

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF ELECTROCHEMICAL BIOSENSOR SYSTEMS FOR CHLORPYRIFOS PESTICIDE DETECTION

ABDU IDRIS OMER

FK 2002 78

DEVELOPMENT OF ELECTROCHEMICAL BIOSENSOR SYSTEMS FOR CHLORPYRIFOS PESTICIDE DETECTION

By

ABDU IDRIS OMER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2002

.

.

.

1

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

DEVELOPMENT OF ELECTROCHEMICAL BIOSENSOR SYSTEMS FOR CHLORPYRIFOS PESTICIDE DETECTION

By

ABDU IDRIS OMER

APRIL 2002

Chairman: Bambang Sunaryo Suparjo, Ph.D.

Faculty : Engineering

Environmental monitoring systems are of great interest and highly significant in our life since every day we are exposed to many and various dangerous and fatal contaminants. Organophosphate pesticides such as Chlorpyrifos are widely used in agriculture to eliminate plant destroying pests. However, these pesticides may affect the environmental equilibrium unless continuous monitoring on their presence in water, soil, and agricultural products is carried out to protect human health and other living organisms.

One of the approaches that can be adopted is to develop an on-line monitoring system. The widely used electronic and computer technology can simplify the development process of acquiring and monitoring system. In addition, the invention of biosensors to detect biologically-based materials such as Chlorpyrifos pesticide in the agricultural sector, glucose level in blood, heavy elements in the drinking water etc., have attracted interest.

This research is divided into two parts: development of computer-based instrument and development of biosensor. Both systems are integrated to form a real monitoring device for the detection of Chlorpyrifos pesticide concentration. In the development of computer-based instrument, a serial interfacing board that can be linked to the computer to acquire data from the various developed biosensors was developed. The developed board includes signal conditioning, analog-to-digital (A/D) and universal asynchronous receiver and transmitter (UART) circuits. Visual Designer software was used to control the data flow process and at the same time displaying the biosensor responses in real time, and the data can be stored in hard disk.

For the biosensor development, two amperometric based biosensor electrodes and capacitance-based biosensor were developed. In the amperometric based biosensor electrodes, two different patterns and substrate electrodes (copper and gold) were developed. Both structures can produce similar responses where the electrical signal (in this case voltage) variation is proportional to the pesticide concentration. Also, they can be linked to the computer via the PC-based serial interfacing board. For the capacitance-based biosensor, detection of Chlorpyrifos pesticide was carried out by monitoring the variation of dielectric (mixed pesticide and antibody) between two parallel plates. An oscillator circuit was used to detect the response by measuring the generated signal frequency. It has been shown that the measured frequency is inversely proportional to the pesticide concentration. Therefore, from the results, the developed biosensors are able to detect the response of the pesticide. Also, the evaluation and comparison between the results of these systems show that the capacitance-based biosensor is the most effective structure. The construction of that structure is relatively simple.

Analysis of previously developed biosensors has been carried out as references. They are a pH glass electrode and a fibre optical biosensor.

The remarkable significant findings and contribution of the author in this research. can be represented in the design of a potentiostat electronic circuit that provides a bias voltage to the electrode systems inserted in a sample of the Chlorpyrifos pesticide. This generates an electrochemical reaction where an electric current proportional to the concentration of the Chlorpyrifos pesticide sample is provided, Secondly, the design of capacitance-based biosensor that relates frequency readings with Chlorpyrifos pesticide concentrations. Finally, the integration of both the various biosensor systems and the PC-based serial board where a real data acquisition system was established to detect the Chlorpyrifos pesticide

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN SISTEM BERASASKAN BIOSENSOR UNTUK PENGESANAN PESTISID CHLORPYRIFOS

Oleh

ABDU IDRIS OMER

APRIL 2002

Pengerusi: Bambang Sunaryo Suparjo, Ph.D.

