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A B S T R A C T

Rapid and non-invasive monitoring of the drying process of glutinous rice is crucial to ensure the effective 
production of desired dried grain. In this study, visible-near infrared hyperspectral imaging coupled with 
computational intelligence was used to detect the variation in moisture content (MC), change in colour (ΔE), and 
golden index (GI) of glutinous rice during drying. Different preprocessing methods and effective wavelength 
selection techniques were used to eliminate the noise and redundant wavelength in the reflectance spectra, and 
predictive models were developed for the glutinous rice quality. Savitzky-Golay first derivative (SG1D) showed 
the best preprocessing performance (0.9564 ≤ R2

P ≤ 0.9781, 0.0177 ≤ RMSEP ≤ 0.8242 and 
1.28 ≤ MAPD ≤ 5.90 for PLSR model). The best performance accuracy 

(
R2

P ≥ 99.99░%
)

was obtained when 
the SG1D and Gaussian process regression (GPR) model were combined with iteratively retained informative 
variable algorithm (SG1D-IRIV-GPR), variable iterative space shrinkage (SG1D-VISSA-GPR) and variable com
bination population analysis (SG1D-VCPA-GPR) for the prediction of MC, GI, and ΔE, respectively. The study 
showed that visible-near infrared hyperspectral imaging coupled with computational intelligence can be used to 
monitor the quality of glutinous rice during the drying process.

1. Introduction

Rice is an extensively consumed plant-based staple food. It offers 
more than half of the daily calories required for feeding the world 
population and up to two-thirds in Asia (Shi et al., 2022). Numerous 
varieties of rice differ in terms of physical characteristics, chemical 
composition, and textural and structural attributes, among other quality 
factors (Qiu et al., 2021). Glutinous rice, sometimes called sticky rice or 
waxy rice, is a popular variety of rice frequently grown in Eastern and 
Southeast Asia. The low amylose and high amylopectin content of 
glutinous rice kernel, as opposed to non-glutinous rice, accounts for its 
low retrogradation rate and high stickiness after cooking (Jimoh et al., 
2025a, 2025b). The kernels of wet or freshly harvested glutinous rice are 
translucent in colour and become opaque after drying. This phenome
non differs entirely from non-glutinous rice, which turns translucent 
after drying (Li et al., 2018). Glutinous rice remains the main ingredient 

in making many Asian staple foods, snacks, desserts, and beverages (Li 
et al., 2018; Qiu et al., 2021), which include rice wine, crackers, cakes, 
and dumplings (Qiu et al., 2020). Before the production of final prod
ucts, fresh glutinous rice usually has a high moisture content (MC), 
which can be detrimental to its shelf life and quality, just like every other 
grain. Therefore, the grain is dried to a safe moisture level (9–14 %) 
before subjecting it to further processes such as storage, packaging, 
milling, and grinding (Jimoh et al., 2023a).

Drying refers to using hydrodynamic and thermodynamic methods to 
remove moisture by evaporation (Mondal et al., 2022). In practice, 
effective drying is crucial to the nutrients retained in dried products as 
the grains with incomplete drying are prone to mould growth, while 
over-dried grains are prone to nutrient loss (Jimoh et al., 2024b; Kiani 
et al., 2018). Therefore, the MC and physical appearance of the grains 
are monitored as effective metrics to control and terminate the drying 
process when the desired safe limit is attained (Jimoh et al., 2023b). The 
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traditional methods for determining MC include the gravimetric 
method, Karl Fisher titration, infrared moisture analysers, and the 
standard oven drying method. When used correctly and meticulously, 
these traditional methods are accurate and dependable (Zhang et al., 
2022). Nonetheless, they are destructive and require a lot of labour and 
time, mainly when dealing with many samples (Zhang et al., 2023a). 
The appearance of glutinous rice during drying is also an essential 
metric for grain processors and consumers during processing and pro
curement. The potential consumers of the product are often fond of 
comparing the golden appearance of the dried grains from different 
suppliers. The consumers associate the golden appearance of the grains 
with the nutrient retention, shelf life, and quality of the dried grain. This 
expectation is also transferred to the quality of the finished product 
obtained from the grain Iheonye et al. (2019). Conventionally, the 
appearance of the grains after drying is obtained using a colourimeter, 
and this technique can be time-consuming due to repeated measures. 
Also, it requires direct contact with the sample as it was primarily 
developed for flat surfaces, unlike the ellipsoid surface of rice, which 
makes it prone to some level of uncertainty. Thus, a highly efficient, 
low-cost, rapid, drudgery-free, and accurate quality evaluation method 
for rapid quality control and measurement during the drying process 
must be developed (Ren et al., 2020; Zhang et al., 2023a). Hyperspectral 
imaging (HSI) is an evolving, rapid, and non-invasive technique for 
monitoring food quality. It combines imaging and spectral technology to 
achieve the purpose of food quality detection (Jimoh et al., 2023b). In 
HSI techniques, a single captured image contains spatial information at 
every wavelength and spectral information in each pixel. The HSI has an 
advantage over the RGB camera by using a wide range of wavelengths, 
allowing it to detect the chemical and internal quality of the sample 
(Guo et al., 2023a; Sharma et al., 2022; Song et al., 2023). HSI tech
nology has been widely applied in different food quality detection, 
assessment, control, and monitoring scenarios. For instance, the tech
nology has been used in food testing, such as moisture, starch, and 
protein of wheat flour (Zhang et al., 2023a), moisture, starch, and 
protein of chicken flesh (He et al., 2023), and lead content of rape leaf 
(Zhou et al., 2023). Also, it was employed to detect chemical and bio
logical traits in grain, which includes sweet seed vigour (Zhang et al., 
2023b), aflatoxin B1 and total aflatoxin in peanut kernel (Guo et al., 
2023a), aflatoxin in corn kernel (Tao et al., 2022), the protein content of 
chickpea (Saha et al., 2023), amylose and amylopectin content of sor
ghum (Huang et al., 2021, 2023), corn physical traits and protein 
composition (Varela et al., 2022), hardness of maize kernel (Qiao et al., 
2022), fatty acid and moisture content of rice (Song et al., 2023), and 
MC in soybeans (Guo et al., 2023b). However, the information on the 
application of the HSI system for monitoring the grain drying process 
remains a gap that demands research attention. Therefore, this study 
focused on developing a rapid and non-invasive method for monitoring 
the drying process of glutinous rice using an HSI system coupled with 
chemometrics. This method can be aptly applied for the rapid detection 
and control of the drying process to ensure appropriate drying and 
effectively reduce grain loss due to over-drying.

