
Agr. Nat. Resour. 59 (2025) 590201

Research article

Exploring frogeye leaf spot disease severity in soybean based on 
hyperspectral data analysis and machine learning with Orange data 
mining
Yuhao Anga, Helmi Zulhaidi Mohd Shafrib,*, Mohammed Mustafa Al-Habshib

a	 Faculty of Sustainable Agriculture, Universiti Malaysia Sabah Sandakan Campus, Locked Bag No. 3, 90509 Sandakan, Sabah, Malaysia
b	 Department of Civil Engineering and Geospatial Information Science Research Centre (GISRC), Faculty of Engineering, 

Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

*	Corresponding author.
	 E-mail address: helmi@upm.edu.my/hzms2312@gmail.com (H.Z.M. Shafri)

	 online 2452-316X print 2468-1458/Copyright © 2025. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/),  
	 production and hosting by Kasetsart University Research and Development Institute on behalf of Kasetsart University.

	 https://doi.org/10.34044/j.anres.2025.59.2.01

AGRICULTURE AND
NATURAL RESOURCES

Journal homepage: http://anres.kasetsart.org 

Article history:
Received 14 May 2024
Revised 19 August 2024
Accepted 24 December 2024
Available online 28 April 2025

Keywords:
Feature selection,
Hyperspectral remote sensing,
Machine learning,
Orange data mining software

AbstractArticle Info

Importance of the work: The advancement of hyperspectral remote sensing technology has 
facilitated the examination of its potential for categorizing frogeye leaf spot (FLS) severity 
in soybean. No study has yet investigated the Orange mining tool as a visual programming 
approach to analyze hyperspectral reflectance data, especially in crop disease detection. 
Objectives: To classify the severity level of FLS disease in soybean using hyperspectral 
reflectance data and machine learning algorithms. 
Materials and Methods: Hyperspectral reflectance data were used from healthy and 
FLS-affected soybeans. Initially, the data were smoothed by applying the Savitzky-Golay 
filtering technique to remove spectrum noise. The ReliefF feature selection technique was 
used to determine the most influential wavelengths for the classification of FLS disease 
severity in soybean. Next, machine learning methods (decision tree, gradient boosting, 
random forest, stacking and neural network) were used to classify FLS severity in soybean. 
The performance was evaluated using overall accuracy, F1, precision and the curve metric 
receiver-operating characteristic. All these steps were conducted using the Orange data 
mining software.
Results: Neural network scored the highest overall accuracy (98.6%) after conducting 
the filtering technique. Furthermore, the ReliefF-gradient boosting and the random forest 
algorithms achieved promising overall levels of accuracy (97.4% and 96.9%, respectively) 
after implementing the filtering and feature selection techniques.
Main finding: The integration of the workflow and the specially designed spectroscopic 
widget in the Orange data mining software made it possible to process the hyperspectral 
reflectance data and to determine the severity level of the disease on the affected crop samples.
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Introduction 

	 Soybean is the second largest cop producing primarily 
edible oils and a major source of proteins (Dreoni et al., 2022). 
Globally, the majority of soybeans are fed to pigs (Parrini,2023). 
The global total soybean production in 2021 was 367.76 million 
tons with the forecast that soybean production would decline by 
4.63% or 17.04 million tons in the near future (Tetrault, 2023). 
However, the seed and the quality of soybean can be damaged 
by pathogenic microorganisms. Frogeye leaf spot (FLS) is  
a soybean foliar disease caused by the fungus Cercospora 
sojina Hara (CSH), which can lead to reduced photosynthetic 
leaf area, premature defoliation and reduced seed weight, 
resulting in yield losses of 31–60% (Phillips et al., 2021,  
Barro et al., 2023). FLS lesions can affect the leaves, pods and 
stems at any stage of plant development (Kim et al., 2013).  
The lesions start as small, dark spots that turn tan-to-brown in 
color, with a narrow, purple-brown border margin (Borah & 
Deb, 2022).  Thus, it is critical to identify the spread of FLS 
disease and to effectively combat it with proper strategies to 
achieve more sustainable production.
	 Currently, the identification of the disease in its early 
stages of infestation is based on visual assessment to prompt  
a response action, since the disease can present in any stage. 
This involves assessing aspects such as the size of the lesion 
area, the color patterns, the distribution and shape of the leaves, 
the number of stems and branches and the density of the plants 
(Vishnoi et al., 2021). Performing uniform planting inspections 
can be challenging when cultivating large areas, as it requires 
more human resources. However, this technique is prone to 
bias and can be manipulated by the observations of experts 
due to randomness (Xie et al., 2015). Therefore, an accurate, 
effective and non-destructive technology is required to assess 
the severity of FLS disease on soybean.
	 With the advancement of remote sensing, hyperspectral 
remote sensing has potential for use in classifying the severity 
of soybean disease. Hyperspectral data encompass many 
channels or bands with narrow bandwidths that have the ability 
to identify subtle abnormalities of crops (Lu et al., 2020). 
Frequently, hyperspectral techniques are utilized to identify 
the biophysical properties of crops, such as nutrient deficiency, 
moisture content, chlorophyll level and cell structure (Berger 
et al., 2020; Bruning et al., 2020). Most studies have proved 
the effectiveness and the efficiency of hyperspectral techniques 
in classifying crop disease severity, such as late blight  
with tomato (Zhang et al., 2003), Ganoderma with oil palm 

