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Importance of the work: The advancement of hyperspectral remote sensing technology has
facilitated the examination of its potential for categorizing frogeye leaf spot (FLS) severity
in soybean. No study has yet investigated the Orange mining tool as a visual programming
approach to analyze hyperspectral reflectance data, especially in crop disease detection.
Objectives: To classify the severity level of FLS disease in soybean using hyperspectral
reflectance data and machine learning algorithms.

Materials and Methods: Hyperspectral reflectance data were used from healthy and

FLS-affected soybeans. Initially, the data were smoothed by applying the Savitzky-Golay
filtering technique to remove spectrum noise. The ReliefF feature selection technique was
used to determine the most influential wavelengths for the classification of FLS disease
severity in soybean. Next, machine learning methods (decision tree, gradient boosting,
random forest, stacking and neural network) were used to classify FLS severity in soybean.
The performance was evaluated using overall accuracy, F1, precision and the curve metric
receiver-operating characteristic. All these steps were conducted using the Orange data
mining software.

Results: Neural network scored the highest overall accuracy (98.6%) after conducting
the filtering technique. Furthermore, the ReliefF-gradient boosting and the random forest

algorithms achieved promising overall levels of accuracy (97.4% and 96.9%, respectively)
after implementing the filtering and feature selection techniques.

Main finding: The integration of the workflow and the specially designed spectroscopic
widget in the Orange data mining software made it possible to process the hyperspectral
reflectance data and to determine the severity level of the disease on the affected crop samples.
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Introduction

Soybean is the second largest cop producing primarily
edible oils and a major source of proteins (Dreoni et al., 2022).
Globally, the majority of soybeans are fed to pigs (Parrini,2023).
The global total soybean production in 2021 was 367.76 million
tons with the forecast that soybean production would decline by
4.63% or 17.04 million tons in the near future (Tetrault, 2023).
However, the seed and the quality of soybean can be damaged
by pathogenic microorganisms. Frogeye leaf spot (FLS) is
a soybean foliar disease caused by the fungus Cercospora
sojina Hara (CSH), which can lead to reduced photosynthetic
leaf area, premature defoliation and reduced seed weight,
resulting in yield losses of 31-60% (Phillips et al., 2021,
Barro et al., 2023). FLS lesions can affect the leaves, pods and
stems at any stage of plant development (Kim et al., 2013).
The lesions start as small, dark spots that turn tan-to-brown in
color, with a narrow, purple-brown border margin (Borah &
Deb, 2022). Thus, it is critical to identify the spread of FLS
disease and to effectively combat it with proper strategies to
achieve more sustainable production.

Currently, the identification of the disease in its early
stages of infestation is based on visual assessment to prompt
a response action, since the disease can present in any stage.
This involves assessing aspects such as the size of the lesion
area, the color patterns, the distribution and shape of the leaves,
the number of stems and branches and the density of the plants
(Vishnoi et al., 2021). Performing uniform planting inspections
can be challenging when cultivating large areas, as it requires
more human resources. However, this technique is prone to
bias and can be manipulated by the observations of experts
due to randomness (Xie et al., 2015). Therefore, an accurate,
effective and non-destructive technology is required to assess
the severity of FLS disease on soybean.

With the advancement of remote sensing, hyperspectral
remote sensing has potential for use in classifying the severity
of soybean disease. Hyperspectral data encompass many
channels or bands with narrow bandwidths that have the ability
to identify subtle abnormalities of crops (Lu et al., 2020).
Frequently, hyperspectral techniques are utilized to identify
the biophysical properties of crops, such as nutrient deficiency,
moisture content, chlorophyll level and cell structure (Berger
et al., 2020; Bruning et al., 2020). Most studies have proved
the effectiveness and the efficiency of hyperspectral techniques
in classifying crop disease severity, such as late blight
with tomato (Zhang et al., 2003), Ganoderma with oil palm

(Lelong et al., 2010) and powdery mildew disease with wheat
(Khan et al., 2021).