2. Materials and methods

2.1. Sample collection and preparation

Fresh glutinous rice (paddy) was supplied by Berkat Padi Sdn Bhd, a 
local rice supplier in Malaysia. The collected rice was cleaned using 
paddy cleaner to remove unwanted particles such as immature grains, 
broken grains, stalk fragments, and foreign objects. The cleaned grains 
were sealed in an airtight plastic container and stored in a freezer 
(ACSON, ACF 30F(T), Malaysia) at a temperature of − 5 ⁰C. Before the 
experimentation, the initial MC of the grains was measured in triplicate 
using the standard oven drying method, and the resulting value was 
23.65 ± 0.34 %wb.

2.2. Drying process of glutinous rice

The drying process of the glutinous rice was carried out using a hot 
air box dryer (Model 3021, Malaysia). The dryer has an external 
dimension of 650 × 900 × 1900 and an internal dimension of 0.59 ×
0.58 × 1.40 m. The heat is externally produced by 2.5 kW and distrib
uted by the blower into the drying chamber through perforated media. 
Before the drying commences, the fresh glutinous rice sample was 
withdrawn from the freezer and allowed to equilibrate with the ambient 
temperature. The dryer was powered for about 60 min to ensure the heat 
was evenly distributed in the drying chamber before loading the gluti
nous rice. Under the different temperatures (50 ◦C, 60 ◦C and 70 ◦C) and 
grain layer thicknesses of 15 mm (120 g), 25 mm (190 g), 35 mm (280 
g), and 45 mm (380 g), the glutinous rice was dried in three replicates 
which gave a total of 36 experimental runs. During the drying process, 
10 g of the sample was collected at intervals of 30 min until the grains 
attained the critical moisture content (12 %), which denoted the level at 
which no spoilage could occur in the grains (Nath et al., 2022). A total of 
178 samples were collected and used for the hyperspectral image 
acquisition, MC measurement, and appearance indices determination.

2.2.1. Moisture measurements
The MC measurement was carried out using the oven-drying method. 

Five grams of the collected sample were placed in a laboratory oven 
(Carbolite, PF60, England) under 105 ◦C for 24 h, and the electronic 
weighing balance was used to measure the weight before and after the 
drying. The MC of the sample was calculated using Eq. (1) (Qiao et al., 
2022). 

MC =
mb − ma

mb
× 100 (1) 

Where mb is the mass of the sample before drying (g), ma is the mass 
of the sample after drying (g).

2.2.2. Appearance indices measurement
Aside from the MC which is the commonly used quality metric for 

assessing the effectiveness of a grain drying process, the grain appear
ance is another important metric for assessing the drying process of food 
material. The change in colour and the golden index (GI) were selected 
as the appearance indices for the glutinous rice during the drying pro
cess. The standard CIEL*a*b* colour channels of each sample were 
measured using a digital colourimeter (NR145, 3NH, Shenzhen, China). 
The instrument was initially calibrated using a standard white tab (D65) 
followed by the sample measurements. The colour change was calcu
lated using Eq. (2)

ΔE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔL∗2 + Δa∗2 + Δb∗2

√
(2) 

where ΔE is the colour change, ΔL∗ is the change in the lightness, Δa∗ is 
the change in greenness/redness, Δb∗ is the change in the blueness/ 
yellowness.

The GI is a section in the yellow channel, and it was determined using 
a golden yellow index of the American standard test method (ASTM 313
). The recorded L*a*b* channel was transformed into an RGB channel 
using the built-in function of MATLAB 2023b The GI was calculated 
using Eq. (3)

GI =
1 − B

G
(3) 

where B is the blue channel and G is the green channel of the RGB 
standard.

2.3. Hyperspectral imaging setup and spectral acquisition

The hyperspectral images of the glutinous rice were acquired by 
using visible near-infrared hyperspectral (VNIR-HSI) set-up (Cubert, 

K.A. Jimoh et al.                                                                                                                                                                                                                                Applied Food Research 5 (2025) 100955 

2 

astm:313


S185 FireflEYE, Germany). The spectral range of the VNIR-HIS ranged 
from 450 nm – 998 nm with a spectral sampling of 4 nm and 1000×1000 
pixels as the output spatial resolution. The schematic drawing for the 
setup of the VNIR-HSI system is shown in Fig. 1. The setup consists of a 
VNIR-HSI camera, a halogen lamp as the source of illumination, a fan to 
prevent overheating by cooling the system, a movable frame, and a 
computing system for acquisition controlling, image temporary storing, 
and processing of the hypercube image. The sampled glutinous rice was 
placed in a petri dish, and the hyperspectral images were collected 
sequentially. Prior to image acquisition the camera was calibrated using 
white and black reference images to reduce the effect of dark current and 
noise. The relationship between the raw and corrected image is 
expressed in Eq. (4). A rectangular area of 200×200 pixels with a high 
concentration of the grains and enough information to depict the 
glutinous rice sample was selected as the region of interest (ROI) of the 
image. Therefore, the average of the spectral data was obtained for each 
wavelength to represent the sample. 

R =
X − Xd

Xw − Xd
(4) 

where R is the corrected image reflectance, X is the raw image sample, 

Xw is the white reference image, and Xd is the dark reference image.

2.4. Spectral preprocessing

Fig. 2 shows the flow chart for the steps involved in the data process 
and model development for monitoring the grain quality during the 
drying process using the HSI technique. The raw spectral data may vary 
differently due to light intensity, instrument noise, stray light, dark 
current, etc. It is necessary to reduce extraneous information that is 
irrelevant to the targeted properties of the sample through spectral 
preprocessing to improve the accuracy and prediction ability of the 
model (Panda et al., 2022; Tian et al., 2023). In this study, the obtained 
reflectance spectra from the HSI were subjected to 4 preprocessing 
methods that are commonly used for spectral data preprocessing in 
literature. This method includes moving window smoothing (MWS) with 
five window sizes, multiplicative scattering correction (MSC), Standard 
normal variate (SNV), and Savitzky-Golay first derivative (SG1D) with 
five window sizes. The raw spectral was used as a reference point for 
evaluating the effectiveness of the preprocessed method during the 
model development.