Fakulti : Kejuruteraan

Pestisid organofosfat seperti chlorpyrifos digunakan secara meluas dalam sektor pertanian unfuk menghapuskan perosak tanaman. Namun pestisid ini boleh menyebabkan ketidakseimbangan persekitaran kecuali jika pemautauan berterusan dibuat bagi memastikan kandungan pestisid di dalam air, tanah dan penghasilan pertanian tidak memudaratkan manusia dan kehidupan lain. Satu cara yang boleh digunakan ialah dengan membangunkan sistem pemantauan. Sistem pengawasan persekitaran adalah sangat penting dan berkait rapat dengan kehidupan kita yang sentiasa terdedah kepada berbagai bahan cemar dan berbahaya.

Penggunaan teknologi komputer dan elektronik dapat membantu memudahkan proses pemantauan. Tambahan pula, rekaan biosensor untuk mengesan bahan berasaskan biologikal seperti pestisid chlorpyrifos dalam sektor pertanian, kandungan glukosa dalam darah, bahan kimia dalam air minuman dan seumpamanya amat menarik minat. Penyelidikan ini dibahagikan kepada dua bahagian: pembangunan instrumentasi berasaskan komputer dan pembangunan struktur biosensor khusus untuk mengesan pestisid chlorpyrifos.

Dalam pembangunan instrumentasi berasaskan komputer, litar antaramuka yang boleh disambungkan kepada komputer untuk mendapatkan data dari berbagai jenis biosensor telah dibangunkan. Litar yang dibangunkan termasuk keadaan isyarat, penukar analog kepada digital dan litar penerima dan penghantar. Perisian "Visual Designer" telah digunakan untuk mengawal pengaliran data dan pada masa yang sama mempamerkan isyarat biosensor yang diperolehi. Data yang diperolehi boleh juga disimpan dalam cakera keras. Bagi struktur biosensor, elektrod biosensor amperometrik dan biosensor berasaskan kapasitan telah dibangunkan. Dalam biosensor elektrod amperometrik, dua jenis corak dan substrat elektrod (kuprum dan emas) berbeza telah dibangunkan. Kedua-dua struktur boleh menghasilkan tindakbalas yang hampir sama di mana perbezaan isyarat elektrik (voltan) adalah berkadaran dengan kandungan pestisid. Ia juga boleh disambungkan kepada komputer melalui kad antara muka. Bagi biosensor berasaskan kapasitans pengesanan pestisid chlorpyrifos telah dijalankan dengan memerhatikan perbezaan nilai dwielektrik (campuran pestisid dan antibodi) antara dua plat selari. Litar pengayun digunakan untuk mengesan tindakbalas dengan mengukur isyarat frekuensi yang dihasilkan. Didapati isyarat frekuensi adalah berkadar songsang dengan kandungan pestisid. Oleh itu, dari keputusan yang diperolehi, biosensor yang telah direka boleh mengesan kehadiran pestisid. Dari keputusan yang diperolehi, didapati biosensor berasaskan kapasitans adalah struktur lebih efektif dan pembinaannya adalah sangat mudah. Analisis biosensor terdahulu telah dijadikan sebagai rujukan. Ia adalah elektrod kaca pH dan biosensor optik fibre. Akhir kata, instrumentasi berasaskan komputer dan biosensor telah digabungkan untuk membentuk sistem pemantauan secara lansung. Isyarat biosensor didapati boleh dipaparkan pada skrin

komputer menandakan litar antaramuka dan perisian kawalan telah berjaya dibangunkan.

ACKNOWLEDGEMENTS

I would like to thank the chairman of my supervisory committee Dr. Bambang Sunaryo Suparjo for the unlimited assistance and great effort he exerted to complete this study. A special thank to Dr. Abd Rahman Ramli for his unlimited valuable comments and recommendations. I was also indebted to Dr. Zamri Ishak the cosupervisor head of the program who helped me technically and financially. The fruitful advice he shared yielded a good environment that resulted in a high confidence to go a head in pursing the study. My thanks and appreciation are extended to Mr. Massnizar Mustapha and Miss Noorshina Hussin for their valuable technical assistance who have helped me in preparing most of the bioreceptors and chemical compounds and other relevant things which have been used throughout the experiments.

