

EX SITU BIOREMEDIATION ASSESSMENT OF USED ENGINE OIL BY SOIL BACTERIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2023

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EX SITU BIOREMEDIATION ASSESSMENT OF USED ENGINE OIL BY SOIL BACTERIA

By

IZEDDIN ABDALLA ELHAMROUNI

May 2023

Chairman : Mohd Yusoff bin Ishak, PhD Faculty : Forestry and Environment

The used engine oil (UEO) contains potentially toxic substances that are harmful, to the ecosystem. Its pollution comprises of dangerous Cpds that requires efficient bioremediation techniques This study investigates the construction of local soil bacteria that can remove petrol-UEO (shell 15-40) by metabolic capability and their bioremediation techniques. The 1st objective of this study was achieved by isolating the UEO degraders from polluted soil of mechanical workshops in Selangor, Malaysia that grows well on UEO as a C-source. These isolates were identified as *Ochrobacterium intermedium* LMG 3301 and *Bacillus paramycoides* MCCC1A04098 strain. The initial results of GC-MS analysis screening results showed that these microbes act on C₉-C₂₉ in 0.74 (%w/v) UEO-EMSM, with the high TPH% removal by *O. intermedium* (0-24d). *O. intermedium* also exhibited increased bacteria numbers than *B. paramycoides* day 24, showing these microbes can utilize UEO.

In the 2^{nd} objective, the RSM optimization and modelling of UEO-HCs biodegradation by *O. intermedium* LMG 3301, allowed the obtaining of the significant model (P<0.001) with R^2 to be 0.9967, and optimal condition (pH7.5, Temperature, 35°C, UEO concentration 5 g/L, and150 rpm), that removed 93% TPH (day 24). The 3^{rd} objective focused on the characterization of Alginate-Attapulgite-Calcium carbonate (AAC) beads, in 20 mL of 1% UEO soil water extract (SWE) for their adsorptive capacities of UEO (in 50-mL capped flasks). The UEO removal efficiency (%RE) of $83 \pm 0.32\%$ in SWE associated with the highest number of AAC-beads (No = 20, \emptyset = 0.45 cm). The studies of SEM and 2, 3, 5-Triphenyl tetrazolium chlroride (TTC) stain of the AAC immobilized cell (IC) systems, showed that the bacteria grows well in this mixed matrix by indicating that this carrier can be applied in the ICs of UEO-pollution adsorptive bioremedies. The AAC matrix stability (4^{th} objective), and its biocatalytic efficiency to remove UEO in a shake flask (150 rpm/24 days) were verified. On day 24, these ICs exhibited the removal of the nC₉ to nC₁₇ with 30% increase in TPH obtained with *O. intermedium* and the 18% by *O. intermedium* + *B. paramycoides* (BC) in UEO, as

compared to their counter-free cell systems (FCs). The AAC-ICs of *O. intermedium* and the BC also removed C₉-C₂₉ to 93% and 98%, demonstrating adsorptive-bioremediation capacity of these IC-systems.

Additional, studies were conducted *in a* freeze-dryer with the same microbes. The effects of various cryoprotectants carriers on bacteria were verified during this process to cover up part of the 6th objective. The optimum, survival of 98% was observed in the mixed carrier of 1% starch + 10% skimmed milk with the viability of over 12 weeks at the RT. The 5th objective of this study was the scale up of RSM optimal physical-chemical condition, for free cell (*O. intermedium* / BC) in 1.5 L of stirred batch reactor (SBR), to study the bioremediation of UEO under elevated aerobic condition (0-5 days). On day five, the BC was more efficient at biodegrading UEO with 10% (85%) TPH increased removal as compared to *O. intermedium* (77%).

In the 6th objective, the bacteria FD-powder and AAC-bead inoculants were tested onto artificial setups of 1.5 kg polluted soil with various UEO concentrations as main C-source; and the urea as partial C-source. The experiments in CRD-FFD³⁻¹ showed that the BC was the most effective. The FD-BC, established fast in the soil enabling the removal of UEO, with $12.05 \pm 2.26\%$ to $55.12 \pm 4.5\%$ of TPH consumed after 84 days whilst $13.54 \pm 0.34\%$ to $33.63 \pm 1.8\%$ were attained with AAC-bead bioformulates. The research achieved all objectives of the ex-situ bioremedies of soil and water UEO pollution. It charactizes novel methods and substantial formulated agents (i.e., free cell, adsorptive immobilized cell, and freeze-dried cell) that can efficiently decrease UEO contamination. This study has shown the bio effectiveness of the removal of UEO exsitu exploring two different formulated bacteria isolated from heavily UEO polluted soil of mechanical workshops in Selangor, Malaysia.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENILAIAN BIOREMEDIASI EX-SITU MINYAK ENJIN TERPAKAI (UEO) OLEH BAKTERIA TANAH, PENGASINGAN, CIRI-CIRI DAN TEKNIK OPTIMUM

Oleh

IZEDDIN ABDALLA B ELHAMROUNI

Mei 2023

Pengerusi : Mohd Yusoff bin Ishak, PhD Fakulti : Perhutanan dan Alam Sekitar

Minyak enjin terpakai (UEO) mengandungi bahan yang berpotensi toksik yang berbahaya kepada ekosistem dan memerlukan teknik bioremediasi yang cekap. Kajian ini menyelidik pembinaan bakteria tanah tempatan yang boleh mengeluarkan petrol-UEO (Cangkang 15-40) dengan keupayaan metabolik dan teknik bioremediasinya. Objektif pertama kajian ini dicapai dengan mengasingkan pengurai UEO dari tanah yang tercemar di bengkel mekanikal sekitar Selangor, Malaysia yang tumbuh dengan baik pada UEO sebagai sumber C. Pengasingan ini dikenal pasti sebagai *Ochrobacterium intermedium* LMG 3301 dan *Bacillus paramycoides* MCCC1A04098. Keputusan analisis GC-MS menunjukkan bahawa mikrob ini bertindak pada C9-C29 dalam 0.74 (%w/v) UEO-EMSM, dengan penyingkiran TPH% yang tinggi oleh *O. intermedium* (0-24 hari). *O. intermedium* juga menunjukkan peningkatan bilangan bakteria daripada B. paramycoides hari ke-24, dimana mikrob ini boleh menggunakan UEO.

Dalam objektif kedua, pengoptimuman RSM dan pemodelan biodegradasi UEO-HCs oleh *O. intermedium* LMG 3301, menghasilkan model signifikan (P <0.001) dengan *R*² 0.9967, dan keadaan optimum (pH 7.5, suhu 35°C, kepekatan UEO 5 g/L, dan 150 rpm), yang mengeluarkan 93% TPH (hari ke-24). Objektif ketiga tertumpu pada pencirian manik Alginate-Attapulgite-Kalsium karbonat (AAC), dalam 20 mL 1% ekstrak air tanah (SWE) UEO untuk mengetahui kapasiti penjerapan terhadap UEO (dalam kelalang bertutup 50 mL). Kecekapan penyingkiran UEO (%RE) sebanyak 83± 0.32% dalam SWE dikaitkan dengan bilangan AAC-manik tertinggi (No = 20, Ø = 0.45 cm). Kajian pewarnaan SEM dan 2, 3, 5-Triphenyl tetrazolium chlroride (TTC) dari sistem sel terimobilisasi AAC (IC), menunjukkan bahawa bakteria tumbuh dengan baik dalam matriks campuran ini dengan pembawa ini boleh digunakan dalam IC bioremedi penjerap pencemaran UEO. Kestabilan matriks AAC (objektif ke-4), dan kecekapan biokatalitiknya untuk mengeluarkan UEO dalam kelalang goncang (150 rpm/24hari) telah disahkan. Pada hari ke-24, IC mempamerkan penyingkiran nC₉ kepada nC₁₇ dengan

peningkatan 30% dalam TPH yang diperoleh dengan *O. intermedium* dan 18% oleh *O. intermedium* + *B. paramycoides* (BC) dalam UEO berbanding dengan bebas balasnya system sel. AAC-ICs bagi O. intermedium dan BC juga mengeluarkan C₉-C₂₉ kepada 93% dan 98%, menunjukkan kapasiti penjerapan bioremediasi dari sistem IC ini.

Kajian juga telah dijalankan dalam pengering beku dengan mikrob yang sama. Kesan pelbagai pembawa krioprotektan pada bakteria telah disahkan sebagai sabahagian daripada objektif ke-6. Kemandirian optimum 98% diperhatikan dalam pembawa campuran 1% kanji + 10% susu skim dengan daya maju lebih 12 minggu di RT. Objektif ke-5 kajian ini adalah peningkatan skala keadaan fizikal-kimia optimum RSM untuk sel bebas (*O. intermedium* / BC) dalam 1.5L reaktor kelompok kacau (SBR), untuk mengkaji bioremediasi UEO di bawah keadaan aerobic tinggi (0-5 hari). Pada hari kelima, BC lebih cekap dalam membiodegradasi UEO dengan 10% (85%) TPH meningkatkan penyingkiran berbanding *O. intermedium* (77%).

Dalam objektif ke-6, inokulan serbuk FD dan AAC-manik bakteria telah diuji pada tetapan tiruan 1.5kg tanah tercemar dengan pelbagai kepekatan UEO sebagai sumber C utama; dan urea sebagai sebahagian C-sumber. Eksperimen dalam CRD-FFD³-1 menunjukkan bahawa BC adalah yang paling berkesan. FD-BC terbentuk dengan cepat di dalam tanah yang membolehkan penyingkiran UEO, dengan 12.05 ± 2.26% hingga 55.12 ± 4.5% daripada TPH yang digunakan selepas 84 hari manakala 13.54 ± 0.34% hingga 33.63 ± 1.8% diperoleh dengan bioformulasi manik AAC. Penyelidikan ini mencapai semua objektif bioremediasi ex-situ pencemaran UEO tanah dan air. Ia mencirikan kaedah baru dan agen yang doformulasikan secara substantial (iaitu sel bebas, sel terimobilisasi penjerap dan sel kering beku) yang boleh mengurangkan pencemaran UEO dengan cekap. Kajian ini telah menunjukkan keberkesanan bio penyingkiran ex-situ UEO yang meneroka dua bakteria yang diformulasikan berbeza yang diasingkan daripada tanah bengkel mekanikal yang tercemar UEO di Selangor, Malaysia.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Allah (SWT) for His help and support during this study. Secondly, I would like to express my deepest gratitude and thanks to my supervisors, Dr. Mohd Yusoff Ishak, Dr. Normala Halimoon, and Dr Wan Lutfi Wan Johari, for their guidance, encouragement, and support throughout my Ph.D. journey. For the Dean of the College and all administrative members, my sincere thanks for those understanding and support.

I want to express my sincere gratitude to all people who directly or indirectly helped me completing this thesis. My most profound appreciation goes to my parents for financial and psychological support, guidance, encouragement. Special thanks to my brother Khalid Abdalla Elhamrouni, for his kind help and words of encouragement. I am also grateful to my sister Fatema Abdalla Elhamrounifor her moral support throughout my study. In addition, I would to thank my wife for her vital supportand consistence encouragement. For my children, Qais, Ouais, and Maria, for being the motivating me and facilitating all hardship that I faced throughout my journey. Besides, I send my gratitude for my friend Abubakr Althohami and Hasan for helping me settle down in Malaysia and start my life here.