Fig. 1. The setup of the visible-near infrared hyperspectral imaging system.
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2.5. Effective wavelength selection

Hyperspectral image information exhibits characteristics such as 
multi-collinearity and high dimensionality with several redundant in
formation that are laborious and time-consuming during processing 
(Song et al., 2023). The selection of the effective wavelength reduces the 
dimension of the full spectral feature. The wavelength selection offers a 
range of benefits by removing irrelevant and redundant information 
(Zhang et al., 2023a). Therefore, the processing time, execution speed, 
and accuracy in actualizing the real-time quality detections are 
enhanced (Song et al., 2023; Zheng et al., 2018). After selecting the most 
appropriate preprocessing method, the important wavelengths were 
selected using the variable iterative space shrinkage approach (VISSA), 
random frog (RF), variable combination population analysis (VCPA), 
Iteratively retains informative variables (IRIV), and Competitive adap
tive reweighted sampling (CARS) (Jimoh & Hashim, 2024; Jimoh et al., 
2025a).

2.6. Model development

A total of 178 hyperspectral images were collected during the 
experiment and divided into the calibration and prediction data sets in a 
3:1 ratio to develop the predictive model. The partitioning was done to 
ensure the produced model was accurate and effective. The Kennard- 
Stone method was used to divide the data. The method maximizes the 
Euclidean distance between the response to evenly cover the multi- 
dimensional space. Therefore, both partitions contains data with 
maximum variability of the original data (Zhang et al., 2023a). To 
maximize the accuracy of the quantitative model and avoid overfitting, 
5-fold cross-validation method was employed during model training 
with calibration data set (Jimoh et al., 2025c, 2025a). The repeatability 
of the established quantitative models was demonstrated using predic
tion set samples excluding the response for testing the developed model 

(Achata et al., 2021). The partial least square regression (PLSR) was 
used as the linear computational intelligence algorithm that was used for 
the model development, while artificial neural network (ANN) with 
multilayer perceptron, support vector machine (SVM), and Gaussian 
processes regression (GPR) were used as the nonlinear computational 
intelligence approach (Achata et al., 2021; Jimoh et al., 2024a).

2.6.1. Partial least square regression
The PLSR carries out the least squares approach by condensing data 

sets, comprising input and output variables, into several latent variables 
with the most significant amount of information. Therefore, the PLSR 
approach compensates for the principal component analysis limitations 
by considering the output variable for dimension reduction and satisfies 
Eq. (5) (Park et al., 2023; Xu et al., 2018). In this study, the PLSR model 
calibration was carried out with a mean center scaling, and the 
maximum latent variable was set to 10 with 5-fold cross-validation (Li 
et al., 2022). 

Y = TPt + EX = TQt + F (5) 

where T = (t1, t2, …., tn) is the variable; E and F are random errors of 
Y and X, respectively.

2.6.2. Support vector machine
The SVM model converted the input data into a high-dimensional 

feature set using Kernel functions, including the linear, polynomial, 
and radial basis functions, to accurately predict the output parameter 
(Abdallah et al., 2022). SVM aims to find the hyperplane as a function of 
the input variable (Eq. (6)) and the best-predicted locations with mini
mal divergence from the response vector. To assure the fitness of the 
SVM technique, the method finds the ideal hyperplane function pa
rameters with minimum residual (Eq. (7)) (Alaoui et al., 2023). In this 
study, the kernel function, penalty function, kernel scale, and box 
constraint were tunned using the Bayesian algorithm 

Fig. 2. Flow chart of the HSI data processing and model development for the glutinous rice quality during the drying process.
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f(x) = w,∅ (x) + b (6) 

(w∗.y∗) = argminw,b

∑n

i=1

(
yi − (w, xi) − b2) (7) 

where ∅ (x) is the kernel function, and w and b are the hyperplane pa
rameters of the model.

2.6.3. Gaussian process regression
GPR uses a kernel-based approach to represent the random variables 

in building the intelligent models. The data distribution curve for the 
GPR distribution is shaped similarly to the normal distribution curve 
(bell curve). Thus, the two fundamental parameters of the Gaussian 
distribution (the variance and the mean) can be used to explain the 
distribution. The relationship in Eq. (8) is used to compute the Gaussian 
process distribution (Jimoh et al., 2024a; Mohammadpour et al., 2022) 

y ≈ gp(M(X),K(X,Xʹ; θ)) (8) 

where y is the model response, M(X) is the basis function, and K(X,Xʹ) is 
the kernel function. θ is the set of other model hyperparameters, which 
includes sigma and scale values,

2.6.4. Artificial neural network
ANN is one of the widely adopted intelligence approaches to over

come the limitations of traditional statistical modelling methodologies, 
mainly when dealing with huge, noisy, and unstable data sets. The 
model was inspired by the behaviour of the human brain while resolving 
problems. The multilayer perceptron used for ANN model development 
in this study requires estimating the weight of the structure that con
nects the model neurons in the hidden layers (Park et al., 2023). The 
mean square error was used as the loss function, while the hyper
parameters that were tuned to optimize the ANN model for effective 
prediction include the number of layers, transfer function, network 
optimizer, and learning rate.

2.7. Model accuracy indices

Evaluation of model accuracy is the most important aspect of model 

development. The performance of the developed model during calibra
tion they were computed and compared using the coefficient of deter
mination of calibration (R2

C) and root mean squared error of calibration 
(RMSEC) shown in Eqs. (9) and 10, respectively. The coefficient of 
determination of prediction (R2

p ), root mean squared error of prediction 
(RMSEP) and the mean absolute percentage deviation (MAPD) were 
computed for the prediction performance of the model using Eqs. (11), 
12, and 13, respectively. The model with a higher R2 with lower RMSE 
and MAPD was considered the best model for predicting the moisture, 
change in colour, and golden index of glutinous rice (Guo et al., 2023b; 
Sun et al., 2019). 

R2
C = 1 −

∑n
i=1

(
YC,i − Yi

)2

∑n
i=1

(
YC,i − Yi

)2 (9) 

RMSEC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
YC,i − Yi

)2

n

√

(10) 

R2
P = 1 −

∑n
i=1

(
YP,i − Yi

)2

∑n
i=1

(
YP,i − Yi

)2 (11) 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
YP,i − Yi

)2

n

√

(12) 

MAPD =
1
n
∑n

i=1

[⃒⃒YP,i − Yi
⃒
⃒

YP,i
×100

]

(13) 

where YC,i and YP,i are the modelled values for the calibration and 
prediction data set, respectively, Yi and Yi are the reference and mean of 
experimental value, respectively, and n is the number of observations.