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGMENTS	viii
APPROVAL	x
DECLARATION	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	xxi

CHAPTER

L

1	INT	RODUCTION	1
	1.1	Overview of the Environment Monitoring Approaches	1
	1.2	Organophosphate Pesticides	2
	1.3	Definition of Electrochemical Biosensors	3
	1.4	Problem Statement and Project Aims	4
	1.5	Benefits and Significance Findings	6
	1.6	Limitations of the Detecting systems	7
	1.7	Computer-Based Instrument	8
	1.8	Amperometric Biosensors	9
	1.9	Potentiometric Biosensors	10
	1.10	Optical Biosensor	11
	1.11	Conductance Measurements	12
	1.12	Thesis Organisation	12
2	LITE	ERATURE REVIEW	14
	2.1	Methods of Analysis Based on Biosensors for Environmental	
		Monitoring	14
	2.2	The History of Biosensors	16
	2.3	Biosensors Technology	18
		2.3.1 Bioreceptor Molecules	18
		2.3.2 Electrodes Types and Configurations	20
		2.3.3 Recognition and Transduction Methods of Biosensors	23
		2.3.4 Biocatalysis-Based Biosensors	24
		2.3.5 Bioaffinity-Based Biosensors	27
		2.3.6 Microorganism-Based Biosensors	30
		2.3.7 Choice of Bioreceptor and Immobilization Techniques	32
	2.4	Signal Transduction Techniques	34
		2.4.1 Potentiometric Transducers	34
		2.4.2 Amperometric Transducers	36
		2.4.3 Optical Measurements	39
		2.4.4 Conductance Measurements	41

	2.5	Biosensors for Environmental Monitoring	41
	2.6	PC-based Measurement and Control Systems	44
		2.6.1 Data Acquisition Systems Developments	46
		2.6.2 Real Time Analysis vs. Post-processing	48
	2.7	Future Trends of Electrochemical Biosensors for	
		Environmental Monitoring	50
		5	
3	AM	PEROMETRIC BIOSENSORS	
	(TH	EORY OF OPERATION)	52
	3.1	Overview	52
	3.2	Electrochemical Terms and Concepts	52
		3.2.1 Oxidation reaction	52
		3.2.2 Reduction Reaction	54
		3.2.3 Redox Reaction	54
	3.3	The measured parameter in the amperometric biosensor	55
	3.4	Electrode Set Up and Current Generated	55
		3.4.1 Working Electrode	56
	2.5	3.4.2 Reference Electrode	57
	3.5	The Faradaic and Nontaradaic Currents	58
	2.6	3.5.1 Faradaic Currents and Diffusion Controlled Reactions	60
	3.0	Electrode Configurations	63
		3.6.1 Two Electrode Configuration	64
	2 7	3.6.2 Inree Electrode Configuration	00
	3.1 2.0	Equations Governing the Electrode Reactions	09 72
	3.8	2.8.1 The Catteril Equation	12 72
	205	3.8.1 The Collient Equation	15
	3.9 E	Conclusion	75
	5.10	Conclusion	70
4	DEV	FI OPMENT OF COMPLITER-BASED INSTRUMENTS	77
т		Development of Controlling and Monitoring Software	,,
	ч. 1 L Т	king Visual Designer	77
	C	4 1 1 Visual Designer Blocks	80
	42	Development of PC-Based Serial Interfacing Boards	84
	1.2	4 2 1 Overview	84
		4.2.2 Principles of Data Acquisition System	86
		4.2.3 PC-Based Serial Communications	86
		4.2.4 Analogue Signal Conditioning	88
		4.2.5 Digital Signal Processing	92
		4.2.6 Circuit Diagram Description	94
		4.2.7 Printed Circuit Board PCB	95
		4.2.8 Flow Chart of the System	100
		4.2.9 Sequence vs. Software Selectable Ranges	101
		4.2.10 Channel Activation Process of an Input Device	103
	4.3	Conclusion	108
-			
5	DEV	ELOPMENT OF AMPEROMETRIC BIOSENSOR-BASED	
	ELE(UTRODES AND CAPACITANCE BASED BIOSENSOR	110
	5.1	Overview of the Amperometric Biosensor Based Electrodes	110
	5.2	Development of the Amperometric Biosensor Based Electrodes	111