Rapid development of an automation system for classifying
a diseased crop is a progressing area in precision agriculture.
Machine learning (ML) methods have been used to build
an accurate classification model using hyperspectral reflectance
data for disease detection such as support vector machine,
random forest (RF) and artificial neural network. In fact,
hyperspectral data contain redundant, extra and highly
correlated wavelengths that may increase the burden of
computation. Therefore, data dimensionality reduction and
feature selection are required, which transform and reduce the
wavelengths and eventually optimize the detection accuracy.
Various methods have been used effectively to reduce the
dimensionality of hyperspectral data, including principal
component analysis (PCA; Liu et al., 2010), recursive feature
elimination (Wei et al., 2021) and the successive projection
algorithm (SPA; Al-Saddik et al., 2019). Wei et al. (2021)
tested several feature selections methods and ML classifiers to
identify diseased peanut infected with Athelia rolfsii. Based on
their results, they reported that recursive feature elimination
with random forest and support vector machine outperformed
the chi-square and select from model approach, with both
implemented using random forest and support vector machine
procedures. Navrozidis et al. (2023) conducted a study on the
use of the feature selection technique and ML algorithms for
the detection of disease in olive trees using hyperspectral data.
Basedon their results, recursive feature elimination and mutual
information were effective in optimizing the classification
accuracy. The RF and XGBoost algorithms achieved optimal
performance, with a reduced number of hyperspectral features,
resulting in a relative operating characteristic-area under the
curve score of 1.00 in both cases.

Orange is an open-source tool for the analysis of data along
using non-linear relationships, which can be implemented using
ML and DM mining technique with a visual programming
approach (Demsar et al., 2013). The advantage of using Orange
is that it can perform ML without requiring any coding effort in
the programming. Currently, no published studies have utilized
this tool for the analysis of hyperspectral reflectance data,
especially in crop disease detection. Therefore, the current
study utilized the Orange software to classify the severity of
FLS disease. This study was the first to use such a platform
to perform hyperspectral analysis involving pre-processing,
feature selection and the classification approach in the Orange
toolbox. Therefore, the main objectives of this study were:
(1) to classify the severity level of FLS disease, based on
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severity classes in soybean using hyperspectral reflectance and
machine learning algorithms; (2) to apply a feature selection
technique to estimate the severity level of FLS disease; and
(3) to evaluate the performance of the ML model in the FLS
disease severity classification.

Materials and Methods
Data acquisition

The leaf hyperspectral reflectance data were collected by
a group of researchers from the University of China and their
work has been appropriately cited (Liu et al., 2021). The leaf
hyperspectral reflectance data were acquired using a FieldSpec®
HandHeld 2 spectrometer (Analytical Spectral Devices, Inc.;
CO, USA). Having 512 hyperspectral bands, the hyperspectral
region covered the wavelength range 325-1075 nm, with
a resolution of 3 nm. There were 440 samples collected
(340 diseased leaves and 100 healthy leaves). In the current
study, the disease severity assessment was categorized into four
distinct classes based on the percentage of leaf area affected by
FLS symptoms, in accordance with the technical specifications
for evaluating soybean frogeye leaf spot. Class 1 represented
early, mild symptoms (0—1% of the leaf area affected), while
Class 2 indicated a moderate level of disease progression (1-3%
of the leaf area affected). Class 3 signified a substantial spread of
the disease (3-6% of the leaf area affected). Class 4 comprised
a higher percentage of lesions (6—20% of the leaf area affected).
Additionally, leaves with no visible symptoms were classified as
Class 0, representing healthy, unaffected plants.