2.8. Glutinous rice quality visualization

The glutinous rice quality distribution during the drying process was 
visualized based on the approach outlined by Malegori et al. (2021). For 
HSI data, each pixel of the spatial information consists of a spectrum, 

Fig. 3. Moisture content of glutinous rice against the time under different temperatures and layer thicknesses. [a]: 15 mm, [b]: 25 mm, [c]: 35 mm, and [d]: 45 mm.
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and the selected best model was used for the determination of the cor
responding grain quality in each pixel (Ahmed et al., 2024). In order to 
create chemical distribution map for the grain responses, The HSI was 
reshaped from a 3D to a 2D array with rows equal to the number of 
pixels in each wavelength and columns equal to the number of bands in 
the HSI data. The 2D array was subjected to the selected best pre
processing techniques followed by the effective wavelength selection 
techniques and the predictive model was used to determine the grain 
quality of each pixel which gave a 1D vector. Therefore, the 1D vector 
was reshaped into a 2D array with equal dimensions with the spatial 
resolution of the 3D HSI datacube. The distribution map of the grain 
qualities was visualised using a pseudocolour plot with linear scale to 
reshaped the 2D array (Jimoh et al., 2025a). All preprocess computation 
and effective wavelength selection and predictive model development 
and visualization of quality distribution map were computed using 
MATLAB 2023a software.

3. Result and discussion

3.1. Moisture content

The MC of glutinous rice against the drying time under different 
temperatures and layer thickness is shown in Fig. 3. The MC of the fresh 
glutinous rice reduces continuously with time throughout the drying 
process, regardless of temperature and layer thickness. The MC after 3 
hours ranged between 8.89 % and 21.01 %, indicating variation in the 
moisture during the drying process and the influence of drying condi
tions on the rate of moisture removal from the glutinous rice. The speed 
of moisture removal increased with the increase in the temperature and 
decrease in the layer thickness. The lower moisture (8.89 %) after 3 
hours was recorded at 70 ◦C and 15 mm, while the grain dried at the 
temperature of 50 ◦C and 45 mm thickness had the highest MC of 21.01 
%. The effect of temperature and thickness in this study is consistent 
with the findings of Mondal et al. (2022), who found that temperature 
improves the diffusion of moisture by enhancing the heat and mass 
transfer between the grain and the heated environment of the drying 
system.

3.2. Appearance indices

The continuous change in the colour and GI of glutinous rice samples 
during the drying process is shown in Figure 4(a-d) and Figure 4(e-h), 
respectively. The GI of the fresh glutinous rice was 1.453. The GI reduces 
continuously with the drying time while the ΔE increases progressively. 
The GI ranged between 1.046 and 1.195 after 3 h of drying, while the ΔE 
ranged between 6.79 and 11.32. The lowest ΔE was obtained (1.046) 
under the temperature of 60 ◦C and thickness of 45 mm. The highest ΔE 
(1.195) was obtained at the temperature of 70 ◦C and thickness of 25 
mm. The highest GI (11.32) was obtained at a temperature of 50 ◦C and a 
thickness of 35 mm. The lowest GI (6.79) was obtained at a temperature 
of 70 C and a thickness of 25 mm. The progression shows that the ΔE 
increases with the temperature and decreases with the layer thickness. 
In contrast, the GI increases with the layer thickness and decreases with 
the temperature. This outcome highlights the significant impact of 
drying conditions on the appearance of the grain throughout the drying 
process. Iheonye et al. (2019) suggest that dried grains exhibiting min
imal appearance deviation from their fresh state are typically associated 
with higher nutrient retention and thus hold greater value. Conse
quently, grain processors and consumers generally prefer grains that 
experience minimal ΔE and maintain a high GI (Fig. 4).

3.3. Data outlier identification and removal

The Monte Carlo-partial least square technique was used to identify 
outliers in reflectance spectral information and response variables. The 
average and standard deviation were computed based on the root mean 
square error of cross-validation (RMSECV) of each sample. The standard 
deviation was plotted on the ordinate against the mean on the abscissa 
to visualise and identify the datum point, as shown in Fig. 5. The datum 
point of standard deviation was set to 2.0, 1.3, and 0.055 for the MC, ΔE 
and GI, respectively. The limit for the mean values was set as 2.5 times 
the standard deviation limit, and the values above the set limit were 
identified as outliers. After the elimination of 11, 6, and 10 observations 
as outliers in MC, ΔE, and GI, respectively, the R2

C increased from 0.8493 
to 0.9663 for the MC, 0.9307 to 0.9612 for ΔE, and 0.93355 to 0.9557 
for GI, which confirms the abnormalities of the eliminated values (Guo 
et al., 2023b).

Fig. 4. Change in the colour (ΔE) and golden index (GI) of glutinous rice during the drying process for different temperatures and layer thicknesses: [a], [b], [c], and 
[d] denote the ΔE under 15 mm, 25 mm, 35 mm, and 45 mm thicknesses respectively. [e], [f], [g], and [h] denote the GI under 15 mm, 25 mm, 35 mm and 45 mm 
thicknesses respectively.
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3.4. Reflectance spectra characteristics

The HSI raw spectra range from 450 to 998 nm with 138 wavelength 
points and a sampling resolution of 4 nm is shown in Fig. 6a, it repre
sents the average reflectance values for all pixels in the ROI of the 
samples. The reflectance from the least wavelength (450 nm) reduced 
continuously until 482 nm to 490 nm. Continuous increments follow this 
until the peak reflectance is attained at 900 nm with a slight absorbance 
valley between 730 nm and 750 nm for different samples, which is 
related to second overtone O–H and N–H stretches, and third overtone 
C–H (Jimoh et al., 2025a). The reflectance from 900 nm to 998 nm had 
a slight increment trend with another slight absorption valley between 
920 nm and 950 nm, which was situated near the absorption valley of 
960 nm, denoting second overtone O–H stretching and associated with 
grain moisture (Song et al., 2023).