		5.2.1 Development of Copper Electrode	111
		5.2.2 Development of Gold Electrode	114
	5.3	Capacitance Based Biosensor	118
		5.3.1 Overview	118
		5.3.2 Development of Capacitance Based Biosensor	118
	5.4	Conclusion	123
6	EXP	ERIMENTAL RESULTS AND DISCUSSION	124
	6.1	Introduction	124
	6.2	Detection of Chlorpyrifos Pesticide Using Amperometric	125
		Diuselisui	125
		6.2.2 Electrical Current Va. Species Concentration	125
		6.2.2 Electrical Current vs. Species Concentration	120
		6.2.4 Electrode Configurations	120
		6.2.5 Measurement Technique of Pesticide Concentration	127
		6.2.6 Setting up the Amperometric Biosensor System	127
		6.2.7 Calibration of the Measurement System	120
		6.2.8 PC-Based Interfacing Roard and a Digital Meter in	12)
		Monitoring Pesticide Concentration	133
		6.2.9 Analysis Based on Calibration	137
		6.2.10 Detecting Chlorpyrifos Pesticide Using Copper	157
		Electrodes	138
		6.2.11 Detecting Chlorpyrifos Pesticide Based on the	
		Activation of Immobilised Enzyme on Gold Working	100
		Electrode	139
		6.2.12 Performance of Copper and Gold Electrode in Detecting Chlorpyrifos Pesticide	142
	6.3	Detecting Chlorpyrifos Pesticide Using Capacitance-Based	
		Biosensor	144
		6.3.1 Theory	144
		6.3.2 Preparation of the Rabbit Antibody Dilutions	147
		6.3.3 Preparation of the Pesticide Concentration	147
		6.3.4 Results	148
		6.3.5 Conclusion	154
	6.4	Detection of Organochlorine Pesticide Using Capacitance	
		Based-Biosensor	155
		6.4.1 Overview	100
		6.4.2 Results and Discussion	157
	65	0.4.5 CONClusion	160
	0.5	6.5.1 Chemicals Required for Detecting the Chlorpyrifos	100
		Pesticide	161
		6.5.2 Results and Discussion	163
		6.5.3 Conclusion	165
	0.6	Detection of Chlorpyritos Pesticide Using Fibre Optical	1/-
		Biosensor	165
		6.6.1 Background of the Fibre Optical Biosensor	166
		0.0.2 Objective of the Fibre Optical Biosensor	10/
		0.0.3 Operation of Pibre Optical	108

		6.6.4 Testing of Fibre Optical Biosensor	169
		6.6.5 AchE Enzyme to Detect Chlorpyrifos Pesticide	170
		6.6.6 Results and Discussion	170
	6.7	Conclusion	175
7	CON	ICLUSION	177
	7.1	Conclusion and Comments Based on the Experimental Results	178
	7.2	Computer Based Instruments	179
	7.3	Amperometric and Capacitance Biosensors Limitations	180
	7.4	Optical Fibre Biosensor Limitations	181
	7.5	Serial Interfacing Technique Advantages	181
	7.6	Computer Based Instruments Limitations	182
	7.7	Suggestions for Future Development and Applications	183
	REF	ERENCES/BIBLIOGRAPHY	184
	APP	ENDICES	194
	BIO	DATA OF THE AUTHOR	231