Also, my sincere appreciation goes to all people who support and encouragement and sharing their personal experiences. Finally, my sincere thanks to all of those technicians in the lab and all administrative personnel of the college.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Yusoff bin Ishak, PhD

Senior Lecturer Faculty of Forestry and Environment Universiti Putra Malaysia (Chairman)

Normala binti Halimoon, PhD

Senior Lecturer Faculty of Forestry and Environment Universiti Putra Malaysia (Member)

Wan Lutfi bin Wan Johari, PhD

Senior Lecturer Faculty of Forestry and Environment Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 March 2024

TABLE OF CONTENTS

				Page
ABSTRACT ABSTRAK ACKNOWI		MENTS		i iii V
APPROVAL				vi
DECLARA				viii
LIST OF TA				xv
LIST OF FI	GURES	S		xviii
LIST OF A	PPEND	ICES		xxv
LIST OF A	BBREV	TATIONS		xxviii
CHAPTER	ł T			
_			T marrie Arren	
1		ODUCTIO		1
	1.1		and of the Study	1
	1.2		Statement	3
	1.3	_	nce of the Study	4
	1.4	1.4.1	Objectives The general objectives of the study:	5 5
		1.4.1	·	5
	1.5	Research	The specific objectives of the study:	6
	1.5	Research	scope	U
2	LITE	RATURE	REVIEW	7
-	2.1	Introduct		7
	2.2		n crude oil composition	8
	2.3		of used motor oil	9
	2.4		vity of motor-engine-oil Contamination	10
	2.5		liation of used-engine-oil contaminated soil	11
	2.6		anism in Bioremedaion	13
	2.7	Nutrients		14
	2.8	Contamir	ant concentrations	15
	2.9	Electron	acceptor / Oxygen	17
	2.10	Surfactan	t	19
	2.11	Environn	nental Factor Requirements	22
		2.11.1	pH	23
		2.11.2	Oxygen and Moisture content	23
		2.11.3	Temperature	24
		2.11.4	Anaerobic degradation	25
		2.11.5	Composting	27
		2.11.6	Bioventing	28
	2.12		Contaminants Removal	28
		2.12.1	Risk-Based Clean-Up of TPHs-Contaminated	
		2.12.2	Sites	28
		2.12.2	Established Remediation Technologies	29
		2.12.3	Natural Attenuation	29
		2.12.4	Bioaugmentation	30

		2.12.5	Bioaugmentation Using a Single Microbial	21
		2.12.6	Strain Bioaugmentation Using Microbial Consortia	31 32
			0	
		2.12.7	Use of Carrier Materials for Bioaugmentation	33
		2.12.8	Carrier selection	34
		2.12.9	Types of immobilizations	34
		2.12.10	The carriers for the cell immobilized granules	36
		2.12.11	The carrier polymers in the immobilization of	
		2 12 12	cells for soil application	41
		2.12.12	Bioreactors	44
		2.12.13	Ecological Microcosms	47
	2.13		lependent and independent techniques	48
		2.13.1	Culture dependent techniques	48
		2.13.2	Molecular/culture independent techniques	49
	2.14		al indicators of hydrocarbon biodegradation	
		potential		50
3	MAT	ERIALS A	AND METHODS	54
	3.1	Chemica	ls	54
	3.2	Sample of	collection	56
	3.3	Media ar	nd Caryoprotectant	58
		3.3.1	Media	58
	3.4	Enrichme	ent and isolation of UEO-degrading bacteria	59
		3.4.1	The maintenance and the stock culture of pure	
			Isolates	60
		3.4.2	The single/mixed culture inoculum preparation	60
	3.5	Analytic	al methods in shake flask and stirred batch	
		bioreacto		61
		3.5.1	The turbidometric determination of bacterial	
			growth	61
	3.6	The 2,	3,5- Triphenyltetrazolium chloride (TTC)	
		,	tric determination of bacterial growth	61
		3.6.1	Bacteria growth in the immobilized cell	
			remediation	61
	3.7	Analysis	of residual used engine oil (UEO)	62
		3.7.1	Spectrophotometer analysis of UEO	62
		3.7.2	The GC–MS analysis of residual UEO	63
	3.8		ation of potential bacterial isolates	64
	3.0	3.8.1	Morphological and Biochemical characteristics	64
		3.8.2	Scanning electron microscopy (SEM)	64
		3.8.3	Molecular characteristics	65
	3.9		O-Biodegradation Studies	67
	3.9	3.9.1	Growth and screening of the individual potential	07
		3.7.1	isolates for degrading UEO in shake flask	
			6 6	67
		202	System Growth and screening of the mixed notantial	67
		3.9.2	Growth and screening of the mixed potential	
			bacteria isolates for UEO-biodegradation in	67
		202	shake flask system	67
		3.9.3	Initial culture and the biodegradation of UEO	67

3.10		delling and the optimization of the used engine oil degradation using the CCD-RSM	68
	3.10.1	Central composite design (CCD)	68
	3.10.2	Statistical modelling	70
	3.10.3	The statistical design approaches and Central	
		Composite Design (CCD) data analysis	71
3.11		odegradation studies of UEO in stirred batch	
	bioreacto	or (SBR)	71
	3.11.1	1	72
	3.11.2	The qualitative and quantitative enzyme activity	
		assays	73
	3.11.3		
		flask (SF)/SBR	75
3.12	The com	parison studies of the biodegradation potential of	
		n shake flask using single (Ochrobacterium	
	intermed	dium), and mixed culture (Ochrobacterium	
	intermed	dium + Bacillus paramycoides) as free; and	
	immobil	ized cells consortia in sodium alginate-attapulgite-	
	carbonat	te (AAC)	76
	3.12.1	Comparison of UEO biodegradation by	
		Ochrobacterium intermedium strain free cell;	
		and mixed free cell (Ochrobacterium	
		intermedium + Bacillus paramycoides)	
		consortia in shake flask	76
	3.12.2	Immobilization of free cells in calcium alginate	77
	3.12.3	The gel bead size	78
3.13	The kine	etics and the adsorption characteristics of sodium	
	alginate-	-attapulgite- carbonate (AAC) adsorbent for the	
	UEO		79
	3.13.1	The preparation of the adsorbent and soil water	
		extract	79
	3.13.2	Batch sorption test of Alginate-Attapulgite-	
		Calcium carbonate (AAC) adsorbent	80
	3.13.3	Adsorption linear form kinetic models	80
	3.13.4		81
	3.13.5	Adsorption kinetics of UEO	81
3.14	Compari	ison of UEO biodegradation using single and	
		nmobilized cell consortia in shake flask	82
	3.14.1	Immobilized cell scanning electron microscopy	
		(SEM)	82
3.15	The biod	degradation studies of UEO in soil microcosm	83
	3.15.1	Characterization of the soil physical properties	83
	3.15.2	The microcosm soil pH adjustment	84
	3.15.3	Microcosm Soil Bioassay	84
3.16		lized cell growth measurement in soil remediation	85
	3.16.1	Freeze dried cell growth measurement in soil	
		remediation	85
	3.16.2	Determination of dehydrogenase activity	86
	3.16.3	The soil spectrophotometre analysis of UEO	86
	3.16.4	Bacterial suspension preparation	87
		1 1 1	

	3.17	The Scre	eening of freeze dryer protective agents	88
		3.17.1	The freeze-dried potential inoculant	90
		3.17.2	The shelf-life viability of freeze-dried bacteria	
			formulas	92
		3.17.3	The construction of the soil microcosm bio-	
			remedy	93
		3.17.4	The construction of the soil microcosm	
			chemoremedy	95
		3.17.5	The Soil bio-chemoremedy Design of	
			Experiment (DOE) and statistical analysis	95
		3.17.6	Bio-chemo soil microcosm remediation Setup	96
		3.17.7	The soil microcosm bio-chemo remediation	
			kinetics	99
4	DECL	TT TO A NO	D DICCUCCION	100
4	4.1		D DISCUSSION	100
	4.1		ing potential bacterial isolates of used engine oil 5-40) biodegrades	100
		4.1.1	Morphological characteristics	100
	4.2		ar and Biochemical characteristics	101
	4.2	4.2.1	Molecular identification	102
		4.2.1	Biochemical characteristics	102
	4.3		and Screening of free and mixed bacteria	105
	1.5	4.3.1	Growth dynamics of free and their mixed	103
		1.5.1	consortia	106
		4.3.2	Degradation of UEO by free suspended and	100
			mixed	106
		4.3.3	GC-MS Mass Fraction	108
		4.3.4	Initial culture and the biodegradation of UEO	111
	4.4	Optimiz	ation and modelling of used engine oil (UEO)	
			rbons (HCs) degradation by newly isolated	
		Ochrobo	acterum intermedium using response surface	
		methodo	ology (RSM)	112
		4.4.1	Developing statistical modelling	112
		4.4.2	The biodegradability of UEO statistical	
			modelling	115
		4.4.3	Biodegradability of n-alkane (C ₉ - C ₂₉)	119
	4.5		naracterization of sodium alginate-attapulgite-	
			carbonate (AAC) as a material for UEO sorption	
			cell immobilization of oil degrading bacteria	120
		4.5.1	The adsorption capacity of AAC gel beads for	
			UEO	120
		4.5.2	The removal efficiency (%RE) of UEO by AAC/	101
		152	AC formulated gel beads	121
		4.5.3	Effect of UEO concentration on the adsorption	100
		151	capacity of AAC gel bead in soil water extract	122
	16	4.5.4	The kinetic of UEO adsorption by AAC	124
	4.6		ison of UEO biodegradation by O. intermedium	
			nobilized cell; and mixed free/immobilized cell (O.	127
		mermec	dium + B. paramycoides) consortia in shake flask	127

		4.6.1	Comparison of UEO biodegradation by <i>O. intermedium</i> free cell; and mixed free cell consortia (<i>O. intermedium</i> + <i>B. paramycoides</i>) in shake flask	127
		4.6.2	Comparison of UEO biodegradation by immobilized <i>O. intermedium</i> ; and mixed immobilized cell consortia (<i>O. intermedium</i> + <i>B. paramycoides</i>) in shake flask	129
	4.7		son of UEO biodegradation by <i>O. intermedium</i> termedium + <i>B. paramycoides</i>) in the stirred batch	
		reactor (\$4.7.1	The time course of UEO biodegradation in	146
		4.7.2	SBR The biodegradation of the UEO, n-Alkane C ₉ -	146
		4.7.2	C ₂₉ in SBR	150
	4.8	The soil	microcosm powder and granular formular	100
		bioremed		153
		4.8.1	Screening of freeze-dried protective agents (FDPAs) for the formulation of bioremedy	
			strains, O . intermedium and O . intermedium + B .	
	4.0	Camanania	paramycoides	153
	4.9		son of UEO biodegradation by freeze dried (FD) nedium and O. intermedium + B. paramycoides	
			n soil microcosm	157
		4.9.1	Comparison of UEO biodegradation by AAC	
			immobilized O. intermedium and O.	
			intermedium plus B. paramycoides formula	162
	4.10		degradation kinetic parameters of Run-2 FFD ³⁻¹ , ied cell formular and immobilized cell formula	
		bioremed		166
		4.10.1	Time course of freeze-dried cell bioremediation	100
			in soil microcosm	166
		4.10.2	Time course of AAC immobilized cell	
			bioremediation in soil microcosm	167
5	CONC	T LISION	S AND RECOMMENDATION	170
3	5.1	Conclusion		170
	5.2	Recomm		172
	ERENC			174
	ENDIC	ES OF STUDI	ZNT	205 224
		BLICATI		224
	J1 1 0		IOI ID	223