(Lelong et al., 2010) and powdery mildew disease with wheat 
(Khan et al., 2021).
	 Rapid development of an automation system for classifying 
a diseased crop is a progressing area in precision agriculture. 
Machine learning (ML) methods have been used to build  
an accurate classification model using hyperspectral reflectance 
data for disease detection such as support vector machine, 
random forest (RF) and artificial neural network. In fact, 
hyperspectral data contain redundant, extra and highly 
correlated wavelengths that may increase the burden of 
computation. Therefore, data dimensionality reduction and 
feature selection are required, which transform and reduce the 
wavelengths and eventually optimize the detection accuracy. 
Various methods have been used effectively to reduce the 
dimensionality of hyperspectral data, including principal 
component analysis (PCA; Liu et al., 2010), recursive feature 
elimination (Wei et al., 2021) and the successive projection 
algorithm (SPA; Al-Saddik et al., 2019). Wei et al. (2021) 
tested several feature selections methods and ML classifiers to 
identify diseased peanut infected with Athelia rolfsii. Based on 
their results, they reported that recursive feature elimination 
with random forest and support vector machine outperformed 
the chi-square and select from model approach, with both 
implemented using random forest and support vector machine 
procedures. Navrozidis et al. (2023) conducted a study on the 
use of the feature selection technique and ML algorithms for 
the detection of disease in olive trees using hyperspectral data. 
Basedon their results, recursive feature elimination and mutual 
information were effective in optimizing the classification 
accuracy. The RF and XGBoost algorithms achieved optimal 
performance, with a reduced number of hyperspectral features, 
resulting in a relative operating characteristic-area under the 
curve score of 1.00 in both cases.
	 Orange is an open-source tool for the analysis of data along 
using non-linear relationships, which can be implemented using 
ML and DM mining technique with a visual programming 
approach (Demšar et al., 2013). The advantage of using Orange 
is that it can perform ML without requiring any coding effort in 
the programming. Currently, no published studies have utilized 
this tool for the analysis of hyperspectral reflectance data, 
especially in crop disease detection. Therefore, the current 
study utilized the Orange software to classify the severity of 
FLS disease. This study was the first to use such a platform 
to perform hyperspectral analysis involving pre-processing, 
feature selection and the classification approach in the Orange 
toolbox. Therefore, the main objectives of this study were:  
(1) to classify the severity level of FLS disease, based on 
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severity classes in soybean using hyperspectral reflectance and 
machine learning algorithms; (2) to apply a feature selection 
technique to estimate the severity level of FLS disease; and 
(3) to evaluate the performance of the ML model in the FLS 
disease severity classification.

