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ARTICLE INFO ABSTRACT

Keywords: This study aims to investigate and predict the performance of a 400 MW steam power plant operating on the
Performance OPtimiZ?_ltiOH Rankine cycle through a combined exergy-energy analysis and an artificial intelligence-based random forest
Energy-exergy analysis regression model. The primary objective is to assess component-wise inefficiencies, identify key parameters

Artificial Intelligence
Plant analysis
Rankine cycle

influencing plant performance, and develop an optimized predictive model for performance evaluation. A
mathematical formulation of energy and exergy balance equations is developed for each plant component and
analyzed using the Engineering Equation Solver (EES). The study investigates temperature and pressure gradi-
ents, as well as mass flow rates, across all integral components. A parametric analysis is conducted to evaluate
the impact of operational parameters on cycle efficiency, exergy destruction, and exergy losses. The results
indicate that the boiler experiences significant temperature and pressure gradients, leading to higher irrevers-
ibility, whereas the gland steam condenser exhibits lower gradients, resulting in reduced exergy destruction.
Among the plant components, the intermediate pressure turbine demonstrates the highest exergetic efficiency
(90-93 %), while the condensate extraction pump has the lowest (20-26 %). Similarly, energy efficiency is
highest in the intermediate pressure turbine (90-92 %) and lowest in the condensate extraction pump (18-22 %).
The study further reveals that steam quality and reheat pressure at the low-pressure turbine outlet significantly
influence overall power output and plant efficiency. The mass flow rates of steam through the high, intermediate,
and low-pressure turbines follow a ratio of 110:124.3:143.6, with corresponding pressure ratios of 20:2.1:0.071.
To enhance predictive accuracy, a random forest regression model is employed to forecast various performance
indicators of the steam power plant. The model utilizes 100 decision trees with a maximum depth of 10, enabled
bootstrapping, a fixed random seed of 42, and a minimum sample split of 2. The model’s predictions for energy
and exergy efficiencies are validated against experimental data, with root mean square error (RMSE) and co-
efficient of determination (R2) computed for accuracy evaluation. The study highlights that the random forest
regression model can be utilized to predict and optimize the performance of steam power plants, thereby
enhancing their efficiency and minimizing exergy losses.

1. Introduction

Steam power plants in many countries require extensive retrofitting
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Nomenclature

Al Artificial Intelligence
ANN Artificial Neural Network

BFWP Boiler Feed Water Heater

CCPPs  Combine Cycle Power Plants
CPEC China-Pakistan Economic Corridor
BFP Boiler Feed Pump

CEP Condensate Extraction Pump

CRH Cold Reheat
CWS Condensate Water Supply
CWR Condensate Water Return

CcC Combustion Chamber

CWP Condensate Water Pump

CP Condensate Pump

Cp Specific Heat Capacity

EES Engineering Equation Solver
EGT Exhaust gas temperature
FWP Feed Water Pump

FP Feed Pump

GBMs Gradient Boosting Machines
GT Gas Turbine

GSC Gland Steam Condenser
GFH Gas Fuel Heater

h Enthalpy

HPT High Pressure Turbine
HRH High Reheat

HRSGs  Heat Recovery Steam Generators
HP High Pressure
HI Heat Losses

h Enthalpy

IPT Intermediate Pressure Turbine
I Exergy Destruction

J/kgK  Joule per Kilogram Kelvin

K Kelvin

kw Kilo-watt

kg/s Kilogram per Second

kJ/kg  Kilojoule per Kilogram
LPT Low Pressure Turbine
LP Low Pressure

LNG Liquified Natural Gas

MAPE  Mean Absolute Percentage Error
MMBtu Metric Million British Thermal Unit
mtpa Million Tonnes per Annum

MW Mega-watt

m Mass Flow Rate

NTDC  National Transmission and Dispatch Company
m Energy Efficiency

N2 Exergy Efficiency

PSO Particle Swarm Optimization

Qin Heat Energy Input

RMSE Root Mean Square Error

R? Coefficient of Determination

RFR Random Forest Regression

S Entropy

SVM Support Vector Machine

T Temperature

UsD United States Dollar

w Work

X Exergy

due to low efficiencies and high operational costs [1,2]. However, their
relatively low initial capital costs, short commissioning times, and fuel
flexibility make them more suitable for developing countries facing
budget constraints. Globally, approximately 80 % of power generation
comes from fossil fuel sources, while only 20 % is derived from
renewable energy sources [3]. The power generation shortfall in
developing countries is substantial, e.g., in Pakistan, the power shortfall
in 2011 and 2012 was 5000 MW and 6000 MW, respectively. The situ-
ation became worse in 2015 with the power generation shortfall
reaching 7000 MW [4,5]. In 2014, the Pakistani government, in
collaboration with the Chinese government, took serious initiatives to
get rid of the energy shortfall. The China-Pakistan Economic Corridor
(CPEC) secured a$34 billion investment for power projects in Pakistan.
These projects are expected to contribute over 17,000 MW to the na-
tional grid, fulfilling approximately 80 % of the country’s energy de-
mand, according to the National Transmission and Dispatch Company
(NTDC) [6]. The rising cost of petroleum fuels has led to a shift toward
operating power plants with lower-cost fuel alternatives. The accessi-
bility of liquified natural gas (LNG) in Pakistan because of subsidized
imports from Qatar, is the prime justification for its utilization in steam
power plants. In 2013-14, the primary energy mix entailed 44 % of
energy requirements fulfilled by natural gas, and out of 44 %, 27.5 % of
total natural gas was utilized in the power sector. In 2019, the LNG
comprised 61.7 % of the power generation mix of Pakistan, followed by
27.3 % hydel sources, 15.9 % coal, and 13.5 % oil [7]. The government
first imported LNG in 2015 from Qatar to increase reliance on LNG and
decrease reliance on other petroleum sources. In the financial year
2021-22, a total of 373 MMBtu of LNG was imported at $3.4 billion [8].
In 2023, Pakistan’s LNG import capacity is projected to increase from
17.1 mtpa in 2023 to 31.7 mtpa in 2030 [9]. The thermal power plants’
performance was traditionally assessed using energy analysis, primarily
based on the first law of thermodynamics. However, recently, exergy

analysis, rooted in the second law of thermodynamics, has emerged as a
more comprehensive approach for evaluating and optimizing power
plant performance [10,11]. Exergy analysis goes beyond energy analysis
by not only identifying the root causes of irreversibility within the plant
but also by evaluating the efficiency of individual components and
quantifying the extent of heat losses. This analysis provides a clear
picture of the system’s state relative to equilibrium and offers insights
into effective natural resource conservation strategies. Irreversibility,
often referred to as exergy destruction, represents the disparity between
the actual useful work generated and the theoretically reversible
work—an essential focus of exergy analysis. Furthermore, exergy anal-
ysis differentiates between internal process irreversibility, energy losses
to the environment, and the quality of energy lost during real-world
operations [12,13].

Exergy is comprised of four components, with two main components
(physical and chemical). The chemical exergy is linked with the devia-
tion of the system’s chemical composition from the equilibrium state,
while the physical exergy represents the maximum theoretical useful
work achieved by the system during its interaction with the equilibrium
state [14]. Excessive energy (heat) is required in the case of high-
pressure components (evaporator) to change the saturation liquid
state of feedwater to the saturation vapor state, which leads to a higher
temperature drop of flue gases and ultimately leads to higher exergy
destruction. However, lower energy (heat) is required in the case of
intermediate/lower pressure components to superheat the vapors, as the
economizer already preheats the feedwater. Steam quality plays a crit-
ical role in exergy destruction. The lowering of steam quality below
saturation leads to higher gross power of the steam turbine as the po-
tential for work significantly increases, but moisture content increases,
which results in corrosion of the turbine blade and reduces the turbine’s
life. Moreover, the exergy destruction rate increases, which ultimately
results in lower exergy efficiency. The exergy destruction rate in a
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condenser increases with steam quality as the temperature of the cooling
water increases due to a higher heat transfer rate. Elhelw et al. [15]
found an exergy destruction rate in the case where the boiler is at the top
(75 %), trailed by the turbine (15 %) and the condenser (6 %). Increasing
the temperature of both IPT and HPT by 45 °C resulted in power savings
of 15.6 % at half load and 17.7 % at full load. The turbine power is
inversely proportional to superheat/reheat pressure, but the turbine’s
life is compromised for lower superheat/reheat pressure beyond the
critical value. Aliyu et al. [16] found that the increase in cooling water
temperature beyond the required limit resulted in improper condensa-
tion and threatened aquatic life and environmental protocol, i.e., the
cooling water is expelled to sea at a temperature 1 °C higher than the
designated temperature if the cooling water flow rate decreased by 15
%. Kaska et al. [17] found energy/exergy efficiencies of the system were
10.2 %/48.5 % and 8.8 %/42.2 %, respectively, for two distinct condi-
tions. Aljundi [18] found energy losses of 134 MW in the condenser, and
13 MW of energy in the boiler was noted. The exergy loss ratio in the
boiler (77 %), turbine (13 %), and condenser (9 %) was computed.
Exergy efficiency of 25 % and energy efficiency of 26 % were achieved.
Vosoogh[19] concluded that the energy and exergy efficiency increased
by 0.19 and 0.37 % by decreasing combustion excess air from 0.4 to
0.15. Moreover, with the decline in the temperature of smoke from 137
to 90 °C, the energy and exergy efficiency were increased by 0.84 and
2.3 %, respectively. Regulagadda et al. [20] reported a total exergy
destruction of 84,193 kW and a total heat loss of 50,456.5 kW. The
highest exergy destruction of 73,046 kW in the boiler and the lowest
exergy destruction of 375 kW in the feed pump were noted. The boiler
generated maximum entropy of 3312 kW/K and the boiler feed pump
generated the least entropy of 0.03 kW/K. The factors, like throttling in
valves, heat loss, and steam leakage, contribute to exergy loss.
Kaushik et al. [21] concluded that the highest energy loss occurred in
the condenser, and the highest exergy loss occurred for the boiler. It can
be credited to an incomplete combustion process, incongruous heat
insulation, and entropy generation in the device. Pattanayak et al. [13]
observed the highest exergy efficiency of 97.34 % and energy efficiency
of 95.68 % in the case of an intermediate pressure turbine. The
condenser exhibited the lowest exergy efficiency of 29 % and an energy
efficiency of 66.36 %. The exergy efficiency in the case of the
compressor and HRSG was 93.96 and 87.20 %, respectively. Ameri et al.
[22] observed that combustion chambers, gas turbines, duct burners,
and heat recovery steam generators are the main sources of irrevers-
ibility, entailing 83 % of total exergy loss. In another study, Ameri et al.
[23] accounted for maximum energy losses of 306.9 MW from the
condenser (81 % of total exergy destruction) and 67.63 MW from the
boiler (5 % of total exergy destruction). The maximum irreversibility
can be accounted for in the boiler because of the higher temperature
associated with the combustion reaction, and it can be decreased by
decreasing the air-fuel ratio and preheating the combustion air. Isam
Aljundi [18] also concluded that the exergy loss ratio in the boiler can be
reduced through air preheating and reducing the fuel-to-air ratio.
Ahmadi and Toghraie [24] observed 32 % energy efficiency and 35.2 %
exergy efficiency with a total exergy destruction of 368.18 MW. The
energy and exergy losses in the condenser were 296.8 MW and 5.63 MW,
with an exergy loss ratio of 69.8 and 1.53 %, respectively. The energy
and exergy losses in the boiler were 42.9 MW and 315.39 MW, with an
exergy loss ratio of 10.16 and 85.66 %, respectively. Rudiyanto et al.
[25] found an exergy efficiency of 26.36 %, and this efficiency increased
to 94.04 % at 41 bar pressure. They found a direct relation between
output pressure, steam input quality, gross power, and efficiency of the
turbine. The irreversibility of the boiler, condenser, turbine, LPH, HPH,
pump and deaerator were 1677003 kW (17.28 %), 738122 kW (7.61 %),
152894 kW (1.58 %), 111881 kW (1.15 %), 470520 kW (4.85 %),
193494 kW (1.99 %) and 1081771 kW (11.15 %), respectively. Pilankar
and Kale [26] revealed through exergy analysis that the highest exergy
destruction of 238.6 MW was accounted for by the boiler, which rep-
resents 90.8 % of the total exergy destruction of the plant. Exergy
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destruction of 4.426 MW was accounted for by the condenser, which
represents 1.78 % of total exergy destruction. The total energy and
exergy loss for the plant were 89.17 MW and 260.7 MW. It was observed
that the energy efficiencies of components were higher than the exergy
efficiencies.

