University Science of Malaysia	
Tg TM TPM TS TSw UP USM VDC	Glass Transition Temperature Tensile Modulus 3-trimethoxysilyl-propylmethacrylate Tensile Strength Thickness Swelling Unsaturated polyester University Science of Malaysia Vinylidene chloride	

CHAPTER 1

INTRODUCTION

1.1 Overview

Over the past decade, low density polyethylene (LDPE) has become popular in the food packaging industry because it is relatively cheap thermoplastic with superior mechanical properties compared to high density polyethylene. It has an outstanding impact strength, low permeability to water vapour, can be coloured to a variety of shades. In addition, its processability, rescalability and recyclability have made LDPE the packaging of choice for various application in packaging industry, including heavy duty sacks, refuse sacks, carrier bag and for general packaging (Brydson, 1995).

Foods have been packaged in various ways for thousands of years. As civilization developed, people tried to preserve food with salt or spices and by drying, smoking, or cooling. They also learned from experience that packaging could help preserve food by protecting it from harmful environmental factors such as air, moisture and light.

Since the 1930's, the plastic package has assumed a continually increasing role in protective packaging of foods and beverages. The first package, a pouch of vinyl-coated cellophane, proved useful in protecting foods for short periods of time while providing the requisite flexibility, light weight and transparency needed to view contents. Some

milestones for plastics used in food packaging are shown in Table 1.1. Clearly, a great many of the most important inventions and advances in plastic science and technology have been directly used in food packaging (Brown, 1992).

1.2 Advantages of Plastics in Food Packages

Plastics have been widely adopted in packages for foods for reasons of their advantages in use compared with other materials. These advantages are reflected in the physical, mechanical and chemical properties of plastics. Foremost among plastic's features providing advantages to food packers are their formability into a practical unlimited range of shapes and wide range of available properties to fit specific applications. Fabricated into finished containers can be accommodated to required shapes and sizes. Properties inherent in synthetic organic polymers can be adjusted, modified or enhanced by formulation or reinforcement and deploying such processing steps as orientation.

PERIOD	DEVELOPMENTS	CONTEMPORARY FOOD USES
1900s	Modified alkyd resin solutions	Can coatings
	Vinyl acetate polymers	Adhesives, films
1910s	Phenol-formaldehyde resins	Closures (e.g., screw caps)
	Cellophane, casting (uncoated)	Lamina in multilayered films
	Viscose sausage casings	Casings for processed meat
1920s	Coated "moistureproof" cellophane	Pouches, dry foods
	Rubber hydrochloride	Films; now in minimal use
	Vinyl chloride polymers. copolymers	Films, blow bottles, can coatings
1930s	Polystyrene	Trays, tubs, lids, foams
	Polyamide (nylon) resins	Barriers in films. sheets. moldings
	Ethylcellulose	Frozen foods hot melt paper coating
	Methy Icellulose	Edible films for internal moisture control in food
	Polyethylene	Films, bottles, thermoforms, heat seals
	Polyvinylidene chloride (PVDC)	Barrier films, multiplayer thermoforms
1940s	Impact polysryrene	Tubs, trays, thermoforms
	Thermoforming of sheet	Trays, tubs; form-fill-seal
	Injection blow molding	Bottles, jars; with threaded closures
	Extrusion blow molding	Large containers, threaded
	Nylon films	Processed meat packs
	Styrene-butadiene latexes	Paper coating. primers
	PVDC lacquer coatings	High barrier cellophane
1950s	Polypropylene	Bottles, structure layers
	Extrusion polyethylene coating on paper board	Milk, juice and frozen food cartons
	Coextrusion	Barrier containers of multiplayer construction
	Polycarbonates	Structures, food bottles, potable water
	Metallized films	Gas and light barrier pouches
	High barrier PVDC coextrusion resins	Multilayer coextrusions of films, thermoformable
		sheet
	Epoxy-phenolics	Can coatings for many foods
1960s	Polyethylene imine	Dual oven ware: composited with polycarbonates
	Styrene-butadiene resins	Potable water
	lonomers	Films, coatings, heat seals
	Ethylene copolymers	Films. Coatings, sealant layers
	Polysulphones	Dual oven ware
	Multilayer coextrusion & thermoforming	High barrier food tubs, trays
1070-	Injection molding, reheat and blow process	Pressurized beverage bottles
1970s	Modified polypropylene resins	Multilayer coextrusion adhesives
	Hydrolyzed ethylene-vinyl acetate (EVOH)	Barrier layer in films, thermoforms Bottles, thermoforms
	Acry lonitrile resins	
	Poly ethy lene terephthalate (PET)	Food bottles, jars, dual ovenware, paperboard tray
	VDC methylessilete conclument	coatings High barrier multiplayer films, containers
	VDC-methylacrylate copolymers Coinjection blow molding	Retortable barrier tubs
	Ethylene-acrylic acid copolymers	Films adhesives
	Linear low density polyolefins	Moisture barrier films
1980s	Glycol modified PET	Extrusion blow molded foof jars
17003	Crystallized PET	Dual oven trayware
	Tortuous path barrier blends	Bottles, films
	Amorphous polyamide	Barrier films, containers
	Poly ary lamide resin	Barrier films and multilayers; alloys and blends
	Liquid cr. stal polymers	High temperature, high barrier uses
	Poly (ethylene 2.6 naphthalene dicarboxylate)	Monolayer barrier bottles
	[PEN]	
	Recycle and recovery of plastics	Egg cartons from PET regrind
	Ultra low density polyethylenes	Thin, tough films, e g , for bag-in-box
	a row a enough poryeary remes	,,

