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A B S T R A C T

This study aims to investigate and predict the performance of a 400 MW steam power plant operating on the 
Rankine cycle through a combined exergy-energy analysis and an artificial intelligence-based random forest 
regression model. The primary objective is to assess component-wise inefficiencies, identify key parameters 
influencing plant performance, and develop an optimized predictive model for performance evaluation. A 
mathematical formulation of energy and exergy balance equations is developed for each plant component and 
analyzed using the Engineering Equation Solver (EES). The study investigates temperature and pressure gradi
ents, as well as mass flow rates, across all integral components. A parametric analysis is conducted to evaluate 
the impact of operational parameters on cycle efficiency, exergy destruction, and exergy losses. The results 
indicate that the boiler experiences significant temperature and pressure gradients, leading to higher irrevers
ibility, whereas the gland steam condenser exhibits lower gradients, resulting in reduced exergy destruction. 
Among the plant components, the intermediate pressure turbine demonstrates the highest exergetic efficiency 
(90–93 %), while the condensate extraction pump has the lowest (20–26 %). Similarly, energy efficiency is 
highest in the intermediate pressure turbine (90–92 %) and lowest in the condensate extraction pump (18–22 %). 
The study further reveals that steam quality and reheat pressure at the low-pressure turbine outlet significantly 
influence overall power output and plant efficiency. The mass flow rates of steam through the high, intermediate, 
and low-pressure turbines follow a ratio of 110:124.3:143.6, with corresponding pressure ratios of 20:2.1:0.071. 
To enhance predictive accuracy, a random forest regression model is employed to forecast various performance 
indicators of the steam power plant. The model utilizes 100 decision trees with a maximum depth of 10, enabled 
bootstrapping, a fixed random seed of 42, and a minimum sample split of 2. The model’s predictions for energy 
and exergy efficiencies are validated against experimental data, with root mean square error (RMSE) and co
efficient of determination (R2) computed for accuracy evaluation. The study highlights that the random forest 
regression model can be utilized to predict and optimize the performance of steam power plants, thereby 
enhancing their efficiency and minimizing exergy losses.

1. Introduction

Steam power plants in many countries require extensive retrofitting 
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due to low efficiencies and high operational costs [1,2]. However, their 
relatively low initial capital costs, short commissioning times, and fuel 
flexibility make them more suitable for developing countries facing 
budget constraints. Globally, approximately 80 % of power generation 
comes from fossil fuel sources, while only 20 % is derived from 
renewable energy sources [3]. The power generation shortfall in 
developing countries is substantial, e.g., in Pakistan, the power shortfall 
in 2011 and 2012 was 5000 MW and 6000 MW, respectively. The situ
ation became worse in 2015 with the power generation shortfall 
reaching 7000 MW [4,5]. In 2014, the Pakistani government, in 
collaboration with the Chinese government, took serious initiatives to 
get rid of the energy shortfall. The China-Pakistan Economic Corridor 
(CPEC) secured a$34 billion investment for power projects in Pakistan. 
These projects are expected to contribute over 17,000 MW to the na
tional grid, fulfilling approximately 80 % of the country’s energy de
mand, according to the National Transmission and Dispatch Company 
(NTDC) [6]. The rising cost of petroleum fuels has led to a shift toward 
operating power plants with lower-cost fuel alternatives. The accessi
bility of liquified natural gas (LNG) in Pakistan because of subsidized 
imports from Qatar, is the prime justification for its utilization in steam 
power plants. In 2013–14, the primary energy mix entailed 44 % of 
energy requirements fulfilled by natural gas, and out of 44 %, 27.5 % of 
total natural gas was utilized in the power sector. In 2019, the LNG 
comprised 61.7 % of the power generation mix of Pakistan, followed by 
27.3 % hydel sources, 15.9 % coal, and 13.5 % oil [7]. The government 
first imported LNG in 2015 from Qatar to increase reliance on LNG and 
decrease reliance on other petroleum sources. In the financial year 
2021–22, a total of 373 MMBtu of LNG was imported at $3.4 billion [8]. 
In 2023, Pakistan’s LNG import capacity is projected to increase from 
17.1 mtpa in 2023 to 31.7 mtpa in 2030 [9]. The thermal power plants’ 
performance was traditionally assessed using energy analysis, primarily 
based on the first law of thermodynamics. However, recently, exergy 

analysis, rooted in the second law of thermodynamics, has emerged as a 
more comprehensive approach for evaluating and optimizing power 
plant performance [10,11]. Exergy analysis goes beyond energy analysis 
by not only identifying the root causes of irreversibility within the plant 
but also by evaluating the efficiency of individual components and 
quantifying the extent of heat losses. This analysis provides a clear 
picture of the system’s state relative to equilibrium and offers insights 
into effective natural resource conservation strategies. Irreversibility, 
often referred to as exergy destruction, represents the disparity between 
the actual useful work generated and the theoretically reversible 
work—an essential focus of exergy analysis. Furthermore, exergy anal
ysis differentiates between internal process irreversibility, energy losses 
to the environment, and the quality of energy lost during real-world 
operations [12,13].

Exergy is comprised of four components, with two main components 
(physical and chemical). The chemical exergy is linked with the devia
tion of the system’s chemical composition from the equilibrium state, 
while the physical exergy represents the maximum theoretical useful 
work achieved by the system during its interaction with the equilibrium 
state [14]. Excessive energy (heat) is required in the case of high- 
pressure components (evaporator) to change the saturation liquid 
state of feedwater to the saturation vapor state, which leads to a higher 
temperature drop of flue gases and ultimately leads to higher exergy 
destruction. However, lower energy (heat) is required in the case of 
intermediate/lower pressure components to superheat the vapors, as the 
economizer already preheats the feedwater. Steam quality plays a crit
ical role in exergy destruction. The lowering of steam quality below 
saturation leads to higher gross power of the steam turbine as the po
tential for work significantly increases, but moisture content increases, 
which results in corrosion of the turbine blade and reduces the turbine’s 
life. Moreover, the exergy destruction rate increases, which ultimately 
results in lower exergy efficiency. The exergy destruction rate in a 

Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Network
BFWP Boiler Feed Water Heater
CCPPs Combine Cycle Power Plants
CPEC China-Pakistan Economic Corridor
BFP Boiler Feed Pump
CEP Condensate Extraction Pump
CRH Cold Reheat
CWS Condensate Water Supply
CWR Condensate Water Return
CC Combustion Chamber
CWP Condensate Water Pump
CP Condensate Pump
Cp Specific Heat Capacity
EES Engineering Equation Solver
EGT Exhaust gas temperature
FWP Feed Water Pump
FP Feed Pump
GBMs Gradient Boosting Machines
GT Gas Turbine
GSC Gland Steam Condenser
GFH Gas Fuel Heater
h Enthalpy
HPT High Pressure Turbine
HRH High Reheat
HRSGs Heat Recovery Steam Generators
HP High Pressure
Hl Heat Losses

h Enthalpy
IPT Intermediate Pressure Turbine
I Exergy Destruction
J/kgK Joule per Kilogram Kelvin
K Kelvin
kW Kilo-watt
kg/s Kilogram per Second
kJ/kg Kilojoule per Kilogram
LPT Low Pressure Turbine
LP Low Pressure
LNG Liquified Natural Gas
MAPE Mean Absolute Percentage Error
MMBtu Metric Million British Thermal Unit
mtpa Million Tonnes per Annum
MW Mega-watt
ṁ Mass Flow Rate
NTDC National Transmission and Dispatch Company
η1 Energy Efficiency
η2 Exergy Efficiency
PSO Particle Swarm Optimization
Qin Heat Energy Input
RMSE Root Mean Square Error
R2 Coefficient of Determination
RFR Random Forest Regression
s Entropy
SVM Support Vector Machine
T Temperature
USD United States Dollar
W Work
X Exergy
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condenser increases with steam quality as the temperature of the cooling 
water increases due to a higher heat transfer rate. Elhelw et al. [15]
found an exergy destruction rate in the case where the boiler is at the top 
(75 %), trailed by the turbine (15 %) and the condenser (6 %). Increasing 
the temperature of both IPT and HPT by 45 ◦C resulted in power savings 
of 15.6 % at half load and 17.7 % at full load. The turbine power is 
inversely proportional to superheat/reheat pressure, but the turbine’s 
life is compromised for lower superheat/reheat pressure beyond the 
critical value. Aliyu et al. [16] found that the increase in cooling water 
temperature beyond the required limit resulted in improper condensa
tion and threatened aquatic life and environmental protocol, i.e., the 
cooling water is expelled to sea at a temperature 1 ◦C higher than the 
designated temperature if the cooling water flow rate decreased by 15 
%. Kaska et al. [17] found energy/exergy efficiencies of the system were 
10.2 %/48.5 % and 8.8 %/42.2 %, respectively, for two distinct condi
tions. Aljundi [18] found energy losses of 134 MW in the condenser, and 
13 MW of energy in the boiler was noted. The exergy loss ratio in the 
boiler (77 %), turbine (13 %), and condenser (9 %) was computed. 
Exergy efficiency of 25 % and energy efficiency of 26 % were achieved. 
Vosoogh[19] concluded that the energy and exergy efficiency increased 
by 0.19 and 0.37 % by decreasing combustion excess air from 0.4 to 
0.15. Moreover, with the decline in the temperature of smoke from 137 
to 90 ◦C, the energy and exergy efficiency were increased by 0.84 and 
2.3 %, respectively. Regulagadda et al. [20] reported a total exergy 
destruction of 84,193 kW and a total heat loss of 50,456.5 kW. The 
highest exergy destruction of 73,046 kW in the boiler and the lowest 
exergy destruction of 375 kW in the feed pump were noted. The boiler 
generated maximum entropy of 3312 kW/K and the boiler feed pump 
generated the least entropy of 0.03 kW/K. The factors, like throttling in 
valves, heat loss, and steam leakage, contribute to exergy loss.

Kaushik et al. [21] concluded that the highest energy loss occurred in 
the condenser, and the highest exergy loss occurred for the boiler. It can 
be credited to an incomplete combustion process, incongruous heat 
insulation, and entropy generation in the device. Pattanayak et al. [13]
observed the highest exergy efficiency of 97.34 % and energy efficiency 
of 95.68 % in the case of an intermediate pressure turbine. The 
condenser exhibited the lowest exergy efficiency of 29 % and an energy 
efficiency of 66.36 %. The exergy efficiency in the case of the 
compressor and HRSG was 93.96 and 87.20 %, respectively. Ameri et al. 
[22] observed that combustion chambers, gas turbines, duct burners, 
and heat recovery steam generators are the main sources of irrevers
ibility, entailing 83 % of total exergy loss. In another study, Ameri et al.
[23] accounted for maximum energy losses of 306.9 MW from the 
condenser (81 % of total exergy destruction) and 67.63 MW from the 
boiler (5 % of total exergy destruction). The maximum irreversibility 
can be accounted for in the boiler because of the higher temperature 
associated with the combustion reaction, and it can be decreased by 
decreasing the air–fuel ratio and preheating the combustion air. Isam 
Aljundi [18] also concluded that the exergy loss ratio in the boiler can be 
reduced through air preheating and reducing the fuel-to-air ratio. 
Ahmadi and Toghraie [24] observed 32 % energy efficiency and 35.2 % 
exergy efficiency with a total exergy destruction of 368.18 MW. The 
energy and exergy losses in the condenser were 296.8 MW and 5.63 MW, 
with an exergy loss ratio of 69.8 and 1.53 %, respectively. The energy 
and exergy losses in the boiler were 42.9 MW and 315.39 MW, with an 
exergy loss ratio of 10.16 and 85.66 %, respectively. Rudiyanto et al. 
[25] found an exergy efficiency of 26.36 %, and this efficiency increased 
to 94.04 % at 41 bar pressure. They found a direct relation between 
output pressure, steam input quality, gross power, and efficiency of the 
turbine. The irreversibility of the boiler, condenser, turbine, LPH, HPH, 
pump and deaerator were 1677003 kW (17.28 %), 738122 kW (7.61 %), 
152894 kW (1.58 %), 111881 kW (1.15 %), 470520 kW (4.85 %), 
193494 kW (1.99 %) and 1081771 kW (11.15 %), respectively. Pilankar 
and Kale [26] revealed through exergy analysis that the highest exergy 
destruction of 238.6 MW was accounted for by the boiler, which rep
resents 90.8 % of the total exergy destruction of the plant. Exergy 

destruction of 4.426 MW was accounted for by the condenser, which 
represents 1.78 % of total exergy destruction. The total energy and 
exergy loss for the plant were 89.17 MW and 260.7 MW. It was observed 
that the energy efficiencies of components were higher than the exergy 
efficiencies.