Danish et al. [27]explored the transformation of energy models to
align with machine learning techniques for optimizing combined cycle
power plants (CCPPs). Using the Broyden Fletcher Goldfarb Shanno
(BFGS) algorithm, the proposed numerical model improved operational
efficiency, increasing power output by 2.23 % from 452 MW to 462.1
MW through optimized environmental factors. The study highlights the
potential of Al-based modeling for forecasting and decision-making in
complex energy systems. In addition, Assareh et al. [28] proposed a
system that integrates a Multi-Effect Distillation (MED) unit with
Thermal Vapor Compression (TVC) and dual-pressure heat recovery
steam generators. The study aims to reduce costs, lower CO5 emissions,
and improve both power output and energy efficiency through optimi-
zation using artificial neural networks and genetic algorithms with EES
and MATLAB. The upgraded system boosts energy efficiency by over 10
% and reduces COy emissions by 23 %, and improves the exergy effi-
ciency from 31 % to 41 %. Beiron et al. [29] studied the role of combined
heat and power (CHP) plant flexibility as a strategy for handling vari-
ations while assessing cost-effectiveness. Using an energy system opti-
mization model, the study examines the interaction between electricity
and district heating in a Swedish price area, and the results indicate that
CHP investments are primarily driven by district heating demand rather
than electricity needs, resulting in limited capacity to influence elec-
tricity system variations. Moghaddam et al. [30] performed an analysis
of variance through a central composite design technique to examine the
impact of pressure, temperature, and steam/feed ratio. They achieved
optimum values of 900 °C temperature, 4 bar pressure, and 0.675
steam/feed ratio.

Artificial Intelligence (AI) techniques have been extensively
employed to predict the performance of steam power plants, offering
substantial improvements in operational efficiency and system reli-
ability. These Al-driven models harness historical operational data to
identify complex patterns and correlations that may elude conventional
analytical approaches. Moreover, machine learning algorithms facilitate
adaptive learning, allowing for continuous model refinement and real-
time performance monitoring. This dynamic capability enables predic-
tive maintenance, minimizing the risk of equipment failures and un-
planned downtime. The integration of Artificial Intelligence
methodologies into power plant operations not only optimizes perfor-
mance but also enhances the sustainability of energy production by
improving resource utilization and reducing operational costs. Although
various Al models have been employed, including Support Vector Ma-
chines (SVM), Artificial Neural Networks (ANN), and Gradient Boosting,
but Random Forest regression model is often regarded as a superior
choice for predicting the performance of steam power plants. SVMs are
adept at handling non-linear relationships and delivering robust classi-
fication and regression outcomes; however, they often require extensive
training time due to their computational complexity, especially with
large datasets. ANNs are highly effective in modeling intricate, non-
linear systems and extracting valuable insights from historical data,
yet they also demand significant computational resources, leading to
prolonged training durations. Gradient boosting machines (GBMs)
enhance predictive accuracy through iterative error reduction, but they
are susceptible to overfitting without meticulous tuning. In contrast, the
random forest regression model (RFRM) provides distinct advantages
through its ensemble learning methodology, which combines multiple
decision trees to deliver high accuracy and robustness. This approach
not only effectively reduces overfitting but also efficiently manages
noisy or imbalanced data, offering reliable predictions and valuable
insights into feature importance. These attributes make the RFRM
particularly well-suited for complex performance forecasting in steam
power plants, Table 1 mentions the advantages and disadvantages of the
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Table 1

Comparison of commonly used Al methods with Random Forest for power plant

performance optimization.

AI Method

Advantages

Disadvantages

Support Vector
Machines
(SVM)

Artificial Neural

Effective in handling non-
linear relationships [31]
Delivers robust outcomes
[32]

Highly effective in

Computationally intensive,
especially with large datasets
[33]

Requires extensive training time
[34]

Demands significant

Networks modeling complex computational resources [36]
(ANN) systems [35] Prolonged training durations [37]
Capable of extracting
valuable insights from
historical data [32]
Gradient Enhances predictive Susceptible to overfitting without
Boosting accuracy through iterative meticulous tuning [39]
Machines error reduction [38] Computationally expensive [40]
(GBM)
Random Forest High accuracy and Random Forest, while accurate,
Regression robustness through can be more difficult to interpret
(RFR) ensemble learning [41] than simpler models like decision

Effectively reduces
overfitting [42]
Manages noisy or
imbalanced data well

trees [44]

Requires careful tuning of
parameters to optimize
performance [42]

[43]

Al models used for optimization of power plant parameters and
performance.

Many authors have used artificial intelligence models for predictions
of the performance of power plants. Haddadin et al. [45] used an arti-
ficial neural network (ANN) model to predict the behavior of variables
and power output. Similarly, ANN was used by Park et al. [46] for en-
ergy demand and supply matching in PV power generation, with an
accuracy of the model being 13.2 %. Moreover, ANN models using
metaheuristic optimization algorithms have also been used to predict
power plant performance. Moustafa et al. [47] used a humpback whale
optimizer to predict energy efficiency and exergy efficiency with a
correlation coefficient ranging from 0.98 to 0.99. Also, Esfandyari et al.
[48] used ANN along with particle swarm optimization (PSO) to forecast
the heat transfer rate, having correlation coefficients of the model being
greater than 94.84 %. Furthermore, water desalination using heat re-
covery of a real thermal power plant was done by Assareh et al. [49]
where the ANN model was deployed to compute exergy efficiency,
carbon dioxide emission, and net power output. Similarly, Esfandyari
et al. [50] also used an adaptive neuro-fuzzy inference system (ANFIS)
tuned by a particle swarm optimization (PSO) algorithm to predict sulfur
removal from diesel fuel with favorable results. SVM has also been used
to optimize various output parameters of power plants. Cai et al. [51]
used PSO-SVM classifier for arc-fault detection of solar PV power gen-
eration systems. Furthermore, Ashraf et al. [52] used SVM to achieve the
efficient power production operation of a 660 MW coal power plant.
Moreover, Lin et al. [53] predicted photovoltaic power generation using
SVM accurately, whereas Tuerxun et al. [54] used SVM for fault diag-
nosis of wind turbines. Similarly, Singh et al. [55] used a Gradient
Boosting approach to forecast wind production with a mean absolute
error (MAE) value of 0.0277, a mean absolute percentage error (MAPE)
value of 0.3310, and a root mean square error (RMSE) value of 0.0672.
Also, Mitrentsis et al. [56] predicted solar power production accurately
using Gradient Boosting.

The application of Al specifically the RFRM, a relatively underutil-
ized algorithm in power plant analysis, presents a novel approach to
energy and exergy evaluation. Random Forest excels in managing large
datasets, accurately capturing complex non-linear interactions, and
significantly enhancing predictive accuracy. Furthermore, it minimizes
overfitting by aggregating predictions from multiple decision trees,
thereby reducing variance and improving model generalization. This
method provides robust and reliable insights into thermal system
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performance, streamlining analytical processes and advancing the pre-
cision and depth of system evaluation in power plants. The random
forest regression model has been successfully employed to make pre-
dictions in several applications. Huang et al. [57] used the random forest
regression model to predict carbon peak predictions with an R of 0.94.
Danish et al. [27] explored the transformation of energy models to align
with machine learning techniques for optimizing combined cycle power
plants (CCPPs). Using the Broyden Fletcher Goldfarb Shanno (BFGS)
algorithm, the proposed numerical model improved operational effi-
ciency, increasing power output by 2.23 % from 452 MW to 462.1 MW
through optimized environmental factors. The study highlights the po-
tential of Al-based modeling for forecasting and decision-making in
complex energy systems. Random forest regression model (RFRM) has
been successfully employed to make predictions in several applications.
Achmad et al. [58] used RFRM to forecast coal power plant retirement
ages, whereas Alexandra et al. [59] predicted solar power generation
using the RFRM model. Furthermore, RFRM has been used to predict
solar irradiance at high altitudes [60] and at different sunshine hours
[61]. A regression model using random forest has also been applied to
predict wind power production [62-65] as well as to successfully predict
wind turbine noise [66-68]. RFRM has even been used to predict the
mechanical properties of substances like aluminum alloys [69], and the
compressive strength of basalt fiber [70], as well as to predict air-water
interfacial tension in conventional and peptide surface-active agents
[71]. RFRM has also found its use in applications like fatigue life pre-
diction of bending polymer films [72] and estimation of moisture in live
fuels [73]. Moreover, RFRM has been used for effective prediction and
analysis of commercial wood fuel blends used in a typical biomass power
station [74] as well as prediction of harbor fuel consumption [14],
finding that the meteorological factors collectively add value to fuel
consumption prediction and improve its accuracy. RFRM has also suc-
cessfully been able to optimize biodiesel production by successfully
predicting biodiesel yield [75]. In short, the machine learning model
using random forest can be successfully used to make accurate pre-
dictions in many important applications and hence in turn lead to system
optimization and efficiency improvements [76].

The primary objective of this study is to conduct an exergy analysis of
the Balloki thermal power plant (a reference thermal power plant and
real data are used), which has a unit capacity of 400 MW. The analysis is
performed using the Engineering Equation Solver (EES) software [24].
The current study aims to investigate the factors affecting power plant
performance to optimize power plant efficiency. However, the innova-
tion lies in artificial intelligence (AI) integration with exergy analysis for
power plant performance optimization. The current study investigates
the influence of pressure, temperature, and mass flow rate variations
across each process component on a power plant’s energy and exergy
performance. Moreover, it advances an Al approach for optimizing the
plant’s performance, which improves the accuracy of performance
predictions in comparison with conventional methods. To achieve the
set objective, the principles of mass, exergy, and energy conservation are
applied to each component of the Balloki power plant. Such a compre-
hensive analysis ascertains the fundamental performance indicators
such as exergy efficiency, energy efficiency, relative exergy destruction,
exergy loss ratio, and overall plant efficiency. Engineering equation
solver (EES) software permits the classification of optimal operational
parameters for power plant performance enhancement. The novelty of
current research lies in the unique combination of exergy analysis and
Al-based optimization to identify inefficiencies and optimize Balloki
power plant performance, which has been underexplored in the previous
literature. The initial phase of this study involves recognizing the
imperative need for efficient energy utilization and establishing clear
objectives to attain these goals. Subsequently, exergy analysis is
employed to identify the root causes, positions, and magnitudes of
process inefficiencies within the system. The empirical approach is then
integrated with Al optimization for the improvement in power plant
performance. Table 2 presents a comparative analysis of the current



Table 2

A comparative analysis of the current study and the literature review.