LIST OF TABLES

Table		Page
2.1	Bio-surfactants that are produced by numerous microorganisms	20
2.2	Some immobilized cells for use in biodegradation compounds	40
2.3	Properties of Various Materials Used to Encapsulate Inoculants	42
3.1	Number of samples and their sampling point locations in Selangor	58
3.2	The microbial media compositions	59
3.3	Test variables and levels of central composite design (CCD)	69
3.4	Central composite design matrix	70
3.5	The freeze dryer formular "fluid cell concentrations" of single (S) or mixed (M) culture	91
3.6a	The microcosm chemical bioremediation of 20g, 100:10:1 ratio C:N:P (C=18.018g; N= 1.8g; P=0.18 g), as formulated from UEO, urea and KHPO ₄ -buffer PH-7	93
3.6b	The microcosm chemical bioremediation of 40g, 100:10:1 ratio C: N: P (C=36.036g; N= 3.6g; P=0.36 g) as formulated from UEO, urea and KHPO4 buffer in PH 7	94
3.7	The FFD-2 ³⁻¹ Soil microcosm experimental condition of individual (<i>Ochrobacterium intermediums</i>)/mixed consortia (<i>Ochrobacterium intermediums</i> + <i>Bacillus paramycoides</i>) FPA freeze dried inoculant	94
3.8	The FFD-2 ³⁻¹ Soil microcosm experimental condition of individual (<i>Ochrobacterium intermediums</i>)/mixed consortia (<i>Ochrobacterium intermediums</i> + <i>Bacillus paramycoides</i>), AAC immobilized inoculant	94
3.9	The soil physical characteristics of microcosm	96
4.1	Growth of <i>O. intermedium</i> (IS-I) and <i>B. paramycoides</i> (IS-II) isolated from motor garage soil at different culture conditions	104
4.2	Morphological characteristics results of <i>O. intermedium</i> (IS-I) and <i>B. paramycoides</i> (IS-II) isolated from motor garage soil	104
4.3	Biochemical characterization tests results of <i>O. intermedium</i> (IS-I) and <i>B. paramycoides</i> (IS-II) isolated from motor garage soil	105
4.4	Sugar and Tributyrin Hydrolysis results of <i>O. intermedium</i> (IS-I) and <i>B. paramycoides</i> (IS-II) isolated from motor garage	105

4.5	Central composite design and experimental results for the <i>O. intermedium</i> total bacterium counts (Cfu/mL), and growth rates ((LN (dx)/dt), day ⁻¹), in MSM at 150 rpm / 24 days*	113
4.6	Analysis of variance for the second-order polynomial model of <i>O. intermedium</i> bacteria counts (Cfu/mL) in MSM day 24	114
4.7	Central composite design and experimental results for the GC-MS, UEO analysis degradation $\%$ (n-C ₉ to n-C ₂₉) by <i>O. intermedium</i> strain in MSM at 150 rpm / 24 days	117
4.8	Analysis of variance for the second-order polynomial model of GC-MS, UEO analysis degradation % of n - C_9 to n - C_{29} by O . intermedium in MSM day 24	119
4.9	The model fitted data kinetics parameters of AAC-UEO adsorption studies	126
4.10a	The comparison of free and AAC-immobilized cell systems growth parameters at day 24 in the liquid medium shake flask experiment	128
4.10b	The GC-MS, analysis comparison of TPH-degradation parameters by free and immobilized cell in liquid medium at day 24	131
4.11	The comparison of AAC-immobilized cell systems growth parameters in the "beads" and/or "medium" at day 24	135
4.12a	Parameters of UEO batch bioremediation in the stirred batch reactor (SBR), day 5	149
4.12b	The kinetics parameters of UEO batch bioremediation in the stirred batch reactor (SBR), day 0-5	152
4.13	Represent the result of Fractonal factorial design (FFD ³⁻¹) experiment of freeze dried (FD) <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> formula. Parameters: growth (cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10 ³ g ⁻¹ dry soil × min ⁻¹), UEO-% Degradation (g ⁻¹ dry soil), and total loss of moisture content (TLMC) in the soil microcosm day 84	159
4.14	Represent the result of Fractional factorial design (FFD ³⁻¹) experiment of AAC-immobilized <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> formula. Parameters: growth (cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10 ³ g ⁻¹ dry soil × min ⁻¹), UEO-% Degradation (g ⁻¹ dry soil), and total loss of moisture content (TLMC) in the soil microcosm day 84	164
4.15a	The kinetics parameters of UEO freeze dried cell bioremediation in the artificially UEO polluted soil microcosm week 0-12 (Figure 4.41A)	169

4.15b	The	kinetics	parameters	of	UEO	AAC-immobilized	cell
	biore	mediation	in the artificia	lly U	EO poll	luted soil Microcosm	week
	0-12	(Figure 4.4	41B)	-	_		

170

5.1 Recommendations

173

LIST OF FIGURES

Figure		Page
2.1	(a) Alkane (Abdel-Shafy & Mansour, 2016), (b) Aromatic (Hylland, 2006), (c) Resin (Demirbas & Taylan, 2016), and (d) Asphaltene (Zhentao et al., 2015)	9
2.2	Schematic of mechanical dispersion and the mass flow in soil matrix	16
2.3	Principle of aerobic biodegradation of hydrocarbons	17
2.4	General scheme to biodegrade organic pollutants	18
2.5	Aerobic Biodegradation of Aromatic Hydrocarbons	19
2.6	Participating and demonstration of bio-surfactant (rhamnolipid) generated by <i>Pseudomonas</i> sp. during the degradation of petroleum hydrocarbon substances	20
2.7	Environmental factors influencing biodegradation	23
2.8	Theoretical model of syntrophic anaerobic biodegradation of benzene	27
2.9	Principal Methods of immobilization	35
2.10	Demonstrates the mass transfers in the alginate immobilized cell system. a) Free and immobilized cell bioaugmentation in soil matrix b) The schematic aspects of whole cell immobilized alginate functional biocatalyst in the soil and/or aqueous matrix	43
2.11	Schematic representation of oxygen diffusion into bead, oxygen consumption by respiring cells, and carbon dioxide evolution and diffusion from bead	44
2.12	The small scale continuous stirred tank reactors (CSTR's) (a) Stainless steel made bioreactors; (b) Glass made bioreactor	45
2.13	Pilot-scale bio-slurry reactor used in the experiments	47
2.14	The reduction of TTC-Salt to TPF (Deep red color) by living cells	52
3.1	Schematic description of research objectives (general ^(A) and specific ^(B)) and methods for this study	55
3.2	Schematic description of research objectives (general $^{\rm (A)}$ and specific $^{\rm (B)}$) and methods for this study	56
3.3	Geographical studied area	57

3.4	UEO-contaminated soil samples ^(a) : Used engine oil (UEO) and new engine oil (NEO) ^(b)	58
3.5	Schematic representation of the SBR: 1) 0.2 µM microbial filter; 2) Peristaltic pump; 3) Two port adaptor; 4) Innoculum/UEO port; 5) Culture vessel; 6) Air condenser; 7) Water jacket; 8) Pinch clamp; 9) Baffle; 10) Propeller shaft; 11) Propeller; 12) Air sparger; 13) Sampling tube; 14) Sampling unit system; 15) Air flow meter; 16) Air	
	pump	72
3.6	Glycerol cold bath (\approx -20 $^{\circ}$ C)	74
3.7	The scheme of cell immobilization setup. 1) Magnetic drive; 2) Magnetic rod; 3) Microbial filter (0.2 μ m); 4) Silicon tube (0.2 mM); 5) Peristaltic Pump; 6) Cable tie. A) The medium preparation vessel of the alginate-cell mixture recipe. B) The hardening medium (0.2M CaCl ₂ .5H ₂ 0- solution) vessel, unless mentioned with the volume of 0.5 L, 1 L/2 L, scourge bottle	78
3.8	The water displacement method for the determination of AAC bead diameter (D_b)	79
3.9	Represents the FCPs-FPAs mixture in McCartney universal bottle ready for freeze drying.	89
3.10	Aseptic FPA formulation setup: A scourge bottle; B magnet mixer	91
3.11	A freezing sample container; B Perforated lid freeze dryer sample container; C Lid top view	92
3.12	The preparation of soil treatments for the bioremediation setup experiments before the last cycle of sterilization. A) The addition of Ca (OH) ₂ ; B) The addition of UEO	97
3.13	The formulars of soil microcosm bioremedies: A freeze dried cells; B AAC immobilized cell	97
3.14	The dimensions of water-soluble nutrient dispenser and the microcosm container unit. 3.12A) Water nutrient dispenser; 3.12B) The microcosm experimental unit	98
4.1	Nutrient agar culture plates: A <i>Ochrobacterium intermedium</i> (IS-I) and B <i>Bacillus paramycoides</i> (IS-II)	101
4.2 :	Gram staining: (A) Ochrobacterium intermedium and (B) Bacillus paramycoides	101
4.3	The scanning electron micrograph (SEM) images (A) <i>O. intermedium</i> and (B) <i>B. paramycoides</i>	102

4.4	bacteria isolates strain IS-I/IS-II. (-ve: PCR no template control +ve: Positive control)	103
4.5a	Phylogenetic tree showing the relationship of <i>Ochrobacterium intermedium</i> (IS-I) isolated from motor garage soil with other organisms as obtained from BLAST analysis	103
4.5b	Phylogenetic tree showing the relationship of Bacillus paramycoides (IS-II) isolated from motor garage soil with other organisms as obtained from BLAST analysis	103
4.6	Growth profile of the individual (SI: <i>O. intermedium</i> ; SII: <i>B. paramycoides</i>), and mixed bacteria strain (SI+ SII) on enrichment mineral salt medium (EMSM) supplemented with 1% used engine oil (at pH 7.0, 32 °C temperature, and 150 rpm agitation rate). Data points represent the mean of three replicate flask and error bars that represent standard deviation were removed for clarity	106
4.7	Chromatograms, made by GC with mass spectrometry detection (MS), of the n-alkane (C_{12} - C_{29}) residue used engine oil (UEO) hydrocarbon fractions as recovered in hexane extract from culture fluids (Day 24). A control (culture without inoculum); B SI: <i>O. intermedium</i> ; C) <i>B. paramycoides</i> . Inoculated UEO-EMSM) at pH 7.0, 32 °C temperature, and 150 rpm; the x axis represents retention time (min)	107
4.8	(A-D) The biodegradation of the n-alkane (C_{12} - C_{29}) as calculated from the poly hydrocarbon (PHC's-Cpd's) mass fractions (C_{12} - C_{17} / C_{18} - C_{29}) of degraded UEO, during 24 d in batch bacterial cultures. A, C) n-alkane (C_{12} - C_{17}) PHCs-mass fractions degraded by single (SI: <i>O. intermedium</i> ; SII: <i>B. paramycoides</i>) ^(A) , and mixed consortia (SI + SII) ^(C) inoculated UEO-MSM; B, D)n-alkane (C_{18} - C_{29}) mass fractions degraded by the single (SI: <i>O. intermedium</i> ; SII: <i>B. paramycoides</i>) ^(B) , and mixed consortia (SI + SII) ^(D) inoculated UEO-MSM	110
4.9	Effect of used engine oil concentration on the growth and degradation of UEO by <i>O. intermedium</i> in EMSM (initial pH 7.0, 32 °C temperature, and 150 rpm agitation rate). The bacteria count numbers are means for three replications (n=3). The UEO (%w/v) was determined considering, the 1 mL, UEO equates 0.74 g (density 0.74 g mL-1) (Section 3.10.1)	112
4.10	3D graphs showing the main and quadratic effect of input independent variables on the growth parameters in the liquid UEO-MSM after 24 days. The effect of Temp (°C) and pH on the counts of <i>O. intermedium</i> (cfu/mL)	115
4.11	Show the increase of the concentration of n-C ₉ to n-C ₁₇ , in the CCD experimental runs (6, 11, 12, 14, 15, 17, 18, 20, Table 4.7) above their abiotic control	116