 
Materials and Methods

Data acquisition

	 The leaf hyperspectral reflectance data were collected by 
a group of researchers from the University of China and their 
work has been appropriately cited (Liu et al., 2021). The leaf 
hyperspectral reflectance data were acquired using a FieldSpec® 
HandHeld 2 spectrometer (Analytical Spectral Devices, Inc.; 
CO, USA). Having 512 hyperspectral bands, the hyperspectral 
region covered the wavelength range 325–1075 nm, with  
a resolution of 3 nm. There were 440 samples collected  
(340 diseased leaves and 100 healthy leaves). In the current 
study, the disease severity assessment was categorized into four 
distinct classes based on the percentage of leaf area affected by 
FLS symptoms, in accordance with the technical specifications 
for evaluating soybean frogeye leaf spot. Class 1 represented 
early, mild symptoms (0−1% of the leaf area affected), while 
Class 2 indicated a moderate level of disease progression (1−3% 
of the leaf area affected). Class 3 signified a substantial spread of 
the disease (3-6% of the leaf area affected). Class 4 comprised 
a higher percentage of lesions (6−20% of the leaf area affected). 
Additionally, leaves with no visible symptoms were classified as 
Class 0, representing healthy, unaffected plants.

Pre-processing

	 The wavelengths with noise were removed using ‘cut 
(remove)’ in a spectral pre-processing widget (Fig. 1).  
As a result, the wavelengths were reduced from 981 nm to 1001 nm,  

with the remaining wavelengths in the range 450–980 nm, with 
a total of 531 hyperspectral bands. The Savitzky-Golay filter 
was used as a pre-processing technique before wavelength 
selection to smooth the original data and eliminate any 
parts of the spectrum containing noise (Sun et al., 2021).  
The configuration settings, such as length of the window and 
the order of polynomial interpolation, were set based on the 
formation of first and second derivatives. The selection of the 
length of the window and the order of polynomial interpolation 
were determined based on an experimental trial to optimize the 
noise reduction while minimizing the distortion of the spectral 
characteristics. For the first derivative, the window length and 
order of polynomial interpolation were 31 and 2, respectively, 
while in the second derivative, the window length and order of 
polynomial interpolation were 51 and 3, respectively.

Processing

	 Implementing feature selection technique
	 In this study, the ReliefF algorithm was used as a feature 
selection technique to select the important wavelengths and 
eliminate the wavelengths that were not relevant. The ReliefF 
algorithm applies a filter approach that calculates a proxy statistic 
for each feature, which can be used to estimate feature weights or 
feature ‘relevance’ to determining the endpoint value (Urbanowicz 
et al., 2018). ReliefF depends on a ‘number of neighbors’ user 
parameter k that specifies the use of the K nearest hits and the k 
nearest misses in the scoring updates for each target instance.
	 ReliefF determines the k nearest misses from each ‘other’ class, 
and averages the weight update based on the prior probability of 
each class in every iteration. As a result, the weight estimation 
accuracy is improved, especially when dealing with noisy data.

	 Model training
	 Before starting the training process, it was necessary 
to conduct the ReliefF technique to select the important 
wavelengths. ML models were trained in this study using 
cross-validation, which was used as a resampling strategy.  
The original data were first split into K folds, referring to the 
number of groups into which a particular data sample was to be 
divided. Then, the portion of k-1 (k minus 1) folds was included 
into the model for training, while the remaining Kth fold  
was assigned automatically for validation. The k-fold value 
was 10 in this study. The trial-and-error approach was used 
to optimize the parameters of the ML algorithms during the 
training process, which contributed to achieving the highest level  
of accuracy.  Fig.1	 Workflow of pre-processing used
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	 Modeling methods
	 Several ML algorithms were applied to classify the severity 
of FLS disease in soybean. Decision tree, random forest, 
stacking, gradient boosting and neural network algorithms 
were chosen, since they have been used widely in hyperspectral 

reflectance analysis for crop disease detection (Lowe et al., 
2017; Huang et al., 2022; Mustafa et al., 2022). Each of the 
ML algorithms was run using the spectroscopy widget in the 
Orange software. The workflows of the ML algorithms used for 
this study are presented in Figs. 2 and 3. 

Fig.2	 Workflow without feature selection, where ROC = relative operating characteristic

Fig.3	 ML workflow using feature selection technique, where ROC = relative operating characteristic
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	 Decision tree 
	 A decision tree is a tree-like classifier where internal 
nodes represent dataset features, branches represent decision 
rules and leaf nodes represent outcomes (Myles et al., 2004). 
The tree-based model generates all possible solutions based 
on conditional criteria. The algorithm starts at the root node, 
compares the record’s attribute values to the root node and 
then follows the corresponding branch to the next node. This 
process repeats, comparing attribute values at each node, until 
a leaf node is reached. Based on a trial-and-error approach, the 
parameters for the minimum sample leaf, the minimum number 
of samples required in a subset and the maximum tree depth 
were set to 2, 5 and 100, respectively. The parameter values of 
the algorithm used in this study are shown in Table 1.