Danish et al. [27]explored the transformation of energy models to 
align with machine learning techniques for optimizing combined cycle 
power plants (CCPPs). Using the Broyden Fletcher Goldfarb Shanno 
(BFGS) algorithm, the proposed numerical model improved operational 
efficiency, increasing power output by 2.23 % from 452 MW to 462.1 
MW through optimized environmental factors. The study highlights the 
potential of AI-based modeling for forecasting and decision-making in 
complex energy systems. In addition, Assareh et al. [28] proposed a 
system that integrates a Multi-Effect Distillation (MED) unit with 
Thermal Vapor Compression (TVC) and dual-pressure heat recovery 
steam generators. The study aims to reduce costs, lower CO2 emissions, 
and improve both power output and energy efficiency through optimi
zation using artificial neural networks and genetic algorithms with EES 
and MATLAB. The upgraded system boosts energy efficiency by over 10 
% and reduces CO2 emissions by 23 %, and improves the exergy effi
ciency from 31 % to 41 %. Beiron et al. [29] studied the role of combined 
heat and power (CHP) plant flexibility as a strategy for handling vari
ations while assessing cost-effectiveness. Using an energy system opti
mization model, the study examines the interaction between electricity 
and district heating in a Swedish price area, and the results indicate that 
CHP investments are primarily driven by district heating demand rather 
than electricity needs, resulting in limited capacity to influence elec
tricity system variations. Moghaddam et al. [30] performed an analysis 
of variance through a central composite design technique to examine the 
impact of pressure, temperature, and steam/feed ratio. They achieved 
optimum values of 900 ◦C temperature, 4 bar pressure, and 0.675 
steam/feed ratio.

Artificial Intelligence (AI) techniques have been extensively 
employed to predict the performance of steam power plants, offering 
substantial improvements in operational efficiency and system reli
ability. These AI-driven models harness historical operational data to 
identify complex patterns and correlations that may elude conventional 
analytical approaches. Moreover, machine learning algorithms facilitate 
adaptive learning, allowing for continuous model refinement and real- 
time performance monitoring. This dynamic capability enables predic
tive maintenance, minimizing the risk of equipment failures and un
planned downtime. The integration of Artificial Intelligence 
methodologies into power plant operations not only optimizes perfor
mance but also enhances the sustainability of energy production by 
improving resource utilization and reducing operational costs. Although 
various AI models have been employed, including Support Vector Ma
chines (SVM), Artificial Neural Networks (ANN), and Gradient Boosting, 
but Random Forest regression model is often regarded as a superior 
choice for predicting the performance of steam power plants. SVMs are 
adept at handling non-linear relationships and delivering robust classi
fication and regression outcomes; however, they often require extensive 
training time due to their computational complexity, especially with 
large datasets. ANNs are highly effective in modeling intricate, non- 
linear systems and extracting valuable insights from historical data, 
yet they also demand significant computational resources, leading to 
prolonged training durations. Gradient boosting machines (GBMs) 
enhance predictive accuracy through iterative error reduction, but they 
are susceptible to overfitting without meticulous tuning. In contrast, the 
random forest regression model (RFRM) provides distinct advantages 
through its ensemble learning methodology, which combines multiple 
decision trees to deliver high accuracy and robustness. This approach 
not only effectively reduces overfitting but also efficiently manages 
noisy or imbalanced data, offering reliable predictions and valuable 
insights into feature importance. These attributes make the RFRM 
particularly well-suited for complex performance forecasting in steam 
power plants, Table 1 mentions the advantages and disadvantages of the 
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AI models used for optimization of power plant parameters and 
performance.

Many authors have used artificial intelligence models for predictions 
of the performance of power plants. Haddadin et al. [45] used an arti
ficial neural network (ANN) model to predict the behavior of variables 
and power output. Similarly, ANN was used by Park et al. [46] for en
ergy demand and supply matching in PV power generation, with an 
accuracy of the model being 13.2 %. Moreover, ANN models using 
metaheuristic optimization algorithms have also been used to predict 
power plant performance. Moustafa et al. [47] used a humpback whale 
optimizer to predict energy efficiency and exergy efficiency with a 
correlation coefficient ranging from 0.98 to 0.99. Also, Esfandyari et al. 
[48] used ANN along with particle swarm optimization (PSO) to forecast 
the heat transfer rate, having correlation coefficients of the model being 
greater than 94.84 %. Furthermore, water desalination using heat re
covery of a real thermal power plant was done by Assareh et al. [49]
where the ANN model was deployed to compute exergy efficiency, 
carbon dioxide emission, and net power output. Similarly, Esfandyari 
et al. [50] also used an adaptive neuro-fuzzy inference system (ANFIS) 
tuned by a particle swarm optimization (PSO) algorithm to predict sulfur 
removal from diesel fuel with favorable results. SVM has also been used 
to optimize various output parameters of power plants. Cai et al. [51]
used PSO–SVM classifier for arc-fault detection of solar PV power gen
eration systems. Furthermore, Ashraf et al. [52] used SVM to achieve the 
efficient power production operation of a 660 MW coal power plant. 
Moreover, Lin et al. [53] predicted photovoltaic power generation using 
SVM accurately, whereas Tuerxun et al. [54] used SVM for fault diag
nosis of wind turbines. Similarly, Singh et al. [55] used a Gradient 
Boosting approach to forecast wind production with a mean absolute 
error (MAE) value of 0.0277, a mean absolute percentage error (MAPE) 
value of 0.3310, and a root mean square error (RMSE) value of 0.0672. 
Also, Mitrentsis et al. [56] predicted solar power production accurately 
using Gradient Boosting.

The application of AI, specifically the RFRM, a relatively underutil
ized algorithm in power plant analysis, presents a novel approach to 
energy and exergy evaluation. Random Forest excels in managing large 
datasets, accurately capturing complex non-linear interactions, and 
significantly enhancing predictive accuracy. Furthermore, it minimizes 
overfitting by aggregating predictions from multiple decision trees, 
thereby reducing variance and improving model generalization. This 
method provides robust and reliable insights into thermal system 

performance, streamlining analytical processes and advancing the pre
cision and depth of system evaluation in power plants. The random 
forest regression model has been successfully employed to make pre
dictions in several applications. Huang et al. [57] used the random forest 
regression model to predict carbon peak predictions with an R2 of 0.94. 
Danish et al. [27] explored the transformation of energy models to align 
with machine learning techniques for optimizing combined cycle power 
plants (CCPPs). Using the Broyden Fletcher Goldfarb Shanno (BFGS) 
algorithm, the proposed numerical model improved operational effi
ciency, increasing power output by 2.23 % from 452 MW to 462.1 MW 
through optimized environmental factors. The study highlights the po
tential of AI-based modeling for forecasting and decision-making in 
complex energy systems. Random forest regression model (RFRM) has 
been successfully employed to make predictions in several applications. 
Achmad et al. [58] used RFRM to forecast coal power plant retirement 
ages, whereas Alexandra et al. [59] predicted solar power generation 
using the RFRM model. Furthermore, RFRM has been used to predict 
solar irradiance at high altitudes [60] and at different sunshine hours 
[61]. A regression model using random forest has also been applied to 
predict wind power production [62–65] as well as to successfully predict 
wind turbine noise [66–68]. RFRM has even been used to predict the 
mechanical properties of substances like aluminum alloys [69], and the 
compressive strength of basalt fiber [70], as well as to predict air–water 
interfacial tension in conventional and peptide surface-active agents 
[71]. RFRM has also found its use in applications like fatigue life pre
diction of bending polymer films [72] and estimation of moisture in live 
fuels [73]. Moreover, RFRM has been used for effective prediction and 
analysis of commercial wood fuel blends used in a typical biomass power 
station [74] as well as prediction of harbor fuel consumption [14], 
finding that the meteorological factors collectively add value to fuel 
consumption prediction and improve its accuracy. RFRM has also suc
cessfully been able to optimize biodiesel production by successfully 
predicting biodiesel yield [75]. In short, the machine learning model 
using random forest can be successfully used to make accurate pre
dictions in many important applications and hence in turn lead to system 
optimization and efficiency improvements [76].

The primary objective of this study is to conduct an exergy analysis of 
the Balloki thermal power plant (a reference thermal power plant and 
real data are used), which has a unit capacity of 400 MW. The analysis is 
performed using the Engineering Equation Solver (EES) software [24]. 
The current study aims to investigate the factors affecting power plant 
performance to optimize power plant efficiency. However, the innova
tion lies in artificial intelligence (AI) integration with exergy analysis for 
power plant performance optimization. The current study investigates 
the influence of pressure, temperature, and mass flow rate variations 
across each process component on a power plant’s energy and exergy 
performance. Moreover, it advances an AI approach for optimizing the 
plant’s performance, which improves the accuracy of performance 
predictions in comparison with conventional methods. To achieve the 
set objective, the principles of mass, exergy, and energy conservation are 
applied to each component of the Balloki power plant. Such a compre
hensive analysis ascertains the fundamental performance indicators 
such as exergy efficiency, energy efficiency, relative exergy destruction, 
exergy loss ratio, and overall plant efficiency. Engineering equation 
solver (EES) software permits the classification of optimal operational 
parameters for power plant performance enhancement. The novelty of 
current research lies in the unique combination of exergy analysis and 
AI-based optimization to identify inefficiencies and optimize Balloki 
power plant performance, which has been underexplored in the previous 
literature. The initial phase of this study involves recognizing the 
imperative need for efficient energy utilization and establishing clear 
objectives to attain these goals. Subsequently, exergy analysis is 
employed to identify the root causes, positions, and magnitudes of 
process inefficiencies within the system. The empirical approach is then 
integrated with AI optimization for the improvement in power plant 
performance. Table 2 presents a comparative analysis of the current 

Table 1 
Comparison of commonly used AI methods with Random Forest for power plant 
performance optimization.

AI Method Advantages Disadvantages

Support Vector 
Machines 
(SVM)

Effective in handling non- 
linear relationships [31]
Delivers robust outcomes 
[32]

Computationally intensive, 
especially with large datasets 
[33]
Requires extensive training time
[34]

Artificial Neural 
Networks 
(ANN)

Highly effective in 
modeling complex 
systems [35]
Capable of extracting 
valuable insights from 
historical data [32]

Demands significant 
computational resources [36]
Prolonged training durations [37]

Gradient 
Boosting 
Machines 
(GBM)

Enhances predictive 
accuracy through iterative 
error reduction [38]

Susceptible to overfitting without 
meticulous tuning [39]
Computationally expensive [40]

Random Forest 
Regression 
(RFR)

High accuracy and 
robustness through 
ensemble learning [41]
Effectively reduces 
overfitting [42]
Manages noisy or 
imbalanced data well 
[43]

Random Forest, while accurate, 
can be more difficult to interpret 
than simpler models like decision 
trees [44]
Requires careful tuning of 
parameters to optimize 
performance [42]

M.A. Ijaz Malik et al.                                                                                                                                                                                                                          Energy Conversion and Management: X 26 (2025) 101025 

4 



Table 2 
A comparative analysis of the current study and the literature review.