3.5. Spectra preprocessing method and model performance

Figure 6(b-e) depicts preprocessed spectral data from different pro
cessing methods, including MWS, MSC, SNV, and SG1D. The 

preprocessing method reduced environmental, human, instrumental, 
and operational errors. MWS algorithms eliminate the noise and 
inconsistency in the spectral data. MSC technique reduces the multi
plicative and additive error in the spectra. The SNV applies the nor
malisation method to minimise the multiplicative and additive effect in 
the spectra data. Using SG1D for the spectral data correction reduces 
particle offset and scattering effect at the spectral baseline. Models were 
developed for effective prediction of the reference quality index (MC, GI, 
ΔE) of glutinous rice during the drying process based on the full raw 
spectra and the preprocessing spectra. The model includes PLSR, SVM, 
GPR, and ANN algorithms. The performance accuracy of the pre
processing method with the model for effective determination of the 
reference quality of glutinous rice is summarised in Table A.1

3.5.1. Preprocessing and PLSR model performance
The calibration accuracy (R2

C) for RAW-PLSR model ranged from 
95.57 % to 96.63 % with RMSEC ranging from 0.0256 to 0.9002 for the 
MC, GI and ΔE of glutinous rice during drying. Testing RAW-PLSR model 
with prediction data set resulted in an accuracy span from 94.82 % to 
95.99 % and the RMSEP were 1.0400, 0.6747, and 0.021 with MAPD of 

Fig. 5. Outlier detection using Monte Carlo sampling techniques. [A]: MC, [B]: ΔE, and [C]: GI.
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5.33 %, 7.15 %, and 1.84 % were obtained for the MC, ΔE and GI 
respectively. SG1D-PLSR was adjudged with the best performance in 
predicting MC, ΔE and GI of glutinous rice and increases the RAW-PLSR 
model accuracy. SG1D-PLSR model exhibits the most compelling per
formance compared to other preprocessing methods in predicting the 
quality of glutinous rice. The model had the highest R2

C, and R2
P values of 

0.9800, and 0.9741, respectively, with the lowest RMSEC, RMSEP and 
MAPD of 0.6948, 0.8242 and 4.25 % for the moisture prediction. For ΔE, 
the SG1D-PLSR model had the best performance. It has the highest R2

C of 
0.9751 and R2

P of 0.9564 with the lowest RMSEC of 0.5166, RMSEP of 
0.6169 and MAPD of 5.90 %. In the case of the GI of glutinous rice, the 
SG1D-PLSR model had the best performance with R2

C, RMSEC, R2
P, 

RMSEP and MAPD values of 0.9693, 0.0179, 0.9685, 0.0177 and 1.28 
%, respectively (Table A1).

3.5.2. Preprocessing and SVM model performance
The calibration accuracy for RAW-SVM model ranged from 89.16 % 

to 100 % and RMSEC were 0.0675, 1.2606, and 0.0201 for the MC, ΔE, 
and GI of glutinous rice during drying. By testing the RAW-SVM with the 
prediction data set, the results showed the R2

P being equal to 0.9026, 
0.8667, and 0.9558 and RMSEP of 1.5030, 1.0529, and 0.0253 with 
MAPD of 7.41 %, 15.01 %, and 1.59 % for the MC, ΔE, and GI respec
tively. As compared to other preprocessing methods, the SG1D-SVM 
model had the best performance in the prediction of the MC, ΔE, and 

Fig. 6. Raw and preprocessed reflectance spectral data of glutinous rice: [a] RAW, [b] MWS, [c] MSC, [d] SNV, and [e] SG1D.
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GI of glutinous rice measuring the drying process and it increases the 
model accuracy compared to RAW-SVM model. For MC prediction, the 
SG1D-SVM model had the highest degree of accuracy value (R2

C =

0.9986, and R2
P = 0.9881) with relatively low residual index (RMSEC =

0.2428, RMSEP = 0.5925 and MAPD = 1.45 %). For the ΔE, the model 
has the highest accuracy index (R2

C= 0.9772 and R2
P = 0.9534) with the 

lowest error index (RMSEC = 0.5525, RMSEP = 0.6013 and MAPD =
5.66 %). In the case of predicting the GI of the glutinous rice, the model 
had the highest accuracy index (R2

C of 0.9969 and R2
P of 0.9961) with the 

lowest residual index (RMSEC = 0.0074, RMSEP = 0.0072 and MAPD =
0.62 %) (Table A1).

3.5.3. Preprocessing and GPR model performance
The accuracy of RAW – GPR model during calibration ranged from 

90.41 % to 100 % and the RMSEC values were 0.0008, 1.2274, and 
0.000016 for the MC, ΔE, and GI, respectively. The result of testing the 
RAW-GPR model with new spectral data only (prediction data set) re
veals that RAW-GPR model performance was R2

P = 0.8819, 0.8916, and 
0.9999; RMSEP = 1.6564, 0.9612, and 0.000023 with MAPD of 8.05 %, 
14.73 %, and 0.0017 % for the MC, ΔE, and GI respectively. The SG1D- 
GPR model exhibits the best performance for the determination of MC 
and GI of glutinous rice. For the MC, the model had the highest R2

C, 
and R2

P values (1.0000 and 0.9999) with the lowest RMSEC, RMSEP, and 
MAPD values (0.000061, 0.000067, and 0.0036 %). For the GI, the 
model had high R2

C andR2
P values (1.0000, and 0.9999) with low RMSEC, 

RMSEP, and MAPD values (0.000017, 0.000016, and 0.0012 %). How
ever, the SNV-GPR model exhibits the best performance with the highest 
degree of accuracy in prediction for the prediction of the ΔE. The model 
had the highest R2

C and R2
P (1.0000 and 0.9999) with the lowest RMSEC, 

RMSEP, and MAPD values (0.000033, 0.000046, and 0.0051 %) 
(Table A.1).