The parameter values of this algorithm set in this study are 
indicated in Table 2.

Table 1	 Parameter values of decision tree algorithm used in this study
Parameter Value
Minimum sample leaf 1, 2, 5, 10
Minimum number of samples required in a subset 2, 5, 10, 20
Maximum tree depth 3, 5, 10, 50, 100
Stop when majority reaches [%] 95

Table 2	 Parameter values of random forest used in this study
Parameter Value
Number of trees 3, 5, 20, 50, 100
Number of attributes considered at each split 5, 10, 15, 20
Minimum number of samples required in a subset 2, 5, 7, 10

Table 3	 Parameter values of gradient boosting used for this study
Parameter Value
Number of trees 3, 5, 20, 50, 100
Learning rate 0.01, 0.1, 0.3
Maximum tree depth 3, 5, 20, 50, 100
Minimum number of samples required in a subset 2, 5, 10, 20
Fraction of training instances 0.2, 0.4, 0.6, 1.0

	 Stacking
	 A stacking technique involves training heterogeneous base 
learners in parallel, using different ML models. By training a 
meta-learner based on the predictions of varied base learners, 
heterogeneous base-learners are aggregated into a prediction 
by combining the output from each individual base learner. 
Prediction accuracy is improved by combining the input 
predictions made by the base-learners with the output generated 
by the training dataset (Zenko et al., 2001). In this study, Naïve 
Bayes, k-nearest neighbor and support vector machine were 
used as base learners, whereas logistic regression was regarded 
as a meta-learner.

	 Random forest
	 The random forest approach contains multiple trees that 
are combined and decision trees that are assembled through 
a process called ‘bagging’ in order to generate a final model 
(Belgiu and Drăgu, 2016). Bootstrapping is used in this 
method to select ‘k’ samples by chance from the original 
dataset. These samples are used to construct decision trees and 
generate an output. The final output is generated by averaging 
the predictions of each decision tree. The parameters of the 
model were adjusted accordingly based on a trial-and-error 
approach. Parameters, such as number of trees, number of 
attributes considered at each split and the minimum number of 
samples required in a subset were set to 3, 5 and 5, respectively. 

	 Gradient boosting
	 Gradient boosting is a popular ensemble algorithm that 
fits boosted decision trees by minimizing the gross prediction 
error (Natekin and Knoll, 2013). A bunch of decision models 
was first added and constructed and fitted to correct the 
prediction errors made by prior models through a series of 
weight updates. In this algorithm, an additive model is built in 
a forward stage-wise fashion to optimize any differentiable loss 
function. Parameters such as the number of trees, maximum 
tree depth, minimum number of samples required in a subset 
and the fraction of training instances, were set to 100, 3, 2 
and 1, respectively, after conducting a trial-and-error process. 
The learning rate was set to 0.1. The parameter values of  
this algorithm used for this study are shown in Table 3.

	 Neural network
	 A neural network is composed of an input layer, hidden 
layers and output layers. The input layer receives data from  
the user and applies transformations to the input data in  
the hidden layers using activation functions and weights. Lastly, 
the output layer produces the final classification prediction  
for the given inputs. The input data are transferred from  
the input layer to the hidden layer to train the network.  
Hidden layers are assigned to enable the network to apply 
transformations to the data and process intermediate 
representations. A loss function is minimized through 
backpropagation, which iteratively adjusts and updates the 
weights and biases during the training process (Szandała, 
2021). The neural network can make predictions by  
passing the data to the output layer through the network, 
leveraging the learned neuron connections and weights in  
the hidden layers. The activation function and solver used in 
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this study were Relu and Adam, respectively. The Relu function 
introduces non-linearity into the network by preserving 
positive input values and setting negative values to 0, which 
facilitates efficient learning of complex patterns and prevents 
the vanishing gradient problem (Dubey et al., 2022). After  
a process of trial and error, the neural network was configured 
with three hidden layers, containing 100, 50 and 30 neurons in 
each respective layer. The maximum number of iterations was 
set to 200. The parameter values of the neural network used in 
this study are indicated in Table 4.