No Powerplant name/ Capacity Energy efficiency (%) Exergy efficiency (%)
country/reference Boiler Turbine Condenser  Pump Cycle Boiler Turbine Condenser Pump Cycle
1. Eastern Province, Saudi 1240 MW - - - - — - 92.05 62.98 — —
Arabia [77]
2. Montazeri Steam Power 200 MW 90.55 78.28(HPT)87.34 - 68.1 (BFP)69 32 44.5 87.67 (HPT) - 90.5 (BFP)83 35.2
Plant, Iran [78] (IPT)80.62 (CWP) 91.08 (IPT) (CWP)
(LPT) 82.62
(LPT)
3. Yatagan Power Plant, 630 MW - — - — 37.01 40.84 80.1 62.72 60.66 (CP) 31.95
Turkey [79] 64 (CP,2)60.85
(FWP)
4. 412 MW Power Plant 412 MW 96.90 (CC)  88.12 (HPT)95.68 66.36 - - 77.48 (CC) 93.41 (HPT) 29 - -
[80] (IPT)86.82 97.34 (IPT)
(LPT) 86.96
(LPT)
5. 32 MW coal-fired power 32 MW - - - - 25.38 - - - - 23.17
plant [81]
6. Can Powerplant, Turkey 320 MW - - - - 42.12 48.23 84.85 (HPT) 80.22 60.82 (CP)63.99 37.88
[79] 96.12 (IPT) (CP,2)58.83
90.03 (FWP)
(LPT)
7. Neyveli Powerplant [82] 50 MW 91.9 26.91 - - - 58.62 81.2 - - 32.46
8. Al-Hussein power plant, 396 MW — - — - 26 43.8 73.5 26.4 82.5(BFP) 24.8
Jordan [83]
9. Shenyang CHP Power 50 MW 84.89 78.5 - 84.77 (FWP) - 30.04 49.21 - 63.38(FWP) -
Station [84]
10.  Orhaneli, Bursa Province, 210 MW - - - - 37.63 45.77 90.51 (HPT) 68.98 90.68 (CP)92.42 35.49
Turkey [79] 90.97 (IPT) (CP,2)75.03
64.42 (FWP)
(LPT)
11. 250 kW Steel Industry 250 kW - - - - - 76.1 (Case 80.0 (Case a) 44.7 (Case a) 71.5 (Case a)73.9 48.5 (Case a)
Power Plant [85] a)72.1 77.0 (Case b) 63.8 (Case b) (Case b) 42.2 (Case b)
(Case b)
12.  Soma Station [79] 500 MW - - - - 36.08 41.43 85.12 (HPT) 47.33 65.67 (CP) 32.35
89.99 (IPT)86 65.77 (CP,2)70.36
(LPT) (FWP)
13. MARAFEQ Power Plant, 2700 MW 61.8 (CC) 82 (GT) — 92 (Air 34.33 68.3 (CC) 91.6 (GT) - 94.9 (Air 32.38
Arab Saudi [86] Compressor) Compressor)
14.  Kangal [79] 457 MW - — - — 37.19 36.45 90.86 (HPT) 62.65 41.24 (CP)58.91 28.55
92.94 (IPT) (CP,2)60.5
84.19 (FWP)
(LPT)
15. Malay Peninsula 396 MW 396 MW - - — - — 41.5 92.7 (HPT) 90.83 96.31 (Air —
CC Powerplant [87] 92.1 (IPT)67.5 Compressor)
(LPT)
16. Kostolac B Power Plant 348.5 — - — - — 46.4 89.7 (HPT) 57.8 82.7 (1)85.0 (2) 35.8
[88] MW 91.6 (IPT)79.3
(LPT)
17.  Jawa Power-YTL, Paiton, 610 MW 47.98 54.66-84.53 8.94 34.13 - 48.06 93.23-99.92 0.796 33.03 26.36
Indonesia [89]
18.  Afsin Elbistan [79] 1440 MW  — - - - 42.64 39 94.22 (HPT) 59.74 78.73 (CP)78.74 32.46
97.89 (IPT) (CP,2)78.51
86.16 (FWP)
(LPT)

(continued on next page)
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Table 2 (continued)

No Powerplant name/ Capacity Energy efficiency (%) Exergy efficiency (%)
country/reference Boiler Turbine Condenser  Pump Cycle Boiler Turbine Condenser Pump Cycle
19.  Seyitomer Powerplant 600 MW - - - - 38.03 36.75 96.75 (HPT) 47.33 81.49 (CP)83.29 31.50
[79] 95.98 (IPT) (CP,2)86.53
85.45 (FWP)
(LPT)
20.  23.8 MW Powerplant 23.8 MW 91.87 (1) 93.84 (1)93.19 (2) - 58.3 (FP,1)61.8 35.29 42.06 (1) 73.47 (1) - 33.86 (FP,1)36.29 66.3 (Cyclel)
[90] 92.58 (2) (FP,2) (Cyclel) 42.28 (2) 72.24 (2) (FP,2) 64.33 (Cycle2)
32.07
(Cycle2)
21. Catalagzi Power Plant 300 MW - - - — 37.88 45.47 90.32 (HPT) 54.72 67.37 (CP)66.82 35.19
[79] 88.93 (IPT) (CP,2)69.78
88.6 (FWP)
(LPT)
22. South Pars Gas Complex - 89.59 89.5 86.4 81.5 41.2 40.5 95.78 54.6, 63.9 96.68 33.6
[91]
23.  Bokaro thermal power 210 MW 88.92 77.31,84.6,78.9 44.3 72.9 32.9 44.3 83.2,85.3,81.9  49.3 83.9 34.5
station [92]
24.  GT Power Plant, Egypt 125 MW - - - - 28.8 71.2 95.3 - 87.4 27.1
[93]
Current Work (Balloki Power Plant in Pakistan-400 MW)
‘Components /Loading conditions Energy efficiency (%) Exergy efficiency (%)
44.5 % 78.75 % 87.80 % 98.80 44.5 78.75 % 87.80 % 98.80 %
% %
1 Turbine HPT 76.75 77.23 79.38 79.99 83.16  86.75 87.63 87.94
IPT 89.75 89.83 90.94 92.05 90.44  92.79 93.00 93.37
LPT 68.26 69.34 69.99 72.68 69.27 70.65 71.29 74.19
2 CEP 17.60 20.29 21.43 22.08 19.84  23.86 24.79 25.98
3 GSC 83.58 84.67 89.26 89.36 71.43  72.50 73.64 74.73
4 GFH 55.50 57.00 59.24 69.90 30.99 33.75 37.01 51.05
5 BFWP 22.76 26.62 30.44 30.57 27.59  33.59 33.85 36.47
6 Boiler 85.26 85.92 90.82 91.18 39.11  40.85 42.51 43.05
7 Condenser 69.52 77.57 80.33 95.68 37.73 46.96 50.91 55.95
8 Cycle 26.19 27.90 28.23 30.45 31.33 35.19 35.30 36.04
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research findings with the existing literature, highlighting the unique
contributions of this study.

2. Methodological framework and data analysis approach

In the current study, the liquefied natural gas (LNG)-fueled Balloki
power plant is selected for the exergy analysis. The current study only
observed the Rankine process, which is a part of the entire Balloki power
plant (the whole power plant is a Combined Cycle Power Plant with a
cumulative capacity of 1223 MW). The boiler serves as a Heat Recovery
Steam Generator in a combined cycle power plant. The plant is equipped
with a 400 MW three-cylinder turbine, including a higher-pressure
turbine (HPT), intermediate pressure turbine (IPT), and lower pressure
turbine (LPT). The HPT has a total of 30 stages, IPT has 18, and LPT has
10 stages. The chemical composition of fuel is shown in Table 3.

2.1. Plant layout

The schematic diagram of the Rankine cycle power plant is displayed
in Fig. 1 (a). The water tube boiler produces steam to run the steam
power cycle. Water is pumped through a boiler feed water pump
(BFWP), enters the boiler at point 14, and is heated through LNG com-
bustion. The boiler provides dry superheated steam at a designated
temperature. The starting section of the boiler, from point 14, possesses
a higher temperature compared to the ending portion of the boiler.
Therefore, the generated high-pressure steam is sent to high-pressure
steam (HPT) as shown in point 1. The low-pressure steam at the end
of the boiler is sent to the low-pressure turbine, as shown in point 5. The
fuel used for burning is pre-heated in a Gas Fuel Heater (GFH) from the
water coming out from the boiler (point 11) to increase the efficiency of
the cycle. The remaining water released from GFH at point 12 was re-
entered into BFWP at point 13. The produced steam then rotates the
blades of the steam turbine (ST), which is coupled to a synchronous
generator to generate electrical energy. There are 3-cylinder turbines,
including High Pressure (HPT), Intermediate Pressure (IPT), and Low
Pressure (LPT). HP superheated steam (HP superheater) with 587 °C and
170 bar drives HPT and then returns to HRSG as Cold Reheat (CRH),
which passes through the Reheat portion of the boiler (point 2) and is
converted into Hot Reheat (HRH) with 587 °C and 35 bar. HRH is now
used to drive IPT as shown in point 3. The low-pressure steam from the
boiler (point 5) and IPT (point 4) is entered into LPT at point 6. Finally,
the LP superheated steam at 273 °C and 4 bar drives the LPT and is then
condensed in the turbine. The valves are used to regulate steam pressure
for the smooth operation of power plants. The steam from LPT directly
comes to the main condenser at point 7. Point 18 shows the cooling
water supply to the condenser, and point 19 shows the cooling water
return from the condenser. CEP picks condensate water at point 8, and
this water is then transferred to GSC at point 9, where it heats up by 1 °C.
The other side of GSC is linked with a router steam turbine to receive
leaked steam, and it is used for heating condensate water, as shown in
point 10. The exhaust steam is then allowed to condense through a water

Table 3

Chemical composition of LNG.
Gas Fuel Composition %
Methane 87.9
Ethane 4.49
Propane 0.35
Iso-Butane 0
N-Butane 0.052
Pentane 0
Iso-Pentane 0.025
Neo-Pentane 0
N2 5.68
CO, 2.34
Hexane 0

Energy Conversion and Management: X 26 (2025) 101025

condenser, which sucks steam at very low pressure and allows steam
expansion through the turbine at lower pressure (—85 kPa to —93 kPa).
The condensate, along with some fresh makeup feed water, is again fed
into the boiler by a condensate extraction pump (CEP), which passes
through a Gland Steam Condenser (GSC). The technical specifications
and details of the steam power plant are displayed in Table 4. The gas
cleaning system in the reference LNG-fired power plant is designed to
control emissions and ensure compliance with environmental standards.
While LNG combustion is cleaner than coal or oil, it still produces ni-
trogen oxides (NOy), carbon monoxide (CO), and trace amounts of sulfur
oxides (SOx) and particulates. To mitigate NOy emissions, an ammonia-
based flue gas cleaning system, such as Selective Catalytic Reduction
(SCR), is employed. In the studied system, instead of using an adsorbent,
ammonia (NHs) is injected into the flue gas, reacting with NOy to form
harmless nitrogen (N») and water vapor.

Fig. 1 (b) shows the actual temperature-entropy (T-S) diagram of the
Rankine cycle, which consists of the following processes;

1-2 (HPT): High-pressure steam enters the turbine, undergoing an
isentropic expansion process with negligible change in entropy.

2-3 (Reheating): The steam is reheated to increase its energy con-
tent before entering the next stage of expansion.

3-4 (IPT): Reheated steam enters the intermediate pressure turbine,
where it again undergoes isentropic expansion with minimal entropy
change.

4-6 (Reheating): Reheating at low pressure.

6-7 (LPT): The steam enters the low-pressure turbine for isentropic
expansion, with negligible entropy change.

7-8 (Condenser): Ideally, heat is rejected at constant pressure in the
condenser; however, in practice, there is a slight pressure drop due to
piping resistance.

8-9 (CEP): Isentropic compression process, a negligible entropy
change occurs.