Pre-processing
The wavelengths with noise were removed using ‘cut

(remove)’ in a spectral pre-processing widget (Fig. 1).
As a result, the wavelengths were reduced from 981 nm to 1001 nm,
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Fig.1 Workflow of pre-processing used

with the remaining wavelengths in the range 450-980 nm, with
a total of 531 hyperspectral bands. The Savitzky-Golay filter
was used as a pre-processing technique before wavelength
selection to smooth the original data and eliminate any
parts of the spectrum containing noise (Sun et al., 2021).
The configuration settings, such as length of the window and
the order of polynomial interpolation, were set based on the
formation of first and second derivatives. The selection of the
length of the window and the order of polynomial interpolation
were determined based on an experimental trial to optimize the
noise reduction while minimizing the distortion of the spectral
characteristics. For the first derivative, the window length and
order of polynomial interpolation were 31 and 2, respectively,
while in the second derivative, the window length and order of
polynomial interpolation were 51 and 3, respectively.

Processing

Implementing feature selection technique

In this study, the ReliefF algorithm was used as a feature
selection technique to select the important wavelengths and
eliminate the wavelengths that were not relevant. The ReliefF
algorithm applies a filter approach that calculates a proxy statistic
for each feature, which can be used to estimate feature weights or
feature ‘relevance’ to determining the endpoint value (Urbanowicz
et al., 2018). ReliefF depends on a ‘number of neighbors’ user
parameter k that specifies the use of the K nearest hits and the k
nearest misses in the scoring updates for each target instance.

ReliefF determines the k nearest misses from each ‘other’ class,
and averages the weight update based on the prior probability of
each class in every iteration. As a result, the weight estimation
accuracy is improved, especially when dealing with noisy data.

Model training

Before starting the training process, it was necessary
to conduct the ReliefF technique to select the important
wavelengths. ML models were trained in this study using
cross-validation, which was used as a resampling strategy.
The original data were first split into K folds, referring to the
number of groups into which a particular data sample was to be
divided. Then, the portion of k-1 (k minus 1) folds was included
into the model for training, while the remaining Kth fold
was assigned automatically for validation. The k-fold value
was 10 in this study. The trial-and-error approach was used
to optimize the parameters of the ML algorithms during the
training process, which contributed to achieving the highest level
of accuracy.
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Modeling methods

Several ML algorithms were applied to classify the severity
of FLS disease in soybean. Decision tree, random forest,
stacking, gradient boosting and neural network algorithms
were chosen, since they have been used widely in hyperspectral
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reflectance analysis for crop disease detection (Lowe et al.,
2017; Huang et al., 2022; Mustafa et al., 2022). Each of the
ML algorithms was run using the spectroscopy widget in the
Orange software. The workflows of the ML algorithms used for
this study are presented in Figs. 2 and 3.
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Decision tree

A decision tree is a tree-like classifier where internal
nodes represent dataset features, branches represent decision
rules and leaf nodes represent outcomes (Myles et al., 2004).
The tree-based model generates all possible solutions based
on conditional criteria. The algorithm starts at the root node,
compares the record’s attribute values to the root node and
then follows the corresponding branch to the next node. This
process repeats, comparing attribute values at each node, until
a leaf node is reached. Based on a trial-and-error approach, the
parameters for the minimum sample leaf, the minimum number
of samples required in a subset and the maximum tree depth
were set to 2, 5 and 100, respectively. The parameter values of
the algorithm used in this study are shown in Table 1.

Table 1 Parameter values of decision tree algorithm used in this study

Parameter Value
Minimum sample leaf 1,2,5,10
Minimum number of samples required in a subset 2,5,10,20
Maximum tree depth 3,5,10,50, 100
Stop when majority reaches [%] 95

Stacking

A stacking technique involves training heterogeneous base
learners in parallel, using different ML models. By training a
meta-learner based on the predictions of varied base learners,
heterogeneous base-learners are aggregated into a prediction
by combining the output from each individual base learner.
Prediction accuracy is improved by combining the input
predictions made by the base-learners with the output generated
by the training dataset (Zenko et al., 2001). In this study, Naive
Bayes, k-nearest neighbor and support vector machine were
used as base learners, whereas logistic regression was regarded
as a meta-learner.