4.12	A the discontinuous black arrows indicate the positive zone of lipase hydrolysis on butyrene agar; C-D 3D graphs showing the interactive effect of input independent variables on the degradation% of the n-C ₉ to n-C ₂₉ in the UEO at day 24 of remediation in MSM: A the effect of Temp (°C) and pH on n-C ₉ to n-C ₂₉ ; B effect of (UEO) and pH on n-C ₉ to n-C ₂₉ ; c effect of (UEO) and Temp (°C) on n-C ₉ to n-C ₂₉	120
4.13	Effect of various adsorbent granule numbers (AAC: Alginate-Attapulgite-CaCO ₃ ; AC: Alginate- (CaCO ₃) on the removal efficiency (RE%) of UEO (24h) in soil water extract (A) Polar mixture and hexane solution and (B) non-polar solution mixture. Each test was in duplicate (n=2)	121
4.14	Effect of various adsorbent granule numbers (AAC: Alginate-Attapulgite-CaCO ₃ ; AC: Alginate- CaCO ₃) on the uptake of UEO at equilibrium after 24h: A in soil extract (Polar-non polar mixture); B in hexane solution (Polar solution mixture)	123
4.15	The kinetics of UEO adsorption and removal at 12h: A Zero-order kinetics of the amount of UEO adsorbed per unit mass of AAC; B Adsorption capacity (<i>qe</i>) of UEO by AAC beads	123
4.16	(A) First order kinetics fitted modelling graph of UEO adsorption; (B) Intra-particle diffusion fitted plots of UEO into AAC	125
4.17	The water displacement method for the determination of AAC bead diameter (Ø=D): A 0.5 mL water displaced; B Bead diameter	126
4.18	The growth and biodegradation (%TPH-D) of UEO by single free cell <i>O. intermedium</i> , and mixed free cell consortia <i>O. intermedium</i> + <i>B. paramycoides</i> . S/FC: Single free cell; M/FC: Mixed free cell	128
4.19	The growth and biodegradation (%TPH-D) of UEO by single immobilized (IC) cell of <i>O. intermedium</i> , and mixed immobilized (IC) cell consortia of <i>O. intermedium</i> + <i>B. paramycoides</i> . S/CL: Single/Cell leakage; M/CL: Mixed/ Cell leakage	130
4.20	The comparisons of growth kinetics of free cells (FC) and their immobilized cell leakages (CL) in the UEO-medium. S/FC: Free cell <i>O. intermedium</i> ; M/FC: Free cell <i>O. intermedium</i> + <i>B. paramycoides</i> . S/CL: Immobilized cell leakage of <i>O. intermedium</i> ; M/CL: Immobilized cell leakage of <i>O. intermedium</i> + <i>B. paramycoides</i>	133
4.21	The growth and biodegradation (%TPH-D) of UEO by single immobilized (IC) cell of <i>O. intermedium</i> , and mixed immobilized (IC) cell consortia of <i>O. intermedium</i> + <i>B. paramycoides</i> . S/IC: Single/Immobilized cell; M/IC: Mixed/Immobilized cell	134
4.22	The TPH biodegradation (TPH-D) of UEO by <i>O. intermedium</i> and <i>O. intermedium</i> + <i>B. paramycoides</i> as measured in the beads ^(A) and in the "beads + medium" ^(B) . S/CL: Cell leakage <i>O. intermedium</i> ; M/CL: Cell leakage <i>O. intermedium</i> + <i>B. paramycoides</i> . S/IC: Immobilized cell <i>O.</i>	

	intermedium; M/IC: Immobilized cell O. intermedium + B. paramycoides. The red arrow (1, 2) indicates the UEO equilibrium biodegradation points	136
4.23	The comparisons of growth kinetics of free cells (FC) and their immobilized cell (IC) in the UEO-medium. S/FC: Free cell <i>O. intermedium</i> ; M/FC: Free cell <i>O. intermedium</i> + <i>B. paramycoides</i> . S/IC: Immobilized cell <i>O. intermedium</i> ; M/IC: Immobilized cell <i>O. intermedium</i> + <i>B. paramycoides</i>	137
4.24	The biodegradation of the n-alkane (C ₉ -C ₂₉) by free cell formula as calculated from the poly hydrocarbon (PHC's-Cpd's) mass fractions (C ₉ -C ₁₇ /C ₁₈ -C ₂₉) of degraded UEO day 24 in shake flask. A) n-alkane (C ₉ -C ₁₇) PHCs-mass fractions degraded by <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> ; B) n-alkane (C ₁₈ -C ₂₉) mass fractions degraded by <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> . C-D) The culture growth of <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> , and the TPH% degradation of UEO fractions at day 24. Panel (C) %TPH degradation, C*: C ₉ -C ₁₇ ; C**:C ₁₈ -C ₂₉	140
4.25	The biodegradation of the n-alkane (C ₉ -C ₂₉) by AAC immobilized cell formula as calculated from the poly hydrocarbon (PHC's-Cpd's) mass fractions (C ₉ -C ₁₇ /C ₁₈ -C ₂₉) of degraded UEO, day 24 in shake flask. A) n-alkane (C ₉ -C ₁₇) PHCs-mass fractions degraded by <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> ; B) n-alkane (C ₁₈ -C ₂₉) mass fractions degraded by <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> . C-D) The culture growth of <i>O. intermedium</i> and <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> , and the TPH% degradation of UEO fractions at day 5. Panel (C) %TPH degradation, C*: C ₉ -C ₁₇ ; C**:C ₁₈ -C ₂₉	144
4.26	A, B the TTC, staining of 24h grown AAC immobilized <i>O. intermedium</i>) ^B and <i>O. intermedium</i> + <i>B. paramycoides</i> ^C bacteria in nutrient broth; C control bead without cells. The white arrows (Figure 25 B) indicate the macro nitches in the beads at which the bacteria are densely located, and intensively growing near the surface, following 24h cultivation in nutrient broth	145
4.27	SEM photographs of AAC immobilized cells after 24h growth in nutrient broth: A <i>O. intermedium</i> ; B mixed culture (<i>O. ntermedium</i> + <i>B. paramycoides</i>); C bacteria cell entrapped in AAC gel matrix; D bacteria cells on the surface of AAC gel bead	146
4.28	Demonstrate the biodegradation of UEO in SBR. A-C <i>O. intermedium</i> ; D-F <i>O. intermedium</i> plus <i>B. paramycoides</i>	147
4.29	Time course profiles parameters of UEO-biodegradation by O . intermedium ^(A) and O , intermedium plus B , paramycoides ^(B) in SBR	148

4.30	The biodegradation of the n-alkane (C ₉ -C ₂₉) as calculated from the poly hydrocarbon (PHC's-Cpd's) mass fractions (C ₉ -C ₁₇ /C ₁₈ -C ₂₉) of degraded UEO, day 5 in stirred batch reactor (SBR). A) n-alkane (C ₉ -C ₁₇) PHCs- mass fractions degraded by <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> ; B) n-alkane (C ₁₈ -C ₂₉) mass fractions degraded by <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> . C-D) The culture growth of <i>O. intermedium</i> and <i>O. intermedium</i> plus <i>B. paramycoides</i> , and the TPH% degradation of	
	UEO fractions at day 5. Panel (C) %TPH degradation, C*: C_9 - C_{17} ; C**: C_{18} - C_{29}	151
4.31	Represents time course 1 st order kinetics fitted parameters of UEO-biodegradation by <i>O. intermedium</i> ^(A) and <i>O. intermedium</i> plus <i>B. paramycoides</i> ^(B) in SBR. $\mu_x(d^{-1})$: Growth rate; $t_d(d^{-1})$: Generation time; $R_d(d^{-1})$: UEO degradation rate; $t_{I/2}(d^{-1})$: A half time degradation of UEO; $\mu_L(d^{-1})$: Lipase production rate; $\mu_{NADP}(d^{-1})$: NADPH production	
	rate	153
4.32	Effect of FDPAs on the bacterial cell count (cfu/mL) ^(A) and the viability (%) ^(B) of <i>O. intermedium</i> (Single) and <i>O. intermedium</i> + <i>B. paramycoides</i> (Mixed), after freeze-drying. The bacteria counts are	
	means for two replications (n=2)	154
4.33	Shows, the freeze-dried samples containing <i>O. intermedium / O. intermedium + B. paramycoides</i> formular. 1) 5% Gluc; 2) 10% Suc; 3) 10% SM; 4) 1% Star; 5) 10% MgSO ₄ ; 6) Distilled water	154
4.34	Shows, the effect of FDPAs on the bacteria cell count after freeze drying. A <i>O. intermedium</i> ; B <i>O. intermedium</i> + <i>B. paramycoides</i> . The increased red colour intensity indicates increased viability	155
4.35	Effect of FDPAs on the relative humidity percentage (RH (%)) of freeze- dried <i>O. intermedium</i> (A) and <i>O. intermedium</i> + <i>B. paramycoides</i> (B), after oven-drying	156
4.36	Shows, the oven-dried, freeze dried FDPA bacteria formulas: 1) 5% Gluc; 2) 10% Suc; 3) 10% SM; 4) 1% Star; 5) 10% MgSO ₄ ; 6) Distilled water	156
4.37	Survival of O . $intermedium^{(A)}$ and " O . $intermedium + B$. $paramycoides$ " (B) in 1% Starch + 10 % SM freeze-drying protective agents during storage at RT. N_0 : CFU mL ⁻¹ initial; N_t : CFU mL ⁻¹ at period week	157
4.38	Pareto chart analysis of the effect of input-independent variables (A, B, and C) on the growth ^(I) , pH ^(II) , Dehydroganase ^(III) , UEO-% Degradation ^(IV) and total loss of moisture content (TLMC) ^(V) in <i>O. intermedium</i> freeze dried soil microcosm bioremedy. FPA (A), Innoculum size (B) and C:N:P (C). The data was analyzed based on	1
	the 2 ³⁻¹ FFD, Run (1, 4), Table 4, 13	161