LIST OF TABLES

Table

4.1 6.1 A.2 A.3 A.4 A.5	TTL (Transistor -Transistor logic) and RS logic data Frequency response vs. parallel plate gap distances D Type 9 Pin and D Type 25 Pin Connectors The pin functions of the serial port Port Addresses & IRQ's COM Port Addresses in the BIOS Data Area Pin Description for CDP6402, AY-5-1015 / D36402R-9	95 154 194 195 199 199
A.6	and compatible UART's Possible Baud Rates using a 74HC4060	200 202
E. l E.2a	DC signal captured by digital meter and PC based board Pesticide concentration measurement using PC and digital	225
E 2b	meter Pesticide concentration measurement using PC and digital	225
E.20	meter	226
E.2C	meter	226
E.3	Frequency readings by maintaining the pesticide concentration at 0.01 ppm added to five antibody dilutions separately	226
E.4	Frequency readings by maintaining the pesticide concentration at 0.1 ppm added to five antibody dilutions separately	227
E.5	Frequency readings by maintaining the pesticide concentration at 1.0 ppm added to five antibody dilutions separately	227
E.6	Frequency readings by maintaining the pesticide concentration at 10.0 ppm added to five antibody dilutions separately	 ייי
E. 7	Frequency readings by maintaining the antibody dilution	227
E.8	Frequency readings by maintaining the antibody dilution	221
E.9	at 400x added to four pesticide concentrations separately Frequency readings by maintaining the antibody dilution	228
E.10	at 800x added to four pesticide concentrations separately Frequency readings by maintaining the antibody dilution	228
E.11	at 1600x added to four pesticide concentrations separately Frequency readings by maintaining the antibody dilution	228
F 12	at 3200x added to four pesticide concentrations separately Interaction of Chlorovrifos (pesticide) with the enzyme	228
E.12	membrane on pH electrode	229
E.13	membrane	229
E.14 E.15	Results based on the pH electrode attach to membrane pH values Vs pesticide concentrations with and without	229
	membrane attached to the electrode	229

LIST OF FIGURES

Figure

1.1	Basic Operation of the Biosensor Principle	3
1.2	Coupling enzymes and electrode reactions	4
1.3	Linking an amperometric biosensor, optical biosensor and pH	
	electrode to the PC via the PC based interfacing board Based	
	on the Visual Designer software, each system can be selected	
	and monitored independently	7
14	Amperometric biosensor principle	10
15	Amperometric biosensor for phenolic compounds detection	10
1.5	Principles of Potentiometric Biosensor	11
1.0	Therpies of Totentionetric Diosensor	11
31	Electrical circuit representing current flow through an	
	electrochemical cell	59
32	Different processes affecting electrode reaction rates	61
3.3	Two-electrode cell	65
3.4	Two-electrode equivalent circuit, showing potential	
	changes at the reference and working electrodes	65
35	Three-electrode cell	67
3.6	Three-electrode equivalent circuit	68
37	Nerve regeneration electrodes	75
3.8	Arrays of sensors: 200 nm gold ring electrodes on a silicon	
5.0	substrate	76
	Substitute	, 0
4.1	Flow chart of simulation process based on Visual Designer	
	software	78
4.2	Real data acquiring process using Visual Designer Software	80
4.3	Setting Run Controller parameters of the Visual Designer	
	Software	83
4.4	Control and output section of the Visual Designer used	
	to select and activate the particular hardware input channel	83
4.5	Visual Designer software blocks of the input section of the	
	data acquiring process	84
4.6	TTL/CMOS Serial Logic Waveform	87
4.7	The potentiostat circuit	91
4.8	Circuit of ADC0804 Analogue to Digital Converter	93
4.9	Block diagram of the PC-based serial interfacing board	95
4.10	Silkscreen Overlay layer of the Printed Circuit board (PCB)	99
4.11	Operating the Drill Machine as the final stage of PCB design	99
4.12	Flow chart of the PC based interfacing board	101
4.13	Processes of current to voltage converter and PC based gain	
	factor selection	102
4.14	Process of activating an input device based on the PC	106
4.15	Linking PC-based interfacing board to Digital meltimeter and	
	Oscilloscope for testing	107
4.16	PCB Testing using digital multimeter and an oscilloscope	107