3.5.4. Preprocessing and ANN model performance
The performance accuracy of the ANN model for the determination 

of the reference quality of glutinous rice is summarised in Table 4.4. The 
RAW-ANN model calibration had the R2

C of 0.9996, 0.9016 and 0.9999 
with RMSEC of 0.1143, 1.1640, and 0.0009 for the MC, ΔE and GI 
respectively. By using the RAW-ANN model for the prediction data set, 
the R2

P of 0.9996, 0.8797 and 0.9999; RMSEP of 0.1068, 1.0072 and 
0.0012 with MAPD of 0.57 %, 13.11 % and 0.07 % for the MC, ΔE and GI 
were obtained respectively. Based on the comparison of the performance 
of all the preprocessing methods, the RAW-ANN model remains the best 
performance for predicting the MC of glutinous rice during the drying 
process. Whereas the SG1D-ANN model had the best performance for the 
prediction of the ΔE and GI of glutinous rice during the drying process. 
For ΔE, the model had the R2

C, RMSEC, R2
P RMSEP and MAPD values of 

0.9673, 0.6750, 0.9053, 0.8086 and 5.77 %, respectively. For GI, the R2
C, 

RMSEC, R2
P RMSEP and MAPD values were 0.9999, 0.0008, 0.9998, 

0.0014, and 0.05 %, respectively. (Table A.1).
Generally, most of the preprocessing techniques in this study had 

shown a remarkable performance towards the effectiveness and accu
racy of the developed model (calibration and prediction) for rapid 
determination of the MC, ΔE, and GI of glutinous rice during the drying 
process. The RPD of all the models falls within the acceptable range 
(RPD > 1.5) for a reliable model except for the MWS-SVM, whose RPD =
1.39. According to He et al. (2023), the most appropriate preprocess 
technique should be chosen to assess the quality index and further 
processing effectively. Regarding the preprocessing techniques, the 
SG1D was adjudged as the best method for spectra preprocessing. 
Therefore, the SG1D was used for variable selection and new model 
development for rapid monitoring of the drying process of glutinous 
rice. Also, comparing the performance of all the developed models, 
SG1D-GPR, SNV-GPR, and SG1D-GPR were adjudged as the best models 
for predicting the MC, ΔE, and GI of glutinous rice during the drying 

process. Thus, linearity between the experimentally obtained quality of 
glutinous rice and predicted values as a function of full raw spectra, best 
preprocessing methods combined with linear (PLSR) and nonlinear 
(ANN, GPR, and SVM) computational intelligence for prediction of the 
MC, ΔE, and GI of glutinous rice are presented in Figure A.1a to 
Figure A.1c respectively.

3.6. Effective feature selection

3.6.1. Competitive adaptive reweighted sampling
CARS algorithm with a predefined monte Carlos simulation of 50 

iterations and 5-fold cross-validation for evaluating the model perfor
mance. The resulting variation in the progression of the RMSECV for 
different simulation runs is presented in Figure A2. The minimum 
RMSECV was obtained at the iteration index of 24, 25, and 14 for the 
MC, ΔE, and GI index, respectively. The RMSEC value was 2.4520 for 
moisture, 1.5801 for ΔE, and 0.0409 for GI. Under optimal number of 
runs from CARS algorithm, the selected wavelengths were 52 bands for 
MC, 49 bands for ΔE, and 45 bands for GI. Therefore, selecting the 
effective wavelength resulted in a pronounced reduction of 66.67 %, 
76.09 %, and 70.29 % of full wavelength for MC, and GI, respectively 
(Figure A2).

3.6.2. Random frog
The RF algorithm’s parameters were predefined as 1000 Monte 

Carlos simulations with an initial sampling of 2 minimum points while 
the variable index assessment was set as regression coefficients. The 
RMSEP of Monte Carlo simulation iterations for the RF algorithms is 
presented in Figure A3. The feature selection for the RF simulation was 
done at run with the lowest RMSEP, the values were 1.7567, 1.2492, and 
0.0369 for the MC, ΔE, and GI, respectively. The algorithm selects 35, 
32, and 31 bands as the effective wavelength for the MC, ΔE, and GI, 
which amount to 74.64 %, 76.81, and 77.54 % reduction in the full 
wavelength (Figure A3).

3.6.3. Iteratively retains informative variables
The progression of variables retained by IRIV algorithm during the 

iteration rounds is presented in Figure A4a-c for MC, ΔE, and GI of 
glutinous rice, respectively. The selected wavelength was reduced 
continuously until 54.35 %, 63.77 %, and 57.25 % of bands were in the 
first three rounds for the MC, ΔE, and GI, respectively. Afterwards, the 
band removal rate became steady until the 12, 14, and 15 wavelengths 
were finally removed at the sixth iteration round through backward 
elimination. Therefore, compared to full wavelength, the selected 
wavelength covers 33.33 %, 23.91 %, and 29.71 % for MC, GI, and ΔE, 
respectively (Figure A4).

3.6.4. Variable combination population analysis
The parameters of VCPA were set as follows: the exponentially 

decreasing function (EDF) runs were 50 times, the binary matrix sam
pling (BMS) runs were 1000 times, the selected wavelengths were 
determined by 5-fold cross-validation, and the ratio of the optimal 
subset was 0.1 (Zhang et al., 2023a). Figure A5 shows the variation in 
RMSECV during the EDF operation of VCPA algorithm for MC, ΔE and GI 
of glutinous rice. RMSECV continuously reduces with the EDF runs. In 
feature selection, the least RMSECV was attained at the final runs and 
the values were 2.3462, 1.5880, and 0.0504 for the MC, ΔE, and GI, 
respectively. Subsequently, 11, 13, and 13 bands were chosen as the 
effective wavelength for the MC, ΔE, and GI, in order words, 92.03 %, 
90.58 %, and 90.58 % of the full bands were removed as the redundant 
wavelength (Figure A5).

3.6.5. Variable iterative space shrinkage approach
Figure A6a-c shows the variation in the RMSECV obtained at 

different iteration numbers during computation with the VISSA algo
rithm. For the MC, ΔE, and GI of the glutinous rice, a total of 25, 24, and 
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Table 1 
Summary of computational intelligence model performance for MC under different effective wavelength selection techniques.