13-14 (BFWP): The compression takes place under isentropic con-
ditions, resulting in an insignificant entropy change.

14-1 (Water Tube Boiler): Constant pressure process.

2.2. Analysis approach

The Balloki power plant operates under four different loading con-
ditions depending on power demand. The operating conditions of power
plants at 44.5 %, 78.75 %, 87.8 %, and 98.5 % load are shown in Ta-
bles 5 to 6, respectively. The temperature, pressure, and mass flow rate
across each component are obtained from the power plant control room.
This data is then input into the Engineering Equation Solver (EES)
software to determine the enthalpy and entropy values for each
component of the power plant. The calculated enthalpy and entropy
values are utilized in equations to evaluate exergy efficiency, energy
efficiency, exergy loss ratio, exergy destruction, and relative exergy
destruction. Subsequently, algorithms are developed in Python using
Google Colab to optimize energy and exergy efficiencies. Finally, a
comparison is conducted between experimental and optimized values.

2.3. Analytical assumptions

Below are the assumptions for the energy-exergy analysis of the
steam power plant:

1. The current study is conducted by maintaining steady-state condi-
tions with the law of conservation of mass and energy

The power plant’s steady-state operation, where the mass flow rate,
energy input, and energy output stay constant across time, is assumed in
the analysis. This assumption streamlines the computations and is valid
for large-scale power plants operating under stable conditions. Start-up
and shutdown phases are examples of transient impacts that are not
considered since they bring dynamic fluctuations that require a different
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Fig. 1. (a) Schematic diagram of a power plant (b) Actual T-S diagram of the Rankine cycle.

Technical specifications of steam power plant.

modeling methodology.

2. Each component of the plant is deliberated as a control volume

Operating Conditions Value/Specification Unit
Type Thermal Power Plant o Each constituent of the power plant (turbine, pump, boiler, and
Maximum Capacity 410.08 (NET) MW condenser) is regarded as a control volume, where energy and mass
Rated Capacity 420.08 (Gross) Mw interactions take place across the boundaries. Such an approach is
Boiler Type Fuel Gas Fired Boiler - justified as it permits an accurate assessment of energy and exer
Condenser Type Two Pass Cross-Flow Heat Exchanger ~ _ J X .p X . 8y A X. 8y
Heater type N/A B balances within each component without considering the interactions
Pump Type Multistage High-Pressure Centrifugal ~ __ between components beyond the designated boundaries.
Pump

Rated heat rate 9607 11?\%11 3. The change in potential and kinetic energies is neglected
Max mass flow rate at turbine 971 Tons/

inlet hr The changes in kinetic energy due to velocity variations and poten-
Rated mass flow rate at turbine 971 Tons/ tial energy due to altitude differences are assumed to be insignificant in

inlet hr comparison with the total energy in the steam cycle plant. Such an
Turbine inlet pressure 1648 Bar mption is justified as the thermal ener; nd pr re variation:
Turbine inlet temperature 584.8 °C assu' P 0' § Jus K €d as the thermal ene gy? p'essu € varia 0 S
Cooling Water Inlet 28.76 Cc dominate in Rankine cycle power plants, while height and velocity

Temperature differences have a nominal influence on overall energy calculations.
Cooling Water Outlet 36.03 °C

Temperature

4. The heat losses in pumps and turbines are neglected

Heat losses to the environment from the pump and turbine are
assumed to be negligible. This presumption stems from the fact that
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Table 5

Operating conditions of power plant at 44.5 and 78.75% loading condition.

Energy Conversion and Management: X 26 (2025) 101025

Point No. 44.50 % Load 78.75 % Load

Pressure Temperature Mass flow rate Enthalpy Entropy Pressure Temperature Mass flow rate Enthalpy Entropy

Bar Kelvin kg/s kJ/kg kJ/kg*K Bar Kelvin kg/s kJ/kg kJ/kg*K
1 90 849 112.20 3574 6.89 140 850 181.40 3530 6.64
2 20 655 110 3207 7.06 31 648 180.70 3171 6.81
3 17.70 853 123.10 3647 7.70 29 843 200 3615 7.44
4 2.10 563 124.30 3051 7.83 3.40 553 200.70 3027 7.56
5 2.10 522 10.30 2968 7.68 3.10 535 18.30 2991 7.54
6 2.10 522 143.60 2968 7.68 3.20 548 218.30 3017 7.58
7 0.07 312.50 143.60 2572 8.26 0.09 317.30 218.30 2581 8.18
8 0.12 308.60 155.30 148.50 0.51 0.13 315.30 235 176.50 0.60
9 27 311.70 149.20 163.80 0.55 23 317.50 229 187.90 0.63
10 25 305.30 149.20 136.90 0.46 24.10 311.30 225 161.90 0.55
11 52.80 493 12.80 943.60 2.51 65 512 15.30 1032 2.68
12 52.80 397 12.80 523.70 1.56 65 412 15.30 588.3 1.72
13 27 311.20 161.90 161.70 0.54 24.30 324 243 215 0.71
14 180 324.20 161.90 229.10 0.71 194 336 241.90 279.20 0.85
15 0.50 302.80 5.60 124.20 0.43 0.50 303 8.30 125.10 0.43
16 1 943 833.30 1065 1.30 1 936 1325 1056 1.29
17 1 354.50 833.30 357.30 0.17 1 356 1305 358.9 0.18
18 3 306.20 20,833 138.70 0.48 3 307.90 20,833 145.80 0.50
19 2.30 309 20,733 150.30 0.52 2.30 312.60 20,833 165.40 0.56

Table 6
Operating conditions of power plant at 87.80 and 98.80% loading condition.

Point No. 87.80 % Load 98.80 % Load

Pressure Temperature Mass flow rate Enthalpy Entropy Pressure Temperature Mass flow rate Enthalpy Entropy

Bar Kelvin kg/s kJ/kg kJ/kg*K Bar Kelvin kg/s kJ/kg kJ/kg*K
1 150 857 202.40 3539 6.63 177 853 223 3503 6.52
2 34.50 653 201.20 3176 6.77 44 654.70 221.70 3161 6.65
3 28 885 223 3711 7.57 37.50 885 245.60 3703 7.43
4 4.80 578 229.40 3074 7.49 5.10 593 247.20 3105 7.52
5 4.50 560 20 3038 7.46 5.80 593 23.60 3103 7.46
6 3.30 553 243.90 3027 7.58 5.20 593 269.20 3104 7.51
7 0.09 319.90 243 2586 8.17 0.11 322 269.60 2589 8.11
8 0.12 317.60 253.90 186.10 0.63 0.12 319.50 278.60 194.10 0.66
9 23 319.70 245 196.90 0.66 23.80 321.60 270.60 204.90 0.68
10 22.80 313.70 250.60 171.80 0.57 22.80 316.50 270 183.50 0.62
11 64 528 16.70 1109 2.83 67 520 24.40 1070 2.76
12 64 428 16.70 656.80 1.88 67 449 24.40 748 2.09
13 31 322 271 207.20 0.68 33 323 303.10 211.50 0.70
14 207 332.40 255 265.40 0.81 203 333 300 267.50 0.82
15 0.50 302 6.70 120.90 0.42 0.50 301.20 69.40 117.60 0.41
16 1 913 1518 1026 1.25 1 910 1680 1022 1.25
17 1 358 1500 360.90 0.18 1 360 1680 363 0.19
18 3 307 20833.30 142.20 0.49 3 301.70 20833.30 120.10 0.42
19 2.30 314 20833.30 171.40 0.59 2.30 309.10 20833.30 150.90 0.52

contemporary power plants employ components that are well-insulated
and have low external heat loss. Furthermore, this assumption is fair for
real-world engineering calculations because most of the energy changes
within these components take the form of work rather than heat
dissipation.

5. The reference pressure is taken as 1.013 bar, and the reference
temperature is taken as 25 °C

Standard atmospheric conditions of 1.013 bar of pressure and 25 °C
of temperature are used as the reference state for exergy calculations. In
thermodynamic analysis, this choice is frequently used to maintain
uniformity and make comparisons with other studies more convenient.
The ambient environment is represented by the reference state, which is
used to assess the system’s usable work potential.

2.4. Mathematical modeling

Each parameter of the plant is coded through EES software and
validated through comparison with ‘Real output data from the reference
power plant’ at different loading conditions. The mathematical models
for all key components of the studied steam power plant cycle are briefly
reported as:

2.4.1. Boiler

In the boiler, the fuel combustion provides heat energy to the fluid
working in the boiler, which increases the pressure and temperature of
the working fluid. The enthalpy & entropy of the fuel were calculated
with equations (1) and (2), respectively. The mass flow rates at the inlet
and exit of the boiler are given in Equation (3).

h=CpAT €8]

T
s = Cplnf] (2)
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3)

mMiehie +Mahy 4+ Myshiy = Muzhiy +myhy +mshs +mshs 4y hy

The 1st Law efficiency was calculated as an output-input ratio. The
output in the boiler is the working fluid flowing energy while the input is
the fuel’s energy. Ahmadi and Toghraie [94] explained the relation for
ascertaining energy efficiency. Hence, the energy efficiency of the sys-
tem is simply defined as the ratio of energy outputs and inputs. The
expression for energy efficiency can be seen from equation (4):

_ myhy + mshs + mshs + My hyy — mahy — Myshay
! 1my6(hie)

(€3]

The exergy destruction is the difference between the exergy of the fluid
at the input and output points and is expressed as equation (5).

Ipoiter = X1 + X3 + X5 +X11+X16 — Xo — X14 — X6 %)

2nd law efficiency is a ratio of the working fluid exergy difference to
the exergy of the fuel and is expressed as equation (6).

X+ X3+ Xs + X — X — Xug

(6)
2 X16 — X17

2.4.2. High pressure turbine

The heat losses in turbines are neglected as mentioned before so the
turbine performance is calculated with its isentropic expansion work
expressed as equations (7) and (8). Equation (8) is referred to in [95],
including steam enthalpy at the turbine inlet and isentropic steam
enthalpy at the turbine outlet as shown below:

Wipr = my (hy — ha) @]
1 (h — hy)
=" (€))
M (hy — )
Exergy destruction would be the difference between exergy entering and
exergy leaving, along with the work done by the turbine. The perfor-
mance in terms of exergy efficiency is calculated as the output-input
ratio. The output is work that is achieved by the turbine, and the
input is the exergy that is provided to the turbine, as in Equation (9). The
exergy efficiency is expressed as Equation (10).

Inpr = X1 — X2 — Whpr ©
_ Wapr
N2 = X, — X, (10)

2.4.3. Intermediate pressure turbine

The performance of the turbines is calculated based on their isen-
tropic work, as the heat losses in the turbines are neglected. The work
done by IPT is shown in Equation (11). The energy efficiency is
expressed in terms of equation (12).

Wppr = ms(hs —hy) (€R)
ms(hs — hy)
=" (12)
M Mz (hs — hys)
The exergy destruction is calculated as the difference between the tur-
bine’s entering exergy and leaving exergy, with the work output as
expressed through Equation (13).

IIPT = X3 _X4 - WIPT (13)

The ratio of work with the exergy difference of the working fluid gives us
the 2nd law efficiency as expressed by equation (14)

_ WIPT
N2 X5 — X,

(14)
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2.4.4. Low pressure turbine
Likewise, the performance of a low-pressure turbine is also evaluated
with its isentropic work, as equations (15) and (16).

Wipr = mg(hs — h7) (15)
1 (he — h7)
=" (16)
M g (B — o)
The difference between exergy entering the turbine and exergy leaving
with work done gives us the exergy destruction value (equation (17).
The ratio of work done by the turbine to the exergy difference of the
working fluid gives us 2nd law efficiency, as in equation (18).