4.39	Pareto chart analysis of the effect of input -independent variables (A, B, and C) on the growth ^(I) , pH ^(II) , Dehydroganase ^(III) , UEO-% Degradation ^(IV) and total loss of moisture content (TLMC) ^(V) in <i>O. intermedium</i> plus <i>B. paramycoides</i> freeze dried soil microcosm bioremedy. FPA (A), Innoculum size (B) and C:N:P (C). The data was analyzed based on the 2 ³⁻¹ FFD, Run (5-8), Table 4.13	162
4.40	Pareto chart analysis of the effect of input -independent variables (A, B, and C) on the growth ^(I) , pH ^(II) , Dehydroganase ^(III) , UEO-% Degradation ^(IV) and total loss of moisture content (TLMC) ^(V) in AAC-immobilized <i>O. intermedium</i> soil microcosm bioremedy. Number of beads (A), Innoculum size (B) and C:N:P (C). The data was analyzed based on the 2 ³⁻¹ FFD, Run (1-4) (Table 4.15)	165
4.41	Pareto chart analysis of the effect of input -independent variables (A, B, and C) on the growth ^(I) , pH ^(II) , Dehydroganase ^(III) , UEO-% Degradation ^(IV) and total loss of moisture content (TLMC) ^(V) in AAC-immobilized <i>O. intermedium</i> plus <i>B. paramycoides</i> soil microcosm bioremedy. Number of beads (A), Innoculum size (B) and C:N:P (C). The data was analyzed based on the 2 ³⁻¹ FFD, Run (5-8) (Table 4.15)	166
4.42	Time course profile of parameters measured in the freeze dried (A-B) and AAC-immobilized cell(C-D) chemo-bioremedy of the individual (S: <i>O. intermedium</i>) and mixed bacteria consortia (M: <i>O. intermedium</i> Plus <i>B. paramycoides</i>), in 1.5 kg artificially contaminated UEO soil. A-D "T/S or T/M" represents chemo-bioremedy treatments, A-B T2 ((15 g FPA (kg ⁻¹ dry Soil), innocular size "S/M" 2 × 10 ⁸ Cfu (g -1 FPA) and 20 g C:N:P (100:10:1)) kg ⁻¹ dry Soil. "T/C" represents the control chemo treatments without innocular; T2/C ((15 g FPA (kg ⁻¹ dry Soil), Plus 20 g C:N:P (100:10:1)) kg ⁻¹ dry Soil	167
4.43	The time course 1st order kinetics fitted parameters of UEO-biodegradation by <i>O. intermedium</i> (S) and <i>O. intermedium</i> plus <i>B. paramycoides</i> (M) in the artificially UEO polluted soil microcosm. A Freeze-dried cell formular; B AAC-Immobilized cell beads. The data	
	fitted from the time course profile (Figure 4.40 A-D)	168

LIST OF APPENDICES

Appendix		Page
A	The single (<i>Ochrobacterium intermedium</i> strain (A)) and mixed (<i>Ochrobacterium intermedium</i> strain + <i>Bacillus paramycoides</i> strain (B)) culture standard curve correlating the biomass to absorbance at	
	600 nm (n = 3)	205
В	McFarland standard calibration curve absorbance at 600 nm (n = 3)	206
C-A	Single culture ($Ochrobacterium\ intermedium\ strain$) CFU-TTC standard calibration curve absorbance at 485 nm ($n=3$)	207
D	Mixed culture (Ochrobacterium intermedium strain + Bacillus paramycoides strain) Cfu-TTC standard calibration curve absorbance at $485 \text{ nm} (n = 3)$	208
E	Formazan (TF) standard calibration curve absorbance at 485 nm (n= 3)	209
F	The 1300 (ng/μL) used engine oil (UEO), spectrophotometer absorption spectrum in hexane	210
G	The spectrophotometre used engine oil (UEO) standard calibration curve absorbance at 500 nm (n = 3)	210
Н	The GC used engine oil (UEO) standard calibration curve	211
I	The 33000 (ng/ μ L) GC used engine oil (UEO) analysis profile (C ₉ -C ₂₉)	211
J	The TNB lipase activity standard calibration curve	212
K	The soil microcosm pH standard calibration curve	213
L	Microbiological media	213
M	Assay reagents and buffers	213
N	The physical-chemical properties of the soil used in the soil microcosm	214
O	The freeze-drying protective agents (FPA) for single (S) or mixed (M) cultures	214
P	Experimental runs of single or mixed freeze-dried bacterium for the bioremediation of UEO-contaminated soil in active soil microcosm	215
Q	Experimental runs of single or mixed immobilized bacterium for the bioremediation of LIFO-contaminated soil in active soil microcosm	216

R	Chemical and reagents	217
S	Table 4.13A: The regression ANOVA for Fractional factorial design (FFD ³⁻¹) experimental results of freeze dried (FD), <i>O. intermedium</i> , in the soil microcosm day 84	218
T	Table 4.13B: contains regression Estimated Effects and Coefficients ofFractinal factorial design (FFD ³⁻¹) experimental results of freeze dried (FD) <i>O. intermedium</i> , in the soil microcosm day 84. Parameters: growth (cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10 ³ g ⁻¹ dry soil × min ⁻¹), UEO-% Degradation (g ⁻¹ dry soil) and total loss of moisture content (TLMC) MI	218
U	Table 4.13C: Regression model summary of freeze dried (FD) <i>O. intermedium</i> bioremedy formula in the soil microcosm Fractonal factorial design (FFD ³⁻¹) day 84	219
V	Table 4.14A: The regression ANOVA for Fractional factorial design (FFD ³⁻¹) experimental results of freeze dried (FD), <i>O. intermedium</i> plus <i>B. paramycoides</i> , in the soil microcosm day 84	219
W	Table 4.14B: The regression Estimated Effects and Coefficients of Fractional factorial design (FFD ³⁻¹) experimental results of freeze dried (FD), <i>O. intermedium</i> plus <i>B. paramycoides</i> , in the soil microcosm day 84. Parameters: growth (cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10 ³ g ⁻¹ dry soil × min ⁻¹), UEO-% Degradation (g ⁻¹ dry soil) and TLMC (mL)	220
X	Table4.15A: The regression ANOVA for Fractional factorial design (FFD ³⁻¹) experimental parameter results of AAC-immobilized, <i>O. intermedium</i> in the soil microcosm day 84	220
Y	Table 4.15B: The regression Estimated Effects and Coefficients of Fractional factorial design (FFD ³⁻¹) experimental results of AAC immobilized, <i>O. intermedium</i> , in the soil microcosm day 84. Parameters: growth (Cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10 ³ g ⁻¹ dry soil × min ⁻¹), UEO-%Degradation (g ⁻¹ dry soil) and total loss of moisture content (TLMC), mL	221
Z	Table 4.15C: Regression model summary of AAC immobilized <i>O. intermedium</i> bioremedy formula in the soil microcosm Fractional factorial design (FFD ³⁻¹) day 84	221
AA	Table 4.16A: The regression ANOVA for Fractional factorial design (FFD ³⁻¹) experimental results of AAC immobilized <i>O. intermedium</i> plus <i>B. paramycoides</i> , in the soil microcosm day 84. Parameters: growth (cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10 ³ g ⁻¹ dry soil × min ⁻¹), UEO-% Degradation (g ⁻¹ dry soil) and total loss of moisture content (TLMC) mL.	225

BB Table 4.16B: The regression Estimated Effects and Coefficients of Fractional factorial design (FFD³⁻¹) experimental results of AAC immobilized *O. intermedium* plus *B. paramycoides*, in the soil microcosm day 84. Parameters: growth (cfu/mL), pH, Dehydrogenase activity (ng, TPF (x 10³ g ⁻¹ dry soil × min ⁻¹), UEO-% Degradation (g ⁻¹ dry soil) and TLMC (mL)

226

CC Table 4.16C: Regression model summary of AAC immobilized *O. intermedium* plus *B. paramycoides* bioremedy formula in the soil microcosm Fractional factorial design (FFD³⁻¹) day 84

223

LIST OF ABBREVIATIONS

% Percentage

μM Micromolar

AAC Alginate-Attapulgite-Calcium carbonate

AC Alginate- Calcium carbonate

AC Alginate-CaCO₃

AMSM acidophilic mineral salt medium

ANOVA Analysis of variance

A_{xnm} Optical density at wavelength x nanometer

BC Bacteria consortium

BOD Biological oxygen demand

BTEX Benzene, Toluene, Ethylbenzeneand Xylenes

CCD Central composite design

CF Correctional factor

CF correctional factor

CFU Colony forming unit

CFU/mL Colony forming units per milliliters

CFU/g Colony forming units per g

Cm Centimeter

CMC critical micelle concentration

CPD Chamber of critical point dryer

CPD critical point dryer

CRD Completely Randomized Design

CSTR Continuous Stirred Tank Reactor

DGGE denaturing gradient gel electrophoresis

DMRT Duncan multiple range test

DNA Deoxyribonucleic Acid

DO Dissolved oxygen

DOE Design of Experiment

DR drum reactors

EDTA Ethylenediamine tetraacetic acid

EMSM Enrichment mineral salt medium

FCP fluid cell preparation

FCP Freeze dryer flued cell preparation

FFD Fractional Factorial Design

FPA Freeze drying protective agents

G Gram

g/L Gram per liter

GC-MS Gas chromatography-Mass Spectrometry

GLM General Linear Model

H/M High levels of mixed (H/M)

H/S High levels of individual

ICS Immobilized Cell System

Kg Kilogram

L/M Low levels of mixed

L/S Low levels of single

LR Lime requirement

M Molar

MBS Molecular Biology Services

MC Mixed cell

MDC Microbial desalination cell

mL Milliliter

MSM Mineral salt medium

NA Nutrient agar

NB Nutrient broth

NEO New engine oil

Ng Nano gram

ng/μL Nanograms per micro liter

OD Optical density

PAHs polycyclic aromatic hydrocarbons

PW Peptone Water

RBR Risk-based remediation

RPM Rotations per minute

RSM Response surface methodology

SBR Stirred batch reactor

SC Single cell

SEM Scanning electron microscope

SF Shake flask

SM Skim milk

SSCP Single-strand conformational polymorphism

STR's Stirred tank bioreactors

SVE Soil vapor extraction

SW 305 Spent lubricating oil

TAE Tris-acetate-ethylene diamine tetra acetate

TBA Tributyrin Base Agar

TC Total concentration of single/mixed bacteria viable counts

TF Formazan

TPH Total Petroleum Hydrocarbons

TTC 2,3,5-Triphenyltetrazolium chloride

TVC Total viable counts

UEO Used engine oil

USCS Unified Soil Classification System

v/v Volume/Volume

VBNC Visible but non-culturable

VOCs Volatile organic compounds

w/v Weight per volume

w/w Weight per weight

WHC Water holding capacity

YE Yeast extract

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Pollution of soil by engine oil is a global problem caused by used engine oil (UEO) (Pongsilp & Nimnoi, 2022). The UEO leakages, indiscriminate discharge and careless handling of UEO from and in the mechanic, workshops have been a significant source of this pollution problem (Bulai et al., 2021). That has not been addressed equally as to those of crude oil, diesel and petrol spills occuring in large areas (Ghribi et al., 2019). This has been a very common over growing problem that has not been tackled for many years in many countries. Because, of the environmental dangers of this waste (Wolak et al., 2020), the dumping of this waste in the soil (Bulai et al., 2021), has become an environmental serious pollution trouble. The increasing and accumulation of this waste type in the urban soil areas, and left untreated for several years, it represents an environmental fear (Ghribi et al., 2019). Due to the fact, that it can lead to transitory/permanent damage to the soil properties, plants, microorganisms (Adedokun et al., 2007; Hossain et al., 2022); and the pollution of surface and/or ground water resources (Hossain et al., 2022). The UEO contaminations are dangerous to human health as well as to the ecosystem. They may contain the toxic hydrocarbons, cyclic alkanes, heavy metals etc. (Koma et al., 2003; Jain, et al., 2010; Kim et al., 2013; Adeyinka et al., 2020), that are dangerous to the soil, water resources, food chain, human health etc. (Adedokun et al., 2007; Bulai et al., 2021; Hossain et al., 2022). Of those Cpds some are carcinogenic, mutagenic and immunotoxicants to which it is a direct potential danger to the human (De Silva et al., 2021; Hambali et al., 2021; Ibe et al., 2021; Gaur et al., 2022). The UEO-waste Cpds may also have a great impact on the local system, by imbalancing the soil C-N-P ratio (Lawniczak et al., 2020), due to the increasing of C% (Okolo & Odu, 2005). They damage the soil physical (e.g., deccrease soil porosity, permeability etc) and/or harm biological characteristics (e.g., fertility, microbial diversity etc.), by preventing oxygen transfers between the soil/water surface and atmosphere (Bulai et al., 2021; Ambaye et al., 2022; Gaur et al., 2022).