Parameter Processing Variable selection R2
C RMSEC R2

P RMSEP MAPD (%)

MC SG1D-PLSR CARS 0.9579 1.0035 0.9501 1.1467 6.13
​ ​ RF 0.9488 1.1027 0.9476 1.1648 6.03
​ ​ IRIV 0.9379 1.2128 0.9116 1.5079 7.91
​ ​ VCPA 0.8025 2.1691 0.7799 2.1854 10.76
​ ​ VISSA 0.9508 1.0832 0.9336 1.3190 6.85
​ SG1D-SVM CARS 0.9588 1.0303 0.9582 1.0825 6.38
​ ​ RF 0.9748 0.7981 0.9662 1.0111 5.19
​ ​ IRIV 0.9581 1.0094 0.9505 1.1775 6.29
​ ​ VCPA 0.9938 0.3883 0.9932 0.4373 1.62
​ ​ VISSA 1.0000 0.0013 0.9999 0.0014 7.36×10− 3

​ SG1D-GPR CARS 0.9573 1.0780 0.9563 1.0219 5.69
​ ​ RF 0.9079 1.5300 0.8887 1.7395 8.53
​ ​ IRIV 1.0000 0.0006 0.9999 0.0006 2.95£10¡3

​ ​ VCPA 0.9353 1.4793 0.9086 1.7992 9.69
​ ​ VISSA 0.8692 1.7535 0.8679 1.8074 7.42
​ SG1D-ANN CARS 0.7989 2.1827 0.7889 2.1645 10.82
​ ​ RF 0.8025 2.1691 0.7799 2.1854 10.76
​ ​ IRIV 0.9823 0.6668 0.9641 0.9827 5.00
​ ​ VCPA 1.0000 0.0007 0.9999 0.0011 5.52×10− 3

​ ​ VISSA 0.9505 1.0843 0.9317 1.3409 6.90

Table 2 
Summary of computational intelligence model performance for ΔE under different effective wavelength selection techniques.

Parameter Processing Variable selection R2
C RMSEC R2

P RMSEP MAPD (%)

ΔE SG1D-PLSR CARS 0.9391 0.8338 0.9091 0.7808 7.58
​ ​ RF 0.9286 0.8834 0.8957 0.8413 7.56
​ ​ IRIV 0.9135 0.9600 0.8805 0.8895 8.06
​ ​ VCPA 0.7817 1.4967 0.6724 1.4327 14.01
​ ​ VISSA 0.9448 0.7866 0.8934 0.8480 9.02
​ SG1D-SVM CARS 0.9766 0.6235 0.9503 0.6521 4.09
​ ​ RF 0.8947 1.1103 0.8407 1.0141 8.40
​ ​ IRIV 0.9995 0.0808 0.9948 0.2624 0.98
​ ​ VCPA 0.7844 1.4953 0.6631 1.4457 14.22
​ ​ VISSA 0.8753 1.2688 0.8017 1.1761 11.79
​ SG1D-GPR CARS 0.9632 0.6956 0.9266 0.7297 6.77
​ ​ RF 0.9410 0.8367 0.9035 0.8133 7.35
​ ​ IRIV 0.9364 0.8623 0.8968 0.8367 7.39
​ ​ VCPA 1.0000 0.0004 0.9999 0.0003 3.15£10¡3

​ ​ VISSA 0.9680 0.6386 0.9249 0.7269 7.49
​ SG1D-ANN CARS 0.9876 0.4997 0.9813 0.4890 4.05
​ ​ RF 0.9189 0.9710 0.8755 0.9158 8.65
​ ​ IRIV 0.9712 0.6022 0.9389 0.7087 5.41
​ ​ VCPA 0.7884 1.4883 0.6573 1.4655 14.66
​ ​ VISSA 0.9357 1.1162 0.8784 1.1727 11.95

Table 3 
Summary of computational intelligence model performance for GI under different effective wavelength selection techniques.

Parameter Processing Variable selection R2
C RMSEC R2

P RMSEP MAPD (%)

GI SG1D-PLSR CARS 0.9390 0.0253 0.8933 0.0333 2.31
​ ​ RF 0.9238 0.0287 0.9120 0.0302 2.03
​ ​ IRIV 0.9122 0.0291 0.9094 0.0301 2.05
​ ​ VCPA 0.7859 0.0441 0.7794 0.0459 3.15
​ ​ VISSA 0.9397 0.0246 0.9348 0.0258 1.62
​ SG1D-SVM CARS 0.9945 0.0093 0.9863 0.0124 0.80
​ ​ RF 0.9887 0.0123 0.9871 0.0124 0.80
​ ​ IRIV 0.9958 0.0080 0.9949 0.0074 0.61
​ ​ VCPA 0.9345 0.0268 0.9150 0.0318 1.65
​ ​ VISSA 0.9963 0.0077 0.9938 0.0085 0.71
​ SG1D-GPR CARS 1.0000 0.0000 0.9999 0.0000 1.25×10− 3

​ ​ RF 1.0000 0.0000 0.9999 0.0000 1.15×10− 3

​ ​ IRIV 1.0000 0.0000 0.9999 0.0000 1.21×10− 3

​ ​ VCPA 0.9904 0.0129 0.9897 0.0126 0.90
​ ​ VISSA 1.0000 0.0000 1.0000 0.0000 1.18£10¡3

​ SG1D-ANN CARS 0.9992 0.0029 0.9986 0.0040 0.07
​ ​ RF 0.9999 0.0007 0.9999 0.0011 0.05
​ ​ IRIV 0.9999 0.0009 0.9998 0.0013 0.06
​ ​ VCPA 0.9999 0.0010 0.9999 0.0011 0.05
​ ​ VISSA 0.9999 0.0009 0.9999 0.0012 0.05
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20 iterations were conducted, and they attained the minimum RMSECV 
value of 1.6936, 1.1094, and 0.0362, respectively. Figure A6d-f depicts 
the bands selected by the VISSA algorithm at final iteration rounds of 25, 
24, and 20 for the MC, ΔE, and GI of glutinous rice, respectively. The 
total selected wavelengths were 51, 52, and 47 bands for MC, ΔE, and 
GI, which depict 63.04 %, 62.32 %, and 65.94 % reduction in the full 
wavelengths, respectively (Figure A6d-f).