ILPT = X6 _X7 - ”LPT (17)
LPT
- 1
=X X a8

2.4.5. Condensate extraction pump

A condensate extraction pump (CEP) extracts the condensed fluid
from the condenser. The heat losses in pumps are neglected, so their
performance is also evaluated with their isentropic work as expressed in
equation (19).

Wegp = mg(hy — hg) 19
In the case of pumps, the input is the flow rate of working fluid, while the
output is the power that is transmitted to the fluid. The energy efficiency
in the case of CEP is expressed by equation (20).

_ Mg (hos — hg)

- (20)
M Werp

In pumps, input is the exergy at node 8 and the energy it uses to work.
While the output pump is the exergy of the working fluid at node 9. The
irreversibility in CEP is expressed by equation (21). The ratio of the
exergy difference of the working fluid to work done by the pump gives us
2nd law efficiency, as in equation (22).

Icgp = Xg — Xo + Wepp (21)
X9 — Xg
29 48 22
N2 Weep (22)

2.4.6. Boiler feed water pump

A boiler feed water pump (BFWP) transfers working fluid toward the
boiler. The heat losses in pumps are neglected so its performance is also
evaluated with its isentropic work, as in equation (23). The energy ef-
ficiency is given by equation (24).

Warwp = Mz (hig — hys) (23)

_ Mz (higs — hiz)
=

(24)

Warwp

In pumps, input is the exergy at the pump inlet, and the pump utilizes
energy. While the output pump is the exergy of the working fluid at node
14. The irreversibility of BFWP can be calculated through equation (25).
The ratio of the exergy difference of the working fluid to work done by
the pump gives us 2nd law efficiency, as in equation (26).

Igrwp = X13 — X14 + Warwp (25)
X154 — Xi3
=—— (26)
2 Warwp

2.4.7. Gland steam condenser
A gland steam condenser (GSC) is the component of the power plant
that captures and reuses the bleeding steam from the turbines and other
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components. The energy balance equation is given as equation (27). The
energy efficiency is given as the ratio between output and input, as
expressed by equation (28).

mohy = myohyo + Hlgsc 27)
myohio
= 28
1 m9h9 ( )

The exergy destruction is the difference between exergies at the inlet and
outlet, and the 2nd law efficiency is the ratio between outlet and inlet
exergies, as shown in equation (29). The exergy efficiency in the case of
the gland steam condenser is given in equation (30).

Iosc = X9 — X10 (29)
~ X0
N = X, (30)

2.4.8. Gas fuel heater

The hot working fluid from the boiler is passed through a gas fuel
heater (GFH) that increases the temperature of the fuel used in the
combustion chamber, which is then added to the cold working fluid line
to increase its temperature. GFH is a heat exchanger manufactured by
Dalian Energas Gas-system Co. It is a category IV, NEN-type exchanger
with 45 Bar and 250 °C maximum allowable pressure and temperature,
respectively. The maximum allowable tube pressure and temperature
are 93.1 Bar and 306.5/2C°. The shell has a capacity of 2081.5 L while
the tubes have 679.1 L. The mass flow rate through the gas fuel heater is
expressed through equation (31). The energy efficiency is given as the
ratio between the output and input of GFH and expressed through
equation (32).

myrhyy = myghs 31
myzhyp
T mnhn 32)

The exergy destruction is the difference between exergies at the inlet and
outlet, and the 2nd law efficiency is the ratio between outlet and inlet
exergies as expressed through equation (33). The exergy efficiency
through GFH is expressed as equation (34).

Iorn = X11 — X12 (33)
X12
=212 (34)
N2 Xn

2.4.9. Condenser

Cooling water is passed continuously through the condenser tubes
that extract the energy of the working fluid. The energy balance and
energy efficiency are given in equations (35) and (36), respectively:

mghg +mMighig = mzh; +Mushis +mighis (35)
The energy efficiency is given as the ratio of output and input. The
condenser fluid extracts the heat as an output while the working fluid
energy acts as an input.

_ Mug(hig — hig) —myshys

My — ) (36)

The exergy destruction is the difference between exergies at the inlet and
outlet, and the 2nd law efficiency is a ratio of the difference of condenser
fluid exergies to the difference of working fluid (equation (37), and
equation (8) shows the exergy efficiency of the condenser.

Iorn = X7 + X15+X18 — Xg — X190 37)

11

Energy Conversion and Management: X 26 (2025) 101025

_ X9 —X1s — X15
=y 38)

2.5. Real plant’s operational parameters

Balloki power plant is operated at four different loading conditions.
Each component of the power plant possesses different pressure, tem-
perature, mass flow rate, enthalpy, and entropy as detailed in Tables 5
and 6.

2.6. Al based approach using a random forest regression model

Random tree regression, a form of supervised learning, leverages
multiple decision trees with random feature selection and bootstrap
sampling to enhance predictive accuracy and prevent overfitting. The
model demonstrates robustness, low sensitivity to outliers, and the ca-
pacity to make precise predictions for datasets. The random forest
regression model operates by creating multiple decision trees from
subsets of the training dataset, combining their predictions to form a
robust and accurate model. Each decision tree is trained on a bootstrap
sample with random feature subsets, and the overall model employs
stopping criteria such as maximum depth, as illustrated in the archi-
tectural diagram in Fig. 2. The random forest regression model is
employed for prediction, mitigating overfitting, and handling complex
data by utilizing a 70:30 split between training and validation datasets.
The model is built on bootstrap samples and incorporates input variables
like enthalpy and temperature to predict energy and exergy efficiencies
in a power plant. The model is developed in Python and executed on
Google Colab. Hyper parameters, including 100 trees, maximum depth
of 10, and specific split and feature criteria, are set, and the model’s
predictions for energy and exergy percentages are compared to experi-
mental data, with average root mean square error (RMSE) and coeffi-
cient of determination (Rz) computed for evaluation. The Random
Forest model is trained on a Dell i7 laptop equipped with 8 GB of RAM,
requiring approximately 2 h for completion. The model is configured
with 100 trees, each constrained to a maximum depth of 10. Peak
memory usage is observed at approximately 3 GB, which is well within
the system’s 8 GB RAM capacity. The computational cost is predomi-
nantly influenced by the complex decision-making processes inherent to
each node within the ensemble of trees, despite the moderate size of the
dataset.

RMSE (Root Mean Square Error) is the selected metric for evaluating
the predictive performance of a Random Forest Regression (RFR) model
in estimating the energy efficiency and exergy efficiency of a power
plant for several reasons. The foremost reason is that both energy effi-
ciency and exergy efficiency are critical factors in assessing the overall
performance of a power plant, and any inaccuracies in their prediction
can have significant operational and economic implications. RMSE, by
penalizing larger errors more heavily, ensures that the model is sensitive
to deviations in efficiency values, which is essential for capturing the
nuanced variations in power plant performance. Additionally, the
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interpretability of RMSE, given that it is in the same units as the target
variables (efficiency values), facilitates a clear understanding of how
well the model aligns with the actual performance metrics relevant to
energy and exergy efficiency. As Random Forests are often optimized
based on minimizing squared errors, using RMSE and R? as the evalu-
ation metric ensures consistency with the model’s training objective.
First, the model is trained for each combination of hyper parameters on
the training dataset and evaluates its performance on a validation
dataset using the evaluation metric, RMSE. The data set is split into a
training set and a validation set by the ratio of 70:30. The model is
trained by considering both input features and target features. After
initial testing of the model, the importance of each feature is assessed.
Features with higher importance contribute more to the model’s pre-
dictions. The hyper parameters to develop the model are given in
Table 7.

The model is then fine-tuned to optimize the parameters that result
in the best performance on the validation set. This is based on mini-
mizing RMSE values. Regression results are explained by RSME and R?
values. RMSE is a measure of the average magnitude of errors between
predicted and actual values. Specifically, RMSE calculates the square
root of the average squared differences between predicted and actual
values. The visualized diagram of actual versus predicted values high-
lights the performance of the model. High deviation can be an indication
that the model needs to be improved further for better results. Hence,
lower RSME indicated a better model. A benchmark can be established
from the model results and can be used to optimize the performance of
the power plant. The use of Random Forest Regression (RFR) for pre-
dicting energy efficiency and exergy efficiency in a power plant offers
several advantages over alternative machine learning models. RFRM
excels in capturing complex and nonlinear relationships between input
features and efficiency metrics, making it well-suited for scenarios
where traditional linear models may fall short. Its robustness to over-
fitting is particularly beneficial when dealing with noisy data or datasets
with a large number of features, contributing to improved generalization
on unseen data. Additionally, RFRM provides insights into feature
importance, aiding in the interpretation of which factors significantly
influence energy and exergy efficiency. The ensemble learning
approach, combining multiple decision trees, enhances the model’s
overall robustness by mitigating individual tree biases and errors. The
R2 value measures the proportion of variance in the actual data
explained by the model.

3. Results and Discussions

The current study encompasses two main areas of investigation:
experimental analysis and the enhancement of performance using arti-
ficial intelligence methods.

3.1. Experimental analysis

This section addresses key research questions, i.e., how mass flow
rate, temperature, pressure, and loading conditions relate to metrics
such as exergy loss ratio, exergy destruction, exergy efficiency, energy
efficiency, and cycle efficiency.

Table 7

Hyper parameters for RFR model.
Hyper parameters Description
n estimator 100
max feature sqrt
max depth 10
bootstrap True
random state 42
min sample split 2
min sample leafl 1
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3.1.1. Energy efficiency

Energy efficiency in power plants is a critical factor in optimizing
performance, reducing fuel consumption, and minimizing environ-
mental impact. The current study evaluates energy efficiency by
analyzing variations in power plant components under different loading
conditions. Fig. 3(a) displays the variation in energy efficiency for
different components of the power plant under distinct loading condi-
tions. The results indicate that the energy efficiency slightly increases
with the increase in load, a trend also observed in previous studies
analyzing the energy systems. The energy balance analysis distinguishes
energy inflow and outflow from the system, which is equal to the energy
loss in the steam cycle. It is because of the lower isentropic efficiency or
actual efficiency in comparison with the designated efficiency of a
particular component. The lifespan of a component becomes short for
continuous operations at lower efficiency. Recent studies have high-
lighted various strategies to enhance energy efficiency in thermal power
plants. A 2022 study on hydroelectric plants in Brazil identified opti-
mized equipment use and rationalized energy application as key stra-
tegies for achieving potential annual savings of 2,910 MWh [96].
Similarly, research on high-efficiency motors in thermal power stations
emphasized their role in reducing electricity consumption and green-
house gas emissions [97]. The energy analysis of Bokaro Thermal Power
Station (210 MW capacity) [92] shows that the energy efficiency of the
boiler, turbine, condenser, and pump is 88.92, 78.9, 44.3, and 72.9 %,
respectively, along with 32.9 % overall energy efficiency. In another
study on Jawa Power-YTL, Paiton, Indonesia [89], the energy efficiency
of the boiler, turbine, condenser, and pump is 47.98, 54.66 to 84.53,
8.94, and 34.13 %, respectively. In the current study, the energy effi-
ciency of the boiler, HPT, condenser, and BFWP was 85.26, 76.75,
69.52, and 22.76 %, respectively, along with 26.19 % of overall cycle
efficiency at 44.5 % load. The energy efficiency of the boiler, HPT,
condenser, and BFWP was 85.92, 77.23, 77.57, and 26.62 %, respec-
tively, along with 27.90 % of overall cycle efficiency at 78.75 % load.
The energy efficiency of the boiler, HPT, condenser, and BFWP was
90.82, 79.38, 80.33, and 30.44 %, respectively, along with 28.23 % of
overall cycle efficiency at 87.80 % load. The energy efficiency of the
boiler, HPT, condenser, and BFWP was 91.18, 79.99, 95.68, and 30.57
%, respectively, along with 30.45 % of overall cycle efficiency at 98.80
% load.