No Powerplant name/ 
country/reference

Capacity Energy efficiency (%) Exergy efficiency (%)

Boiler Turbine Condenser Pump Cycle Boiler Turbine Condenser Pump Cycle

1. Eastern Province, Saudi 
Arabia [77]

1240 MW − − − − − − 92.05 62.98 − −

2. Montazeri Steam Power 
Plant, Iran [78]

200 MW 90.55 78.28(HPT)87.34 
(IPT)80.62  
(LPT)

− 68.1 (BFP)69 
(CWP)

32 44.5 87.67 (HPT) 
91.08 (IPT) 
82.62  
(LPT)

− 90.5 (BFP)83 
(CWP)

35.2

3. Yatagan Power Plant, 
Turkey [79]

630 MW − − − − 37.01 40.84 80.1 62.72 60.66 (CP) 
64 (CP,2)60.85 
(FWP)

31.95

4. 412 MW Power Plant 
[80]

412 MW 96.90 (CC) 88.12 (HPT)95.68 
(IPT)86.82  
(LPT)

66.36 − − 77.48 (CC) 93.41 (HPT) 
97.34 (IPT) 
86.96  
(LPT)

29 − −

5. 32 MW coal-fired power 
plant [81]

32 MW − − − − 25.38 − − − − 23.17

6. Can Powerplant, Turkey 
[79]

320 MW − − − − 42.12 48.23 84.85 (HPT) 
96.12 (IPT) 
90.03  
(LPT)

80.22 60.82 (CP)63.99 
(CP,2)58.83  
(FWP)

37.88

7. Neyveli Powerplant [82] 50 MW 91.9 26.91 − − − 58.62 81.2 − − 32.46
8. Al-Hussein power plant, 

Jordan [83]
396 MW − − − − 26 43.8 73.5 26.4 82.5(BFP) 24.8

9. Shenyang CHP Power 
Station [84]

50 MW 84.89 78.5 − 84.77 (FWP) − 30.04 49.21 − 63.38(FWP) −

10. Orhaneli, Bursa Province, 
Turkey [79]

210 MW − − − − 37.63 45.77 90.51 (HPT) 
90.97 (IPT) 
64.42  
(LPT)

68.98 90.68 (CP)92.42 
(CP,2)75.03  
(FWP)

35.49

11. 250 kW Steel Industry 
Power Plant [85]

250 kW − − − − − 76.1 (Case 
a)72.1 
(Case b)

80.0 (Case a) 
77.0 (Case b)

44.7 (Case a) 
63.8 (Case b)

71.5 (Case a)73.9 
(Case b)

48.5 (Case a) 
42.2 (Case b)

12. Soma Station [79] 500 MW − − − − 36.08 41.43 85.12 (HPT) 
89.99 (IPT)86  
(LPT)

47.33 65.67 (CP) 
65.77 (CP,2)70.36 
(FWP)

32.35

13. MARAFEQ Power Plant, 
Arab Saudi [86]

2700 MW 61.8 (CC) 82 (GT) − 92 (Air 
Compressor)

34.33 68.3 (CC) 91.6 (GT) − 94.9 (Air 
Compressor)

32.38

14. Kangal [79] 457 MW − − − − 37.19 36.45 90.86 (HPT) 
92.94 (IPT) 
84.19  
(LPT)

62.65 41.24 (CP)58.91 
(CP,2)60.5  
(FWP)

28.55

15. Malay Peninsula 396 MW 
CC Powerplant [87]

396 MW − − − − − 41.5 92.7 (HPT) 
92.1 (IPT)67.5  
(LPT)

90.83 96.31 (Air 
Compressor)

−

16. Kostolac B Power Plant 
[88]

348.5 
MW

− − − − − 46.4 89.7 (HPT) 
91.6 (IPT)79.3  
(LPT)

57.8 82.7 (1)85.0 (2) 35.8

17. Jawa Power-YTL, Paiton, 
Indonesia [89]

610 MW 47.98 54.66–84.53 8.94 34.13 − 48.06 93.23–99.92 0.796 33.03 26.36

18. Afsin Elbistan [79] 1440 MW − − − − 42.64 39 94.22 (HPT) 
97.89 (IPT) 
86.16  
(LPT)

59.74 78.73 (CP)78.74 
(CP,2)78.51  
(FWP)

32.46

(continued on next page)
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Table 2 (continued )

No Powerplant name/ 
country/reference 

Capacity Energy efficiency (%) Exergy efficiency (%)

Boiler Turbine Condenser Pump Cycle Boiler Turbine Condenser Pump Cycle

19. Seyitomer Powerplant 
[79]

600 MW − − − − 38.03 36.75 96.75 (HPT) 
95.98 (IPT) 
85.45  
(LPT)

47.33 81.49 (CP)83.29 
(CP,2)86.53  
(FWP)

31.50

20. 23.8 MW Powerplant 
[90]

23.8 MW 91.87 (1) 
92.58 (2)

93.84 (1)93.19 (2) − 58.3 (FP,1)61.8 
(FP,2)

35.29 
(Cycle1) 
32.07 
(Cycle2)

42.06 (1) 
42.28 (2)

73.47 (1) 
72.24 (2)

− 33.86 (FP,1)36.29 
(FP,2)

66.3 (Cycle1) 
64.33 (Cycle2)

21. Catalagzi Power Plant 
[79]

300 MW − − − − 37.88 45.47 90.32 (HPT) 
88.93 (IPT) 
88.6  
(LPT)

54.72 67.37 (CP)66.82  
(CP,2)69.78  
(FWP)

35.19 

22. South Pars Gas Complex 
[91]

− 89.59 89.5 86.4 81.5 41.2 40.5 95.78 54.6, 63.9 96.68 33.6

23. Bokaro thermal power 
station [92]

210 MW 88.92 77.31,84.6,78.9 44.3 72.9 32.9 44.3 83.2,85.3,81.9 49.3 83.9 34.5

24. GT Power Plant, Egypt 
[93]

125 MW − − − − 28.8 71.2 95.3 − 87.4 27.1

Current Work (Balloki Power Plant in Pakistan-400 MW)

‘Components /Loading conditions Energy efficiency (%) Exergy efficiency (%)

44.5 % 78.75 % 87.80 % 98.80 
%

44.5 
%

78.75 % 87.80 % 98.80 %

1 Turbine HPT 76.75 77.23 79.38 79.99 83.16 86.75 87.63 87.94
IPT 89.75 89.83 90.94 92.05 90.44 92.79 93.00 93.37
LPT 68.26 69.34 69.99 72.68 69.27 70.65 71.29 74.19

2 CEP 17.60 20.29 21.43 22.08 19.84 23.86 24.79 25.98
3 GSC 83.58 84.67 89.26 89.36 71.43 72.50 73.64 74.73
4 GFH 55.50 57.00 59.24 69.90 30.99 33.75 37.01 51.05
5 BFWP 22.76 26.62 30.44 30.57 27.59 33.59 33.85 36.47
6 Boiler 85.26 85.92 90.82 91.18 39.11 40.85 42.51 43.05
7 Condenser 69.52 77.57 80.33 95.68 37.73 46.96 50.91 55.95
8 Cycle 26.19 27.90 28.23 30.45 31.33 35.19 35.30 36.04
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research findings with the existing literature, highlighting the unique 
contributions of this study.

2. Methodological framework and data analysis approach

In the current study, the liquefied natural gas (LNG)-fueled Balloki 
power plant is selected for the exergy analysis. The current study only 
observed the Rankine process, which is a part of the entire Balloki power 
plant (the whole power plant is a Combined Cycle Power Plant with a 
cumulative capacity of 1223 MW). The boiler serves as a Heat Recovery 
Steam Generator in a combined cycle power plant. The plant is equipped 
with a 400 MW three-cylinder turbine, including a higher-pressure 
turbine (HPT), intermediate pressure turbine (IPT), and lower pressure 
turbine (LPT). The HPT has a total of 30 stages, IPT has 18, and LPT has 
10 stages. The chemical composition of fuel is shown in Table 3.

2.1. Plant layout

The schematic diagram of the Rankine cycle power plant is displayed 
in Fig. 1 (a). The water tube boiler produces steam to run the steam 
power cycle. Water is pumped through a boiler feed water pump 
(BFWP), enters the boiler at point 14, and is heated through LNG com
bustion. The boiler provides dry superheated steam at a designated 
temperature. The starting section of the boiler, from point 14, possesses 
a higher temperature compared to the ending portion of the boiler. 
Therefore, the generated high-pressure steam is sent to high-pressure 
steam (HPT) as shown in point 1. The low-pressure steam at the end 
of the boiler is sent to the low-pressure turbine, as shown in point 5. The 
fuel used for burning is pre-heated in a Gas Fuel Heater (GFH) from the 
water coming out from the boiler (point 11) to increase the efficiency of 
the cycle. The remaining water released from GFH at point 12 was re- 
entered into BFWP at point 13. The produced steam then rotates the 
blades of the steam turbine (ST), which is coupled to a synchronous 
generator to generate electrical energy. There are 3-cylinder turbines, 
including High Pressure (HPT), Intermediate Pressure (IPT), and Low 
Pressure (LPT). HP superheated steam (HP superheater) with 587 ◦C and 
170 bar drives HPT and then returns to HRSG as Cold Reheat (CRH), 
which passes through the Reheat portion of the boiler (point 2) and is 
converted into Hot Reheat (HRH) with 587 ◦C and 35 bar. HRH is now 
used to drive IPT as shown in point 3. The low-pressure steam from the 
boiler (point 5) and IPT (point 4) is entered into LPT at point 6. Finally, 
the LP superheated steam at 273 ◦C and 4 bar drives the LPT and is then 
condensed in the turbine. The valves are used to regulate steam pressure 
for the smooth operation of power plants. The steam from LPT directly 
comes to the main condenser at point 7. Point 18 shows the cooling 
water supply to the condenser, and point 19 shows the cooling water 
return from the condenser. CEP picks condensate water at point 8, and 
this water is then transferred to GSC at point 9, where it heats up by 1 ◦C. 
The other side of GSC is linked with a router steam turbine to receive 
leaked steam, and it is used for heating condensate water, as shown in 
point 10. The exhaust steam is then allowed to condense through a water 

condenser, which sucks steam at very low pressure and allows steam 
expansion through the turbine at lower pressure (− 85 kPa to − 93 kPa). 
The condensate, along with some fresh makeup feed water, is again fed 
into the boiler by a condensate extraction pump (CEP), which passes 
through a Gland Steam Condenser (GSC). The technical specifications 
and details of the steam power plant are displayed in Table 4. The gas 
cleaning system in the reference LNG-fired power plant is designed to 
control emissions and ensure compliance with environmental standards. 
While LNG combustion is cleaner than coal or oil, it still produces ni
trogen oxides (NOx), carbon monoxide (CO), and trace amounts of sulfur 
oxides (SOx) and particulates. To mitigate NOx emissions, an ammonia- 
based flue gas cleaning system, such as Selective Catalytic Reduction 
(SCR), is employed. In the studied system, instead of using an adsorbent, 
ammonia (NH3) is injected into the flue gas, reacting with NOx to form 
harmless nitrogen (N2) and water vapor.

Fig. 1 (b) shows the actual temperature-entropy (T-S) diagram of the 
Rankine cycle, which consists of the following processes;

1–2 (HPT): High-pressure steam enters the turbine, undergoing an 
isentropic expansion process with negligible change in entropy.

2–3 (Reheating): The steam is reheated to increase its energy con
tent before entering the next stage of expansion.

3–4 (IPT): Reheated steam enters the intermediate pressure turbine, 
where it again undergoes isentropic expansion with minimal entropy 
change.

4–6 (Reheating): Reheating at low pressure.
6–7 (LPT): The steam enters the low-pressure turbine for isentropic 

expansion, with negligible entropy change.
7–8 (Condenser): Ideally, heat is rejected at constant pressure in the 

condenser; however, in practice, there is a slight pressure drop due to 
piping resistance.

8–9 (CEP): Isentropic compression process, a negligible entropy 
change occurs.

13–14 (BFWP): The compression takes place under isentropic con
ditions, resulting in an insignificant entropy change.

14–1 (Water Tube Boiler): Constant pressure process.

2.2. Analysis approach

The Balloki power plant operates under four different loading con
ditions depending on power demand. The operating conditions of power 
plants at 44.5 %, 78.75 %, 87.8 %, and 98.5 % load are shown in Ta
bles 5 to 6, respectively. The temperature, pressure, and mass flow rate 
across each component are obtained from the power plant control room. 
This data is then input into the Engineering Equation Solver (EES) 
software to determine the enthalpy and entropy values for each 
component of the power plant. The calculated enthalpy and entropy 
values are utilized in equations to evaluate exergy efficiency, energy 
efficiency, exergy loss ratio, exergy destruction, and relative exergy 
destruction. Subsequently, algorithms are developed in Python using 
Google Colab to optimize energy and exergy efficiencies. Finally, a 
comparison is conducted between experimental and optimized values.

2.3. Analytical assumptions

Below are the assumptions for the energy-exergy analysis of the 
steam power plant: 

1. The current study is conducted by maintaining steady-state condi
tions with the law of conservation of mass and energy

The power plant’s steady-state operation, where the mass flow rate, 
energy input, and energy output stay constant across time, is assumed in 
the analysis. This assumption streamlines the computations and is valid 
for large-scale power plants operating under stable conditions. Start-up 
and shutdown phases are examples of transient impacts that are not 
considered since they bring dynamic fluctuations that require a different 

Table 3 
Chemical composition of LNG.

Gas Fuel Composition %

Methane 87.9
Ethane 4.49
Propane 0.35
Iso-Butane 0
N-Butane 0.052
Pentane 0
Iso-Pentane 0.025
Neo-Pentane 0
N2 5.68
CO2 2.34
Hexane 0
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modeling methodology. 

2. Each component of the plant is deliberated as a control volume

Each constituent of the power plant (turbine, pump, boiler, and 
condenser) is regarded as a control volume, where energy and mass 
interactions take place across the boundaries. Such an approach is 
justified as it permits an accurate assessment of energy and exergy 
balances within each component without considering the interactions 
between components beyond the designated boundaries. 

