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ARTICLE INFO ABSTRACT

Keywords: Rapid and non-invasive monitoring of the drying process of glutinous rice is crucial to ensure the effective
Grain quality production of desired dried grain. In this study, visible-near infrared hyperspectral imaging coupled with
Dehydration

computational intelligence was used to detect the variation in moisture content (MC), change in colour (AE), and
golden index (GI) of glutinous rice during drying. Different preprocessing methods and effective wavelength
selection techniques were used to eliminate the noise and redundant wavelength in the reflectance spectra, and
predictive models were developed for the glutinous rice quality. Savitzky-Golay first derivative (SG1D) showed
the best preprocessing performance (0.9564 < R,Z, <0.9781, 0.0177 < RMSEP < 0.8242 and
1.28 < MAPD < 5.90 for PLSR model). The best performance accuracy (R >99.99 %) was obtained when
the SG1D and Gaussian process regression (GPR) model were combined with iteratively retained informative
variable algorithm (SG1D-IRIV-GPR), variable iterative space shrinkage (SG1D-VISSA-GPR) and variable com-
bination population analysis (SG1D-VCPA-GPR) for the prediction of MC, GI, and AE, respectively. The study
showed that visible-near infrared hyperspectral imaging coupled with computational intelligence can be used to
monitor the quality of glutinous rice during the drying process.

Computational intelligence
Non-destructive method
Hyperspectral imaging

1. Introduction in making many Asian staple foods, snacks, desserts, and beverages (Li

et al., 2018; Qiu et al., 2021), which include rice wine, crackers, cakes,

Rice is an extensively consumed plant-based staple food. It offers
more than half of the daily calories required for feeding the world
population and up to two-thirds in Asia (Shi et al., 2022). Numerous
varieties of rice differ in terms of physical characteristics, chemical
composition, and textural and structural attributes, among other quality
factors (Qiu et al., 2021). Glutinous rice, sometimes called sticky rice or
waxy rice, is a popular variety of rice frequently grown in Eastern and
Southeast Asia. The low amylose and high amylopectin content of
glutinous rice kernel, as opposed to non-glutinous rice, accounts for its
low retrogradation rate and high stickiness after cooking (Jimoh et al.,
2025a, 2025b). The kernels of wet or freshly harvested glutinous rice are
translucent in colour and become opaque after drying. This phenome-
non differs entirely from non-glutinous rice, which turns translucent
after drying (Li et al., 2018). Glutinous rice remains the main ingredient
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and dumplings (Qiu et al., 2020). Before the production of final prod-
ucts, fresh glutinous rice usually has a high moisture content (MC),
which can be detrimental to its shelf life and quality, just like every other
grain. Therefore, the grain is dried to a safe moisture level (9-14 %)
before subjecting it to further processes such as storage, packaging,
milling, and grinding (Jimoh et al., 2023a).

Drying refers to using hydrodynamic and thermodynamic methods to
remove moisture by evaporation (Mondal et al., 2022). In practice,
effective drying is crucial to the nutrients retained in dried products as
the grains with incomplete drying are prone to mould growth, while
over-dried grains are prone to nutrient loss (Jimoh et al., 2024b; Kiani
et al., 2018). Therefore, the MC and physical appearance of the grains
are monitored as effective metrics to control and terminate the drying
process when the desired safe limit is attained (Jimoh et al., 2023b). The
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traditional methods for determining MC include the gravimetric
method, Karl Fisher titration, infrared moisture analysers, and the
standard oven drying method. When used correctly and meticulously,
these traditional methods are accurate and dependable (Zhang et al.,
2022). Nonetheless, they are destructive and require a lot of labour and
time, mainly when dealing with many samples (Zhang et al., 2023a).
The appearance of glutinous rice during drying is also an essential
metric for grain processors and consumers during processing and pro-
curement. The potential consumers of the product are often fond of
comparing the golden appearance of the dried grains from different
suppliers. The consumers associate the golden appearance of the grains
with the nutrient retention, shelf life, and quality of the dried grain. This
expectation is also transferred to the quality of the finished product
obtained from the grain Iheonye et al. (2019). Conventionally, the
appearance of the grains after drying is obtained using a colourimeter,
and this technique can be time-consuming due to repeated measures.
Also, it requires direct contact with the sample as it was primarily
developed for flat surfaces, unlike the ellipsoid surface of rice, which
makes it prone to some level of uncertainty. Thus, a highly efficient,
low-cost, rapid, drudgery-free, and accurate quality evaluation method
for rapid quality control and measurement during the drying process
must be developed (Ren et al., 2020; Zhang et al., 2023a). Hyperspectral
imaging (HSI) is an evolving, rapid, and non-invasive technique for
monitoring food quality. It combines imaging and spectral technology to
achieve the purpose of food quality detection (Jimoh et al., 2023b). In
HSI techniques, a single captured image contains spatial information at
every wavelength and spectral information in each pixel. The HSI has an
advantage over the RGB camera by using a wide range of wavelengths,
allowing it to detect the chemical and internal quality of the sample
(Guo et al., 2023a; Sharma et al., 2022; Song et al., 2023). HSI tech-
nology has been widely applied in different food quality detection,
assessment, control, and monitoring scenarios. For instance, the tech-
nology has been used in food testing, such as moisture, starch, and
protein of wheat flour (Zhang et al., 2023a), moisture, starch, and
protein of chicken flesh (He et al., 2023), and lead content of rape leaf
(Zhou et al., 2023). Also, it was employed to detect chemical and bio-
logical traits in grain, which includes sweet seed vigour (Zhang et al.,
2023b), aflatoxin B; and total aflatoxin in peanut kernel (Guo et al.,
2023a), aflatoxin in corn kernel (Tao et al., 2022), the protein content of
chickpea (Saha et al., 2023), amylose and amylopectin content of sor-
ghum (Huang et al., 2021, 2023), corn physical traits and protein
composition (Varela et al., 2022), hardness of maize kernel (Qiao et al.,
2022), fatty acid and moisture content of rice (Song et al., 2023), and
MC in soybeans (Guo et al., 2023b). However, the information on the
application of the HSI system for monitoring the grain drying process
remains a gap that demands research attention. Therefore, this study
focused on developing a rapid and non-invasive method for monitoring
the drying process of glutinous rice using an HSI system coupled with
chemometrics. This method can be aptly applied for the rapid detection
and control of the drying process to ensure appropriate drying and
effectively reduce grain loss due to over-drying.