Results and Discussion

Spectral reflectance for raw and derivative transformation of 
frogeye leaf spot disease on soybean

	 The spectral reflectance profile of FLS severity (classes 
0, 1, 2, 3 and 4) is indicated in Fig. 4. Generally, the spectral 
profile had lower reflectance in the visible region with a small 
peak in the green region, followed by a sudden increase starting 
at 690 nm and reaching a peak in the near infrared (NIR) 
region. A comparison of profiles indicated there were larger 
differences in reflectance between each severity FLS class at 
some wavelengths compared to others.
	 Despite the fact that the reflectance of different severity 
classes of soybeans was very similar in the visible spectrum 
(607–690 nm), healthy soybeans had the lowest reflectance 
in the red region (620–700 nm), due to energy absorption by 
chlorophyll pigments from active photosynthetic activity.  
The increase in reflectance observed in the red region for 
diseased leaves was caused by the breakdown of chlorophyll 
pigments as a result of the changes in the concentration 
of anthocyanins, carotenoids, anthocyanins and the 
photoprotective role of xanthophyll pigments (Devadas  
et al., 2009). The spectra of FLS with different severity  
classes varied in the infrared region (750–998 nm). In the 
750–984 nm range, healthy soybean (class 0) had the highest 
reflectance compared to the others (Fig. 4), followed by classes 
1, 2 and 3 of soybeans FLS severity. Class 4 of FLS severity, 
which was the worst, had the lowest reflectance.

Fig.4	 Original spectral reflectance of soybean frogeye leaf spot severity, where legend indicates severity class 

Table 4	 Parameter values of neural network used in this study
Parameter Value
Hidden layer 3
Neuron in hidden layers 100,50,30
Maximal number of iterations 50, 100, 200, 300
Activation Relu
Solver Adam

Model evaluation

	 The model performance was assessed and evaluated for 
each of the classifiers used in the prediction set based the  
testing data. The overall accuracy was calculated from the 
confusion matrix by adding the number of correctly classified 
classes and dividing it by the total number of the severity 
of soybean FLS. Other evaluation metrics, such as F1 and 
precision, were also used in the model evaluation. The relative 
operating characteristic (ROC) measure was used to quantify 
the prediction accuracy of the predictive model, being based 
on the trade-off between the true positive rate and the false 
positive rate when a probability threshold is used.
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	 The first derivative equation is essential for plant disease 
detection with a fixed position of the lesion density (Gregory, 
1968). As the number of disease symptoms rises, the spectrum 
become more intricate and complicated. Variations in the 
collected spectrum are attributable to various stages of disease 
severity when plants in a particular location are infected. 
Therefore, the first derivative can eliminate both additive 
and multiplicative spectrum effects (Tsai and Philpot, 1998). 
Generally, the spectral reflectance had a modest reflectance 
peak at 515 nm and a large first derivative reflectance peak 
in the red-edge region (679–714 nm). Healthy soybean  
(Fig. 5) with class 0 had the highest peak (717.87 nm) in the 

red-edge region. A red-edge region in crop spectra (in the range 
650–800 nm) indicates the structure of the plant’s cell, with 
conformational changes affecting the shape of the red-edge 
region. Furthermore, chlorophyll emits fluorescence within the 
range of the red-edge, indicating the chemical structure and 
chlorophyll content of a crop as an indicator of its biophysical 
properties (Zarco-Tejada et al., 2000). The spectral reflectance 
of the second derivative (Fig. 6) of FLS disease severity 
contained two distinct “windows” at 685 nm and 732 nm. Due 
to their insensitivity to the soil background, the first and second 
derivatives are generally useful indicators in estimating crop 
disease (Sankaran et al., 2011).