3. The change in potential and kinetic energies is neglected

The changes in kinetic energy due to velocity variations and poten
tial energy due to altitude differences are assumed to be insignificant in 
comparison with the total energy in the steam cycle plant. Such an 
assumption is justified as the thermal energy and pressure variations 
dominate in Rankine cycle power plants, while height and velocity 
differences have a nominal influence on overall energy calculations. 

4. The heat losses in pumps and turbines are neglected

Heat losses to the environment from the pump and turbine are 
assumed to be negligible. This presumption stems from the fact that 

Fig. 1. (a) Schematic diagram of a power plant (b) Actual T-S diagram of the Rankine cycle.

Table 4 
Technical specifications of steam power plant.

Operating Conditions Value/Specification Unit

Type Thermal Power Plant ___
Maximum Capacity 410.08 (NET) MW
Rated Capacity 420.08 (Gross) MW
Boiler Type Fuel Gas Fired Boiler ___
Condenser Type Two Pass Cross-Flow Heat Exchanger ___
Heater type N/A ___
Pump Type Multistage High-Pressure Centrifugal 

Pump
___

Rated heat rate 9607 kJ/ 
kWh

Max mass flow rate at turbine 
inlet

971 Tons/ 
hr

Rated mass flow rate at turbine 
inlet

971 Tons/ 
hr

Turbine inlet pressure 164.8 Bar
Turbine inlet temperature 584.8 ℃
Cooling Water Inlet 

Temperature
28.76 ℃

Cooling Water Outlet 
Temperature

36.03 ℃
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contemporary power plants employ components that are well-insulated 
and have low external heat loss. Furthermore, this assumption is fair for 
real-world engineering calculations because most of the energy changes 
within these components take the form of work rather than heat 
dissipation. 

5. The reference pressure is taken as 1.013 bar, and the reference 
temperature is taken as 25 ◦C

Standard atmospheric conditions of 1.013 bar of pressure and 25 ◦C 
of temperature are used as the reference state for exergy calculations. In 
thermodynamic analysis, this choice is frequently used to maintain 
uniformity and make comparisons with other studies more convenient. 
The ambient environment is represented by the reference state, which is 
used to assess the system’s usable work potential.

2.4. Mathematical modeling

Each parameter of the plant is coded through EES software and 
validated through comparison with ‘Real output data from the reference 
power plant’ at different loading conditions. The mathematical models 
for all key components of the studied steam power plant cycle are briefly 
reported as:

2.4.1. Boiler
In the boiler, the fuel combustion provides heat energy to the fluid 

working in the boiler, which increases the pressure and temperature of 
the working fluid. The enthalpy & entropy of the fuel were calculated 
with equations (1) and (2), respectively. The mass flow rates at the inlet 
and exit of the boiler are given in Equation (3). 

h = CPΔT (1) 

s = CPln
T
To

(2) 

Table 5 
Operating conditions of power plant at 44.5 and 78.75% loading condition.

Point No. 44.50 % Load 78.75 % Load

Pressure Temperature Mass flow rate Enthalpy Entropy Pressure Temperature Mass flow rate Enthalpy Entropy

Bar Kelvin kg/s kJ/kg kJ/kg*K Bar Kelvin kg/s kJ/kg kJ/kg*K

1 90 849 112.20 3574 6.89 140 850 181.40 3530 6.64
2 20 655 110 3207 7.06 31 648 180.70 3171 6.81
3 17.70 853 123.10 3647 7.70 29 843 200 3615 7.44
4 2.10 563 124.30 3051 7.83 3.40 553 200.70 3027 7.56
5 2.10 522 10.30 2968 7.68 3.10 535 18.30 2991 7.54
6 2.10 522 143.60 2968 7.68 3.20 548 218.30 3017 7.58
7 0.07 312.50 143.60 2572 8.26 0.09 317.30 218.30 2581 8.18
8 0.12 308.60 155.30 148.50 0.51 0.13 315.30 235 176.50 0.60
9 27 311.70 149.20 163.80 0.55 23 317.50 229 187.90 0.63
10 25 305.30 149.20 136.90 0.46 24.10 311.30 225 161.90 0.55
11 52.80 493 12.80 943.60 2.51 65 512 15.30 1032 2.68
12 52.80 397 12.80 523.70 1.56 65 412 15.30 588.3 1.72
13 27 311.20 161.90 161.70 0.54 24.30 324 243 215 0.71
14 180 324.20 161.90 229.10 0.71 194 336 241.90 279.20 0.85
15 0.50 302.80 5.60 124.20 0.43 0.50 303 8.30 125.10 0.43
16 1 943 833.30 1065 1.30 1 936 1325 1056 1.29
17 1 354.50 833.30 357.30 0.17 1 356 1305 358.9 0.18
18 3 306.20 20,833 138.70 0.48 3 307.90 20,833 145.80 0.50
19 2.30 309 20,733 150.30 0.52 2.30 312.60 20,833 165.40 0.56

Table 6 
Operating conditions of power plant at 87.80 and 98.80% loading condition.

Point No. 87.80 % Load 98.80 % Load

Pressure Temperature Mass flow rate Enthalpy Entropy Pressure Temperature Mass flow rate Enthalpy Entropy

Bar Kelvin kg/s kJ/kg kJ/kg*K Bar Kelvin kg/s kJ/kg kJ/kg*K

1 150 857 202.40 3539 6.63 177 853 223 3503 6.52
2 34.50 653 201.20 3176 6.77 44 654.70 221.70 3161 6.65
3 28 885 223 3711 7.57 37.50 885 245.60 3703 7.43
4 4.80 578 229.40 3074 7.49 5.10 593 247.20 3105 7.52
5 4.50 560 20 3038 7.46 5.80 593 23.60 3103 7.46
6 3.30 553 243.90 3027 7.58 5.20 593 269.20 3104 7.51
7 0.09 319.90 243 2586 8.17 0.11 322 269.60 2589 8.11
8 0.12 317.60 253.90 186.10 0.63 0.12 319.50 278.60 194.10 0.66
9 23 319.70 245 196.90 0.66 23.80 321.60 270.60 204.90 0.68
10 22.80 313.70 250.60 171.80 0.57 22.80 316.50 270 183.50 0.62
11 64 528 16.70 1109 2.83 67 520 24.40 1070 2.76
12 64 428 16.70 656.80 1.88 67 449 24.40 748 2.09
13 31 322 271 207.20 0.68 33 323 303.10 211.50 0.70
14 207 332.40 255 265.40 0.81 203 333 300 267.50 0.82
15 0.50 302 6.70 120.90 0.42 0.50 301.20 69.40 117.60 0.41
16 1 913 1518 1026 1.25 1 910 1680 1022 1.25
17 1 358 1500 360.90 0.18 1 360 1680 363 0.19
18 3 307 20833.30 142.20 0.49 3 301.70 20833.30 120.10 0.42
19 2.30 314 20833.30 171.40 0.59 2.30 309.10 20833.30 150.90 0.52
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ṁ16h16 + ṁ2h2 + ṁ14h14 = ṁ17h17 + ṁ1h1 + ṁ3h3 + ṁ5h5 + ṁ11h11 (3) 

The 1st Law efficiency was calculated as an output-input ratio. The 
output in the boiler is the working fluid flowing energy while the input is 
the fuel’s energy. Ahmadi and Toghraie [94] explained the relation for 
ascertaining energy efficiency. Hence, the energy efficiency of the sys
tem is simply defined as the ratio of energy outputs and inputs. The 
expression for energy efficiency can be seen from equation (4): 

η1 =
ṁ1h1 + ṁ3h3 + ṁ5h5 + ṁ11h11 − ṁ2h2 − ṁ14h14

ṁ16(h16)
(4) 

The exergy destruction is the difference between the exergy of the fluid 
at the input and output points and is expressed as equation (5). 

IBoiler = X1 +X3 +X5 +X11+X16 − X2 − X14 − X16 (5) 

2nd law efficiency is a ratio of the working fluid exergy difference to 
the exergy of the fuel and is expressed as equation (6). 

η2 =
X1 + X3 + X5 + X11 − X2 − X14

X16 − X17
(6) 

2.4.2. High pressure turbine
The heat losses in turbines are neglected as mentioned before so the 

turbine performance is calculated with its isentropic expansion work 
expressed as equations (7) and (8). Equation (8) is referred to in [95], 
including steam enthalpy at the turbine inlet and isentropic steam 
enthalpy at the turbine outlet as shown below: 

WHPT = ṁ1(h1 − h2) (7) 

η1 =
ṁ1(h1 − h2)

ṁ1(h1 − h2s)
(8) 

Exergy destruction would be the difference between exergy entering and 
exergy leaving, along with the work done by the turbine. The perfor
mance in terms of exergy efficiency is calculated as the output-input 
ratio. The output is work that is achieved by the turbine, and the 
input is the exergy that is provided to the turbine, as in Equation (9). The 
exergy efficiency is expressed as Equation (10). 

IHPT = X1 − X2 − WHPT (9) 

η2 =
WHPT

X1 − X2
(10) 

2.4.3. Intermediate pressure turbine
The performance of the turbines is calculated based on their isen

tropic work, as the heat losses in the turbines are neglected. The work 
done by IPT is shown in Equation (11). The energy efficiency is 
expressed in terms of equation (12). 

WIPT = ṁ3(h3 − h4) (11) 

η1 =
ṁ3(h3 − h4)

ṁ3(h3 − h4s)
(12) 

The exergy destruction is calculated as the difference between the tur
bine’s entering exergy and leaving exergy, with the work output as 
expressed through Equation (13). 

IIPT = X3 − X4 − WIPT (13) 

The ratio of work with the exergy difference of the working fluid gives us 
the 2nd law efficiency as expressed by equation (14)

η2 =
WIPT

X3 − X4
(14) 

2.4.4. Low pressure turbine
Likewise, the performance of a low-pressure turbine is also evaluated 

with its isentropic work, as equations (15) and (16). 

WLPT = ṁ6(h6 − h7) (15) 

η1 =
ṁ6(h6 − h7)

ṁ6(h6 − h7s)
(16) 

The difference between exergy entering the turbine and exergy leaving 
with work done gives us the exergy destruction value (equation (17). 
The ratio of work done by the turbine to the exergy difference of the 
working fluid gives us 2nd law efficiency, as in equation (18). 

ILPT = X6 − X7 − WLPT (17) 

η2 =
WLPT

X6 − X7
(18) 

2.4.5. Condensate extraction pump
A condensate extraction pump (CEP) extracts the condensed fluid 

from the condenser. The heat losses in pumps are neglected, so their 
performance is also evaluated with their isentropic work as expressed in 
equation (19). 

WCEP = ṁ8(h9 − h8) (19) 

In the case of pumps, the input is the flow rate of working fluid, while the 
output is the power that is transmitted to the fluid. The energy efficiency 
in the case of CEP is expressed by equation (20). 

η1 =
ṁ8(h9s − h8)

WCEP
(20) 

In pumps, input is the exergy at node 8 and the energy it uses to work. 
While the output pump is the exergy of the working fluid at node 9. The 
irreversibility in CEP is expressed by equation (21). The ratio of the 
exergy difference of the working fluid to work done by the pump gives us 
2nd law efficiency, as in equation (22). 

ICEP = X8 − X9 +WCEP (21) 

η2 =
X9 − X8

WCEP
(22) 

2.4.6. Boiler feed water pump
A boiler feed water pump (BFWP) transfers working fluid toward the 

boiler. The heat losses in pumps are neglected so its performance is also 
evaluated with its isentropic work, as in equation (23). The energy ef
ficiency is given by equation (24). 

WBFWP = ṁ13(h14 − h13) (23) 

η1 =
ṁ13(h14s − h13)

WBFWP
(24) 

In pumps, input is the exergy at the pump inlet, and the pump utilizes 
energy. While the output pump is the exergy of the working fluid at node 
14. The irreversibility of BFWP can be calculated through equation (25). 
The ratio of the exergy difference of the working fluid to work done by 
the pump gives us 2nd law efficiency, as in equation (26). 

IBFWP = X13 − X14 +WBFWP (25) 

η2 =
X14 − X13

WBFWP
(26) 

2.4.7. Gland steam condenser
A gland steam condenser (GSC) is the component of the power plant 

that captures and reuses the bleeding steam from the turbines and other 
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components. The energy balance equation is given as equation (27). The 
energy efficiency is given as the ratio between output and input, as 
expressed by equation (28). 