2. Materials and methods
2.1. Sample collection and preparation

Fresh glutinous rice (paddy) was supplied by Berkat Padi Sdn Bhd, a
local rice supplier in Malaysia. The collected rice was cleaned using
paddy cleaner to remove unwanted particles such as immature grains,
broken grains, stalk fragments, and foreign objects. The cleaned grains
were sealed in an airtight plastic container and stored in a freezer
(ACSON, ACF 30F(T), Malaysia) at a temperature of —5 °C. Before the
experimentation, the initial MC of the grains was measured in triplicate
using the standard oven drying method, and the resulting value was
23.65 + 0.34 %wb.
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2.2. Drying process of glutinous rice

The drying process of the glutinous rice was carried out using a hot
air box dryer (Model 3021, Malaysia). The dryer has an external
dimension of 650 x 900 x 1900 and an internal dimension of 0.59 x
0.58 x 1.40 m. The heat is externally produced by 2.5 kW and distrib-
uted by the blower into the drying chamber through perforated media.
Before the drying commences, the fresh glutinous rice sample was
withdrawn from the freezer and allowed to equilibrate with the ambient
temperature. The dryer was powered for about 60 min to ensure the heat
was evenly distributed in the drying chamber before loading the gluti-
nous rice. Under the different temperatures (50 °C, 60 °C and 70 °C) and
grain layer thicknesses of 15 mm (120 g), 25 mm (190 g), 35 mm (280
g), and 45 mm (380 g), the glutinous rice was dried in three replicates
which gave a total of 36 experimental runs. During the drying process,
10 g of the sample was collected at intervals of 30 min until the grains
attained the critical moisture content (12 %), which denoted the level at
which no spoilage could occur in the grains (Nath et al., 2022). A total of
178 samples were collected and used for the hyperspectral image
acquisition, MC measurement, and appearance indices determination.

2.2.1. Moisture measurements

The MC measurement was carried out using the oven-drying method.
Five grams of the collected sample were placed in a laboratory oven
(Carbolite, PF60, England) under 105 °C for 24 h, and the electronic
weighing balance was used to measure the weight before and after the
drying. The MC of the sample was calculated using Eq. (1) (Qiao et al.,
2022).
mc = ™My 100 @)

my,

Where m, is the mass of the sample before drying (g), m, is the mass

of the sample after drying (g).

2.2.2. Appearance indices measurement

Aside from the MC which is the commonly used quality metric for
assessing the effectiveness of a grain drying process, the grain appear-
ance is another important metric for assessing the drying process of food
material. The change in colour and the golden index (GI) were selected
as the appearance indices for the glutinous rice during the drying pro-
cess. The standard CIEL*a*b* colour channels of each sample were
measured using a digital colourimeter (NR145, 3NH, Shenzhen, China).
The instrument was initially calibrated using a standard white tab (D65)
followed by the sample measurements. The colour change was calcu-
lated using Eq. (2)

AE = \/AL*? + Aa*? + Ab*? 2)

where AE is the colour change, AL* is the change in the lightness, Aa* is
the change in greenness/redness, Ab* is the change in the blueness/
yellowness.

The GI is a section in the yellow channel, and it was determined using
a golden yellow index of the American standard test method (ASTM 313
). The recorded L*a*b* channel was transformed into an RGB channel
using the built-in function of MATLAB 2023b The GI was calculated
using Eq. (3)

_1-B

GI
G

3

where B is the blue channel and G is the green channel of the RGB
standard.

2.3. Hyperspectral imaging setup and spectral acquisition

The hyperspectral images of the glutinous rice were acquired by
using visible near-infrared hyperspectral (VNIR-HSI) set-up (Cubert,


astm:313
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Fig. 1. The setup of the visible-near infrared hyperspectral imaging system.

S185 FireflEYE, Germany). The spectral range of the VNIR-HIS ranged
from 450 nm — 998 nm with a spectral sampling of 4 nm and 1000x 1000
pixels as the output spatial resolution. The schematic drawing for the
setup of the VNIR-HSI system is shown in Fig. 1. The setup consists of a
VNIR-HSI camera, a halogen lamp as the source of illumination, a fan to
prevent overheating by cooling the system, a movable frame, and a
computing system for acquisition controlling, image temporary storing,
and processing of the hypercube image. The sampled glutinous rice was
placed in a petri dish, and the hyperspectral images were collected
sequentially. Prior to image acquisition the camera was calibrated using
white and black reference images to reduce the effect of dark current and
noise. The relationship between the raw and corrected image is
expressed in Eq. (4). A rectangular area of 200x200 pixels with a high
concentration of the grains and enough information to depict the
glutinous rice sample was selected as the region of interest (ROI) of the
image. Therefore, the average of the spectral data was obtained for each
wavelength to represent the sample.

XXy

R
Xw 7Xd

(€3]

where R is the corrected image reflectance, X is the raw image sample,

X,y is the white reference image, and X; is the dark reference image.
2.4. Spectral preprocessing

Fig. 2 shows the flow chart for the steps involved in the data process
and model development for monitoring the grain quality during the
drying process using the HSI technique. The raw spectral data may vary
differently due to light intensity, instrument noise, stray light, dark
current, etc. It is necessary to reduce extraneous information that is
irrelevant to the targeted properties of the sample through spectral
preprocessing to improve the accuracy and prediction ability of the
model (Panda et al., 2022; Tian et al., 2023). In this study, the obtained
reflectance spectra from the HSI were subjected to 4 preprocessing
methods that are commonly used for spectral data preprocessing in
literature. This method includes moving window smoothing (MWS) with
five window sizes, multiplicative scattering correction (MSC), Standard
normal variate (SNV), and Savitzky-Golay first derivative (SG1D) with
five window sizes. The raw spectral was used as a reference point for
evaluating the effectiveness of the preprocessed method during the
model development.
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Fig. 2. Flow chart of the HSI data processing and model development for the glutinous rice quality during the drying process.