Page

5.1	Flow chart of the Apmerometric based biosensor electrode	
	development	112
5.2	Steps of designing copper electrodes	114
5.3	Steps of designing gold electrode	116
5.4	Investigating the electrodes for connectivity	117
5 5	Photograph of designed Copper and gold electrodes with the	
0.0	external connectors ready for use	117
56	Flow chart of capacitance based biosensor system development	120
57	Three canacitance-based biosensor electrodes with	120
5.7	identical dimension	121
58	Block diagram of the 555 timer to provide the functions	121
0.0	of control triggering level sensing or comparison discharge	
	and nower output	122
59	Pulse generator built around the 555 timer. The parallel conper-	122
•	plate is connected in series with the known canacitance C1	123
		125
61	Flectrochemical cell	126
6.2	Faradaic current vs species concentration	127
6.3	Setting up the amperometic biosensor	129
6.4	Calibrating process to the PC-based serial board	131
6.5	DC signal source connected to digital meter and to PC based	101
0.0	interfacing board in a way to show the deviation between the	
	two readings	131
6.6	Data Analysis Software Screen Output of sinusoidal signal by	
	a direct connection the PC based interfacing board to the signal	
	generator that provides the signal	132
6.7	Data analysis software screen output: On-line response	
	by dipping gold electrode into distilled and adding tap water	133
6.8a	Typical responses of pesticide concentration using PC and a	
	digital meter. (Table E.2a)	134
6.8b	Typical responses of pesticide concentration using PC and a	
	digital meter. (Table E.2b)	134
6.8c	Typical responses of pesticide concentration using PC and a	
	digital meter. (TableE.2c)	135
6.9a	Visual Designer screen of pesticide concentration measurement	
	on line	135
6.9b	Visual Designer screen of pesticide concentration measurement	
	on line	136
6.9c	Visual Designer screen of pesticide concentration measurement	
	on line	136
6.10	Pico technology software output screen	137
6.11	Chloropyrifos pesticide Detection using copper electrode	139
6.12	Data analysis software screen output: current and voltage	
	plots by applying -0.6 Voltage to gold electrode	141
6.13	Typical voltage responses of an immobilized AchE enzyme on	
	gold electrode and non-immobilized when variable voltages	
	are applied	142
6.14	Thevenin equivalent of a discrete circuit	146
6.15	Frequency readings by maintaining the pesticide	
	concentration at 0.01 ppm (Table E.3)	149

0.10	Frequency readings by maintaining the pesticide	
	concentration at 0.1 ppm (Table E.4)	150
6.17	Frequency readings by maintaining the pesticide	
	concentration at 1.0 ppm (Table E.5)	150
6.18	Frequency readings by maintaining the pesticide	
	concentration at 10.0 ppm (Table E.6)	151
6.19	Frequency readings by maintaining the antibody dilution	
	at 200x (Table E.7)	152
6.20	Frequency readings by maintaining the antibody dilution	
	at 400x (Table E.8)	152
6.21	Frequency readings by maintaining the antibody dilution	
	at 800x (Table E.9)	153
6.22	Frequency readings by maintaining the antibody dilution	
	at 1600x (Table E. 10)	153
6.23	Frequency readings by maintaining the antibody dilution	
	at 3200x (Table E.11)	154
6.24	Maintaining the antibody at 200x dilution and varying the	
	organochlorine pesticide concentrations	158
6.25	Maintaining the antibody at 400x dilution and varying the	
	organochlorine pesticide concentrations	158
6.26	Maintaining the antibody at 800x dilution and varying the	
	organochlorine pesticide concentrations	159
6.27	Maintaining the antibody at 1600x dilution and varying the	
	organochlorine pesticide concentrations	159
6.28	The experiment set up to connect the Expandable ion	
	Analyzer EA940 to the PC	162
6.29	Plotting pesticide concentrations vs voltage reading with	
	and without membrane	164
6.30	Plotting pesticide concentrations vs pH values with and	1.00
())	without membrane	165
6.31	Relative spectral response	167
6.32	The block diagram of fibre optic blosensor system	168
0.33	Subjecting the optical sensor to different coloured papers	160
6 74	Ior testing	109
0.34	Particide	171
6 35	Chlornyrifos pesticide samples to be detected using	1/1
0.55	ontical fibre biosensor	172
6 36	optical fibre probe is dipped into a bottle containing a	172
0.00	sample of the Chlorpvrifos pesticide	172
6.37a	Standard inhibition curve of AchE by Dynatech	
	plate reader	174
6.37b	Standard inhibition curve of AchE by fibre optic	
	biosensor	174
6.38	Linking the fibre optical biosensor to panel meter	175
A. 1	pinout of MAX 232	196
A.2	RS-232 Logic Waveform	197