ṁ9h9 = ṁ10h10 +HlGSC (27) 

η1 =
ṁ10h10

ṁ9h9
(28) 

The exergy destruction is the difference between exergies at the inlet and 
outlet, and the 2nd law efficiency is the ratio between outlet and inlet 
exergies, as shown in equation (29). The exergy efficiency in the case of 
the gland steam condenser is given in equation (30). 

IGSC = X9 − X10 (29) 

η2 =
X10

X9
(30) 

2.4.8. Gas fuel heater
The hot working fluid from the boiler is passed through a gas fuel 

heater (GFH) that increases the temperature of the fuel used in the 
combustion chamber, which is then added to the cold working fluid line 
to increase its temperature. GFH is a heat exchanger manufactured by 
Dalian Energas Gas-system Co. It is a category IV, NEN-type exchanger 
with 45 Bar and 250 ◦C maximum allowable pressure and temperature, 
respectively. The maximum allowable tube pressure and temperature 
are 93.1 Bar and 306.5/2C⁰. The shell has a capacity of 2081.5 L while 
the tubes have 679.1 L. The mass flow rate through the gas fuel heater is 
expressed through equation (31). The energy efficiency is given as the 
ratio between the output and input of GFH and expressed through 
equation (32). 

ṁ11h11 = ṁ12h12 (31) 

η1 =
ṁ12h12

ṁ11h11
(32) 

The exergy destruction is the difference between exergies at the inlet and 
outlet, and the 2nd law efficiency is the ratio between outlet and inlet 
exergies as expressed through equation (33). The exergy efficiency 
through GFH is expressed as equation (34). 

IGFH = X11 − X12 (33) 

η2 =
X12

X11
(34) 

2.4.9. Condenser
Cooling water is passed continuously through the condenser tubes 

that extract the energy of the working fluid. The energy balance and 
energy efficiency are given in equations (35) and (36), respectively: 

ṁ8h8 + ṁ19h19 = ṁ7h7 + ṁ15h15 + ṁ18h18 (35) 

The energy efficiency is given as the ratio of output and input. The 
condenser fluid extracts the heat as an output while the working fluid 
energy acts as an input. 

η1 =
ṁ18(h19 − h18) − ṁ15h15

ṁ7(h7 − h8)
(36) 

The exergy destruction is the difference between exergies at the inlet and 
outlet, and the 2nd law efficiency is a ratio of the difference of condenser 
fluid exergies to the difference of working fluid (equation (37), and 
equation (8) shows the exergy efficiency of the condenser. 

IGFH = X7 +X15+X18 − X8 − X19 (37) 

η2 =
X19 − X18 − X15

X7 − X8
(38) 

2.5. Real plant’s operational parameters

Balloki power plant is operated at four different loading conditions. 
Each component of the power plant possesses different pressure, tem
perature, mass flow rate, enthalpy, and entropy as detailed in Tables 5 
and 6.

2.6. AI based approach using a random forest regression model

Random tree regression, a form of supervised learning, leverages 
multiple decision trees with random feature selection and bootstrap 
sampling to enhance predictive accuracy and prevent overfitting. The 
model demonstrates robustness, low sensitivity to outliers, and the ca
pacity to make precise predictions for datasets. The random forest 
regression model operates by creating multiple decision trees from 
subsets of the training dataset, combining their predictions to form a 
robust and accurate model. Each decision tree is trained on a bootstrap 
sample with random feature subsets, and the overall model employs 
stopping criteria such as maximum depth, as illustrated in the archi
tectural diagram in Fig. 2. The random forest regression model is 
employed for prediction, mitigating overfitting, and handling complex 
data by utilizing a 70:30 split between training and validation datasets. 
The model is built on bootstrap samples and incorporates input variables 
like enthalpy and temperature to predict energy and exergy efficiencies 
in a power plant. The model is developed in Python and executed on 
Google Colab. Hyper parameters, including 100 trees, maximum depth 
of 10, and specific split and feature criteria, are set, and the model’s 
predictions for energy and exergy percentages are compared to experi
mental data, with average root mean square error (RMSE) and coeffi
cient of determination (R2) computed for evaluation. The Random 
Forest model is trained on a Dell i7 laptop equipped with 8 GB of RAM, 
requiring approximately 2 h for completion. The model is configured 
with 100 trees, each constrained to a maximum depth of 10. Peak 
memory usage is observed at approximately 3 GB, which is well within 
the system’s 8 GB RAM capacity. The computational cost is predomi
nantly influenced by the complex decision-making processes inherent to 
each node within the ensemble of trees, despite the moderate size of the 
dataset.

RMSE (Root Mean Square Error) is the selected metric for evaluating 
the predictive performance of a Random Forest Regression (RFR) model 
in estimating the energy efficiency and exergy efficiency of a power 
plant for several reasons. The foremost reason is that both energy effi
ciency and exergy efficiency are critical factors in assessing the overall 
performance of a power plant, and any inaccuracies in their prediction 
can have significant operational and economic implications. RMSE, by 
penalizing larger errors more heavily, ensures that the model is sensitive 
to deviations in efficiency values, which is essential for capturing the 
nuanced variations in power plant performance. Additionally, the 

Fig. 2. Architecture diagram for the random forest regression model.
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interpretability of RMSE, given that it is in the same units as the target 
variables (efficiency values), facilitates a clear understanding of how 
well the model aligns with the actual performance metrics relevant to 
energy and exergy efficiency. As Random Forests are often optimized 
based on minimizing squared errors, using RMSE and R2 as the evalu
ation metric ensures consistency with the model’s training objective. 
First, the model is trained for each combination of hyper parameters on 
the training dataset and evaluates its performance on a validation 
dataset using the evaluation metric, RMSE. The data set is split into a 
training set and a validation set by the ratio of 70:30. The model is 
trained by considering both input features and target features. After 
initial testing of the model, the importance of each feature is assessed. 
Features with higher importance contribute more to the model’s pre
dictions. The hyper parameters to develop the model are given in 
Table 7.

The model is then fine-tuned to optimize the parameters that result 
in the best performance on the validation set. This is based on mini
mizing RMSE values. Regression results are explained by RSME and R2 

values. RMSE is a measure of the average magnitude of errors between 
predicted and actual values. Specifically, RMSE calculates the square 
root of the average squared differences between predicted and actual 
values. The visualized diagram of actual versus predicted values high
lights the performance of the model. High deviation can be an indication 
that the model needs to be improved further for better results. Hence, 
lower RSME indicated a better model. A benchmark can be established 
from the model results and can be used to optimize the performance of 
the power plant. The use of Random Forest Regression (RFR) for pre
dicting energy efficiency and exergy efficiency in a power plant offers 
several advantages over alternative machine learning models. RFRM 
excels in capturing complex and nonlinear relationships between input 
features and efficiency metrics, making it well-suited for scenarios 
where traditional linear models may fall short. Its robustness to over
fitting is particularly beneficial when dealing with noisy data or datasets 
with a large number of features, contributing to improved generalization 
on unseen data. Additionally, RFRM provides insights into feature 
importance, aiding in the interpretation of which factors significantly 
influence energy and exergy efficiency. The ensemble learning 
approach, combining multiple decision trees, enhances the model’s 
overall robustness by mitigating individual tree biases and errors. The 
R2 value measures the proportion of variance in the actual data 
explained by the model.

3. Results and Discussions

The current study encompasses two main areas of investigation: 
experimental analysis and the enhancement of performance using arti
ficial intelligence methods.

3.1. Experimental analysis

This section addresses key research questions, i.e., how mass flow 
rate, temperature, pressure, and loading conditions relate to metrics 
such as exergy loss ratio, exergy destruction, exergy efficiency, energy 
efficiency, and cycle efficiency.

3.1.1. Energy efficiency
Energy efficiency in power plants is a critical factor in optimizing 

performance, reducing fuel consumption, and minimizing environ
mental impact. The current study evaluates energy efficiency by 
analyzing variations in power plant components under different loading 
conditions. Fig. 3(a) displays the variation in energy efficiency for 
different components of the power plant under distinct loading condi
tions. The results indicate that the energy efficiency slightly increases 
with the increase in load, a trend also observed in previous studies 
analyzing the energy systems. The energy balance analysis distinguishes 
energy inflow and outflow from the system, which is equal to the energy 
loss in the steam cycle. It is because of the lower isentropic efficiency or 
actual efficiency in comparison with the designated efficiency of a 
particular component. The lifespan of a component becomes short for 
continuous operations at lower efficiency. Recent studies have high
lighted various strategies to enhance energy efficiency in thermal power 
plants. A 2022 study on hydroelectric plants in Brazil identified opti
mized equipment use and rationalized energy application as key stra
tegies for achieving potential annual savings of 2,910 MWh [96]. 
Similarly, research on high-efficiency motors in thermal power stations 
emphasized their role in reducing electricity consumption and green
house gas emissions [97]. The energy analysis of Bokaro Thermal Power 
Station (210 MW capacity) [92] shows that the energy efficiency of the 
boiler, turbine, condenser, and pump is 88.92, 78.9, 44.3, and 72.9 %, 
respectively, along with 32.9 % overall energy efficiency. In another 
study on Jawa Power-YTL, Paiton, Indonesia [89], the energy efficiency 
of the boiler, turbine, condenser, and pump is 47.98, 54.66 to 84.53, 
8.94, and 34.13 %, respectively. In the current study, the energy effi
ciency of the boiler, HPT, condenser, and BFWP was 85.26, 76.75, 
69.52, and 22.76 %, respectively, along with 26.19 % of overall cycle 
efficiency at 44.5 % load. The energy efficiency of the boiler, HPT, 
condenser, and BFWP was 85.92, 77.23, 77.57, and 26.62 %, respec
tively, along with 27.90 % of overall cycle efficiency at 78.75 % load. 
The energy efficiency of the boiler, HPT, condenser, and BFWP was 
90.82, 79.38, 80.33, and 30.44 %, respectively, along with 28.23 % of 
overall cycle efficiency at 87.80 % load. The energy efficiency of the 
boiler, HPT, condenser, and BFWP was 91.18, 79.99, 95.68, and 30.57 
%, respectively, along with 30.45 % of overall cycle efficiency at 98.80 
% load.

Moreover, energy leakage and isolated steam turbines cause energy 
losses. The steam enthalpy at the turbine exit possesses an inverse pro
portional relationship with turbine output, condenser pressure, steam 
quality, and moisture content. The moisture results in a drag force 
around the turbine, which decreases its output. The output of the turbine 
can be increased by decreasing the cooling water temperature in the 
condenser, which ultimately enhances the steam generation rate and 
energy efficiency. The condenser pressure directly impacts the steam 
temperature and the turbine output. However, it should be higher than 
the cooling medium temperature, as a lower steam temperature results 
in higher moisture content, leading to blade erosion and lower turbine 
efficiency. This issue can be addressed through steam reheating [98]. 
The condenser possesses maximum energy losses due to maximum en
ergy input in the power cycle. Higher enthalpy drops around the turbine 
are mainly responsible for higher energy efficiency. As the pressure 
difference around the pump intake and outlet increases, the pump work 
also increases at the cost of lower power consumption, and ultimately 
turbine output starts increasing, which reflects on the higher thermal 
efficiency of the plant. The lower enthalpy drops around the turbine 
result in lower energy efficiency. By integrating AI-driven systems, en
ergy losses can be minimized, and efficiency trends can be forecasted, 
allowing for proactive operational adjustments. Additionally, advanced 
heat recovery techniques, such as optimized HRSG systems, have been 
found to improve plant efficiency significantly. Furthermore, increasing 
reheat pressure and utilizing multiple reheating stages can mitigate 
moisture-related turbine losses, extending the lifespan of turbine blades. 
Improved insulation of boiler components, along with effective steam 

Table 7 
Hyper parameters for RFR model.

Hyper parameters Description

n estimator 100
max feature sqrt
max depth 10
bootstrap True
random state 42
min sample split 2
min sample leaf1 1
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leakage control measures, also contributes to minimizing energy dissi
pation. These enhancements collectively support higher overall plant 
efficiency, such as application of solar-assisted feedwater heaters [99], 
aligning with global trends in sustainable power generation.