2.5. Effective wavelength selection

Hyperspectral image information exhibits characteristics such as
multi-collinearity and high dimensionality with several redundant in-
formation that are laborious and time-consuming during processing
(Song et al., 2023). The selection of the effective wavelength reduces the
dimension of the full spectral feature. The wavelength selection offers a
range of benefits by removing irrelevant and redundant information
(Zhang et al., 2023a). Therefore, the processing time, execution speed,
and accuracy in actualizing the real-time quality detections are
enhanced (Song et al., 2023; Zheng et al., 2018). After selecting the most
appropriate preprocessing method, the important wavelengths were
selected using the variable iterative space shrinkage approach (VISSA),
random frog (RF), variable combination population analysis (VCPA),
Iteratively retains informative variables (IRIV), and Competitive adap-
tive reweighted sampling (CARS) (Jimoh & Hashim, 2024; Jimoh et al.,
2025a).

2.6. Model development

A total of 178 hyperspectral images were collected during the
experiment and divided into the calibration and prediction data sets in a
3:1 ratio to develop the predictive model. The partitioning was done to
ensure the produced model was accurate and effective. The Kennard-
Stone method was used to divide the data. The method maximizes the
Euclidean distance between the response to evenly cover the multi-
dimensional space. Therefore, both partitions contains data with
maximum variability of the original data (Zhang et al., 2023a). To
maximize the accuracy of the quantitative model and avoid overfitting,
5-fold cross-validation method was employed during model training
with calibration data set (Jimoh et al., 2025¢c, 2025a). The repeatability
of the established quantitative models was demonstrated using predic-
tion set samples excluding the response for testing the developed model

(Achata et al., 2021). The partial least square regression (PLSR) was
used as the linear computational intelligence algorithm that was used for
the model development, while artificial neural network (ANN) with
multilayer perceptron, support vector machine (SVM), and Gaussian
processes regression (GPR) were used as the nonlinear computational
intelligence approach (Achata et al., 2021; Jimoh et al., 2024a).

2.6.1. Partial least square regression

The PLSR carries out the least squares approach by condensing data
sets, comprising input and output variables, into several latent variables
with the most significant amount of information. Therefore, the PLSR
approach compensates for the principal component analysis limitations
by considering the output variable for dimension reduction and satisfies
Eq. (5) (Park et al., 2023; Xu et al., 2018). In this study, the PLSR model
calibration was carried out with a mean center scaling, and the
maximum latent variable was set to 10 with 5-fold cross-validation (Li
et al., 2022).

Y=TP,+EX=TQ,+F 5)

where T = (ti, ta, ....
Y and X, respectively.

, t) is the variable; E and F are random errors of

2.6.2. Support vector machine

The SVM model converted the input data into a high-dimensional
feature set using Kernel functions, including the linear, polynomial,
and radial basis functions, to accurately predict the output parameter
(Abdallah et al., 2022). SVM aims to find the hyperplane as a function of
the input variable (Eq. (6)) and the best-predicted locations with mini-
mal divergence from the response vector. To assure the fitness of the
SVM technique, the method finds the ideal hyperplane function pa-
rameters with minimum residual (Eq. (7)) (Alaoui et al., 2023). In this
study, the kernel function, penalty function, kernel scale, and box
constraint were tunned using the Bayesian algorithm
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Fig. 3. Moisture content of glutinous rice against the time under different temperatures and layer thicknesses. [a]: 15 mm, [b]: 25 mm, [c]: 35 mm, and [d]: 45 mm.

(6)

(w"y") = argmin, Z (w,x;) —b?)

i=1

)

where @ (x) is the kernel function, and w and b are the hyperplane pa-
rameters of the model.

2.6.3. Gaussian process regression

GPR uses a kernel-based approach to represent the random variables
in building the intelligent models. The data distribution curve for the
GPR distribution is shaped similarly to the normal distribution curve
(bell curve). Thus, the two fundamental parameters of the Gaussian
distribution (the variance and the mean) can be used to explain the
distribution. The relationship in Eq. (8) is used to compute the Gaussian
process distribution (Jimoh et al., 2024a; Mohammadpour et al., 2022)

Y = 79 (M(X),K(X, X';0)) ®
where y is the model response, M(X) is the basis function, and K(X, X') is
the kernel function. 6 is the set of other model hyperparameters, which

includes sigma and scale values,

2.6.4. Artificial neural network

ANN is one of the widely adopted intelligence approaches to over-
come the limitations of traditional statistical modelling methodologies,
mainly when dealing with huge, noisy, and unstable data sets. The
model was inspired by the behaviour of the human brain while resolving
problems. The multilayer perceptron used for ANN model development
in this study requires estimating the weight of the structure that con-
nects the model neurons in the hidden layers (Park et al., 2023). The
mean square error was used as the loss function, while the hyper-
parameters that were tuned to optimize the ANN model for effective
prediction include the number of layers, transfer function, network
optimizer, and learning rate.

2.7. Model accuracy indices

Evaluation of model accuracy is the most important aspect of model

development. The performance of the developed model during calibra-
tion they were computed and compared using the coefficient of deter-
mination of calibration (R%) and root mean squared error of calibration
(RMSEC) shown in Egs. (9) and 10, respectively. The coefficient of
determination of prediction (Rg), root mean squared error of prediction
(RMSEP) and the mean absolute percentage deviation (MAPD) were
computed for the prediction performance of the model using Eqs. (11),
12, and 13, respectively. The model with a higher R? with lower RMSE
and MAPD was considered the best model for predicting the moisture,
change in colour, and golden index of glutinous rice (Guo et al., 2023b;

Sun et al., 2019).
R2Z—1_ Z:lzl (YC-i — Yi)z 9)
P —
Z?:l (YC-i - Yi)z
NG AL
RMSEC — % (10)
R2—1_ Z?:l(YPl - Yl) an
A PEPT= Ll ik
S (Yo — ¥)*
" (Y —Y)?
RMSEP — % 12)
MAPD — © i M 100 13)
n i=1 Y

where Y¢; and Yp; are the modelled values for the calibration and
prediction data set, respectively, Y; and Y; are the reference and mean of
experimental value, respectively, and n is the number of observations.