3.7. Comparison of model accuracy

By using the selected best preprocessing method (SG1D), 
Table 1–Table 3 summarises the comparison result of the models 
developed as a function of selected effective wavelength from different 
techniques for MC, ΔE and GI respectively. The linearity between 
experimental data and forecasted data from the best processing 
sequence with linear and nonlinear computational models is presented 

in Fig. 7. In terms of linear computational intelligence (PLSR model), the 
SG1D preprocessing combined with CARS for selecting the effective 
bands (SG1D-CARS-PLSR) was adjudged as the best sequence for the 
determination of MC (Table 1) and ΔE (Table 2) based on HSI data. For 
MC, the model had the highest R2

C of 0.9579 and R2
p of 0.9501, of with 

the lowest values of 1.0035, 1.1467 and 6.13 % for RMSEC, RMSEP and 
MAPD, respectively. For the ΔE, the model had the highest R2

C of 0.9391 
and R2

p of 0.9091, with the lowest values of RMSEC, RMSEP and MAPD 
of 0.8338, 0.7808 and 7.58 % respectively. However, SG1D-VISSA-PLSR 
had the best prediction performance for the GI as shown in Table 3. The 
model had the highest R2

C of 0.9397 and R2
p of 0.9348, with the lowest 

values of RMSEC, RMSEP and MAPD of 0.0246, 0.0258 and 1.62 % 
respectively (Fig. 7). Similar to the findings of this study, Song et al. 
(2023) obtained an accuracy of R2

P = 0.9643, with RMSEP of 0.0032 
with RPD of 5.38 for predicting the moisture content of rice using HSI 

Fig. 7. The linear relationship between the experimentally obtained value and the predicted value of the best processing sequence for the PLSR model and the overall 
best model.
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coupled with CARS-PLSR. Guo et al. (2023b) determine the MC of soy
bean seed using a visible near-infrared HSI system and obtain an accu
racy of R2

p of 0.9713, RMSEP of o.307 and RPD of 6.058 using PLSR 
model couples with visa-SPA for the effective wavelength selection. Sun 
et al. (2019) recorded an accuracy of 0.9363, 0.7021, and 3.99 for R2

P, 
RMSEP and RPD, respectively, in predicting peanut moisture using HSI 
combined with SPA-PLSR model. Zhang et al. (2023a) determined the 
MC of wheat flour using near-infrared HSI (969–2173 nm). The devel
oped VCPA-PLSR model attained an accuracy of 0.6960, 0.3362, and 
2.1.83 for R2

P, RMSEP and RPD respectively. Whereas the IRIV-PLSR 
gave an accuracy of 0.8146, 0.2625 and 2.34 for R2

P, RMSEP and RPD 
respectively.

In nonlinear computational intelligence model (ANN, GPR, and 
SVM), the SG1D-IRIV-GPR had the overall best performance in MC 
prediction. The model had the highest accuracy index (R2

C of 1.0000 and 
R2

p of 0.9999,) with the lowest error index (RMSEC, RMSEP and MAPD of 
0.00056, 0.00057 and 0.0029 % respectively). For the ΔE, The SG1D- 
VCPA- GPR had the best prediction performance. The model had the 
highest accuracy R2

C of 1.0000 and R2
p of 0.9999, with the lowest values 

of RMSEC, RMSEP and MAPD of 0.00037, 0.00033 and 0.0031 %, 
respectively. The SG1D-VISSA-GPR had the overall best performance for 
the prediction of the GI. The model had the highest accuracy index (R2

C 
of 1.0000 and R2

p of 1.0000) with the lowest residual index where the 
RMSEC, RMSEP and MAPD are 0.000019, 0.000016 and 0.0012 %, 

respectively (Fig. 7).

3.8. Spatial visualization of the grain quality

The reliability and accuracy of the developed HSI-based model can 
be conveyed by plotting the distribution maps for the targeted properties 
using the HSI data. In cases where the interpretation of the distribution 
map and its consequences are incorrectly represented, the developed 
model is considered inaccurate. Consequently, the deployment of the 
models is not advisable and recalibration of the model is essential 
(Ahmed et al., 2024). Therefore, the distribution map of the glutinous 
rice quality offers additional information in affirming the accuracy of 
the prediction model. Fig. 8 shows the progression in the MC, ΔE, and GI 
during the drying process under different temperatures for 15 mm 
thickness. The figure reconstructs the properties obtained from best 
predictive model as a function of the selected effective wavelength. 
Therefore, the resulting map effectively represents the distribution of 
MC, ΔE, and GI of glutinous rice during the drying process. Fig. 8a-c 
presents the relative distribution of MC, ΔE, and GI, respectively, with a 
linear colour scale for mapping each quality and ensures that similar 
predicted values were assigned with comparable colour properties. The 
grain quality distribution map does not only depict the quality distri
bution at pixel level but also presents the potential of HSI in visualizing 
the pixel-wise quality of glutinous rice which might be difficult to 
distinguish by unaided human eye. Consequently, the development of a 

Fig. 8. Glutinous rice quality distribution during the drying process.
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visual map for the spatial distribution of the grain quality parameters is 
essential in the application of HSI for monitoring the drying process of 
grain.

4. Conclusion

This study evaluates the use of a visible-near infrared HSI system for 
monitoring the drying process of glutinous rice. The MC, ΔE, and GI of 
the glutinous rice were predicted by harnessing the functionality of the 
HSI system when coupled with different preprocessing methods and 
effective wavelength selection techniques. The spectral data was pre
processed using four different methods (MWS, SNV, MSC, and SG1D), 
and the raw spectra were used as the reference point for comparison. 
CARS, RF, IRIV, VCPA, and VISSA algorithms were used to select 
effective wavelengths. PLSR, ANN, SVM, and GPR were developed for 
the prediction of MC, ΔE, and GI of the glutinous rice. The result shows 
that the SG1D technique is the most effective method for spectral pre
processing because of its higher accuracy in predicting the MC, ΔE, and 
GI of glutinous rice (0.9564 ≤ R2

P ≤0.9741, 0.0177 ≤ RMSEP ≤ 0.8242 
and 1.28 ≤ MAPD ≤ 5.90 for PLSR model). By using the PLSR model, 
the CARS-SG1D-PLSR gave the best performance for the MC and ΔE of 
glutinous rice. The model has a higher R2

p of 0.9501, RMSEP of 1.1467 
and MAPD of 6.13 % for MC, with R2

p of 0.9091, RMSEP of 0.7808, and 
MAPD of 7.58 % for ΔE. VISSA-SG1D-PLSR model gave the best result 
for the determination of GI with R2

p of 0.9348, RMSEP of 0.0258, and 
MAPD of 1.62 %. The comparison of all the models shows that the SG1D- 
IRIV-GPR, SGID-VCPA-GPR, and SGID-VISSA-GPR are the overall best 
models for perfect prediction (R2

P ≥99.99 %) of the MC, ΔE and GI 
during the drying process. Therefore, processing sequences and models 
were recommended as a basis for developing intelligent devices for rapid 
detection, monitoring, and controlling the drying process of glutinous 
rice in the grain processing industry.
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