3.1.2. Exergy efficiency
Fig. 3(b) displays the trend of exergy efficiency for multiple com

ponents of a steam powerplant concerning variation in loading condi
tions. It is observed that exergy efficiency is highest for the intermediate 
pressure turbine (IPT) and lowest for the condensate extraction pump 
(CEP). Moreover, exergy efficiency generally increases with increasing 
load, indicating a positive correlation between system performance and 
operational capacity. Exergy efficiency is a critical measure of a system’s 
ability to convert available energy into useful work, considering both 
the quantity and quality of energy. Previous studies have emphasized 
that optimizing turbine operation parameters, such as steam pressure, 
temperature, and expansion ratios, significantly impacts exergy perfor
mance, e.g. Kaushik et al. [98] found that the highest exergy loss occurs 
in the boiler due to incomplete combustion, inadequate heat insulation, 
and entropy generation. Similarly, other studies found that combustion 
chambers, gas turbines, and heat recovery steam generators (HRSGs) 
contribute up to 83 % of total exergy destruction [22,23]. The inter
mediate pressure turbine is often designed for maximum exergy effi
ciency to ensure the effective conversion of thermal energy into 
mechanical work. This is achieved by optimizing the expansion process 
at intermediate pressure levels, reducing energy losses associated with 
excessive pressure differences and heat transfer inefficiencies. The IPTs 
can achieve exergy efficiencies as high as 97.34 %, demonstrating their 
role as a key component in improving overall plant efficiency [13]. 
Generally, the intermediate pressure turbine is designed for maximum 
exergy efficiency to ensure that the available thermal energy is effec
tively converted into useful mechanical work while considering various 
thermodynamic, operational, and engineering factors. IPT operates at an 
intermediate pressure level between the high-pressure (HP) and low- 
pressure (LP) turbines. This allows for a more controlled and efficient 
expansion of the steam. Operating at an intermediate pressure helps to 
minimize the energy losses associated with excessive pressure differ
ences and excessive heat transfer. IPT discharges steam to the condenser 
where it is condensed back into liquid form. The pressure at which the 
steam is condensed affects the back pressure on the turbine. The lower 
condenser pressure can positively impact the turbine’s performance. 
The increase in the turbine work output is because of rising steam 
temperature and pressure. Moreover, the impact of temperature on the 
cycle efficiency depends on pressure. Exergy efficiency in the boiler may 
decrease with increasing reference temperature [100]. Irreversibility is 
a consequence of friction between working fluid and hot combustible 
gases during their flow inside boiler pipes and ultimately results in lower 

pressure. A slag in boiler pipes constrains heat transfer due to lower 
thermal conductivity.

3.1.3. Exergy loss ratio
The exergy loss ratio is a parameter that quantifies the proportion of 

available energy (exergy) lost due to irreversibilities in a system relative 
to the total exergy input. It helps identify inefficient components and 
optimize system performance. Mathematically, it is defined as the ratio 
of exergy destruction within a component to the total exergy input to the 
system. In a power plant, component efficiency is influenced by the 
operating load. At lower loads, efficiency decreases due to higher rela
tive heat losses and the off-design performance of turbines, boilers, and 
heat exchangers. Conversely, at higher loads, efficiency improves as 
components function closer to their design conditions, leading to lower 
specific fuel consumption and reduced exergy destruction. For instance, 
turbines achieve peak efficiency at full load by operating near their 
design parameters. However, at partial loads, efficiency declines due to 
increased steam leakage, lower steam flow rates, and higher mechanical 
losses relative to power output. To enhance overall plant efficiency and 
minimize exergy losses, it is important to optimize load distribution and 
ensure components operate within their ideal range.

Fig. 4(a) represents the variation in the exergy loss ratio for different 
components of the plant under varying loading conditions. It is observed 
that the exergy loss ratio decreases for the plant’s components with 
increasing percentage load. As the load increases, the components 
become more efficient as they perform at rated capacity [101]. Specif
ically, as the load increases, the components are subject to conditions 
closer to their design specifications, optimizing their performance. This 
efficiency improvement is a result of both higher load and mass flow 
rates, which are tightly interlinked. Fig. 4(a) shows that a higher mass 
flow rate of steam causes a reduction in the exergy loss ratio. At lower 
load levels, where components operate below their rated capacity, ef
ficiency suffers, and any deviation from the design point (either below or 
above rated conditions) results in less efficient performance. When the 
load increases, the mass flow rate rises, improving the overall perfor
mance of the system. Higher mass flow rates, particularly of steam, 
enhance the system’s thermodynamic efficiency by improving heat ex
change processes and reducing losses. This led to a lower exergy loss 
ratio, reflecting a better conversion of available energy into useful work. 
The exergy loss ratio is the ratio of losses in useful energy to the avail
able useful energy, i.e., exergy. The total exergy loss in the turbine is 
lower than the condenser because of the exergy transfer into the cooling 
water. This indicates that, despite energy being lost in both the turbine 
and the condenser, the cooling process in the condenser results in more 
effective energy dissipation, thus lowering the exergy loss relative to the 
available exergy. At higher evaporation pressures, the irreversibility of 
the pump, condenser, and turbine is generally higher, but the evaporator 

Fig. 3. Variation in (a) Energy efficiency, (b) Exergy efficiency for different components of the plant under distinct loading conditions.
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shows the opposite trend. The increment in evaporator pressure im
proves overall exergy efficiency as the reduction in the irreversibility of 
the evaporator is higher than that of the pump, turbine, and condenser.

The exergy destruction in the condenser is inversely proportional to 
exergy efficiency. As inlet air pressure decreases, the exergy efficiency 
increases, and the combustion efficiency decreases. This dynamic is 
critical in understanding the underlying thermodynamic behavior of the 
plant, as exergy analysis reveals trends and insights that traditional 
energy analysis may not highlight. The analysis of results shows that the 
condenser, despite its apparent higher energy losses, experiences greater 
exergy losses in the boiler. This disparity emphasizes the importance of 
exergy analysis in highlighting irreversibilities in the system that might 
not be as apparent through conventional energy-based evaluations. By 
identifying where exergy destruction occurs most significantly, the areas 
for improvement can be prioritized to enhance the overall efficiency of 
the thermodynamic system. Energy analysis depicts maximum energy 
losses in the condenser, but exergy analysis represents maximum losses 
in the boiler. The energy efficiency of an adiabatic turbine decreases 
with a decrease in pressure ratio, but exergy efficiency increases with a 
decrease in pressure ratio and an increase in cycle temperature. Except 
condenser, all other components of the steam power plant experience 
higher exergy loss due to the increase in atmospheric temperature. The 
higher difference between the system and environmental temperature 
creates an adverse impact on system performance. Factors like energy 
loss from flue gases, heat dissipation, and incomplete combustion 
significantly contribute to higher energy loss from the boiler. However, 
factors like flue gas leakage contribute towards maximum energy loss 
due to an increase in temperature difference between the atmosphere 
and the system. The huge amount of energy loss in the boiler is mainly 
because of flue gas leakage, incomplete combustion, and heat dissipa
tion from the boiler surface. The energy losses from turbines and pumps 
are primarily caused by mechanical friction. Therefore, improvements 
should be made in reducing exergy losses for the optimized perfor
mance, such as air preheating, higher fuel-to-air ratio, and oxygen 
enrichment [102].

3.1.4. Exergy destruction
Fig. 4(b) highlights that the boiler is responsible for the highest 

exergy destruction in the plant, primarily due to the chemical reactions 
within the combustion chamber and the large temperature difference 
between the combustion gases and the working fluid. This temperature 
gradient leads to significant entropy generation, increasing exergy los
ses. Exergy destruction in the boiler is directly proportional to the 
combustion rate, as higher combustion rates exacerbate temperature 
differences, leading to greater inefficiencies. The inefficient combustion, 
heat transfer losses, and entropy generation are the primary factors that 

contribute to boiler exergy destruction. Regular combustion optimiza
tion, including proper air–fuel ratio tuning and adjustment in the 
burner, is indispensable to reduce boiler exergy destruction. The peri
odic cleaning of the surface of heat exchangers and the application of 
advanced boiler tube coatings prevent scaling and fouling. Moreover, 
the appropriate insulation and sealing leaks significantly reduce heat 
dissipation, while real-time steam quality monitoring certifies optimal 
temperature and pressure. A proper boiler maintenance schedule, 
including water treatment and blowdown, prevents corrosion and 
scaling, which ultimately extends the lifespan of the boiler. The auto
matic feedwater control and AI-based predictive maintenance can also 
optimize boiler performance. Although the feed water heater can reduce 
exergy destruction by preheating the feedwater, its effect is limited due 
to the fundamental inefficiencies in the boiler’s combustion process. 
Higher flue gas flow rates at the boiler exit result in increased exergy 
destruction, driven by greater entropy generation. In the turbine, key 
factors such as the pressure ratio, total reheat stages, and pressure drop 
significantly impact exergy losses. A lower pressure ratio reduces work 
output, leading to higher exergy destruction [21]. However, increasing 
the number of reheating stages helps to mitigate exergy destruction by 
optimizing energy conversion. Meanwhile, pressure drops increase en
tropy generation, exacerbating exergy losses and reducing overall sys
tem efficiency. The exergy destruction rate in the boiler decreases as the 
gas turbine inlet temperature increases. This is because higher inlet 
temperatures allow for more efficient combustion and energy conver
sion, reducing thermal irreversibilities and, consequently, exergy losses. 
At half load, increasing the condenser vacuum pressure reduces the 
relative exergy destruction in both the turbines and condensers. This 
improvement is due to the enhanced thermodynamic conditions, which 
lead to more efficient expansion in the turbine and reduced irrevers
ibilities in the condenser. While exergy destruction in the condenser 
decreases, the turbine experiences an increase in exergy destruction as 
the condenser pressure drops.

The overall effect of reduced exergy destruction in the condenser 
outweighs the increase in the turbine, leading to an overall improvement 
in both energy and exergy efficiencies. At full and half loads, the in
crease in steam temperature contributes to a reduction in exergy 
destruction in both the boiler and turbine. This is because higher steam 
temperatures improve the heat transfer efficiency, reducing irrevers
ibilities during energy conversion. The combined effects of higher steam 
temperature and optimized pressure conditions ultimately result in 
improved plant efficiency, both in terms of energy and exergy. This 
highlights the crucial role of thermodynamic optimization in enhancing 
the performance of power plant systems. Exergy destruction is a result of 
entropy generation due to sharper temperature differences, chemical 
reactions, higher temperature differences, and heat loss to the 

Fig. 4. Variation in (a) Exergy Loss Ratio, (b) Exergy destruction for different components of the plant under distinct loading conditions.
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environment [103]. The higher isentropic efficiency in the case of IPT 
results in lower exergy destruction. A higher isentropic efficiency is due 
to lower temperature and pressure steam with a lower mass flow rate. 
The degree to which an actual turbine resembles ideal (isentropic) 
expansion is measured by its isentropic efficiency. Higher isentropic 
efficiency implies less irreversibility and less energy destruction because 
it results in less deviation from the ideal process. Isentropic efficiency 
improves when irreversibility like friction, turbulence, and heat loss 
decrease. In intermediate-pressure turbine (IPT), steam expansion takes 
place at lower pressures and temperatures than in high-pressure stages. 
The lower mass flow rates and lower steam density result in lower 
frictional losses and heat transfer irreversibilities, which contribute to
wards higher efficiency. The isentropic efficiency depends on multiple 
factors like operating conditions, blade design of the turbine, and flow 
path optimization rather than sole mass flow rates.