2.8. Glutinous rice quality visualization

The glutinous rice quality distribution during the drying process was
visualized based on the approach outlined by Malegori et al. (2021). For
HSI data, each pixel of the spatial information consists of a spectrum,
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Fig. 4. Change in the colour (AE) and golden index (GI) of glutinous rice during the drying process for different temperatures and layer thicknesses: [a], [b], [c], and
[d] denote the AE under 15 mm, 25 mm, 35 mm, and 45 mm thicknesses respectively. [e], [f], [g], and [h] denote the GI under 15 mm, 25 mm, 35 mm and 45 mm

thicknesses respectively.

and the selected best model was used for the determination of the cor-
responding grain quality in each pixel (Ahmed et al., 2024). In order to
create chemical distribution map for the grain responses, The HSI was
reshaped from a 3D to a 2D array with rows equal to the number of
pixels in each wavelength and columns equal to the number of bands in
the HSI data. The 2D array was subjected to the selected best pre-
processing techniques followed by the effective wavelength selection
techniques and the predictive model was used to determine the grain
quality of each pixel which gave a 1D vector. Therefore, the 1D vector
was reshaped into a 2D array with equal dimensions with the spatial
resolution of the 3D HSI datacube. The distribution map of the grain
qualities was visualised using a pseudocolour plot with linear scale to
reshaped the 2D array (Jimoh et al., 2025a). All preprocess computation
and effective wavelength selection and predictive model development
and visualization of quality distribution map were computed using
MATLAB 2023a software.

3. Result and discussion
3.1. Moisture content

The MC of glutinous rice against the drying time under different
temperatures and layer thickness is shown in Fig. 3. The MC of the fresh
glutinous rice reduces continuously with time throughout the drying
process, regardless of temperature and layer thickness. The MC after 3
hours ranged between 8.89 % and 21.01 %, indicating variation in the
moisture during the drying process and the influence of drying condi-
tions on the rate of moisture removal from the glutinous rice. The speed
of moisture removal increased with the increase in the temperature and
decrease in the layer thickness. The lower moisture (8.89 %) after 3
hours was recorded at 70 °C and 15 mm, while the grain dried at the
temperature of 50 °C and 45 mm thickness had the highest MC of 21.01
%. The effect of temperature and thickness in this study is consistent
with the findings of Mondal et al. (2022), who found that temperature
improves the diffusion of moisture by enhancing the heat and mass
transfer between the grain and the heated environment of the drying
system.

3.2. Appearance indices

The continuous change in the colour and GI of glutinous rice samples
during the drying process is shown in Figure 4(a-d) and Figure 4(e-h),
respectively. The GI of the fresh glutinous rice was 1.453. The GI reduces
continuously with the drying time while the AE increases progressively.
The Gl ranged between 1.046 and 1.195 after 3 h of drying, while the AE
ranged between 6.79 and 11.32. The lowest AE was obtained (1.046)
under the temperature of 60 °C and thickness of 45 mm. The highest AE
(1.195) was obtained at the temperature of 70 °C and thickness of 25
mm. The highest GI (11.32) was obtained at a temperature of 50 °C and a
thickness of 35 mm. The lowest GI (6.79) was obtained at a temperature
of 70 C and a thickness of 25 mm. The progression shows that the AE
increases with the temperature and decreases with the layer thickness.
In contrast, the GI increases with the layer thickness and decreases with
the temperature. This outcome highlights the significant impact of
drying conditions on the appearance of the grain throughout the drying
process. Theonye et al. (2019) suggest that dried grains exhibiting min-
imal appearance deviation from their fresh state are typically associated
with higher nutrient retention and thus hold greater value. Conse-
quently, grain processors and consumers generally prefer grains that
experience minimal AE and maintain a high GI (Fig. 4).

3.3. Data outlier identification and removal

The Monte Carlo-partial least square technique was used to identify
outliers in reflectance spectral information and response variables. The
average and standard deviation were computed based on the root mean
square error of cross-validation (RMSECV) of each sample. The standard
deviation was plotted on the ordinate against the mean on the abscissa
to visualise and identify the datum point, as shown in Fig. 5. The datum
point of standard deviation was set to 2.0, 1.3, and 0.055 for the MC, AE
and GI, respectively. The limit for the mean values was set as 2.5 times
the standard deviation limit, and the values above the set limit were
identified as outliers. After the elimination of 11, 6, and 10 observations
as outliers in MC, AE, and GI, respectively, the R% increased from 0.8493
to 0.9663 for the MC, 0.9307 to 0.9612 for AE, and 0.93355 to 0.9557
for GI, which confirms the abnormalities of the eliminated values (Guo
et al., 2023b).
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Fig. 5. Outlier detection using Monte Carlo sampling techniques. [A]: MC, [B]: AE, and [C]: GIL

3.4. Reflectance spectra characteristics

The HSI raw spectra range from 450 to 998 nm with 138 wavelength
points and a sampling resolution of 4 nm is shown in Fig. 6a, it repre-
sents the average reflectance values for all pixels in the ROI of the
samples. The reflectance from the least wavelength (450 nm) reduced
continuously until 482 nm to 490 nm. Continuous increments follow this
until the peak reflectance is attained at 900 nm with a slight absorbance
valley between 730 nm and 750 nm for different samples, which is
related to second overtone O—H and N—H stretches, and third overtone
C—H (Jimoh et al., 2025a). The reflectance from 900 nm to 998 nm had
a slight increment trend with another slight absorption valley between
920 nm and 950 nm, which was situated near the absorption valley of
960 nm, denoting second overtone O—H stretching and associated with
grain moisture (Song et al., 2023).

