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Abstract of this thesis presented to the Senate of Universiti Putra Malaysia in the 
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Supervisor: Associate Professor Dr. Megat Mohamad Hamdan bin 
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Faculty: Engineering 

Intake valve of a four stroke internal combustion (Ie) engine has been 

modelled to investigate the effects of intake valve diameter and intake valve angle on 

volumetric efficiency and air flow properties of intake air in a four stroke internal 

combustion engine. It is found that the increase of intake valve diameter increases 

the peak vertical velocity component but decreases the peak horizontal velocity 

component of intake air in suction stroke. It is also found that the increase of intake 

valve diameter decreases the peak turbulence kinetic energy and dissipation rate of 

intake air to a small extent. The effects of intake valve diameters on the cylinder 

pressure in suction stroke become significant from the suction valve full opening 

timing to the middle of suction stroke but its effects become insignificant 

(diminished) at the time of suction valve closing. The effects of intake valve 

diameters on the intake air temperature are also found very small at the end suction 

stroke. Thus, the small variations between the computed pressure and temperature 
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inside the cylinder at end of suction stroke for different intake valve diameters have 

little influence on volumetric efficiency. 

While investigating the effect of intake valve angle on the airflow properties, 

it IS found that the larger intake valve angle decreases the vertical velocity 

component as well as the horizontal velocity component. The increase of intake 

valve angle decreases the turbulence kinetic energy and dissipation rate moderately. 

The effects of intake valve angles on the cylinder pressure and temperature in suction 

stroke are very small from intake valve opening timing until the end of suction 

stroke. 

Thus, the present investigation shows that variation in intake valve diameter 

has very small effect on volumetric efficiency and the necessity of increasing intake 

valve number is not so important. Moreover, intake valve angle can be increased in 

order to increase valve thickness and valve life. 
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Fakulti: Kejuruteraan 

Injap masukan bagi sebuah enjin pembakaran dalam empat lejang telah 

dimodelkan bagi mengkaji kesan-kesan saiz injap masukan dan sudut injap masukan 

ke atas kecekapan isipadu dan pergerakan aliran udara dalam sebuah enjin 

pembakaran dalam empat lejang. Didapati bahawa pertambahan luas aliran injap 

masukan menambahkan komponen halaju menegak puncak tetapi mengurangkan 

komponen halaju mendatar puncak. Selain itu, didapati juga bahawa pertambahan 

diameter injap masukan menambahkan tenaga kinetik turbulen puncak dan kadar 

lesapan pada tahap yang kecil. Kesan diameter-diameter injap masukan ke atas 

tekanan silinder dalam lejang sedutan menjadi penting apabila pemasaan pembukaan 

penuh injap sedutan, ke pertengahan lejang sedutan tetapi kesan-kesannya menjadi 

tidak penting (berkurangan) pada akhir lejang sedutan apabila injap sedutan tertutup 

sepenuhnya. Kesan-kesan diameter-diameter injap masukan ke atas masukan suhu 

udara sangat kecil pada penghujung lejang sedutan. Satu perbezaaan yang kecil di 
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antara pengiraan tekanan dan suhu di dalam silinder pada akhir lejang sedutan 

dengan diameter-diameter injap masukan yang berbeza menunjukkan satu perubahan 

kecil ke atas kecekapan isipadu . 

Dalam mengkaji kesan sudut injap masukan ke atas lejang sedutan injin dan 

prestasi injin telah didapati bahawa sudut injap masukan yang lebih besar 

mengurangkan komponen halaju menegak tetapi menambah komponen halaju 

mendatar. Pertambahan sudut injap masukan menambah tenaga kinetik turbulen dan 

kadar lesapan secara sederhana. Kesan sudut-sudut injap masukan ke atas tekanan 

silinder dalam lejang sedutan adalah sangat kecil berbanding dengan pembukaan 

injap sedutan hingga akhir lejang sedutan. 

Oleh demikian, hasil kajian menunjukkan perbezaan di dalam diameter injap 

masukan mempunyai kesan yang sangat kecil ke atas kecekapan isipadu dan amat 

penting untuk peningkatan jumlah injap masukan adalah tidak penting. Tambahan 

pula sudut injap masukan boleh ditambah bagi menambah ketebalan injap dan hayat 

injap tanpa memberi kesan kepada kecekapan isipadu. 
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at 360° crank angle with 14 mm intake valve 

5 . 1 3 8  Contour of dissipation-rate in suction stroke 5-86 
at 360° angle with 23 mm intake valve 

5. 1 39 Vector plot of horizontal velocity component in 5-87 
suction stroke at 1 80° with intake valve angle 33°  

5 . 1 40 Vector plot of horizontal velocity component in 5-87 
suction stroke at 1 80° with intake valve angle 63° 

5. 1 41 Vector plot of horizontal velocity component in 5-88 
suction stroke at 240° with intake valve angle 33°  

5 . 1 42 Vector plot of horizontal velocity component in 5-88 
suction stroke at 240° with intake valve angle 63° 

5. 1 43 Vector plot of horizontal velocity component in 5-89 
suction stroke at 360° with intake valve angle 33°  

5 . 1 44 Vector plot of horizontal velocity component in 5-89 
suction stroke at 360° with intake valve angle 63 ° 