3.1.5. Relative exergy destruction
Fig. 5 shows relative exergy destruction across power plant compo

nents under varying load conditions. The boiler experiences the highest 
exergy destruction due to the significant irreversibilities inherent in the 
combustion process and the large temperature difference between the 
combustion gases and the working fluid. This temperature gradient in
creases entropy generation, resulting in higher exergy losses. On the 
other hand, the gas-steam condenser (GSC) exhibits the lowest exergy 
destruction, primarily because of the minimal temperature change be
tween its inlet and outlet, reducing irreversibility and entropy genera
tion. This highlights the importance of temperature gradients in 
determining exergy losses in power plant systems. Fig. 5 (a) shows the 
relative exergy destruction ratio for inspected components at a 44.50 % 
loading condition. The boiler has a maximum relative exergy destruc
tion of 78.1 %, and GSC possesses the least relative exergy destruction of 
0.1 % at a 44.50 % loading condition. Fig. 5 (b) shows the relative 
exergy destruction ratio for inspected components at 78.75 % loading 
condition. The boiler has a maximum relative exergy destruction of 80.4 

%, and GSC possesses the least relative exergy destruction of 0.1 % at 
78.75 % loading condition. Fig. 5 (c) shows the relative exergy 
destruction ratio for inspected components at 87.80 % loading condi
tion. The boiler has a maximum relative exergy destruction of 81.5 %, 
and GSC possesses the least relative exergy destruction of 0.1 % at 87.80 
% loading condition. Fig. 5 (d) shows the relative exergy destruction 
ratio for inspected components at 98.80 % loading condition. The boiler 
has a maximum relative exergy destruction of 81.9 %, and GSC possesses 
the least relative exergy destruction of 0.1 % at 98.80 % loading con
dition. The boiler has the highest exergy destruction ratio, ranging from 
78.1 to 81.9 %, due to chemical reactions under four different loading 
conditions. The second-highest exergy destruction ratio ranges from 8.3 
to 8.9 % in LPT due to exergy loss to surroundings, lower quality steam, 
and lower isentropic efficiency. The rest of the exergy destruction ratios 
include 3.4 to 4.5 % in the condenser, 1.8 to 2.9 % in the HPT, 1.8 to 2.6 
% in IPT, 0.4 to 0.7 % in CEP, 0.1 % in GSC, 0.5 to 0.6 % in GFH, and 1.8 
to 2.7 % in BFWP. The lower exergy destruction for pumps and turbines 
is fundamental because of isentropic efficiencies, which involve design 
considerations and tribological aspects. The design considerations have 
the highest influence on energy efficiency. However, the economic as
pects and spatial constraints should be taken care of during the design of 
efficient heat exchangers with higher surface area. The irreversibility 
rate of the condenser is decreased when the ambient temperature in
creases, as the temperature difference between the steam and cooling air 
temperature increases. It ultimately results in higher exergy efficiency 
and lower exergy destruction. The exergy efficiency increases with the 
increase in load. Therefore, it is suggested to run the powerplant at full 
loading conditions. The boiler is the source of maximum exergy 
destruction, so there is a lot of potential for improvement in the effective 
performance of the boiler. LPT is the second-largest source of exergy 
destruction. The work potential of the turbine can be improved. The 
temperature difference between steam and flue gases reduces signifi
cantly through increasing reheat pressure and the number of heaters, 
which ultimately improves turbine work potential. The optimum mass 

Fig. 5. Variation in Relative Exergy destruction for different components of the plant under distinct loading conditions: (a) 44.50% load, (b) 78.75% load, (c) 87.80% 
load, (d) 98.80% load.
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fraction during reheating needs to be selected, as energy/exergy effi
ciency decreases for a higher mass fraction [104].

3.1.6. Plant’s efficiency
Fig. 6 shows the plant cycle’s efficiency, including both energy and 

exergy, under different loading conditions. Exergy efficiency is based on 
the quality of heat energy input. It is given based on the 2nd law of 
thermodynamics. Some of the heat must be rejected by the environment 
or sink. So, efficiency calculation considers the maximum potential of 

heat energy input by multiplying Qin by 
(

1 − TL
TH

)

. This will result in a 

lower available heat input compared to that calculated using the First 
Law of Thermodynamics efficiency formula. This explains why exergy 
efficiency remains higher than energy efficiency across all load condi
tions [24]. The trends for exergy efficiency are higher than those of 
energy efficiency, mainly because exergy efficiency accounts for system 
irreversibilities and energy quality. The higher in-cylinder pressure and 
temperature at higher loading conditions promote combustion effi
ciency. Enhanced combustion at higher loads reduces irreversibilities, 
leading to lower heat losses and improved exergy efficiency. Moreover, 
exergy efficiency is a measure of the useful work potential of fuel, 
whereas energy efficiency accounts for the ratio of output energy and 
input energy without accounting for energy quality. At higher loading 
conditions, the energy proportion converted to useful work increases, 
which boosts exergy efficiency more as compared to energy efficiency. 
At 44.5, 78.75, 87.8, and 98.8 % load, the energy efficiency is 26.19, 
27.9, 28.23, and 30.45 %, respectively. The exergy efficiency at 44.5, 
78.75, 87.8, and 98.8 % load is 31.33, 35.19, 35.3, and 36.04 %, 
respectively. Moreover, these values are very well supported in previous 
literature [105,106]. It is clear from the figures that cycle efficiencies, 
including both exergy and energy, usually increase with the increasing 
value of load. The reheat pressure ratio is directly proportional to the 
plant’s efficiency. By incrementing the reheat pressure ratio for turbines, 
fuel consumption also increases in the reheater, and the expansion ratio 
in LPT gets reduced, consequently, EGT increases, and creates a positive 
impact on the plant’s efficiency [107]. Energy efficiency deals with total 
energy balance only; however, exergy efficiency deals with both irre
versibilities and energy quality relative to the dead state. Energy effi
ciency is a more competent parameter to evaluate the power plant’s 
performance than energy efficiency. It is because it considers how much 
input energy is transformed into useful work, along with the losses 
identification in respective areas. The dead state is such a condition of 

the power plant when the working fluid (steam) and all other system 
components are in general equilibrium with the environment. It can be 
inferred that the system does no useful work because of no pressure, 
temperature, or chemical potential difference between the system and 
the surroundings. For dead state characterization, the temperature (T0) 
is 25 ◦C or 298 K, the pressure (P0) is taken as 1 atm or 101.325 kPa, and 
the working fluid exists as saturated liquid at P0 and T0. The dead state 
serves as a reference point to ascertain exergy efficiency, exergy loss 
ratio, and exergy destruction. The comparison between actual operating 
conditions and the dead state of the power plant highlights the areas 
where exergy losses are significant due to irreversibilities.

3.2. AI approach

A random tree regression model is developed to forecast energy ef
ficiency and exergy efficiency by leveraging factors such as temperature, 
enthalpy, entropy, and mass flow rate. The model performance is 
assessed using the root mean square error (RMSE) metric. The dataset is 
split into training and testing sets in a 70:30 ratio. The training data is 
utilized for model construction and fine-tuning, while the test data is 
employed for making predictions. After the model is completed using 
the training data, it is evaluated using the test data to predict energy 
efficiency and exergy efficiency under various load conditions. The re
sults indicate that the average RMSE for energy efficiency is 0.0852, 
while the average RMSE for exergy efficiency is 0.068. These RMSE 
values suggest that the model demonstrates reasonable accuracy in 
predicting both energy and exergy efficiency for the power plant. Fig. 7
(a) illustrates the comparison between the experimental and the pre
dicted values of energy percentage at different stages of the plant i.e., at 
45 %, 79 %, 88 %, and 99 % loads. The model efficiency closely matches 
the experimental values, with the least discrepancy observed at 99 % 
load, where the energy efficiency percentage is maximized. The overall 
average RMSE for energy efficiency percentage remains at 0.0852. In 
Fig. 7(b), a comparison between the experimental and the predicted 
values of percentage energy at various stages of the plant is reported. 
The comparison is also made for performance under 45 %, 79 %, 88 % 
load, and 99 % loads. The overall average RMSE for the energy effi
ciency percentage is 0.068. By analyzing the predicted results against 
experimental data, the coefficient of determination (R2) is computed for 
various stages of the power plant. Remarkably, the overall average R2 

value is 0.869 for energy analysis and 0.987 for exergy analysis.
Fig. 8 presents a comparison of experimental and predicted values 

for both energy efficiency and exergy efficiency at specified load levels 
of 44.5 %, 78.755 %, 87.8 %, and 98.8 %. The model’s ability to yield 
low RMSE values underscores its effectiveness in accurately assessing 
and forecasting energy and exergy efficiency. Consequently, this model 
holds promise for precise predictions of the power plant efficiencies, 
enabling optimization of plant operations. Nonetheless, it is worth 
noting that further enhancements could be achieved by incorporating a 
more extensive dataset for future applications.

The performance of the predictive model, the Random Forest 
Regression (RFR) model, is evaluated using two key statistical metrics, 
mainly the coefficient of determination (R2) and the root mean square 
error (RMSE). The R2 value quantifies the proportion of variance in the 
actual data that the model can explain, with values closer to 1 indicating 
a stronger correlation between predicted and actual values. A high R2 

suggests that the model can capture underlying patterns effectively, 
making it a reliable tool for prediction. Meanwhile, RMSE measures the 
average deviation of the predicted values from the actual values, with 
lower values indicating higher accuracy and precision. Fig. 9 compares 
the actual and predicted results for energy efficiency for different power 
plant stages through R2 and RMSE. Fig. 9 (a) shows that the high- 
pressure turbine (HPT) achieved an R2 of 0.9643 and an RMSE of 
0.097, demonstrating strong predictive accuracy but slightly higher 
error compared to other stages. The intermediate-pressure turbine (IPT) 
exhibited an R2 of 0.9587 and an RMSE of 0.092, indicating reliable 

Fig. 6. Variation in Cycle efficiency (Energy and Exergy) for different com
ponents of the plant under distinct loading conditions.
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performance with minimal deviation (see Fig. 9 (b). The low-pressure 
turbine (LPT) followed a similar trend, with an R2 of 0.9569 and an 
RMSE of 0.084, reinforcing the model’s ability to predict efficiency with 
a small margin of error (see Fig. 9 (c)). Fig. 9 (d) shows that the 
condensate extraction pump (CEP) performed well, with an R2 of 0.9599 
and an RMSE of 0.091, reflecting a strong correlation between actual 
and predicted values. Fig. 9 (e) displays that the gland steam condenser 
(GSC) achieved one of the highest R2 values at 0.9823 with an RMSE of 
0.082, highlighting exceptional model accuracy. Fig. 9 (f) shows that the 
gas-fuel heater (GFH) also showed excellent predictive capability, with 
an R2 of 0.9911 and an RMSE of 0.084. The boiler feed water pump 
(BFWP) (see Fig. 9(g)) and the boiler (see Fig. 9(h)) itself demonstrated 
high accuracy, with R2 values of 0.9892 and 0.9882, respectively, and 
RMSE values of 0.076 and 0.079, ensuring reliable efficiency pre
dictions. Fig. 9 (i) shows that the condenser exhibited the best perfor
mance, with the highest R2 of 0.997 and the lowest RMSE of 0.062, 
confirming near-perfect predictive accuracy. Overall, the model 
demonstrated strong predictive capability across all stages, with 
consistent performance and minimal error in estimating energy 
efficiency.

Fig. 10 evaluates the model results for exergy efficiency for different 
power plant stages. Fig. 10 (a) shows that the high-pressure turbine 
(HPT) achieved an R2 of 0.9576 and an RMSE of 0.08, indicating strong 
predictive reliability with minor deviations. Fig. 10 (b) shows improved 
performance with an R2 of 0.9794 and an RMSE of 0.081, reflecting a 
well-trained model with minimal error in the case of the intermediate- 
pressure turbine (IPT). Fig. 10 (c) shows that the low-pressure turbine 
(LPT) exhibited excellent predictive capability, with an R2 of 0.9943 and 
an RMSE of 0.064, signifying high correlation and accuracy. Fig. 10 (d) 
shows that the condensate extraction pump (CEP) displayed exceptional 
results, with an R2 of 0.9956 and an RMSE of 0.063, suggesting good 
alignment between actual and predicted values. Fig. 10 (e) shows that 
the gland steam condenser (GSC) attained an R2 of 0.9784 and an RMSE 
of 0.078, highlighting robust model performance. The gas-fired heater 

(GFH) demonstrated outstanding accuracy, with an R2 of 0.9979 and an 
RMSE of 0.059, making it one of the best-performing stages (see Fig. 9
(f)). Similarly, the boiler feed water pump (BFWP) (see Fig. 10 (g)) and 
the boiler (see Fig. 10 (h)) itself showed high reliability, with R2 values 
of 0.994 and 0.9916, respectively, and corresponding RMSE values of 
0.062 and 0.064. Fig. 10 (i) shows that the condenser achieved the 
highest precision, with an R2 of 0.996 and an RMSE of 0.061, confirming 
high model accuracy. Overall, the model demonstrated consistent and 
reliable predictive performance across all stages, ensuring accurate 
exergy efficiency estimations with minimal deviations.

4. Conclusions

The present study aims to investigate and predict the performance of 
a 400 MW steam power plant operating on the Rankine cycle through a 
combined exergy-energy analysis and an artificial intelligence-based 
random forest regression model.

The following conclusions can be drawn from the present study: 

• The efficiency and performance of the turbine are significantly 
influenced by factors such as steam quality, superheat, and reheat 
pressure at the outlet of a low-pressure turbine. Additionally, there is 
an opportunity to explore the potential of utilizing waste flue gas 
from the power plant for practical purposes, which can contribute to 
sustainability. Furthermore, to reduce exergy losses originating from 
the boiler, minimizing the temperature difference between the sys
tem and the environment is essential while increasing the heat 
transfer area. This step can lead to improved overall system 
efficiency.