3.5. Spectra preprocessing method and model performance

Figure 6(b-e) depicts preprocessed spectral data from different pro-
cessing methods, including MWS, MSC, SNV, and SG1D. The

preprocessing method reduced environmental, human, instrumental,
and operational errors. MWS algorithms eliminate the noise and
inconsistency in the spectral data. MSC technique reduces the multi-
plicative and additive error in the spectra. The SNV applies the nor-
malisation method to minimise the multiplicative and additive effect in
the spectra data. Using SG1D for the spectral data correction reduces
particle offset and scattering effect at the spectral baseline. Models were
developed for effective prediction of the reference quality index (MC, GI,
AE) of glutinous rice during the drying process based on the full raw
spectra and the preprocessing spectra. The model includes PLSR, SVM,
GPR, and ANN algorithms. The performance accuracy of the pre-
processing method with the model for effective determination of the
reference quality of glutinous rice is summarised in Table A.1

3.5.1. Preprocessing and PLSR model performance

The calibration accuracy (R%) for RAW-PLSR model ranged from
95.57 % to 96.63 % with RMSEC ranging from 0.0256 to 0.9002 for the
MC, GI and AE of glutinous rice during drying. Testing RAW-PLSR model
with prediction data set resulted in an accuracy span from 94.82 % to
95.99 % and the RMSEP were 1.0400, 0.6747, and 0.021 with MAPD of
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Fig. 6. Raw and preprocessed reflectance spectral data of glutinous rice: [a] RAW, [b] MWS, [c] MSC, [d] SNV, and [e] SG1D.

5.33 %, 7.15 %, and 1.84 % were obtained for the MC, AE and GI
respectively. SG1D-PLSR was adjudged with the best performance in
predicting MC, AE and GI of glutinous rice and increases the RAW-PLSR
model accuracy. SG1D-PLSR model exhibits the most compelling per-
formance compared to other preprocessing methods in predicting the
quality of glutinous rice. The model had the highest RZ, and R values of
0.9800, and 0.9741, respectively, with the lowest RMSEC, RMSEP and
MAPD of 0.6948, 0.8242 and 4.25 % for the moisture prediction. For AE,
the SG1D-PLSR model had the best performance. It has the highest RZ of
0.9751 and R of 0.9564 with the lowest RMSEC of 0.5166, RMSEP of
0.6169 and MAPD of 5.90 %. In the case of the GI of glutinous rice, the
SG1D-PLSR model had the best performance with RZ, RMSEC, R2,

RMSEP and MAPD values of 0.9693, 0.0179, 0.9685, 0.0177 and 1.28
%, respectively (Table Al).

3.5.2. Preprocessing and SVM model performance

The calibration accuracy for RAW-SVM model ranged from 89.16 %
to 100 % and RMSEC were 0.0675, 1.2606, and 0.0201 for the MC, AE,
and GI of glutinous rice during drying. By testing the RAW-SVM with the
prediction data set, the results showed the R2 being equal to 0.9026,
0.8667, and 0.9558 and RMSEP of 1.5030, 1.0529, and 0.0253 with
MAPD of 7.41 %, 15.01 %, and 1.59 % for the MC, AE, and GI respec-
tively. As compared to other preprocessing methods, the SG1D-SVM
model had the best performance in the prediction of the MC, AE, and
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GI of glutinous rice measuring the drying process and it increases the
model accuracy compared to RAW-SVM model. For MC prediction, the
SG1D-SVM model had the highest degree of accuracy value (R2 =
0.9986, and R2 = 0.9881) with relatively low residual index (RMSEC =
0.2428, RMSEP = 0.5925 and MAPD = 1.45 %). For the AE, the model
has the highest accuracy index (RZ= 0.9772 and RZ = 0.9534) with the
lowest error index (RMSEC = 0.5525, RMSEP = 0.6013 and MAPD =
5.66 %). In the case of predicting the GI of the glutinous rice, the model
had the highest accuracy index (RZ of 0.9969 and R2 of 0.9961) with the
lowest residual index (RMSEC = 0.0074, RMSEP = 0.0072 and MAPD =
0.62 %) (Table Al).

3.5.3. Preprocessing and GPR model performance

The accuracy of RAW — GPR model during calibration ranged from
90.41 % to 100 % and the RMSEC values were 0.0008, 1.2274, and
0.000016 for the MC, AE, and GI, respectively. The result of testing the
RAW-GPR model with new spectral data only (prediction data set) re-
veals that RAW-GPR model performance was R2 = 0.8819, 0.8916, and
0.9999; RMSEP = 1.6564, 0.9612, and 0.000023 with MAPD of 8.05 %,
14.73 %, and 0.0017 % for the MC, AE, and GI respectively. The SG1D-
GPR model exhibits the best performance for the determination of MC
and GI of glutinous rice. For the MC, the model had the highest R%,
and R3 values (1.0000 and 0.9999) with the lowest RMSEC, RMSEP, and
MAPD values (0.000061, 0.000067, and 0.0036 %). For the GI, the
model had high R% andR2 values (1.0000, and 0.9999) with low RMSEC,
RMSEP, and MAPD values (0.000017, 0.000016, and 0.0012 %). How-
ever, the SNV-GPR model exhibits the best performance with the highest
degree of accuracy in prediction for the prediction of the AE. The model
had the highest RZ and R2 (1.0000 and 0.9999) with the lowest RMSEC,
RMSEP, and MAPD values (0.000033, 0.000046, and 0.0051 %)
(Table A.1).