However, because the soil oil contaminated areas are rich with indegeneous microorganisms that can contribute in bioremediation processes (Hossain et al., 2022). Many researchers isolated various soil bacteria genus that can degrade UEO in pure cultures or in consortia (Ibrahim, 2016; Hossain et al., 2022.; O Jesubunmi et al., 2022; Javed et al., 2022; Muhammad & Adamu, 2022). The biodegradation of hydrocarbon pollutant by the same native microorganisms isolated from the same contaminated site is substantially faster than exotic microorganisms (Parach et al. 2017). Therefore, the uses of native biopotential in bioremediation are favoured.

The quality of the environment requires safe and efficient biotreatments of contaminants to sustain healthy environment (Bulai, et al., 2021). An appropriate remediation method to deal with the UEO-contamination is required.

However, although the remediation of oil contaminated environments are challenging due to their low solubility, none polarity, hydrophobic nature, co-contamination with metals etc (Vidali, 2001; Singh et al., 2009; Liu et al., 2011; Adeyinka et al., 2020). But there are several remediation methods for oil-soil contamination, including physical (burning or thermal), chemical, and biological (bioremediation) (Gallegos Martínez et al., 2000). The conventional chemical and thermal or burning methods used to banish oil from soil are expensive, none environmentally friendly, and sometimes inefficient (Bulai, et al., 2021; Ambaye et al., 2022). The biological methods are the most environmentally acceptable and economically feasible remedies to remove oil soil pollution (Varjani, 2017; Ławniczak et al., 2020). Amongst the methods, microbial bioremediation has been considered as the most promising (Karigar & Rao, 2011).

Consequently, bioremediation has been applied to remove petrol oil spill (Liu et al., 2022, Zahed et al., 2022), used motor oil (Hossain et al., 2022), and diesel fuel (Nkem et al., 2022) from the soil/water environment. The bioremedies of various bacteria strains has been reported as effective and efficient treatment to cleanup UEO in the contaminated environments (Hossain et al., 2022; Kumar et al., 2022; Pongsilp & Nimnoi, 2022).

Nevertheless, since the removal efficiency by biological methods can be some times variable, low and/or slow (Angehrn and Zeyer, 1998), depending on nutrient imbalances (e.g., high/low (C:N:P) ratio, etc.), availability (e.g., solubility, etc) (Okolo& Odu, 2005; Ambaye et al., 2022), and spent oil composition (Bhattacharya et al., 2015; Wu et al., 2017; Raţiu et al., 2020). The efficiency by biological methods can also be subjected to the oil bioremediation techniques (Partovinia et al., 2018).

To anticipate the maximum impact of any microbial bio-treatment, it is of a significant importance to assess its liquid culture free cell systems (FCs) requirements that can lead to enhanced biodegradation process before any other carrier/support material systems. The "one factor at time" optimization approach to assess the optimal nutritional requirement of a defined culture medium is a time consuming and unrealistic procedure. The use of a statistical approach that provides profound insight on the interactive outcome of inputs that controls a bioprocess can be robust and realistic. The approach of response surface methodology (RSM) has been applied in various controlled physical-chemical bioremediation studies (Concepta Goveas, et al., 2022; Umar et al., 2022; Shi et al., 2022) as an effective tool to resolve the interactions, modelling and determine optimal process conditions.

The oil degradation processes are mostly influenced by physical-chemical limiting factors (Bhattacharya et al., 2015; Olawale et al., 2015; Ibrahim, 2016). To anticipate the maximum impact of this process for UEO in basal UEO-MSM culture, the RSM optimization and modelling of physical-chemical factors is crucial to this process.

However, apart from nutritional physical-chemical requirements to enhance bioremediation rates in various environments, the bioremediation processes can also be enhanced by the techniques of microorganism transfer to polluted water/soil media that can be applied in-situ / ex-situ (Mrozik and Piotrowska-Seget, 2010; Partovinia et al.,

2018). The most common procedure is the direct use of the liquid culture stage or free cell (FC) system (Partovinia et al., 2018). However, appropriate distribution of microorganisms, especially in soil profile, their activity, and viability cannot be completely assured using FC systems. In order to increase bioremediation efficacy, various techniques of microorganism transfer to polluted area have been investigated (Mrozik and Piotrowska-Seget, 2010). One of the more promising techniques in this field is to use different carrier or support materials for pure culture/consortia cell wet coarse formulates (e.g., beads)/freeze dryer protective agents in fine dry powder formulates (e.g., freeze dried bacteria powder) to maintain sufficient microbial activity for a long period of time, slow release protection, even distribution etc. (Banerjee & Ghoshal, 2013; Bayat et al., 2015; Partovinia et al., 2018; Li et al., 2021) thereby enabling higher bioremediation efficiency (Cassidy et al., 1996). Several bioremediation techniques of novel characteristics and eco-friendly mixed carrier matrices that support bacteria viability and enhance UEO bioremediation has been reported elsewhere (Zhen-Yu et al., 2012; Hou et al., 2013; Partovinia & Rasekh, 2018; Li et al., 2021; Zhou, et al., 2021).

1.2 Problem Statement

Used engine oil (UEO) pollution on soil is a worldwide problem. The indiscriminate discharge and improper handling of UEO from and in the mechanic workshops have been a significant source of this issue. The accumulation of UEO in the urban soil areas, left untreated for years, has turn out to be a potential environmental concern, as this contamination can inflict transitory and permanent damages to the ecosystem and human health.

The UEO contaminations are dangerous as they contain the toxic compounds that can pollute the water and/or food chain. They also imbalances the soil C-N-P ratio, while damaging the soil physical (e.g., deccrease soil porosity, permeability etc.) and/or harm biological characteristics (e.g., fertility, microbial diversity etc.), by preventing oxygen transfers between the soil/water surface and atmosphere.

The UEO comprises mainly the toxic n-Alkane hydrocarbons and heavy metals that makes it an EPA very significant waste problem. Due to UEO assorted compounds, the inorganic compounds (i.e., heavy metals) are expected to complicate the remediation of oil contaminated environments. Generally, the remediations of oil contaminated environments are complex, owing to their low solubility, non polarity, hydrophobic nature, and co-contamination. Those environmental pollution attributes, requires bioremediation techniques of combined efficacies of biological and non biological method, with the former as the core to the overall bioremediation process, and the latter complementary.

However, the soil oil contaminated areas are rich with indegeneous microorganisms that can contribute effectively in bioremediation processes allowing researchers to isolate various soil bacteria UEO degraders in pure cultures or in consortia with many biodegradative capabilities. The biodegradation of HCs pollutant by native microorganisms isolated from the same contaminated site is substantially faster than exotic microorganisms. While the uses of native microbial biopotential in remediation

studies are favoured; the activity and viability of those microbes as transfered in culture suspensions to the soil/water UEO polluted sites are some times not assured. In order to increase their bioremediation efficacy, numerous techniques of microorganism transfer to polluted area have been investigated. One of the promising techniques in this field is to use different carrier or support materials to protect the innoculum, maintain longer viability and improve the toleration to environmental loadings (e.g., high pH, high UEO concentration etc), thereby enabling higher bioremediation efficiency and rates. Several bioremediation techniques of novel characteristics and eco-friendly mixed carrier matrices that support excellent bacteria viability and enhance UEO bioremediation have been established.

1.3 Significance of the Study

The used engine oil mostly comprises of miscellaneous toxic compounds (Jain, et al., 2010; Kim et al., 2013; Adeyinka et al., 2020), with the n-Alkane HC-compounds forming the highest percentage. Therefore, a study on used engine oil is of important, as it comprises of a range of simple to complex n-Alkane HC-Compounds of various characteristics, heavy metals etc. (Adeyinka et al., 2020) that are dangerous to the soil, water resources, food chain etc. (Adedokun et al., 2007; Bulai et al., 2021; Hossain et al., 2022). They can be considered as useful "arbitrary model" to hydrocarbons and cyclic alkanes (Koma et al., 2003) for pollution further studies.

Besides that, the used engine oil is often co-contaminated with inorganic compounds e.g., heavy metals (Adeyinka et al., 2020). This pollution characteristics complicates the conventional bioremediation of free cell systems (FCs) to oil compounds, and leads to more harmful effects (Wang et al., 2020), that demands adsorptive-biosorptive efficient systems to enhance adsorptive bioremediation process e.g., composite matrix of immobilized cell techniques to entrap the cells and protect them from toxicity (Wang et al., 2014; Partovinia & Rasekh, 2018; Elhamrouni et al., 2023), pH and temperature changes.

The research on remediation in the past was mostly focused on crude oil, and diesel oil pollutions of large areas (Ghribi et al., 2019; Adeyinka et al., 2020), mostly using conventional physical and/or chemical approaches. The emphasis on those approaches in the past, often did not pay attention to the merits of sustainable UEO microbial remediation techniques for contaminated sites (e.g., garage) to remove organic and/or inorganic compounds. Adsorptive-biosorptive microbial based remediation techniques are the best method for the ecological recovery of complex mineral lubricating oil contaminated sites. The bacteria are well known to be safe and the core of those whole process in the soil and water (Okino-Delgado et al. 2019; Ye et al. 2019), and in those bioremediation techniques. The bacteria solubilize, absorb, biosorp, transform, or degrade HC-Compounds, and can reduce the mobility and bio-availability of the contaminants in the environment (Wu et al. 2010). However, although the methods of crude/fuel oil remediation are not a new method, they have been known for consuming a long time and requires local biopotential efficient techniques that can enhance the qualitative over all process.

The physical and chemical approaches to remediate complex contaminants are expensive; and sometimes unsafe, and partial (Bulai, et al., 2021; Ambaye et al., 2022) unless properly managed, and/or supplemented with bioagents to sustain and enhance process efficiency. Great deals of literature have reported the entrapment alginate and skimmed milk-based carrier matrix techniques that efficiently enhanced the removal of oil pollutants (Zhen-Yu et al., 2012; Hou et al., 2013; Partovinia & Rasekh, 2018; Li et al., 2021; Zhou, et al., 2021). Therefore, the investigation of those techniques that allows the combined attributes of physical, chemical and biological to enhance bioremediation process has flexible potential to be used for ex-situ bioremediation of pollutants associated with mineral oil wastes (e.g., UEO) in the soil and/or water environments of urban cities in Malaysia.