A.3	External connection of the MAX232	198
A.4	Pin out of the CDP6402 (UART)	200
A.5	Layout of 74HC4060 Binary Counter	202
A.6	Figure A.7: Data shifting process	203
A.7	Complete design of single channel PC based interfacing board	204
A.8	Complete design of 8-channels PC based interfacing board	205
B.1	A transducer that provides a single voltage output	206
B.2	The inputs to amplifier stages can also be modeled	
•	as Thevanin-equivalent circuits	207
B.3	The differential output temperature sensing bridge	208
B.4	Remote sensing to avoid offset errors	209
B.5	An isolator allows communication of signal values	
	between two circuits with no electrical connection	210
B.6	An amplifier model to estimate input noise	211
B.7	Bimetallic connections in a sensor circuit form	
	parasitic thermocouple junctions	212
B.8	Open loops in the signal and return paths are an	
	invitation to pick up magnetic interference	213
C.1	I/O read parameters, only the address of the	
	selected Board is inserted	214
C.2	mX+b parameters block, the value of 0.019607 is inserted For	
	the slope (m)	214
C.3	Serial port setting	214
C.4	Timer block parameters	214
C.5	Numeric edit parameter	215
C.6	Chart parameters configuration	215
C.7	Setting Up Switch Bar Parameters	216
C.8	Setting Up PanelMeter parameters	216
C.9	Setting Up Multiplexer Parameters	217
.C.10	Setting Alphanumeric Input Block Parameters	218
C.11	Setting Increment Counter Parameters	218
D.1	The basic RC charging circuit in the 555 timer	220
D.2	(a) The capacitor slowing up when it charges	221
~ •	(b) The capacitor slowing down when it discharges	221
D.3	555 timer connected as an astable multivibrator	221
D.4	The capacitor charging and discharging operation in the	
	555 timer	221
D.5	Circuit diagram of 555 timer	223

LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

AC	Alternating current
ADC	Analogue-to-Digital Converter
AP	Alkaline Phosphatase
ASV	anodic stripping voltammetry
BOD	Biological Oxygen Demand
CPU	Central Processing Unit
DA	Data Acquisition
DAC	Digital-to-Analogue Converter
DC	Direct Current
DCE	Data Communication Equipment
DTE	Data Terminal Equipment
DTNB	DITHIO-bis(2-NITROBENZOIC ACID)
ELISA	Enzyme Linked Immunosorbant Assay
EPROM	Erasable Programmable Read Only Memory
FET	Field Effect Transistors
FPXRF	Field Portable X-ray Fluorescence
GEMs	Genetically Engineered Microorganisms
HRP	Horse Radish Peroxidase
IC	integrated circuit
INTR	Interrupt
I/O	Input/Output
ISFET	ion-selective field effective transistor
LED	light emitting diode
MARDI	Malaysia Agricultural Research and Development Institute
ODAM	OZO Diversified Automation Machine
OPCs	Organophosphorus Compounds
OPH	Organophosphate Hydrolase
PCB	Printed Circuit Board
PC	Personal Computer
PLC	Programmable Logic Controller
ppb	part per billion
ppm	part per million
REDOX	Reduction and Oxidation
RTD	Resistance-Temperature Detector
RxD	Receiving
SAMs	Self Assembled Monolayers
SHE	Standard Hydrogen Electrode
SPR	Surface Plasmon Resonance
TBR	Transmitter Buffer Register
TIRF	Total Internal Reflection Fluorescence
TTL	Transistor-Transistor logic
TxD	Transmission
UART	Universal Asynchronous Receiver-Transmitter
UiTM	Universiti Technology Mara Malaysia