Random forest

The random forest approach contains multiple trees that
are combined and decision trees that are assembled through
a process called ‘bagging’ in order to generate a final model
(Belgiu and Dragu, 2016). Bootstrapping is used in this
method to select ‘k” samples by chance from the original
dataset. These samples are used to construct decision trees and
generate an output. The final output is generated by averaging
the predictions of each decision tree. The parameters of the
model were adjusted accordingly based on a trial-and-error
approach. Parameters, such as number of trees, number of
attributes considered at each split and the minimum number of
samples required in a subset were set to 3, 5 and 5, respectively.

The parameter values of this algorithm set in this study are
indicated in Table 2.

Table 2 Parameter values of random forest used in this study

Parameter Value
Number of trees 3,5,20,50, 100
Number of attributes considered at each split 5,10, 15,20
Minimum number of samples required in a subset 2,5,7,10

Gradient boosting

Gradient boosting is a popular ensemble algorithm that
fits boosted decision trees by minimizing the gross prediction
error (Natekin and Knoll, 2013). A bunch of decision models
was first added and constructed and fitted to correct the
prediction errors made by prior models through a series of
weight updates. In this algorithm, an additive model is built in
a forward stage-wise fashion to optimize any differentiable loss
function. Parameters such as the number of trees, maximum
tree depth, minimum number of samples required in a subset
and the fraction of training instances, were set to 100, 3, 2
and 1, respectively, after conducting a trial-and-error process.
The learning rate was set to 0.1. The parameter values of
this algorithm used for this study are shown in Table 3.

Table 3 Parameter values of gradient boosting used for this study

Parameter Value
Number of trees 3,5,20,50,100
Learning rate 0.01,0.1,0.3
Maximum tree depth 3,5,20,50, 100
Minimum number of samples required in a subset 2,5,10,20
Fraction of training instances 0.2,0.4,0.6,1.0

Neural network

A neural network is composed of an input layer, hidden
layers and output layers. The input layer receives data from
the user and applies transformations to the input data in
the hidden layers using activation functions and weights. Lastly,
the output layer produces the final classification prediction
for the given inputs. The input data are transferred from
the input layer to the hidden layer to train the network.
Hidden layers are assigned to enable the network to apply
transformations to the data and process intermediate
representations. A loss function is minimized through
backpropagation, which iteratively adjusts and updates the
weights and biases during the training process (Szandata,
2021). The neural network can make predictions by
passing the data to the output layer through the network,
leveraging the learned neuron connections and weights in
the hidden layers. The activation function and solver used in
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this study were Relu and Adam, respectively. The Relu function
introduces non-linearity into the network by preserving
positive input values and setting negative values to 0, which
facilitates efficient learning of complex patterns and prevents
the vanishing gradient problem (Dubey et al., 2022). After
a process of trial and error, the neural network was configured
with three hidden layers, containing 100, 50 and 30 neurons in
each respective layer. The maximum number of iterations was
set to 200. The parameter values of the neural network used in
this study are indicated in Table 4.

Table 4 Parameter values of neural network used in this study

Parameter Value
Hidden layer 3

Neuron in hidden layers 100,50,30
Maximal number of iterations 50, 100, 200, 300
Activation Relu

Solver Adam

Model evaluation

The model performance was assessed and evaluated for
each of the classifiers used in the prediction set based the
testing data. The overall accuracy was calculated from the
confusion matrix by adding the number of correctly classified
classes and dividing it by the total number of the severity
of soybean FLS. Other evaluation metrics, such as F1 and
precision, were also used in the model evaluation. The relative
operating characteristic (ROC) measure was used to quantify
the prediction accuracy of the predictive model, being based
on the trade-off between the true positive rate and the false
positive rate when a probability threshold is used.

Results and Discussion

Spectral reflectance for raw and derivative transformation of

frogeye leaf spot disease on soybean

The spectral reflectance profile of FLS severity (classes
0, 1, 2, 3 and 4) is indicated in Fig. 4. Generally, the spectral
profile had lower reflectance in the visible region with a small
peak in the green region, followed by a sudden increase starting
at 690 nm and reaching a peak in the near infrared (NIR)
region. A comparison of profiles indicated there were larger
differences in reflectance between each severity FLS class at
some wavelengths compared to others.