1.4 Research Objectives

1.4.1 The general objectives of the study:

1. Identify and characterize indigenous bacteria capable of degrading used engine oil from mechanic workshops in Selangor, Malaysia;

1.4.2 The specific objectives of the study:

- 1. Analyse, modelling of growth and degradation conditions of used engine oil (UEO) rate in mineral salt medium (MSM) shake flask system, using the most potent bacterial isolate strain, and the statistical approach of one-factor-at-atime (OFAT) and response surface methodology (RSM);
- 2. Characterize of adsorptive properties of a composite carrier (sodium alginate-attapulgite-calcium carbonate), for the bioaugmentation of risk-based remediation (RBR) approach of used engine oil in the soil and aqueous system;
- Optimize kinetic studies and development of free and entrapped pure/mixed consortia bacteria techniques in the remediation studies of used engine oil (UEO) in shake flask;
- 4. Scaling up and the characterization of growth, physiological activity of UEO potential degrading bacterium and mixed bacteria (consortium), in the stirred batch bioreactor (SBR);
- 5. The formulate of freeze dried and entrapped pure/mixed consortia bacteria techniques for the applications in the remediation studies of artificially UEO contaminated soil microcosm.

1.5 Research scope

This research aims to investigate the factors and the best method for removing used engine oil (UEO) pollution. Soil samples were collected from three different mechanic workshops in Selangor, Malaysia. Analytical remediation processes were used, including locally isolated and mixed microorganisms in shake flask systems and an artificially UEO contaminated soil microcosm. Potential UEO bioremediation isolates were chosen and identified. UEO degradation bioremediation processes were tested in aqueous and soil medium biological-chemical-physical conditions. In shake flask experiments, analytical bioremediation studies of UEO were introduced using the mineral salt medium (Zajic & Supplisson, 1972). The most potent locally isolated bacterium strain was used to optimise and model the UEO bioremediation conditions.

UEO and yeast extract was added to the basal mineral salt medium (MSM), and growth was monitored along with pH and UEO-residues throughout the bioremediation process. The optimised bioremediation conditions obtained from shake flask experiments were scaled up in aerobic stirred batch reactor to further investigate the physiological responses of bioremediation under elevated oxygen conditions. As a high priority of the systems investigated in MSM-shake flask and artificially UEO-contaminated soil microcosm, the characterization of adsorptive/sorptive properties of a composite carrier (sodium alginate-attapulgite-calcium carbonate) and the corresponding mixed bacteria culture biocatalytic potential were undertaken. Specific studies were conducted to compare the performance of different bioremediation processes, growth, enzyme activities, and bioremediation kinetics.

REFERENCES

- Abbasian, F., Lockington, R., Mallavarapu, M., & Naidu, R. (2015). A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. *Applied biochemistry and biotechnology*, 176, 670-699.
- Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. *Egyptian journal of petroleum*, 25(1), 107-123.
- Abdel-Shafy, H. I., & Mansour, M. S. (2018). Microbial degradation of hydrocarbons in the environment: an overview. *Microbial action on hydrocarbons*, 353-386.
- Abdulkarim, A. Y., Bello, A. A., Abdulsalam, S., Umar, S. A., & Sadiq, M. B. (2019). Bioremediation of soil contaminated with spent motor oil. *Iconic Res. Eng. J*, 3, 16-22.
- Abdullahi AdekilekunJimoh & Johnson Lin (2020). Bioremediation of contaminated diesel and motor oil through the optimization of biosurfactant produced by *Paenibacillus* sp. D9 on waste canola oil, *Bioremediation Journal*, 24(1), 21-40.
- Jimoh, A. A., & Lin, J. (2020). Bioremediation of contaminated diesel and motor oil through the optimization of biosurfactant produced by Paenibacillus sp. D9 on waste canola oil. Bioremediation Journal, 24(1), 21-40.
- Abdulrasheed, M., Roslee, A. F., Zakaria, N. N., Zulkharnain, A., Lee, G. L. Y., Convey, P. & Ahmad, S. A. (2020). Effects of heavy metals on diesel metabolism of psychrotolerant strains of *Arthrobacter* sp. from Antarctica. *Journal of Environmental Biology*, 41(5), 966-972.
- Abdulsalam, S., Adefila, S. S., Bugaje, I. M., & Ibrahim, S. (2012). Bioremediation of soil contaminated with used motor oil in a closed system. *Journal of Bioremediation and Biodegradation*, 3(12), 1-7.
- Abdulsalam, S., Bugaje, I. M., Adefila, S. S., Ibrahim, S., (2011). Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. *Int. J. Environ. Sci. Tech.*, 8 (1), 187-194.
- Abioye, O. P., Agamuthu, P., & Abdul Aziz, A. R. (2012). Biodegradation of used motor oil in soil using organic waste amendments. *Biotechnology Research International*, 2012.
- Adams, G. O., Tawari, P. and Igelenyah, E. (2014). Bioremediation of Spent oil Contaminated Soils using Poultry Litter, *Research Journal in Engineering and Applied sciences*, 3(2), 18-124.
- Adams, G.O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, Biostimulation and Bioaugmention: A Review. *International Journal of Environmental Bioremediation & Biodegradation*, 3(1): 28-39.

- Adedokun, O. M., & Ataga, A. E. (2007). Effects of amendments and bioaugumentation of soil polluted with crude oil, automotive gasoline oil, and spent engine oil on the growth of cowpea (Vigna unguiculata L. Walp). *Scientific research and Essay*, 2(5), 147-149.
- Adeleye, A. O., Nkereuwem, M. E., Omokhudu, G. I., Amoo, A. O., Shiaka, G. P., & Yerima, M. B. (2018). Effect of microorganisms in the bioremediation of spent engine oil and petroleum related environmental pollution. *Journal of Applied Sciences and Environmental Management*, 22(2), 157-167.
- Adelowo, O. O., Alagbe, S. O., & Ayandele, A. A. (2006). Time-dependent stability of used engine oil degradation by cultures of *Pseudomonas fragi* and *Achromobacter aerogenes*. *African Journal of Biotechnology* 5, 2476–2479.
- Adeyinka, Hikmat, & Abdullahi (2020). Bioremediation of Spent Engine Oil on Selected Contaminated Soils within Ilorin Metropolis. *Advanced Journal of Graduate Research*, 8(1), 91-104.
- Agarry, S. E. and & Ogunleye, O. O. (2012). Box-Behnken design application to study enhanced bioremediation of soil artificially contaminated with spent engine oil using biostimulation strategy. *International Journal of Energy and Environmental Engineering*, 3:31.
- Alamgir A, K. & Richard G, Z. (2013). Degradation Rates for Petroleum Hydrocarbons Undergoing Bioventing at the Meso-Scale, *Bioremediation Journal*, 17:3, 159-172.
- Alexander, M. (1999). Biodegradation and Bioremediation. Academic Press, 525 B Street, Suite 1900, San Deigo, California 92101–4495, U.S.A.
- Ali, N., Bilal, M., Khan, A., Ali, F., & Iqbal, H. M. (2020). Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. *Science of the Total Environment*, 704, 135391.
- Al-Kindi, S., & Abed, R. M. (2016). Effect of biostimulation using sewage sludge, soybean meal, and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil. *Frontiers in microbiology*, 7, 240.
- Alleman, B. C., & Leeson, A. (1999). Bioreactor and ex situ biological treatment technologies (No. BATT-0140/XAB). Battelle Memorial Inst., Columbus, OH (United States).
- AL-Saleh, H. D. & Obuekwe, C. (2009). Predominant culturable crude oil-degrading bacteria in the coast of Kuwait, *International Biodeterioration and Biodegradation*. 63(4):400-406.
- Alsulaiman, A., & Nizam, A. A. (2018). Evaluation ability of different Barada River *Micrococcus* Spp. strain to bioremediation of hydrocarbons. *Journal Clean WAS (JCleanWAS)*, 2(2), 1-5.

- Al-Sulaimani, H., Joshi, S., Al-Wahaibi, Y., Al-Bahry, S.N., Elshafie, A. & Al-Bemani, A. (2011). Microbial biotechnology for enhancing oil recovery: current developments and future prospects. *Biotechnol. Bioinform. Bioeng.* 1, 147–158.
- Ambaye, T. G., Chebbi, A., Formicola, F., Prasad, S., Gomez, F. H., Franzetti, A., & Vaccari, M. (2022). Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. *Chemosphere*, 293, 133572.
- Angehrn, D., Gälli, R., & Zeyer, J. (1998). Physicochemical characterization of residual mineral oil contaminants in bioremediated soil. Environmental Toxicology and Chemistry: *An International Journal*, 17(11), 2168-2175.
- Anh, T. H., Sandro, N., Xuan, D., Lech, R., & Xuan, P. N. (2021). Advanced superhydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. *Chemosphere*, 277,130274
- Anjum, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. *Bioresource technology*, 213, 262-269.
- April, T. M., Foght, J. M., & Currah, R. S. (1999). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. *Canadian journal of microbiology*, 46(1), 38-49.
- Arulazhagan, P., Al-Shekri, K., Huda, Q., Godon, J. J. & Basahi, J. M. (2017). Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic *Stenotrophomonas maltophilia* strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles. 21: 163–174.
- Asadirad, M. H. A., Mazaheri Assadi, M., Rashedi, H., & Nejadsattari, T. (2016). Effects of indigenous microbial consortium in crude oil degradation: a microcosm experiment. *International Journal of Environmental Research*, 10(4), 491-498.
- Asadirad, M. H. A., Mazaheri Assadi, M., Rashedi, H., & Nejadsattari, T. (2016). Effects of indigenous microbial consortium in crude oil degradation: a microcosm experiment. *International Journal of Environmental Research*, 10(4), 491-498.
- Atlas, R. M., & Bartha, R. (1972). Biodegradation of petroleum in seawater at low temperatures. *Canadian Journal of Microbiology*, 18(12), 1851-1855.
- Atlas, R. M. & Philp, J (Eds). (2005). Bioremediation: applied microbial solutions for real-world environmental cleanup. *American Society for Microbiology, Washington*, DC, p 366.
- Atlas, R.M. & Bartha, R. (1998). Microbial Ecology: Fundamentals and Applications. Benjamin/Cummings Publishing, Menlo Park, CA, USA.
- Ayandele, A. A. (2018). Microbial treatment of soil contaminated with spent engine oil/biotreatment of soil contaminated with spent engine by microorganisms. *bioRxiv*, 268185.

- Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. *World Journal of Microbiology and Biotechnology*, 32, 1-18.
- Babich, H., & Stotzky, G. (1985). Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. *Environmental research*, 36(1), 111-137.
- Bacosa, H. P., Kang, A., Lu, K. & Liu, Z. (2021). Initial oil concentration affects hydrocarbon biodegradation rates and bacterial community composition in seawater. *Marine Pollution Bulletin*, 162, 111867.
- Balachandran, C., Duraipandiyan, V., Balakrishna, K., & Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in *Streptomyces* sp. (ERI-CPDA-1) isolated from oil contaminated soil. *Bioresource technology*, 112, 83-90.
- Balba, M. T., Al-awadhi, N.& Al-daher, R. (1998). Bioremediation of oil contaminated soil: microbiological methods for feasibility assessment and field evaluation', J. Microbiol. Methods., 32, pp. 155–164.
- Baldwin, B. R., Nakatsu, C. H. & Nies, L. (2003). Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR', *Applied and Environmental Microbiology*, 69(6), 3350–3358.
- Balogun, S. A., Shofola, T. C., Okedeji, A. O., & Ayangbenro, A. S. (2015). Screening of hydrocarbonoclastic bacteria using Redox indicator 2, 6-dichlorophenol indophenol. *Global NEST Journal*, 17(3), 565-573.
- Balseiro-Romero, M., Monterroso, C., Kidd, P. S., Lu-Chau, T. A., Gkorezis, P., Vangronsveld, J., & Casares, J. J. (2019). Modelling the exsitu bioremediation of diesel-contaminated soil in a slurry bioreactor using a hydrocarbon-degrading inoculant. *Journal of Environmental Management*, 246, 840–848.
- Banerjee, A. & Ghoshal, A. K. (2013). Phenol degradation performance by isolated *Bacillus cereus* immobilized in alginate. International Biodeterioration & Biodegradation, 65, 1052-1060.
- Bartha, R. (1986). Biotechnology of petroleum pollutant biodegradation, *Microbial Ecology*, 12(1), 155–172.
- Bashan, Y. (1986). Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. *Applied and environmental microbiology*, 51(5), 1089-1098.
- Bastos, A., Cassidy, M., Trevors, J., Lee, H., & Rossi, A. (2001). Introduction of green fluorescent protein gene into phenol-degrading Alcaligenes faecalis cells and their monitoring in phenol-contaminated soil. *Applied microbiology and biotechnology*, 56, 255-260.