3.5.4. Preprocessing and ANN model performance

The performance accuracy of the ANN model for the determination
of the reference quality of glutinous rice is summarised in Table 4.4. The
RAW-ANN model calibration had the RZ of 0.9996, 0.9016 and 0.9999
with RMSEC of 0.1143, 1.1640, and 0.0009 for the MC, AE and GI
respectively. By using the RAW-ANN model for the prediction data set,
the RZ of 0.9996, 0.8797 and 0.9999; RMSEP of 0.1068, 1.0072 and
0.0012 with MAPD of 0.57 %, 13.11 % and 0.07 % for the MC, AE and GI
were obtained respectively. Based on the comparison of the performance
of all the preprocessing methods, the RAW-ANN model remains the best
performance for predicting the MC of glutinous rice during the drying
process. Whereas the SG1D-ANN model had the best performance for the
prediction of the AE and GI of glutinous rice during the drying process.
For AE, the model had the RZ, RMSEC, R2 RMSEP and MAPD values of
0.9673, 0.6750, 0.9053, 0.8086 and 5.77 %, respectively. For GI, the R%,
RMSEC, R}% RMSEP and MAPD values were 0.9999, 0.0008, 0.9998,
0.0014, and 0.05 %, respectively. (Table A.1).

Generally, most of the preprocessing techniques in this study had
shown a remarkable performance towards the effectiveness and accu-
racy of the developed model (calibration and prediction) for rapid
determination of the MC, AE, and GI of glutinous rice during the drying
process. The RPD of all the models falls within the acceptable range
(RPD > 1.5) for a reliable model except for the MWS-SVM, whose RPD =
1.39. According to He et al. (2023), the most appropriate preprocess
technique should be chosen to assess the quality index and further
processing effectively. Regarding the preprocessing techniques, the
SG1D was adjudged as the best method for spectra preprocessing.
Therefore, the SG1D was used for variable selection and new model
development for rapid monitoring of the drying process of glutinous
rice. Also, comparing the performance of all the developed models,
SG1D-GPR, SNV-GPR, and SG1D-GPR were adjudged as the best models
for predicting the MC, AE, and GI of glutinous rice during the drying
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process. Thus, linearity between the experimentally obtained quality of
glutinous rice and predicted values as a function of full raw spectra, best
preprocessing methods combined with linear (PLSR) and nonlinear
(ANN, GPR, and SVM) computational intelligence for prediction of the
MC, AE, and GI of glutinous rice are presented in Figure A.la to
Figure A.1c respectively.

3.6. Effective feature selection

3.6.1. Competitive adaptive reweighted sampling

CARS algorithm with a predefined monte Carlos simulation of 50
iterations and 5-fold cross-validation for evaluating the model perfor-
mance. The resulting variation in the progression of the RMSECV for
different simulation runs is presented in Figure A2. The minimum
RMSECV was obtained at the iteration index of 24, 25, and 14 for the
MC, AE, and GI index, respectively. The RMSEC value was 2.4520 for
moisture, 1.5801 for AE, and 0.0409 for GI. Under optimal number of
runs from CARS algorithm, the selected wavelengths were 52 bands for
MC, 49 bands for AE, and 45 bands for GI. Therefore, selecting the
effective wavelength resulted in a pronounced reduction of 66.67 %,
76.09 %, and 70.29 % of full wavelength for MC, and GI, respectively
(Figure A2).

3.6.2. Random frog

The RF algorithm’s parameters were predefined as 1000 Monte
Carlos simulations with an initial sampling of 2 minimum points while
the variable index assessment was set as regression coefficients. The
RMSEP of Monte Carlo simulation iterations for the RF algorithms is
presented in Figure A3. The feature selection for the RF simulation was
done at run with the lowest RMSEP, the values were 1.7567, 1.2492, and
0.0369 for the MC, AE, and GI, respectively. The algorithm selects 35,
32, and 31 bands as the effective wavelength for the MC, AE, and GI,
which amount to 74.64 %, 76.81, and 77.54 % reduction in the full
wavelength (Figure A3).

3.6.3. Iteratively retains informative variables

The progression of variables retained by IRIV algorithm during the
iteration rounds is presented in Figure A4a-c for MC, AE, and GI of
glutinous rice, respectively. The selected wavelength was reduced
continuously until 54.35 %, 63.77 %, and 57.25 % of bands were in the
first three rounds for the MC, AE, and GI, respectively. Afterwards, the
band removal rate became steady until the 12, 14, and 15 wavelengths
were finally removed at the sixth iteration round through backward
elimination. Therefore, compared to full wavelength, the selected
wavelength covers 33.33 %, 23.91 %, and 29.71 % for MC, GI, and AE,
respectively (Figure A4).

3.6.4. Variable combination population analysis

The parameters of VCPA were set as follows: the exponentially
decreasing function (EDF) runs were 50 times, the binary matrix sam-
pling (BMS) runs were 1000 times, the selected wavelengths were
determined by 5-fold cross-validation, and the ratio of the optimal
subset was 0.1 (Zhang et al., 2023a). Figure A5 shows the variation in
RMSECV during the EDF operation of VCPA algorithm for MC, AE and GI
of glutinous rice. RMSECV continuously reduces with the EDF runs. In
feature selection, the least RMSECV was attained at the final runs and
the values were 2.3462, 1.5880, and 0.0504 for the MC, AE, and GI,
respectively. Subsequently, 11, 13, and 13 bands were chosen as the
effective wavelength for the MC, AE, and GI, in order words, 92.03 %,
90.58 %, and 90.58 % of the full bands were removed as the redundant
wavelength (Figure A5).