Despite the fact that the reflectance of different severity
classes of soybeans was very similar in the visible spectrum
(607—-690 nm), healthy soybeans had the lowest reflectance
in the red region (620—700 nm), due to energy absorption by
chlorophyll pigments from active photosynthetic activity.
The increase in reflectance observed in the red region for
diseased leaves was caused by the breakdown of chlorophyll
pigments as a result of the changes in the concentration
of anthocyanins, carotenoids, anthocyanins and the
photoprotective role of xanthophyll pigments (Devadas
et al., 2009). The spectra of FLS with different severity
classes varied in the infrared region (750-998 nm). In the
750-984 nm range, healthy soybean (class 0) had the highest
reflectance compared to the others (Fig. 4), followed by classes
1, 2 and 3 of soybeans FLS severity. Class 4 of FLS severity,
which was the worst, had the lowest reflectance.
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Fig.4 Original spectral reflectance of soybean frogeye leaf spot severity, where legend indicates severity class
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The first derivative equation is essential for plant disease
detection with a fixed position of the lesion density (Gregory,
1968). As the number of disease symptoms rises, the spectrum
become more intricate and complicated. Variations in the
collected spectrum are attributable to various stages of disease
severity when plants in a particular location are infected.
Therefore, the first derivative can eliminate both additive
and multiplicative spectrum effects (Tsai and Philpot, 1998).
Generally, the spectral reflectance had a modest reflectance
peak at 515 nm and a large first derivative reflectance peak
in the red-edge region (679-714 nm). Healthy soybean
(Fig. 5) with class 0 had the highest peak (717.87 nm) in the

red-edge region. A red-edge region in crop spectra (in the range
650-800 nm) indicates the structure of the plant’s cell, with
conformational changes affecting the shape of the red-edge
region. Furthermore, chlorophyll emits fluorescence within the
range of the red-edge, indicating the chemical structure and
chlorophyll content of a crop as an indicator of its biophysical
properties (Zarco-Tejada et al., 2000). The spectral reflectance
of the second derivative (Fig. 6) of FLS disease severity
contained two distinct “windows” at 685 nm and 732 nm. Due
to their insensitivity to the soil background, the first and second
derivatives are generally useful indicators in estimating crop
disease (Sankaran et al., 2011).
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Classification of soybean frogeye leaf spot disease severity
using mathematical learning model

The accuracy of the ML algorithms utilized in the
classification of FLS disease severity is shown in Table 5.
The neural network had the highest accuracy (98.6%), F1
(98.6%) and precision (98.5%) using the full first derivative
data. This was followed by gradient boosting that had an overall
accuracy of 97.4% and precision of 97.3% using the first derivative
data with feature selection. Random forest achieved 96.9% and
91.9% accuracy, respectively, for first and second derivatives
with feature selection of spectral reflectance, increasing from
88.9% and 85.2% for the full first and second derivatives of
spectral reflectance, respectively. For selected first and second
and second derivatives of spectral reflectance, the stacking
algorithm improved to 94.9% and 88.7%, respectively, from the
full first and second derivatives of spectral reflectance of 91.1%
and 88.6%, respectively. Despite being subjected to feature
selection techniques, the decision tree had the lowest accuracy
levels of 77.6% and 73.5% for the selected first and second
derivatives of spectral reflectance, respectively.