Moreover, energy leakage and isolated steam turbines cause energy
losses. The steam enthalpy at the turbine exit possesses an inverse pro-
portional relationship with turbine output, condenser pressure, steam
quality, and moisture content. The moisture results in a drag force
around the turbine, which decreases its output. The output of the turbine
can be increased by decreasing the cooling water temperature in the
condenser, which ultimately enhances the steam generation rate and
energy efficiency. The condenser pressure directly impacts the steam
temperature and the turbine output. However, it should be higher than
the cooling medium temperature, as a lower steam temperature results
in higher moisture content, leading to blade erosion and lower turbine
efficiency. This issue can be addressed through steam reheating [98].
The condenser possesses maximum energy losses due to maximum en-
ergy input in the power cycle. Higher enthalpy drops around the turbine
are mainly responsible for higher energy efficiency. As the pressure
difference around the pump intake and outlet increases, the pump work
also increases at the cost of lower power consumption, and ultimately
turbine output starts increasing, which reflects on the higher thermal
efficiency of the plant. The lower enthalpy drops around the turbine
result in lower energy efficiency. By integrating Al-driven systems, en-
ergy losses can be minimized, and efficiency trends can be forecasted,
allowing for proactive operational adjustments. Additionally, advanced
heat recovery techniques, such as optimized HRSG systems, have been
found to improve plant efficiency significantly. Furthermore, increasing
reheat pressure and utilizing multiple reheating stages can mitigate
moisture-related turbine losses, extending the lifespan of turbine blades.
Improved insulation of boiler components, along with effective steam
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Fig. 3. Variation in (a) Energy efficiency, (b) Exergy efficiency for different components of the plant under distinct loading conditions.

leakage control measures, also contributes to minimizing energy dissi-
pation. These enhancements collectively support higher overall plant
efficiency, such as application of solar-assisted feedwater heaters [99],
aligning with global trends in sustainable power generation.

3.1.2. Exergy efficiency

Fig. 3(b) displays the trend of exergy efficiency for multiple com-
ponents of a steam powerplant concerning variation in loading condi-
tions. It is observed that exergy efficiency is highest for the intermediate
pressure turbine (IPT) and lowest for the condensate extraction pump
(CEP). Moreover, exergy efficiency generally increases with increasing
load, indicating a positive correlation between system performance and
operational capacity. Exergy efficiency is a critical measure of a system’s
ability to convert available energy into useful work, considering both
the quantity and quality of energy. Previous studies have emphasized
that optimizing turbine operation parameters, such as steam pressure,
temperature, and expansion ratios, significantly impacts exergy perfor-
mance, e.g. Kaushik et al. [98] found that the highest exergy loss occurs
in the boiler due to incomplete combustion, inadequate heat insulation,
and entropy generation. Similarly, other studies found that combustion
chambers, gas turbines, and heat recovery steam generators (HRSGs)
contribute up to 83 % of total exergy destruction [22,23]. The inter-
mediate pressure turbine is often designed for maximum exergy effi-
ciency to ensure the effective conversion of thermal energy into
mechanical work. This is achieved by optimizing the expansion process
at intermediate pressure levels, reducing energy losses associated with
excessive pressure differences and heat transfer inefficiencies. The IPTs
can achieve exergy efficiencies as high as 97.34 %, demonstrating their
role as a key component in improving overall plant efficiency [13].
Generally, the intermediate pressure turbine is designed for maximum
exergy efficiency to ensure that the available thermal energy is effec-
tively converted into useful mechanical work while considering various
thermodynamic, operational, and engineering factors. IPT operates at an
intermediate pressure level between the high-pressure (HP) and low-
pressure (LP) turbines. This allows for a more controlled and efficient
expansion of the steam. Operating at an intermediate pressure helps to
minimize the energy losses associated with excessive pressure differ-
ences and excessive heat transfer. IPT discharges steam to the condenser
where it is condensed back into liquid form. The pressure at which the
steam is condensed affects the back pressure on the turbine. The lower
condenser pressure can positively impact the turbine’s performance.
The increase in the turbine work output is because of rising steam
temperature and pressure. Moreover, the impact of temperature on the
cycle efficiency depends on pressure. Exergy efficiency in the boiler may
decrease with increasing reference temperature [100]. Irreversibility is
a consequence of friction between working fluid and hot combustible
gases during their flow inside boiler pipes and ultimately results in lower
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pressure. A slag in boiler pipes constrains heat transfer due to lower
thermal conductivity.

3.1.3. Exergy loss ratio

The exergy loss ratio is a parameter that quantifies the proportion of
available energy (exergy) lost due to irreversibilities in a system relative
to the total exergy input. It helps identify inefficient components and
optimize system performance. Mathematically, it is defined as the ratio
of exergy destruction within a component to the total exergy input to the
system. In a power plant, component efficiency is influenced by the
operating load. At lower loads, efficiency decreases due to higher rela-
tive heat losses and the off-design performance of turbines, boilers, and
heat exchangers. Conversely, at higher loads, efficiency improves as
components function closer to their design conditions, leading to lower
specific fuel consumption and reduced exergy destruction. For instance,
turbines achieve peak efficiency at full load by operating near their
design parameters. However, at partial loads, efficiency declines due to
increased steam leakage, lower steam flow rates, and higher mechanical
losses relative to power output. To enhance overall plant efficiency and
minimize exergy losses, it is important to optimize load distribution and
ensure components operate within their ideal range.

Fig. 4(a) represents the variation in the exergy loss ratio for different
components of the plant under varying loading conditions. It is observed
that the exergy loss ratio decreases for the plant’s components with
increasing percentage load. As the load increases, the components
become more efficient as they perform at rated capacity [101]. Specif-
ically, as the load increases, the components are subject to conditions
closer to their design specifications, optimizing their performance. This
efficiency improvement is a result of both higher load and mass flow
rates, which are tightly interlinked. Fig. 4(a) shows that a higher mass
flow rate of steam causes a reduction in the exergy loss ratio. At lower
load levels, where components operate below their rated capacity, ef-
ficiency suffers, and any deviation from the design point (either below or
above rated conditions) results in less efficient performance. When the
load increases, the mass flow rate rises, improving the overall perfor-
mance of the system. Higher mass flow rates, particularly of steam,
enhance the system’s thermodynamic efficiency by improving heat ex-
change processes and reducing losses. This led to a lower exergy loss
ratio, reflecting a better conversion of available energy into useful work.
The exergy loss ratio is the ratio of losses in useful energy to the avail-
able useful energy, i.e., exergy. The total exergy loss in the turbine is
lower than the condenser because of the exergy transfer into the cooling
water. This indicates that, despite energy being lost in both the turbine
and the condenser, the cooling process in the condenser results in more
effective energy dissipation, thus lowering the exergy loss relative to the
available exergy. At higher evaporation pressures, the irreversibility of
the pump, condenser, and turbine is generally higher, but the evaporator
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Fig. 4. Variation in (a) Exergy Loss Ratio, (b) Exergy destruction for different components of the plant under distinct loading conditions.

shows the opposite trend. The increment in evaporator pressure im-
proves overall exergy efficiency as the reduction in the irreversibility of
the evaporator is higher than that of the pump, turbine, and condenser.

The exergy destruction in the condenser is inversely proportional to
exergy efficiency. As inlet air pressure decreases, the exergy efficiency
increases, and the combustion efficiency decreases. This dynamic is
critical in understanding the underlying thermodynamic behavior of the
plant, as exergy analysis reveals trends and insights that traditional
energy analysis may not highlight. The analysis of results shows that the
condenser, despite its apparent higher energy losses, experiences greater
exergy losses in the boiler. This disparity emphasizes the importance of
exergy analysis in highlighting irreversibilities in the system that might
not be as apparent through conventional energy-based evaluations. By
identifying where exergy destruction occurs most significantly, the areas
for improvement can be prioritized to enhance the overall efficiency of
the thermodynamic system. Energy analysis depicts maximum energy
losses in the condenser, but exergy analysis represents maximum losses
in the boiler. The energy efficiency of an adiabatic turbine decreases
with a decrease in pressure ratio, but exergy efficiency increases with a
decrease in pressure ratio and an increase in cycle temperature. Except
condenser, all other components of the steam power plant experience
higher exergy loss due to the increase in atmospheric temperature. The
higher difference between the system and environmental temperature
creates an adverse impact on system performance. Factors like energy
loss from flue gases, heat dissipation, and incomplete combustion
significantly contribute to higher energy loss from the boiler. However,
factors like flue gas leakage contribute towards maximum energy loss
due to an increase in temperature difference between the atmosphere
and the system. The huge amount of energy loss in the boiler is mainly
because of flue gas leakage, incomplete combustion, and heat dissipa-
tion from the boiler surface. The energy losses from turbines and pumps
are primarily caused by mechanical friction. Therefore, improvements
should be made in reducing exergy losses for the optimized perfor-
mance, such as air preheating, higher fuel-to-air ratio, and oxygen
enrichment [102].

3.1.4. Exergy destruction

Fig. 4(b) highlights that the boiler is responsible for the highest
exergy destruction in the plant, primarily due to the chemical reactions
within the combustion chamber and the large temperature difference
between the combustion gases and the working fluid. This temperature
gradient leads to significant entropy generation, increasing exergy los-
ses. Exergy destruction in the boiler is directly proportional to the
combustion rate, as higher combustion rates exacerbate temperature
differences, leading to greater inefficiencies. The inefficient combustion,
heat transfer losses, and entropy generation are the primary factors that
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contribute to boiler exergy destruction. Regular combustion optimiza-
tion, including proper air-fuel ratio tuning and adjustment in the
burner, is indispensable to reduce boiler exergy destruction. The peri-
odic cleaning of the surface of heat exchangers and the application of
advanced boiler tube coatings prevent scaling and fouling. Moreover,
the appropriate insulation and sealing leaks significantly reduce heat
dissipation, while real-time steam quality monitoring certifies optimal
temperature and pressure. A proper boiler maintenance schedule,
including water treatment and blowdown, prevents corrosion and
scaling, which ultimately extends the lifespan of the boiler. The auto-
matic feedwater control and Al-based predictive maintenance can also
optimize boiler performance. Although the feed water heater can reduce
exergy destruction by preheating the feedwater, its effect is limited due
to the fundamental inefficiencies in the boiler’s combustion process.
Higher flue gas flow rates at the boiler exit result in increased exergy
destruction, driven by greater entropy generation. In the turbine, key
factors such as the pressure ratio, total reheat stages, and pressure drop
significantly impact exergy losses. A lower pressure ratio reduces work
output, leading to higher exergy destruction [21]. However, increasing
the number of reheating stages helps to mitigate exergy destruction by
optimizing energy conversion. Meanwhile, pressure drops increase en-
tropy generation, exacerbating exergy losses and reducing overall sys-
tem efficiency. The exergy destruction rate in the boiler decreases as the
gas turbine inlet temperature increases. This is because higher inlet
temperatures allow for more efficient combustion and energy conver-
sion, reducing thermal irreversibilities and, consequently, exergy losses.
At half load, increasing the condenser vacuum pressure reduces the
relative exergy destruction in both the turbines and condensers. This
improvement is due to the enhanced thermodynamic conditions, which
lead to more efficient expansion in the turbine and reduced irrevers-
ibilities in the condenser. While exergy destruction in the condenser
decreases, the turbine experiences an increase in exergy destruction as
the condenser pressure drops.