5 . 1 45 Vector plot of vertical velocity component in 5-90 
suction stroke at 1 70° with intake valve angle at 33°  

5. 1 46 Vector plot of vertical velocity component in 5-90 
suction stroke at 1 70° with intake valve angle 63° 

5. 1 47 Vector plot of vertical velocity component in 5-9 1  
suction stroke at 240° with intake valve angle at 33°  

5 . 1 48 Vector plot of vertical velocity component in 5-91 
suction stroke at 240° with intake valve angle 63° 

5 . 1 49 Vector plot of vertical velocity component in 5-92 
suction stroke at 320° with intake valve angle at 33° 

5 . 1 50 Vector plot of vertical velocity component in 5-92 
suction stroke at 320° with intake valve angle 63° 

5 .l5 1 Contour of cylinder pressure in suction stroke 5-93 
at 1 80° with intake valve angle 33° 

5 . 1 52 Contour of cylinder pressure in suction stroke 5-93 
at 1 80° with intake valve angle 63° 

5 . 1 53 Contour of cylinder pressure in suction stroke 5-94 
at 240° with intake valve angle 33° 

5 . 1 54 Contour of cylinder pressure in suction stroke 5-94 
at 240° with intake valve angle 63° 

5 . 1 55 Contour of cylinder pressure in suction stroke 5-95 
at 300° with intake valve angle 33° 

5 . 1 56 Contour of cylinder pressure in suction stroke 5-95 
at 300° with intake valve angle 63° 

5 . 1 57 Contour of turbulence kinetic energy in suction 5-96 
stroke at 1 70° with intake valve angle 33° 

5 . 1 58 Contour of turbulence kinetic energy in suction 5-96 
stroke at 1 70° with intake valve angle 63° 
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5.1 59 Contour of turbulence kinetic energy in suction 5-97 
stroke at 220° with intake valve angle 33°  

5 . 1 60 Contour of turbulence kinetic energy in suction 5-97 
stroke at 220° with intake valve angle 63° 

5 . 1 6 1  Contour of turbulence kinetic energy in suction 5-98 
stroke at 2400 with intake valve angle 330  

5 . 1 62 Contour of turbulence kinetic energy in suction 5-98 
stroke at 240° with intake valve angle 63° 

5 . 1 63 Contour of turbulence kinetic energy in suction 5-99 
stroke at 300° with intake valve angle 33° 

5 . 1 64 Contour of turbulence kinetic energy in suction 5-99 
stroke at 3000 with intake valve angle 630 

5 . 1 65 Contour of dissipation-rate in suction stroke 5 - 100 
at 1 800 with intake valve angle 33°  

5 . 1 66 Contour of dissipation-rate in suction stroke 5 - 100 
at 1 80° with intake valve angle 63° 

5 . 1 67 Contour of dissipation-rate in suction stroke 5- 1 0 1  
at 240° with intake valve angle 330  

5 . 1 68 Contour of dissipation-rate in suction stroke 5- 1 0 1  
at 240° with intake valve angle 63° 

5 . 1 69 Contour of dissipation-rate in suction stroke 5- 1 02 
at 300° with intake valve angle 33° 

5 . 1 70 Contour of dissipation-rate in suction stroke 5 - 102 
at 300° with intake valve angle 63° 

5 . 1 7 1  Contour of dissipation-rate in suction stroke 5- 1 03 
at 3600 with intake valve angle 33° 

5 . 1 72 Contour of dissipation-rate in suction stroke 5-1 03 
at 360° with intake valve angle 63° 
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Symbol 
BDC 
CFD 
CAD 
k 

e 

P 

Psg 
S 

s 
S J 
t 
T 
TDC 
U 

Xm 

LIST OF ABBREVIATIONS 

Description 
Bottom dead centre 
Computational fluid dynamic 
Computer aided design 
Turbulence kinetic energy (TE) 
Near wall dimensionless turbulence kinetic energy, (k+ =C:1/2 

)
. 

Length scale 
Mixing length scale 
Standard gravitational constant 
Gravitational field components 
Absolute piezometric pressure = Ps-Pogmxm 
Static pressure = Piezometric pressure if there i s  no gravitational 
force 
Average absolute piezometric pressure = Average static pressure if 
there is no gravitational force 
Stagnation pressure 
Cell surface face 
Mass source 
Momentum source 

Projected surface (surface vector) 
Discrete surface faces ( 1 ,  2, 3 . .  . . .  N) 
Time 
Temperature in Kelvin 
Top dead center 
Average horizontal velocity (UI ) 
Asolute velocity component in direction XI 
Absolute velocity component in direction xJ 

uJ -uC]' relative velocity between fluid and local (moving) coordinate 

frame that moves with velocity llcJ 
Fluctuating component of UI 
Dimensionless velocity at wall 
Velocity parallel to wall 
Relative velocity between fluid (u) and moving coordinate 
Friction velocity at wall 
Mean horizontal velocity of UI (U I, U2, U3 . . . . . . . . .  ) 
Mean vertical velocity of uJ (VI, V2, V3 . .  ) 
Average vertical velocity (U) 
Old ( previous) volume 
New volume 
Coordinates from a datum where Po is defined 
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