A neural network has the ability to interpret the relationships
between wavelengths without the implementation of feature
selection because of some configurations in the layers (Ahmad
et al., 2019). Because of the network architecture and specific
components within it, the network learns to extract and understand
the features that represent the relationships and dependencies
between wavelengths, which are crucial for accurate classification.
By removing certain useful wavelengths through feature selection,
the interdependencies between the remaining features may be
disrupted, causing the model’s performance to deteriorate. Based
on the current findings, using the ReliefF algorithm as a feature
selection increased the overall accuracy level for the majority
of the ML algorithms, because the ReliefF algorithm could
effectively select the major wavelengths for soybean FLS disease
severity classification, reducing the number of wavelengths
in the models and generating higher classification accuracy.
The current findings were consistent with Meng et al. (2020),
who demonstrated that ReliefF algorithms, such as feature selection,
could identify wavelengths with high discriminative strength in
the green, red-edge, NIR and shortwave infrared regions when
assessing Southern Corn Rust-infected leaves of varying severity
levels. In addition, the results showed that the ML algorithm
using feature selection for the second derivative did not improve
accuracy, because the second derivative contained noise (Antonov
and Stoyanov, 1996) and the threshold for the ReliefF technique
resulted in a loss of information. Therefore, the threshold for
ReliefF should be further adjusted to determine the accuracy.

Table 5 Accuracy of mathematical learning algorithms in soybean frogeye leaf spot disease severity classification

Second derivative (%)

First derivative (%)
(Savitzky-Golay) +

First derivative (%) Second derivative (%)
(Savitzky-Golay) (full)

(Savitzky-Golay) (full)

Raw data (%)

Classifier

(Savitzky-Golay) +

Feature selection
(ReliefF algorithm)

Feature selection
(ReliefF algorithm)

Fl1 precision

73.2

Accuracy

F1 precision

Accuracy

Fl1 precision

Accuracy

F1 precision

Accuracy

F1 Precision

70.3

Accuracy

73.3

75.2 75.4 75.1 74.3 74.2 74.0 77.6 77.4 77.5 73.5

71.2

71.3

Decision tree

91.5 91.7

91.9

96.4 96.9

96.9

80.5 80.6 88.9 88.5 88.1 85.2 85.1 85.2

80.6

Random forest

86.0 86.0

86.0

86.7 86.7

86.7

84.9 85.1 98.6 98.6 98.5 93.6 93.6 93.6

85.0

Neural network

88.6 88.6

88.7

94.7 94.8

94.9

88.6 88.4

88.6

91.2 91.0

91.1

79.1

79.2

9.5

7

Stacking (KNN + Naive +
svm as base learner;

logistic as meta-)

81.9 82.1 91.1 91.0 91.1 89.8 89.8 89.7 97.4 97.2 97.3 95.5 95.5 95.4

82.0

Gradient boosting
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(0, 1, 2, 3 and 4) of FLS. Overall, the metric area under the
curve had an acceptable range in the ROC analysis, indicating
that the model was effective at distinguishing the FLS severity

Fig. 7 shows the ROC curve for the neural network model
that had the highest accuracy in classifying the severity of FLS
disease. This analysis has provided insight into the accuracy
of model classification of the various severity classifications  classes on soybean.
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Fig.7 Best relative operating characteristic from neural network model for soybean frogeye leaf spot disease severity classification: (A) class 0;

(B) class 1; (C) class 2; (D) class 3; (E) class 4
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Conclusion

The neural network was the optimal model, achieving
98.6% accuracy in the classification of FLS disease severity on
soybean, utilizing the full first derivative data. In addition, the
ReliefF-gradient boosting and random forest algorithms had
promising levels of accuracy (97.4% and 96.9%, respectively)
in classifying the severity of soybean FLS disease. Future
enhancements will explore various feature selection
strategies to assess hyperspectral reflectance for crop disease
classification. In addition, different pre-processing techniques
will be evaluated to ensure that spectrum noise is effectively
removed. Furthermore, more advanced ML algorithms may
be designed and implemented for hyperspectral reflectance
analysis. The Orange software, with its spectroscopic widget,
provides extra capabilities such as extensive hyperspectral
pre-processing (Savitzky-Golay) and the implementation of
advanced ML algorithms. Therefore, there needs to be further
study of the capability of this software as a visual programming
platform for assessing hyperspectral reflectance, to ensure its
practicability and use. The findings of the current study should
facilitate the rapid deployment of processes, including model
development, for assessing crop disease severity levels using
hyperspectral reflectance data.
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