The overall effect of reduced exergy destruction in the condenser
outweighs the increase in the turbine, leading to an overall improvement
in both energy and exergy efficiencies. At full and half loads, the in-
crease in steam temperature contributes to a reduction in exergy
destruction in both the boiler and turbine. This is because higher steam
temperatures improve the heat transfer efficiency, reducing irrevers-
ibilities during energy conversion. The combined effects of higher steam
temperature and optimized pressure conditions ultimately result in
improved plant efficiency, both in terms of energy and exergy. This
highlights the crucial role of thermodynamic optimization in enhancing
the performance of power plant systems. Exergy destruction is a result of
entropy generation due to sharper temperature differences, chemical
reactions, higher temperature differences, and heat loss to the
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environment [103]. The higher isentropic efficiency in the case of IPT
results in lower exergy destruction. A higher isentropic efficiency is due
to lower temperature and pressure steam with a lower mass flow rate.
The degree to which an actual turbine resembles ideal (isentropic)
expansion is measured by its isentropic efficiency. Higher isentropic
efficiency implies less irreversibility and less energy destruction because
it results in less deviation from the ideal process. Isentropic efficiency
improves when irreversibility like friction, turbulence, and heat loss
decrease. In intermediate-pressure turbine (IPT), steam expansion takes
place at lower pressures and temperatures than in high-pressure stages.
The lower mass flow rates and lower steam density result in lower
frictional losses and heat transfer irreversibilities, which contribute to-
wards higher efficiency. The isentropic efficiency depends on multiple
factors like operating conditions, blade design of the turbine, and flow
path optimization rather than sole mass flow rates.

3.1.5. Relative exergy destruction

Fig. 5 shows relative exergy destruction across power plant compo-
nents under varying load conditions. The boiler experiences the highest
exergy destruction due to the significant irreversibilities inherent in the
combustion process and the large temperature difference between the
combustion gases and the working fluid. This temperature gradient in-
creases entropy generation, resulting in higher exergy losses. On the
other hand, the gas-steam condenser (GSC) exhibits the lowest exergy
destruction, primarily because of the minimal temperature change be-
tween its inlet and outlet, reducing irreversibility and entropy genera-
tion. This highlights the importance of temperature gradients in
determining exergy losses in power plant systems. Fig. 5 (a) shows the
relative exergy destruction ratio for inspected components at a 44.50 %
loading condition. The boiler has a maximum relative exergy destruc-
tion of 78.1 %, and GSC possesses the least relative exergy destruction of
0.1 % at a 44.50 % loading condition. Fig. 5 (b) shows the relative
exergy destruction ratio for inspected components at 78.75 % loading
condition. The boiler has a maximum relative exergy destruction of 80.4
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%, and GSC possesses the least relative exergy destruction of 0.1 % at
78.75 % loading condition. Fig. 5 (c) shows the relative exergy
destruction ratio for inspected components at 87.80 % loading condi-
tion. The boiler has a maximum relative exergy destruction of 81.5 %,
and GSC possesses the least relative exergy destruction of 0.1 % at 87.80
% loading condition. Fig. 5 (d) shows the relative exergy destruction
ratio for inspected components at 98.80 % loading condition. The boiler
has a maximum relative exergy destruction of 81.9 %, and GSC possesses
the least relative exergy destruction of 0.1 % at 98.80 % loading con-
dition. The boiler has the highest exergy destruction ratio, ranging from
78.1 to 81.9 %, due to chemical reactions under four different loading
conditions. The second-highest exergy destruction ratio ranges from 8.3
to 8.9 % in LPT due to exergy loss to surroundings, lower quality steam,
and lower isentropic efficiency. The rest of the exergy destruction ratios
include 3.4 to 4.5 % in the condenser, 1.8 to 2.9 % in the HPT, 1.8 to 2.6
% in IPT, 0.4 to 0.7 % in CEP, 0.1 % in GSC, 0.5 to 0.6 % in GFH, and 1.8
to 2.7 % in BFWP. The lower exergy destruction for pumps and turbines
is fundamental because of isentropic efficiencies, which involve design
considerations and tribological aspects. The design considerations have
the highest influence on energy efficiency. However, the economic as-
pects and spatial constraints should be taken care of during the design of
efficient heat exchangers with higher surface area. The irreversibility
rate of the condenser is decreased when the ambient temperature in-
creases, as the temperature difference between the steam and cooling air
temperature increases. It ultimately results in higher exergy efficiency
and lower exergy destruction. The exergy efficiency increases with the
increase in load. Therefore, it is suggested to run the powerplant at full
loading conditions. The boiler is the source of maximum exergy
destruction, so there is a lot of potential for improvement in the effective
performance of the boiler. LPT is the second-largest source of exergy
destruction. The work potential of the turbine can be improved. The
temperature difference between steam and flue gases reduces signifi-
cantly through increasing reheat pressure and the number of heaters,
which ultimately improves turbine work potential. The optimum mass
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fraction during reheating needs to be selected, as energy/exergy effi-
ciency decreases for a higher mass fraction [104].

3.1.6. Plant’s efficiency

Fig. 6 shows the plant cycle’s efficiency, including both energy and
exergy, under different loading conditions. Exergy efficiency is based on
the quality of heat energy input. It is given based on the 2nd law of
thermodynamics. Some of the heat must be rejected by the environment
or sink. So, efficiency calculation considers the maximum potential of

heat energy input by multiplying Q;;, by ( — %) This will result in a

lower available heat input compared to that calculated using the First
Law of Thermodynamics efficiency formula. This explains why exergy
efficiency remains higher than energy efficiency across all load condi-
tions [24]. The trends for exergy efficiency are higher than those of
energy efficiency, mainly because exergy efficiency accounts for system
irreversibilities and energy quality. The higher in-cylinder pressure and
temperature at higher loading conditions promote combustion effi-
ciency. Enhanced combustion at higher loads reduces irreversibilities,
leading to lower heat losses and improved exergy efficiency. Moreover,
exergy efficiency is a measure of the useful work potential of fuel,
whereas energy efficiency accounts for the ratio of output energy and
input energy without accounting for energy quality. At higher loading
conditions, the energy proportion converted to useful work increases,
which boosts exergy efficiency more as compared to energy efficiency.
At 44.5, 78.75, 87.8, and 98.8 % load, the energy efficiency is 26.19,
27.9, 28.23, and 30.45 %, respectively. The exergy efficiency at 44.5,
78.75, 87.8, and 98.8 % load is 31.33, 35.19, 35.3, and 36.04 %,
respectively. Moreover, these values are very well supported in previous
literature [105,106]. It is clear from the figures that cycle efficiencies,
including both exergy and energy, usually increase with the increasing
value of load. The reheat pressure ratio is directly proportional to the
plant’s efficiency. By incrementing the reheat pressure ratio for turbines,
fuel consumption also increases in the reheater, and the expansion ratio
in LPT gets reduced, consequently, EGT increases, and creates a positive
impact on the plant’s efficiency [107]. Energy efficiency deals with total
energy balance only; however, exergy efficiency deals with both irre-
versibilities and energy quality relative to the dead state. Energy effi-
ciency is a more competent parameter to evaluate the power plant’s
performance than energy efficiency. It is because it considers how much
input energy is transformed into useful work, along with the losses
identification in respective areas. The dead state is such a condition of
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Fig. 6. Variation in Cycle efficiency (Energy and Exergy) for different com-
ponents of the plant under distinct loading conditions.
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the power plant when the working fluid (steam) and all other system
components are in general equilibrium with the environment. It can be
inferred that the system does no useful work because of no pressure,
temperature, or chemical potential difference between the system and
the surroundings. For dead state characterization, the temperature (T)
is 25 °C or 298 K, the pressure (Py) is taken as 1 atm or 101.325 kPa, and
the working fluid exists as saturated liquid at Py and Ty. The dead state
serves as a reference point to ascertain exergy efficiency, exergy loss
ratio, and exergy destruction. The comparison between actual operating
conditions and the dead state of the power plant highlights the areas
where exergy losses are significant due to irreversibilities.

3.2. Al approach

A random tree regression model is developed to forecast energy ef-
ficiency and exergy efficiency by leveraging factors such as temperature,
enthalpy, entropy, and mass flow rate. The model performance is
assessed using the root mean square error (RMSE) metric. The dataset is
split into training and testing sets in a 70:30 ratio. The training data is
utilized for model construction and fine-tuning, while the test data is
employed for making predictions. After the model is completed using
the training data, it is evaluated using the test data to predict energy
efficiency and exergy efficiency under various load conditions. The re-
sults indicate that the average RMSE for energy efficiency is 0.0852,
while the average RMSE for exergy efficiency is 0.068. These RMSE
values suggest that the model demonstrates reasonable accuracy in
predicting both energy and exergy efficiency for the power plant. Fig. 7
(a) illustrates the comparison between the experimental and the pre-
dicted values of energy percentage at different stages of the plant i.e., at
45 %, 79 %, 88 %, and 99 % loads. The model efficiency closely matches
the experimental values, with the least discrepancy observed at 99 %
load, where the energy efficiency percentage is maximized. The overall
average RMSE for energy efficiency percentage remains at 0.0852. In
Fig. 7(b), a comparison between the experimental and the predicted
values of percentage energy at various stages of the plant is reported.
The comparison is also made for performance under 45 %, 79 %, 88 %
load, and 99 % loads. The overall average RMSE for the energy effi-
ciency percentage is 0.068. By analyzing the predicted results against
experimental data, the coefficient of determination R?)is computed for
various stages of the power plant. Remarkably, the overall average R?
value is 0.869 for energy analysis and 0.987 for exergy analysis.

Fig. 8 presents a comparison of experimental and predicted values
for both energy efficiency and exergy efficiency at specified load levels
of 44.5 %, 78.755 %, 87.8 %, and 98.8 %. The model’s ability to yield
low RMSE values underscores its effectiveness in accurately assessing
and forecasting energy and exergy efficiency. Consequently, this model
holds promise for precise predictions of the power plant efficiencies,
enabling optimization of plant operations. Nonetheless, it is worth
noting that further enhancements could be achieved by incorporating a
more extensive dataset for future applications.

The performance of the predictive model, the Random Forest
Regression (RFR) model, is evaluated using two key statistical metrics,
mainly the coefficient of determination (R?) and the root mean square
error (RMSE). The R? value quantifies the proportion of variance in the
actual data that the model can explain, with values closer to 1 indicating
a stronger correlation between predicted and actual values. A high R?
suggests that the model can capture underlying patterns effectively,
making it a reliable tool for prediction. Meanwhile, RMSE measures the
average deviation of the predicted values from the actual values, with
lower values indicating higher accuracy and precision. Fig. 9 compares
the actual and predicted results for energy efficiency for different power
plant stages through R? and RMSE. Fig. 9 (a) shows that the high-
pressure turbine (HPT) achieved an R? of 0.9643 and an RMSE of
0.097, demonstrating strong predictive accuracy but slightly higher
error compared to other stages. The intermediate-pressure turbine (IPT)
exhibited an R? of 0.9587 and an RMSE of 0.092, indicating reliable
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Fig. 8. Comparison of experimental values with predicted values of cycle ef-
ficiency of the plant.

performance with minimal deviation (see Fig. 9 (b). The low-pressure
turbine (LPT) followed a similar trend, with an R? of 0.9569 and an
RMSE of 0.084, reinforcing the model’s ability to predict efficiency with
a small margin of error (see Fig. 9 (c)). Fig. 9 (d) shows that the
condensate extraction pump (CEP) performed well, with an R? of 0.9599
and an RMSE of 0.091, reflecting a strong correlation between actual
and predicted values. Fig. 9 (e) displays that the gland steam condenser
(GSC) achieved one of the highest R? values at 0.9823 with an RMSE of
0.082, highlighting exceptional model accuracy. Fig. 9 (f) shows that the
gas-fuel heater (GFH) also showed excellent predictive capability, with
an R? of 0.9911 and an RMSE of 0.084. The boiler feed water pump
(BFWP) (see Fig. 9(g)) and the boiler (see Fig. 9(h)) itself demonstrated
high accuracy, with R? values of 0.9892 and 0.9882, respectively, and
RMSE values of 0.076 and 0.079, ensuring reliable efficiency pre-
dictions. Fig. 9 (i) shows that the condenser exhibited the best perfor-
mance, with the highest R% of 0.997 and the lowest RMSE of 0.062,
confirming near-perfect predictive accuracy. Overall, the model
demonstrated strong predictive capability across all stages, with
consistent performance and minimal error in estimating energy
efficiency.