3.6.5. Variable iterative space shrinkage approach

Figure A6a-c shows the variation in the RMSECV obtained at
different iteration numbers during computation with the VISSA algo-
rithm. For the MC, AE, and GI of the glutinous rice, a total of 25, 24, and
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Table 1
Summary of computational intelligence model performance for MC under different effective wavelength selection techniques.
Parameter Processing Variable selection RZ RMSEC R2 RMSEP MAPD (%)
MC SG1D-PLSR CARS 0.9579 1.0035 0.9501 1.1467 6.13
RF 0.9488 1.1027 0.9476 1.1648 6.03
IRIV 0.9379 1.2128 0.9116 1.5079 7.91
VCPA 0.8025 2.1691 0.7799 2.1854 10.76
VISSA 0.9508 1.0832 0.9336 1.3190 6.85
SG1D-SVM CARS 0.9588 1.0303 0.9582 1.0825 6.38
RF 0.9748 0.7981 0.9662 1.0111 5.19
IRIV 0.9581 1.0094 0.9505 1.1775 6.29
VCPA 0.9938 0.3883 0.9932 0.4373 1.62
VISSA 1.0000 0.0013 0.9999 0.0014 7.36x1073
SG1D-GPR CARS 0.9573 1.0780 0.9563 1.0219 5.69
RF 0.9079 1.5300 0.8887 1.7395 8.53
IRIV 1.0000 0.0006 0.9999 0.0006 2.95x1073
VCPA 0.9353 1.4793 0.9086 1.7992 9.69
VISSA 0.8692 1.7535 0.8679 1.8074 7.42
SG1D-ANN CARS 0.7989 2.1827 0.7889 2.1645 10.82
RF 0.8025 2.1691 0.7799 2.1854 10.76
IRIV 0.9823 0.6668 0.9641 0.9827 5.00
VCPA 1.0000 0.0007 0.9999 0.0011 5.52x10°2
VISSA 0.9505 1.0843 0.9317 1.3409 6.90
Table 2
Summary of computational intelligence model performance for AE under different effective wavelength selection techniques.
Parameter Processing Variable selection R% RMSEC R,Z, RMSEP MAPD (%)
AE SG1D-PLSR CARS 0.9391 0.8338 0.9091 0.7808 7.58
RF 0.9286 0.8834 0.8957 0.8413 7.56
IRIV 0.9135 0.9600 0.8805 0.8895 8.06
VCPA 0.7817 1.4967 0.6724 1.4327 14.01
VISSA 0.9448 0.7866 0.8934 0.8480 9.02
SG1D-SVM CARS 0.9766 0.6235 0.9503 0.6521 4.09
RF 0.8947 1.1103 0.8407 1.0141 8.40
IRIV 0.9995 0.0808 0.9948 0.2624 0.98
VCPA 0.7844 1.4953 0.6631 1.4457 14.22
VISSA 0.8753 1.2688 0.8017 1.1761 11.79
SG1D-GPR CARS 0.9632 0.6956 0.9266 0.7297 6.77
RF 0.9410 0.8367 0.9035 0.8133 7.35
IRIV 0.9364 0.8623 0.8968 0.8367 7.39
VCPA 1.0000 0.0004 0.9999 0.0003 3.15x1073
VISSA 0.9680 0.6386 0.9249 0.7269 7.49
SG1D-ANN CARS 0.9876 0.4997 0.9813 0.4890 4.05
RF 0.9189 0.9710 0.8755 0.9158 8.65
IRIV 0.9712 0.6022 0.9389 0.7087 5.41
VCPA 0.7884 1.4883 0.6573 1.4655 14.66
VISSA 0.9357 1.1162 0.8784 1.1727 11.95
Table 3
Summary of computational intelligence model performance for GI under different effective wavelength selection techniques.
Parameter Processing Variable selection RZ RMSEC R2 RMSEP MAPD (%)
GI SG1D-PLSR CARS 0.9390 0.0253 0.8933 0.0333 2.31
RF 0.9238 0.0287 0.9120 0.0302 2.03
IRIV 0.9122 0.0291 0.9094 0.0301 2.05
VCPA 0.7859 0.0441 0.7794 0.0459 3.15
VISSA 0.9397 0.0246 0.9348 0.0258 1.62
SG1D-SVM CARS 0.9945 0.0093 0.9863 0.0124 0.80
RF 0.9887 0.0123 0.9871 0.0124 0.80
IRIV 0.9958 0.0080 0.9949 0.0074 0.61
VCPA 0.9345 0.0268 0.9150 0.0318 1.65
VISSA 0.9963 0.0077 0.9938 0.0085 0.71
SG1D-GPR CARS 1.0000 0.0000 0.9999 0.0000 1.25x107°
RF 1.0000 0.0000 0.9999 0.0000 1.15x1073
IRIV 1.0000 0.0000 0.9999 0.0000 1.21x107°
VCPA 0.9904 0.0129 0.9897 0.0126 0.90
VISSA 1.0000 0.0000 1.0000 0.0000 1.18x1073
SG1D-ANN CARS 0.9992 0.0029 0.9986 0.0040 0.07
RF 0.9999 0.0007 0.9999 0.0011 0.05
IRIV 0.9999 0.0009 0.9998 0.0013 0.06
VCPA 0.9999 0.0010 0.9999 0.0011 0.05
VISSA 0.9999 0.0009 0.9999 0.0012 0.05
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Fig. 7. The linear relationship between the experimentally obtained value and the predicted value of the best processing sequence for the PLSR model and the overall

best model.

20 iterations were conducted, and they attained the minimum RMSECV
value of 1.6936, 1.1094, and 0.0362, respectively. Figure A6d-f depicts
the bands selected by the VISSA algorithm at final iteration rounds of 25,
24, and 20 for the MC, AE, and GI of glutinous rice, respectively. The
total selected wavelengths were 51, 52, and 47 bands for MC, AE, and
GI, which depict 63.04 %, 62.32 %, and 65.94 % reduction in the full
wavelengths, respectively (Figure A6d-f).