Fig.5	 First derivatives of soybean frogeye leaf spot severity, where legend indicates severity class 

Fig.6	 Second derivatives of soybean frogeye leaf spot  severity, where legend indicates severity class
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Classification of soybean frogeye leaf spot disease severity 
using mathematical learning model

	 The accuracy of the ML algorithms utilized in the 
classification of FLS disease severity is shown in Table 5.  
The neural network had the highest accuracy (98.6%), F1 
(98.6%) and precision (98.5%) using the full first derivative 
data. This was followed by gradient boosting that had an overall 
accuracy of 97.4% and precision of 97.3% using the first derivative 
data with feature selection. Random forest achieved 96.9% and 
91.9% accuracy, respectively, for first and second derivatives 
with feature selection of spectral reflectance, increasing from 
88.9% and 85.2% for the full first and second derivatives of 
spectral reflectance, respectively. For selected first and second 
and second derivatives of spectral reflectance, the stacking 
algorithm improved to 94.9% and 88.7%, respectively, from the 
full first and second derivatives of spectral reflectance of 91.1% 
and 88.6%, respectively. Despite being subjected to feature 
selection techniques, the decision tree had the lowest accuracy 
levels of 77.6% and 73.5% for the selected first and second 
derivatives of spectral reflectance, respectively.
	 A neural network has the ability to interpret the relationships 
between wavelengths without the implementation of feature 
selection because of some configurations in the layers (Ahmad 
et al., 2019). Because of the network architecture and specific 
components within it, the network learns to extract and understand 
the features that represent the relationships and dependencies 
between wavelengths, which are crucial for accurate classification. 
By removing certain useful wavelengths through feature selection, 
the interdependencies between the remaining features may be 
disrupted, causing the model’s performance to deteriorate. Based 
on the current findings, using the ReliefF algorithm as a feature 
selection increased the overall accuracy level for the majority 
of the ML algorithms, because the ReliefF algorithm could 
effectively select the major wavelengths for soybean FLS disease 
severity classification, reducing the number of wavelengths  
in the models and generating higher classification accuracy.  
The current findings were consistent with Meng et al. (2020),  
who demonstrated that ReliefF algorithms, such as feature selection, 
could identify wavelengths with high discriminative strength in 
the green, red-edge, NIR and shortwave infrared regions when 
assessing Southern Corn Rust-infected leaves of varying severity 
levels. In addition, the results showed that the ML algorithm 
using feature selection for the second derivative did not improve 
accuracy, because the second derivative contained noise (Antonov 
and Stoyanov, 1996) and the threshold for the ReliefF technique 
resulted in a loss of information. Therefore, the threshold for 
ReliefF should be further adjusted to determine the accuracy. Ta
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	 Fig. 7 shows the ROC curve for the neural network model 
that had the highest accuracy in classifying the severity of FLS 
disease. This analysis has provided insight into the accuracy 
of model classification of the various severity classifications  

(0, 1, 2, 3 and 4) of FLS. Overall, the metric area under the 
curve had an acceptable range in the ROC analysis, indicating 
that the model was effective at distinguishing the FLS severity 
classes on soybean.

Fig.7	 Best relative operating characteristic from neural network model for soybean frogeye leaf spot disease severity classification: (A) class 0;  
(B) class 1; (C) class 2; (D) class 3; (E) class 4

(A)

(C)

(E)

(B)

(D)
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Conclusion

	 The neural network was the optimal model, achieving 
98.6% accuracy in the classification of FLS disease severity on 
soybean, utilizing the full first derivative data. In addition, the 
ReliefF-gradient boosting and random forest algorithms had 
promising levels of accuracy (97.4% and 96.9%, respectively) 
in classifying the severity of soybean FLS disease. Future 
enhancements will explore various feature selection 
strategies to assess hyperspectral reflectance for crop disease 
classification. In addition, different pre-processing techniques 
will be evaluated to ensure that spectrum noise is effectively 
removed. Furthermore, more advanced ML algorithms may 
be designed and implemented for hyperspectral reflectance 
analysis. The Orange software, with its spectroscopic widget, 
provides extra capabilities such as extensive hyperspectral 
pre-processing (Savitzky-Golay) and the implementation of 
advanced ML algorithms. Therefore, there needs to be further 
study of the capability of this software as a visual programming 
platform for assessing hyperspectral reflectance, to ensure its 
practicability and use. The findings of the current study should 
facilitate the rapid deployment of processes, including model 
development, for assessing crop disease severity levels using 
hyperspectral reflectance data.
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