Fig. 10 evaluates the model results for exergy efficiency for different
power plant stages. Fig. 10 (a) shows that the high-pressure turbine
(HPT) achieved an R? of 0.9576 and an RMSE of 0.08, indicating strong
predictive reliability with minor deviations. Fig. 10 (b) shows improved
performance with an R? of 0.9794 and an RMSE of 0.081, reflecting a
well-trained model with minimal error in the case of the intermediate-
pressure turbine (IPT). Fig. 10 (c) shows that the low-pressure turbine
(LPT) exhibited excellent predictive capability, with an R?0f0.9943 and
an RMSE of 0.064, signifying high correlation and accuracy. Fig. 10 (d)
shows that the condensate extraction pump (CEP) displayed exceptional
results, with an R? of 0.9956 and an RMSE of 0.063, suggesting good
alignment between actual and predicted values. Fig. 10 (e) shows that
the gland steam condenser (GSC) attained an R? of 0.9784 and an RMSE
of 0.078, highlighting robust model performance. The gas-fired heater
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(GFH) demonstrated outstanding accuracy, with an R? 0f 0.9979 and an
RMSE of 0.059, making it one of the best-performing stages (see Fig. 9
(f)). Similarly, the boiler feed water pump (BFWP) (see Fig. 10 (g)) and
the boiler (see Fig. 10 (h)) itself showed high reliability, with R? values
of 0.994 and 0.9916, respectively, and corresponding RMSE values of
0.062 and 0.064. Fig. 10 (i) shows that the condenser achieved the
highest precision, with an R2 of 0.996 and an RMSE of 0.061, confirming
high model accuracy. Overall, the model demonstrated consistent and
reliable predictive performance across all stages, ensuring accurate
exergy efficiency estimations with minimal deviations.

4. Conclusions

The present study aims to investigate and predict the performance of
a 400 MW steam power plant operating on the Rankine cycle through a
combined exergy-energy analysis and an artificial intelligence-based
random forest regression model.

The following conclusions can be drawn from the present study:

e The efficiency and performance of the turbine are significantly
influenced by factors such as steam quality, superheat, and reheat
pressure at the outlet of a low-pressure turbine. Additionally, there is
an opportunity to explore the potential of utilizing waste flue gas
from the power plant for practical purposes, which can contribute to
sustainability. Furthermore, to reduce exergy losses originating from
the boiler, minimizing the temperature difference between the sys-
tem and the environment is essential while increasing the heat
transfer area. This step can lead to improved overall system
efficiency.

The exergy efficiencies are calculated as 31 %, 35 %, 35 %, and 36 %
at load conditions of 44.50 %, 78.75 %, 87.85 %, and 98.80 %,
respectively. In contrast, the corresponding energy efficiencies were
found to be 26 %, 28 %, 28 %, and 30 %. The studied results highlight
significant room for enhancement, and it is noteworthy that the
energy efficiencies are lower than the exergy efficiencies at various
loading conditions, underscoring the importance of exergy effi-
ciency, which considers the quality of energy and its efficient con-
version into useful work. Even in cases where the overall energy
input is substantial, a process that effectively harnesses high-quality
energy can achieve high exergy efficiency. Furthermore, the boiler
serves as a source of maximum exergy destruction due to irrevers-
ibility associated with the combustion process. The inlet air tem-
perature and excess air fraction significantly affect exergy
destruction in the combustion chamber. However, preheating air can
reduce exergy destruction, increasing the fuel-to-air ratio and
evaporator pressure. Although the superheating of steam increases
the plant’s efficiency, it also limits the safety limit of the plant due to
metallurgical constraints. However, the boiler pressure increases
thermal efficiency, but it also increases the moisture content in
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Fig. 9. Model performance for energy efficiency at different stages of the plant: (a) HPT, (b) IPT, (c) LPT, (d) CEP, (e) GSC, (f) GFH, (g) BFWP, (h) Boiler,
(i) Condenser.

steam, which may erode turbine blades. Steam reheating can reduce
moisture problems.

IPT showed maximum energy efficiency, followed by GSP, Boiler,
and condenser. However, the CEP showed the lowest energy effi-
ciency, followed by BFWP. The energy efficiency for IPT is 89.75,
89.83, 90.94, and 92.05 % at 44.50, 78.75, 87.80, and 98.8 %
loading conditions. The energy efficiency for CEP is 17.6, 20.29,
21.43, and 22.08 % at 44.50, 78.75, 87.80, and 98.8 % loading
conditions. Similarly, the IPT showed maximum exergy efficiency,
followed by GSP, and CEP showed the least exergy efficiency, fol-
lowed by BFWP. The exergy efficiency for IPT is 90.44, 92.79, 93.0,
and 93.37 % at 44.50, 78.75, 87.80, and 98.8 % loading conditions.
The exergy efficiency for CEP is 19.84, 23.86, 24.79, and 25.98 % at
44.50, 78.75, 87.80, and 98.8 % loading conditions. Both energy and
exergy analysis show that IPT is running at maximum potential,
however, the CEP possesses energy losses. The frictional losses in
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bearings and seals in CEP, and cavitation due to lower suction
pressure, may result in pump impeller erosion, air ingress, and
fouling in pipelines. Regular monitoring of CEP is required for the
optimal performance of the plant, resulting in higher electrical pro-
duction. Furthermore, the improvement in heat recovery systems
and reduction in exergy destruction may also result in higher elec-
trical production of plants.

e The optimum number of feed water heaters should be used in the

power plant as more heaters will raise the boiler temperature and
reduce fuel consumption in the boiler. The plant’s efficiency de-
creases with the increase in atmospheric temperature. The heat los-
ses are higher for the lower temperature difference between the
system and the environment. The boilers can be improved through
chemical loop combustion or effective utilization of insulated ma-
terials and piping. Inlet pressure, temperature, construction design,
and materials can improve turbine performance. Condensers can be
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improved by increasing their heat transfer surface area and sealing to
prevent pressure drop, fluid leakage, and exergy loss.

In this study, energy and exergy are set as a base for the performance
evaluation of thermal systems. Although locations and magnitudes of
energy losses have been described in detail, there is still a need to
extend the analysis based on economic factors. Exergy analysis can
be combined with economics to carry out exergy-economic analysis
of power plants. Based on exergy destruction, a better estimation of
costs can be allocated to thermal systems. The Random Tree
Regression model is employed to predict energy efficiency and
exergy efficiency within the power plant. The dataset is divided into
training and testing data, utilizing a 70:30 ratio. The training data is
instrumental in constructing and fine-tuning the model, while the
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test data facilitates prediction generation. Comparing the predicted
results with experimental data, the Root Mean Square Error (RMSE)
is computed to assess model performance. Impressively, the overall
average RMSE for energy efficiency is found to be 0.0852, and for
exergy efficiency percentage, it is 0.068. These consistently low
RMSE values validate the model’s accuracy. The coefficient of
determination (R2) for various stages of the power plant is computed
by comparing the predicted results with experimental data. Notably,
the overall average R2 value for energy analysis is 0.869, while for
exergy analysis, it is 0.987. In addition, the study highlights the
model’s potential for optimizing power plant output parameters,
providing valuable insights for future improvements. Expanding the
dataset in subsequent research endeavors can further enhance the
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model’s precision. Moreover, the model’s versatility enables evalu-
ations across a wide range of values, contributing to the optimization
of various facets of power plant performance.

The current study applies AI models for the comprehensive analysis
of power plants, particularly evaluating energy and exergy efficiency
across different operational stages. While traditional thermodynamic
modeling has been extensively used, integrating machine learning
techniques such as Random Forest Regression modeling offers a more
data-driven and adaptive method for predicting energy efficiency.
Random Forest Regression modeling remains relatively underex-
plored in power plant analysis compared to conventional statistical
approaches and other AI models like Support Vector Machines
(SVM). However, it presents several advantages, making it a superior
choice. Unlike SVM, which can struggle with large datasets and high-
dimensional feature spaces due to its computational complexity and
sensitivity to hyperparameter tuning, Random Forest Regression
modeling is inherently robust to overfitting and can handle complex
relationships effectively. It is an ensemble learning approach that
aggregates multiple decision trees and enhances predictive accuracy
and generalizability, making it well-suited for complex, multi-stage
power plant systems. By leveraging Random Forest Regression
modeling for energy and exergy efficiency predictions, this study
introduces a framework that improves accuracy, reduces computa-
tional overhead, and enhances decision-making for optimizing
power plant performance.

In addition, this research primarily focuses on the thermal aspects of
the power plant—specifically, heat and energy losses in key com-
ponents such as the boiler, turbine, and condenser—rather than the
electrical generation process. However, by pinpointing components
with maximum efficiency potential and those operating at lower
efficiency, this study offers valuable insights for plant management
to implement targeted improvements, minimize energy losses, and
ultimately enhance electrical power generation.

4.1. Future outlook

Although the Random Forest Regression Model provides reliable
predictions regarding energy and exergy analysis, in the future, the
advanced machine learning models should be integrated with real-time
power plant data for better optimization. The integration of advanced
machine learning techniques offers significant potential for improving
the accuracy and robustness of energy and exergy efficiency predictions.
While Random Forest Regression has demonstrated reliability, future
studies can explore deep learning models such as Artificial Neural Net-
works (ANN) and Long Short-Term Memory (LSTM) networks. These
models can effectively capture complex nonlinear dependencies and
enhance predictive capabilities. Furthermore, hybrid approaches
combining machine learning with optimization techniques, such as
Genetic Algorithms (GA) or Particle Swarm Optimization (PSO), could
facilitate the determination of optimal operating conditions, leading to
minimized exergy losses and enhanced plant efficiency. The imple-
mentation of real-time monitoring through digital twin technology and
machine learning-driven predictive maintenance could further optimize
operations, ensuring early anomaly detection and continuous perfor-
mance improvements.

Expanding research to incorporate renewable energy sources, such as
solar thermal and biomass, into the Rankine cycle could improve sus-
tainability while reducing overall exergy destruction. Additionally,
exploring supercritical and ultra-supercritical steam cycles may provide
insights into their superior energy and exergy performance compared to
conventional systems. Exergy-based economic and environmental as-
sessments could further refine sustainability evaluations by considering
carbon footprint reduction, cost-effectiveness, and lifecycle impacts. The
effect of developing technologies, such as advanced thermal energy
storage systems and supercritical CO; cycles, should be investigated to
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improve the sustainability of large-scale power generation. The energy-
exergy analysis could also be extended to explore the impact on the
economic feasibility of power plants along with electricity production
optimization. An exergy-economic viability assessment of intended ef-
ficiency improvements can help in decision-making for policymakers
and operators of power plants. Al-driven fault diagnostics and dynamic
exergy analysis under varying load conditions could enhance opera-
tional efficiency and reliability. Investigating advanced waste heat re-
covery technologies, such as Organic Rankine Cycles (ORC) or Kalina
cycles, could further optimize rejected heat utilization. Lastly, bench-
marking energy and exergy performance across different power plants
would help establish industry-wide best practices and design improve-
ments. Addressing these research directions will contribute to the
advancement of intelligent energy management and sustainable power
plant operations.
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