CHAPTER ONE

INTRODUCTION

1.1 Overview of the Environment Monitoring Approaches

During the three decades ago, there was a strong demand to monitor hazardous compounds in life environment as well as to determine thousands of compounds in various areas like clinical chemistry (determining of disease markers and drugs, etc.), food contaminant assessment quality control, and others [1]. The sensitive and selective determination of a large number of compounds is of great relevance for scientific research as well as for several branches of industry, e.g., for process control in the chemical and food industries [2]. Also in the field of health care it is indispensable for the diagnosis of diseases [1]. The frequent outbreaks of food poisoning serve to underline the need for enhanced monitoring of the food processing industry through disposable, operator friendly microbial contamination detection systems [2]. Such thing has given rise to increased effort in science and technology all over the world to develop simple, rapid, sensitive and inexpensive methods of monitoring and analysis. For instance, during the last decade, the breakout of the industrial revolution in Malaysia has resulted in very dangerous various contaminated environments. As the case in the developed countries, Malaysia shows a growing need and a major concern about safety and quality of food supply. For this purpose, in all over the Malaysian peninsula states different specialised institutions have grown to meet the requirements of creating free pollutants environment.

High selectivity, in trace analysis, has been gained by considerable progress in analytical instrumentation, as is reflected by modern gas chromatography, highpressure liquid chromatography, mass spectrometry, and atomic absorption spectroscopy. However, these powerful instrumental techniques are only used in specialized laboratories. They are not suited to on-line operation. One of the approaches that can be adopted is to develop on-line monitoring system. The wide used of electronic and computer technology can simplify the development process of the system. As an addition, the invention of an electrochemical biosensor to detect biological based materials such as Chlorpyrifos pesticide in the agricultural sector, glucose level in blood, heavy elements in the drinking water etc., have attracted many interests. Moreover, the simplicity of electrochemical biosensor construction and not being limited to the laboratory based systems, proved to replace these heavy and expensive systems. Therefore, the development of electrochemical biosensors, which are highly selective and easy to handle, is thus a key solution in analysis.

1.2 Organophosphate Pesticides

Although Organophosphate pesticides such as Chlorpyrifos pesticide presents a high toxicity that may represent a serious risk for the equilibrium to the environment including the industrial production, agricultural and domestic use, they are considered to be the most important chemicals being utilized extensively in agricultural sectors. Consequently, monitoring these chemicals in water, soil, and food products is highly needed to protect human health and living organisms. A lot of efforts and researches have been oriented and exerted to monitor these pesticides based on the principle of enzyme inactivation [3].

1.3 Definition of Electrochemical Biosensors

Electrochemical biosensors are analytical tools combining biochemical reaction component with a physical transducer (Figure 1.1); the biological sensing element can be an enzyme, antibody, DNA sequence, or event microorganism. The biochemical component serves to selectively catalyse a reaction or facilitates a binding event. The selectivity of the biochemical recognition event allows for the operation of biosensors in a complex sample matrix. The transducer converts the biochemical event into a measurable signal, thus providing the means for detecting it [5]. Measurable events range from spectral changes, which are due to production or consumption of an enzymatic reaction's product/substrate, to mass change upon biochemical complexity.

Figure 1.1: Basic Operation of the Electrochemical Biosensor Principle

In Figure 1.1, (S) a sample illustrates any substance such as pesticides, blood etc., that needed to be detected. (a) Biocatalyst - converts the analyte into product. See Figure 1.2. (b) Transducer - detects the occurrence of the reaction and converts it into an electrical signal. (c) Amplifier - amplifies the usually small signal to a useable level. (d) Microcomputer - signal is digitized and stored for further