• The exergy efficiencies are calculated as 31 %, 35 %, 35 %, and 36 % 
at load conditions of 44.50 %, 78.75 %, 87.85 %, and 98.80 %, 
respectively. In contrast, the corresponding energy efficiencies were 
found to be 26 %, 28 %, 28 %, and 30 %. The studied results highlight 
significant room for enhancement, and it is noteworthy that the 
energy efficiencies are lower than the exergy efficiencies at various 
loading conditions, underscoring the importance of exergy effi
ciency, which considers the quality of energy and its efficient con
version into useful work. Even in cases where the overall energy 
input is substantial, a process that effectively harnesses high-quality 
energy can achieve high exergy efficiency. Furthermore, the boiler 
serves as a source of maximum exergy destruction due to irrevers
ibility associated with the combustion process. The inlet air tem
perature and excess air fraction significantly affect exergy 
destruction in the combustion chamber. However, preheating air can 
reduce exergy destruction, increasing the fuel-to-air ratio and 
evaporator pressure. Although the superheating of steam increases 
the plant’s efficiency, it also limits the safety limit of the plant due to 
metallurgical constraints. However, the boiler pressure increases 
thermal efficiency, but it also increases the moisture content in 

Fig. 7. Comparison of actual values with predicted values by the model for (a) energy efficiency and (b) exergy efficiency.

Fig. 8. Comparison of experimental values with predicted values of cycle ef
ficiency of the plant.
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steam, which may erode turbine blades. Steam reheating can reduce 
moisture problems.

• IPT showed maximum energy efficiency, followed by GSP, Boiler, 
and condenser. However, the CEP showed the lowest energy effi
ciency, followed by BFWP. The energy efficiency for IPT is 89.75, 
89.83, 90.94, and 92.05 % at 44.50, 78.75, 87.80, and 98.8 % 
loading conditions. The energy efficiency for CEP is 17.6, 20.29, 
21.43, and 22.08 % at 44.50, 78.75, 87.80, and 98.8 % loading 
conditions. Similarly, the IPT showed maximum exergy efficiency, 
followed by GSP, and CEP showed the least exergy efficiency, fol
lowed by BFWP. The exergy efficiency for IPT is 90.44, 92.79, 93.0, 
and 93.37 % at 44.50, 78.75, 87.80, and 98.8 % loading conditions. 
The exergy efficiency for CEP is 19.84, 23.86, 24.79, and 25.98 % at 
44.50, 78.75, 87.80, and 98.8 % loading conditions. Both energy and 
exergy analysis show that IPT is running at maximum potential, 
however, the CEP possesses energy losses. The frictional losses in 

bearings and seals in CEP, and cavitation due to lower suction 
pressure, may result in pump impeller erosion, air ingress, and 
fouling in pipelines. Regular monitoring of CEP is required for the 
optimal performance of the plant, resulting in higher electrical pro
duction. Furthermore, the improvement in heat recovery systems 
and reduction in exergy destruction may also result in higher elec
trical production of plants.

• The optimum number of feed water heaters should be used in the 
power plant as more heaters will raise the boiler temperature and 
reduce fuel consumption in the boiler. The plant’s efficiency de
creases with the increase in atmospheric temperature. The heat los
ses are higher for the lower temperature difference between the 
system and the environment. The boilers can be improved through 
chemical loop combustion or effective utilization of insulated ma
terials and piping. Inlet pressure, temperature, construction design, 
and materials can improve turbine performance. Condensers can be 

Fig. 9. Model performance for energy efficiency at different stages of the plant: (a) HPT, (b) IPT, (c) LPT, (d) CEP, (e) GSC, (f) GFH, (g) BFWP, (h) Boiler, 
(i) Condenser.
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improved by increasing their heat transfer surface area and sealing to 
prevent pressure drop, fluid leakage, and exergy loss.

• In this study, energy and exergy are set as a base for the performance 
evaluation of thermal systems. Although locations and magnitudes of 
energy losses have been described in detail, there is still a need to 
extend the analysis based on economic factors. Exergy analysis can 
be combined with economics to carry out exergy-economic analysis 
of power plants. Based on exergy destruction, a better estimation of 
costs can be allocated to thermal systems. The Random Tree 
Regression model is employed to predict energy efficiency and 
exergy efficiency within the power plant. The dataset is divided into 
training and testing data, utilizing a 70:30 ratio. The training data is 
instrumental in constructing and fine-tuning the model, while the 

test data facilitates prediction generation. Comparing the predicted 
results with experimental data, the Root Mean Square Error (RMSE) 
is computed to assess model performance. Impressively, the overall 
average RMSE for energy efficiency is found to be 0.0852, and for 
exergy efficiency percentage, it is 0.068. These consistently low 
RMSE values validate the model’s accuracy. The coefficient of 
determination (R2) for various stages of the power plant is computed 
by comparing the predicted results with experimental data. Notably, 
the overall average R2 value for energy analysis is 0.869, while for 
exergy analysis, it is 0.987. In addition, the study highlights the 
model’s potential for optimizing power plant output parameters, 
providing valuable insights for future improvements. Expanding the 
dataset in subsequent research endeavors can further enhance the 

Fig. 10. Model performance for exergy efficiency at different stages of the plant: (a) HPT, (b) IPT, (c) LPT, (d) CEP, (e) GSC, (f) GFH, (g) BFWP, (h) Boiler, 
(i) Condenser.
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model’s precision. Moreover, the model’s versatility enables evalu
ations across a wide range of values, contributing to the optimization 
of various facets of power plant performance.

• The current study applies AI models for the comprehensive analysis 
of power plants, particularly evaluating energy and exergy efficiency 
across different operational stages. While traditional thermodynamic 
modeling has been extensively used, integrating machine learning 
techniques such as Random Forest Regression modeling offers a more 
data-driven and adaptive method for predicting energy efficiency. 
Random Forest Regression modeling remains relatively underex
plored in power plant analysis compared to conventional statistical 
approaches and other AI models like Support Vector Machines 
(SVM). However, it presents several advantages, making it a superior 
choice. Unlike SVM, which can struggle with large datasets and high- 
dimensional feature spaces due to its computational complexity and 
sensitivity to hyperparameter tuning, Random Forest Regression 
modeling is inherently robust to overfitting and can handle complex 
relationships effectively. It is an ensemble learning approach that 
aggregates multiple decision trees and enhances predictive accuracy 
and generalizability, making it well-suited for complex, multi-stage 
power plant systems. By leveraging Random Forest Regression 
modeling for energy and exergy efficiency predictions, this study 
introduces a framework that improves accuracy, reduces computa
tional overhead, and enhances decision-making for optimizing 
power plant performance.

• In addition, this research primarily focuses on the thermal aspects of 
the power plant—specifically, heat and energy losses in key com
ponents such as the boiler, turbine, and condenser—rather than the 
electrical generation process. However, by pinpointing components 
with maximum efficiency potential and those operating at lower 
efficiency, this study offers valuable insights for plant management 
to implement targeted improvements, minimize energy losses, and 
ultimately enhance electrical power generation.

4.1. Future outlook

Although the Random Forest Regression Model provides reliable 
predictions regarding energy and exergy analysis, in the future, the 
advanced machine learning models should be integrated with real-time 
power plant data for better optimization. The integration of advanced 
machine learning techniques offers significant potential for improving 
the accuracy and robustness of energy and exergy efficiency predictions. 
While Random Forest Regression has demonstrated reliability, future 
studies can explore deep learning models such as Artificial Neural Net
works (ANN) and Long Short-Term Memory (LSTM) networks. These 
models can effectively capture complex nonlinear dependencies and 
enhance predictive capabilities. Furthermore, hybrid approaches 
combining machine learning with optimization techniques, such as 
Genetic Algorithms (GA) or Particle Swarm Optimization (PSO), could 
facilitate the determination of optimal operating conditions, leading to 
minimized exergy losses and enhanced plant efficiency. The imple
mentation of real-time monitoring through digital twin technology and 
machine learning-driven predictive maintenance could further optimize 
operations, ensuring early anomaly detection and continuous perfor
mance improvements.

Expanding research to incorporate renewable energy sources, such as 
solar thermal and biomass, into the Rankine cycle could improve sus
tainability while reducing overall exergy destruction. Additionally, 
exploring supercritical and ultra-supercritical steam cycles may provide 
insights into their superior energy and exergy performance compared to 
conventional systems. Exergy-based economic and environmental as
sessments could further refine sustainability evaluations by considering 
carbon footprint reduction, cost-effectiveness, and lifecycle impacts. The 
effect of developing technologies, such as advanced thermal energy 
storage systems and supercritical CO2 cycles, should be investigated to 

improve the sustainability of large-scale power generation. The energy- 
exergy analysis could also be extended to explore the impact on the 
economic feasibility of power plants along with electricity production 
optimization. An exergy-economic viability assessment of intended ef
ficiency improvements can help in decision-making for policymakers 
and operators of power plants. AI-driven fault diagnostics and dynamic 
exergy analysis under varying load conditions could enhance opera
tional efficiency and reliability. Investigating advanced waste heat re
covery technologies, such as Organic Rankine Cycles (ORC) or Kalina 
cycles, could further optimize rejected heat utilization. Lastly, bench
marking energy and exergy performance across different power plants 
would help establish industry-wide best practices and design improve
ments. Addressing these research directions will contribute to the 
advancement of intelligent energy management and sustainable power 
plant operations.
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[85] Kaska Ö. Energy and exergy analysis of an organic Rankine for power generation 
from waste heat recovery in steel industry. Energ Conver Manage 2014;77: 
108–17.

[86] F. B. Thamir K. Ibrahim, Omar I. Awad, Ahmed N. Abdullah, G. Najafi, Rizlman 
Mamat, F.Y. Hagos. (2017). Thermal performance of gas turbine power plant 
based on exergy analysis.

[87] Babaei Jamnani AKM. Energy-exergy performance assessment with optimization 
guidance for the components of the 396-MW combined-cycle power plant. Energy 
Sci Eng 2020.

[88] Mitrovic DZD, Lakovic MS. Energy and Exergy Analysis of a 348.5 MW Steam 
Power Plant. Energy Source 2010;32:1016–27.

[89] Rudiyanto B, Wardani TA, Anwar S, Al Jamali L, Prasetyo T, Wibowo KM, et al. 
Energy and Exergy Analysis of Steam Power Plant in Paiton, Indonesia. Int Conf 
Sustain Energy Green Technol 2018.

[90] Pilankar KD, Kale R. Energy and Exergy Analysis of Steam and Power Generation 
Plant. Int J Eng Res Technol, vol. 5, no. 6, 2016.

[91] Mehrabi Gohari E, Pishkar I, Omidian E. Energy and exergy analysis of steam 
power plant cycle of the ninth refinery of south pars gas complex. Iranica J 
Energy Environ 2025:124–35.

[92] Vivek Kumar VKS, Kumar R, Kumar Shravan. Energy, exergy, sustainability and 
environmental emission analysis of coal-fired thermal power plant. Ain Shams 
Eng J 2024.

[93] Elwardany M, Nassib AM, Mohamed HA. Exergy analysis of a gas turbine cycle 
power plant: a case study of power plant in Egypt. J Therm Anal Calorim 2024.

[94] Ahmadi GR, Toghraie D. Energy and exergy analysis of Montazeri Steam Power 
Plant in Iran. Renew Sustain Energy Rev 2016:454–63.

[95] Moran MJ, Shapiro HN, Boettner DD, Bailey MB. Fundamentals of engineering 
thermodynamics. John Wiley & Sons; 2010.

[96] Bimestre TA, Júnior JAM, Canettieri EV, Tuna CE, Sobrinho PM. Energy 
Efficiency Technologies for Hydroelectric Power Plants: A Case Study in Brazil. 
J Power Energy Eng 2022;10(5):90–115.

[97] Yang Y, et al. Life cycle assessment of typical tower solar thermal power station in 
China. Energy 2024;309:133154.

[98] Vundela Siva R, Subash Chndra K, Sudhir Kumar T, Narayanlal P. An approach to 
analyse energy and exergy analysis of thermal power plants: a review. Smart Grid 
Renewa Energy 2010;2010.

[99] Bari SA, Fuad M, Labib KF, Ehsan MM, Khan Y, Hasan MM. Enhancement of 
thermal power plant performance through solar-assisted feed water heaters: An 
innovative repowering approach. Energy Convers Manage: X 2024;22:100550.

[100] Li X, et al. Energy, exergy and economic analyses of a combined heating and 
power system with turbine-driving fans and pumps in Northeast China. Energies 
2020;13(4):878.

[101] Calise F, Palombo A, Vanoli L. Design and partial load exergy analysis of hybrid 
SOFC–GT power plant. J Power Sources 2006;158(1):225–44.
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