 Table 1.1: Selected Precursor Developments in the Contemporary Use of Plastics and Other Organic Polymers in Food Packages

1.3 The Need for New Plastic Composites from Renewable Sources

The use of polymeric materials in food packaging is increasing not only in respect to proportion of packages totally or partially made with these materials but also in the number of polymer types now used in packaging design. Some of the properties that make polymers attractive for package manufacture are lightness, flexibility, chemical resistance, versatility and a wide range of formulation that allow the development of new designs (polymer alone or combined with other materials) to meet the requirement of the particular foodstuff (Jenkins and Harrington, 1991).

In recent years, significant efforts have been made to manufacture thermoplastic composites using agrowaste and agroforest materials such as sawdust, wood fibres, sisal and baggase. The rationale behind these efforts are that the use of these materials as filler in polymeric matrix offer a high specific stiffness and strength, low density and low cost per volume basis. Medium and high density natural fibre composites can be used for small containers, for example, in the tea industry and for large sea-going containers for commodity goods. Unfortunately, the incompatibility between lignocellulosic materials and many polymeric matrices affect the degree of dispersion of the fibres in the matrix and the overall homogeneity of the composite structure (Marcovich *et al.*, 1998). Due to this problem, studies on the effectiveness of coupling agents are required to improve the interfacial adhesion between fibre-matrix phases, and consequently, produce composites with better properties.

1.4 Objectives

The objective of this work is to develop coir fibre-LDPE composite coupled with maleated anhydride-PE for food packaging application by using twin screw extrusion technique. This study was emphasized on the mechanical and physical properties of coupled and uncoupled composite system. Thus, to achieve this objective, the work was divided into four scopes. First, to determine the effect of fibre loading on uncoupled composite. Three percentages of fibre loading (by weight) were employed. Second, the effect of MAPE loading on composite was investigated. The comparison between coupled and uncoupled composite was done to study the change in trend when three MAPE loading were applied into the composite system. Third, in order to study the influence of different M_w on the properties of coupled composite, two different M_w of MAPE were employed in this work. In the final scope, the fractured tensile surfaces were observed by using Environmental scanning electron microscope (ESEM) to gain evidences of improvement through the mode of failure, dispersion of fibre in the matrix and interfacial adhesion between fibre/matrix.