3.7. Comparison of model accuracy

By using the selected best preprocessing method (SG1D),
Table 1-Table 3 summarises the comparison result of the models
developed as a function of selected effective wavelength from different
techniques for MC, AE and GI respectively. The linearity between
experimental data and forecasted data from the best processing
sequence with linear and nonlinear computational models is presented

11

in Fig. 7. In terms of linear computational intelligence (PLSR model), the
SG1D preprocessing combined with CARS for selecting the effective
bands (SG1D-CARS-PLSR) was adjudged as the best sequence for the
determination of MC (Table 1) and AE (Table 2) based on HSI data. For
MC, the model had the highest R2 of 0.9579 and Rg of 0.9501, of with
the lowest values of 1.0035, 1.1467 and 6.13 % for RMSEC, RMSEP and
MAPD, respectively. For the AE, the model had the highest RZ of 0.9391
and Rg of 0.9091, with the lowest values of RMSEC, RMSEP and MAPD
of 0.8338, 0.7808 and 7.58 % respectively. However, SG1D-VISSA-PLSR
had the best prediction performance for the GI as shown in Table 3. The
model had the highest RZ of 0.9397 and R of 0.9348, with the lowest
values of RMSEC, RMSEP and MAPD of 0.0246, 0.0258 and 1.62 %
respectively (Fig. 7). Similar to the findings of this study, Song et al.
(2023) obtained an accuracy of R}% = 0.9643, with RMSEP of 0.0032
with RPD of 5.38 for predicting the moisture content of rice using HSI
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Fig. 8. Glutinous rice quality distribution during the drying process.

coupled with CARS-PLSR. Guo et al. (2023b) determine the MC of soy-
bean seed using a visible near-infrared HSI system and obtain an accu-
racy of R> of 0.9713, RMSEP of 0.307 and RPD of 6.058 using PLSR
model couples with visa-SPA for the effective wavelength selection. Sun
et al. (2019) recorded an accuracy of 0.9363, 0.7021, and 3.99 for R}z,,
RMSEP and RPD, respectively, in predicting peanut moisture using HSI
combined with SPA-PLSR model. Zhang et al. (2023a) determined the
MC of wheat flour using near-infrared HSI (969-2173 nm). The devel-
oped VCPA-PLSR model attained an accuracy of 0.6960, 0.3362, and
2.1.83 for R2, RMSEP and RPD respectively. Whereas the IRIV-PLSR
gave an accuracy of 0.8146, 0.2625 and 2.34 for R%, RMSEP and RPD
respectively.

In nonlinear computational intelligence model (ANN, GPR, and
SVM), the SG1D-IRIV-GPR had the overall best performance in MC
prediction. The model had the highest accuracy index (RZ of 1.0000 and
Rg 0f 0.9999,) with the lowest error index (RMSEC, RMSEP and MAPD of
0.00056, 0.00057 and 0.0029 % respectively). For the AE, The SG1D-
VCPA- GPR had the best prediction performance. The model had the
highest accuracy RZ of 1.0000 and Rg of 0.9999, with the lowest values
of RMSEC, RMSEP and MAPD of 0.00037, 0.00033 and 0.0031 %,
respectively. The SG1D-VISSA-GPR had the overall best performance for
the prediction of the GI. The model had the highest accuracy index (R%
of 1.0000 and Rg of 1.0000) with the lowest residual index where the
RMSEC, RMSEP and MAPD are 0.000019, 0.000016 and 0.0012 %,
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respectively (Fig. 7).

3.8. Spatial visualization of the grain quality

The reliability and accuracy of the developed HSI-based model can
be conveyed by plotting the distribution maps for the targeted properties
using the HSI data. In cases where the interpretation of the distribution
map and its consequences are incorrectly represented, the developed
model is considered inaccurate. Consequently, the deployment of the
models is not advisable and recalibration of the model is essential
(Ahmed et al., 2024). Therefore, the distribution map of the glutinous
rice quality offers additional information in affirming the accuracy of
the prediction model. Fig. 8 shows the progression in the MC, AE, and GI
during the drying process under different temperatures for 15 mm
thickness. The figure reconstructs the properties obtained from best
predictive model as a function of the selected effective wavelength.
Therefore, the resulting map effectively represents the distribution of
MC, AE, and GI of glutinous rice during the drying process. Fig. 8a-c
presents the relative distribution of MC, AE, and GI, respectively, with a
linear colour scale for mapping each quality and ensures that similar
predicted values were assigned with comparable colour properties. The
grain quality distribution map does not only depict the quality distri-
bution at pixel level but also presents the potential of HSI in visualizing
the pixel-wise quality of glutinous rice which might be difficult to
distinguish by unaided human eye. Consequently, the development of a
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visual map for the spatial distribution of the grain quality parameters is
essential in the application of HSI for monitoring the drying process of
grain.

4. Conclusion

This study evaluates the use of a visible-near infrared HSI system for
monitoring the drying process of glutinous rice. The MC, AE, and GI of
the glutinous rice were predicted by harnessing the functionality of the
HSI system when coupled with different preprocessing methods and
effective wavelength selection techniques. The spectral data was pre-
processed using four different methods (MWS, SNV, MSC, and SG1D),
and the raw spectra were used as the reference point for comparison.
CARS, RF, IRIV, VCPA, and VISSA algorithms were used to select
effective wavelengths. PLSR, ANN, SVM, and GPR were developed for
the prediction of MC, AE, and GI of the glutinous rice. The result shows
that the SG1D technique is the most effective method for spectral pre-
processing because of its higher accuracy in predicting the MC, AE, and
GI of glutinous rice (0.9564 < R2 <0.9741, 0.0177 < RMSEP < 0.8242
and 1.28 < MAPD < 5.90 for PLSR model). By using the PLSR model,
the CARS-SG1D-PLSR gave the best performance for the MC and AE of
glutinous rice. The model has a higher Rg of 0.9501, RMSEP of 1.1467
and MAPD of 6.13 % for MC, with le of 0.9091, RMSEP of 0.7808, and
MAPD of 7.58 % for AE. VISSA-SG1D-PLSR model gave the best result
for the determination of GI with Rg of 0.9348, RMSEP of 0.0258, and
MAPD of 1.62 %. The comparison of all the models shows that the SG1D-
IRIV-GPR, SGID-VCPA-GPR, and SGID-VISSA-GPR are the overall best
models for perfect prediction (R}% >99.99 %) of the MC, AE and GI
during the drying process. Therefore, processing sequences and models
were recommended as a basis for developing intelligent devices for rapid
detection, monitoring, and controlling the drying process of glutinous
rice in the grain processing industry.
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