- Bayat, Z., Hassanshahian, M. & Cappello, S. (2015). Immobilization of Microbes for bioremediation of Crude Oil Polluted Environments: A Mini Review. The Open Microbiology Journal, (9): 48-54.
- Belkin, S., Stieber, M., Tiehm, A., Frimmel, F. H., Abeliovich, A., Werner, P., & Ulitzur, S. (1994). Toxicity and genotoxicity enhancement during polycyclic aromatic hydrocarbons' biodegradation. *Environmental Toxicology and Water Quality*, 9(4), 303-309.
- Benguenab, A., & Chibani, A. (2021). Biodegradation of petroleum hydrocarbons by filamentous fungi (*Aspergillus ustus and Purpureocillium lilacinum*) isolated from used engine oil contaminated soil. *Acta Ecologica Sinica*, 41(5), 416-423.
- Bento, F. M., Camargo, F. A., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. *Bioresource technology*, 96(9), 1049-1055.
- Bhattacharya, M., Biswas, D., Sana, S. & Datta, S. (2015). Biodegradation of waste lubricants by a newly isolated *Ochrobactrum* sp. C1. *3 Biotech* 5, 807–817.
- Bhunia, A., Yetra, S. R., & Biju, A. T. (2012). Recent advances in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions using arynes. *Chemical Society Reviews*, 41(8), 3140-3152.
- Bickerstaff, G. F. (1997). Immobilization of enzymes and cells. In Immobilization of enzymes and cells (pp. 1-11). Humana press.
- Bing, W., Bin, G., Andrew R. Z., Yulin, Z., & Honghong, L. (2018). Novel biocharimpregnated calcium alginate beads with improved water holding and nutrient retention properties. *Journal of Environmental Management*, 209, 105-111.
- Boonchan, S., Britz, M. L. & Stanley, G. a. (2000). Degradation and mineralization of high molecular weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures, *Applied and environmental microbiology*, 66(3), pp. 1007–1019.
- Bossert, I. (1984). The fate of petroleum in soil ecosystem. *Petroleum microbiology*., 355-398.
- Boudriche, L., Calvet, R., Hamdi, B., & Balard, H. (2011). Effect of acid treatment on surface properties evolution of attapulgite clay: An application of inverse gas chromatography. *Colloids and Surfaces A: Physicochemical and engineering aspects*, 392(1), 45-54.
- Bourdel, G., Roy-Bolduc, A., St-Arnaud, M., & Hijri, M. (2016). Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots. *Frontiers in microbiology*, 7, 685.
- Brooijmans, R. J., Pastink, M. I., & Siezen, R. J. (2009). Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. *Microbial biotechnology*, 2(6), 587.

- Bulai, I. S., Adamu, H., Umar, Y. A., & Sabo, A. (2021). Biocatalytic remediation of used motor oil-contaminated soil by fruit garbage enzymes. *Journal of Environmental Chemical Engineering*, 9(4), 105465.
- Buque, E. M., Chin-Joe, I., Straathof, A. J., Jongejan, J. A., & Heijnen, J. J. (2002). Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast. *Enzyme and microbial technology*, 31(5), 656-664.
- Carreras, Hebe A.; Calderón-Segura, M. E., Gómez-Arroyo, S., Murillo-Tovar, M. A. & Amador-Muñoz, O. (2013). Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina; Environmental Pollution, 178, 403–410. doi: 10.1016/j.envpol.2013.03.016.CASIDA, JR. L. E. (1977). Microbial Metabolic Activity in Soil as Measured by Dehydrogenase Determinations. *Applied and Environmental microbiology*, 34(6): 630-636.
- Carrillo, J. C., Danneels, D., & Woldhuis, J. (2021). Relevance of animal studies in the toxicological assessment of oil and wax hydrocarbons. Solving the puzzle for a new outlook in risk assessment. *Critical reviews in toxicology*, 51(5), 418-455.
- Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2003). Protective effect of sorbitol and monosodium glutamate during storage of freeze-dried lactic acid bacteria. *Le Lait*, 83(3), 203-210.
- Cassidy, M. B., Lee, H., & Trevors, J. T. (1996). Environmental applications of immobilized microbial cells: a review. *Journal of Industrial Microbiology and Biotechnology*, 16(2), 79-101.
- Cassidy, M. B., Mullineers, H., Lee, H., & Trevors, J. T. (1997). Mineralization of pentachlorophenol in a contaminated soil by *Pseudomonas* sp UG30 cells encapsulated in κ-carrageenan. *Journal of Industrial Microbiology and Biotechnology*, 19, 43-48.
- Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A., Maria do Carmo, R. P., & Bento, F. M. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. *Bioresource technology*, 102(23), 11003-11010.
- Chakrabarty, A. M. (1985). Genetically-manipulated microorganisms and their products in the oil service industries. *Trends in Biotechnology*, 3(2), 32-39.
- Chandra, S., Sharma, R., Singh, K., & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. *Annals of microbiology*, 63(2), 417-431.
- Chang, W., Dyen, M., Spagnuolo, L., Simon, P., Whyte, L. and & Ghoshal, S. (2010). Biodegradation of semi- and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: laboratory pilot-scale experiments at site temperatures. *Chemosphere*. (80), 319–326.
- Chen, D. Z., Fang, J. Y., Shao, Q., Ye, J. X., Ouyang, D. J. & Chen, J. M. (2013). Biodegradation of tetrahydrofuran by *Pseudomonas oleovorans* DT4 immobilized in calcium alginate beads impregnated with activated carbonfiber:

- Mass transfer effect and continuous treatment, *Bioresource Technology*, 139: 87–93.
- Chen, H., Zhao, Y., & Wang, A. (2007). Removal of Cu (II) from aqueous solution by adsorption onto acid-activated palygorskite. *Journal of Hazardous Materials*, 149(2), 346-354.
- Chibata, I. (1972). Preparation and industrial application of immobilized aminoacylase. *In Proceedings of the IVth International Fermentation Symposium: Fermentation Technology Today* (pp. 383-389). Society of Fermentation Technology.
- Chih-Wen, L., &Hwai-Shen, L. (2011). *Rhodococcuse rythropolis* strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors, *Process Biochemistry* 46: 202–209.
- Chikere, C. B., Chikere, B. O. &Okpokwasili, G. C. (2012). Bioreactor based bioremediation of hydrocarbon polluted Niger Delta marine sediment, Nigeria. *3 Biotech* 2:53–66.
- Chikere, C. B., Okoye, A. U., & Okpokwasili, G. C. (2016). Microbial community profiling of active oleophilic bacteria involved in bioreactor-based crude-oil polluted sediment treatment. *Journal of Applied and Environmental Microbiology*, 4(1), 1-20.
- Clarkson, M. A.; Abubakar, S.I. and Ahmed, N.Y. (2019). Assessing the Capability of Indigenous Microorganisms in the Bioremediation of Hydrocarbon Contaminated Soil. *Journal of Environmental Science, Toxicology and Food Technology* (IOSR-JESTFT), 13(8): 75-82.
- Coffey, K., Khan, A. A., Jamal, S., & Zytner, R. G. (2012, June). Simulating a bioventing reactor with a fluid dynamics model using a universal biodegradation rate coefficient (UBRC). In Annual conference for Canadian Society of Civil Engineers, Edmonton, Alberta.
- Cooney, J. J. (1984). The fate of petroleum pollutants in fresh water ecosystems, in Petroleum Microbiology, R. M. Atlas, Ed., pp. 399–434, Macmillan, New York, NY, USA.
- Cooney, J. J., Silver, S. A., & Beck, E. A. (1985). Factors influencing hydrocarbon degradation in three freshwater lakes. *Microbial ecology*, 11, 127-137.
- Costa, A. S., Romão, L. P. C., Araújo, B. R., Lucas, S. C. O., Maciel, S. T. A., Wisniewski Jr, A., & Alexandre, M. D. R. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. *Bioresource Technology*, 105, 31-39.
- Darsa, K. V., & Thatheyus, A. J. (2014). Biodegradation of petroleum compound using pseudomonas aeruginosa. *Open Access Library Journal*, 1(734), 1-9.
- Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. *Biotechnology research international*, 2011.

- De Silva, S., Ball, A. S., Indrapala, D. V., & Reichman, S. M. (2021). Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. *Chemosphere*, 263, 128135.
- Demirbas, A & Taylan, O (2016). Removing of resins from crude oils, *Petroleum Science and Technology*, 34:8, 771-777,
- Deng, M. C., Li, J., Liang, F. R., Yi, M., Xu, X. M., Yuan, J. P., ... & Wang, J. H. (2014). Isolation and characterization of a novel hydrocarbon-degrading bacterium *Achromobacter* sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. *Marine Pollution Bulletin*, 83(1), 79-86.
- De-qing, S., Jian, Z., Zhao-long, G., Jian, D., Tian-li, W., Murygina, V., & Kalyuzhnyi, S. (2007). Bioremediation of oil sludge in Shenglioilield. *Water Air Soil Pollution* 185:177–184.
- Desforges, Jean-Pierre W.; Sonne, C., Levin, M., Siebert, U., De Guise, S. &Dietz, R. (2016). Immunotoxic effects of environmental pollutants in marine mammals. Environment International, 86, 126–139. doi: 10.1016/j.envint.2015.10.007.
- Devinny, J. S., & Chang, S. H. (2000). Bioaugmentation for soil bioremediation. Environmental Science And Pollution Control Series, 465-488.
- Dhanya, V. (2020). Removal of Used Engine Oil by a Novel Lab Scale Bioreactor. Journal of Pure and Applied Microbiology, 14(1), 509-517.
- Dick, J., Wim, D. W., Bernard, D. G., Hans, S., Paul, V.M., Nele, D. B., &Willy. V. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by *Bacillus* species. *Biodegradation* 17: 357–367
- El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? *Current opinion in microbiology*, 8(3), 268-275.
- El-Aidie, S., Elsayed, N., Hashem, M., & Elkashef, H. (2021). Development of fermented skimmed milk fortified with yellow sweet potato (Ipomoea batatas L.) with prebiotic and antioxidant activity. *Journal of Food and Nutrition Research*, 60, 66-75.
- El-Aziz, A. R. A., Al-Othman, M. R., Hisham, S. M., & Shehata, S. M. (2021). Evaluation of crude oil biodegradation using mixed fungal cultures. *PloS one*, 16(8), e0256376.
- El-Borai, A. M., Eltayeb, K. M., Mostafa, A. R., & El-Assar, S. A. (2016). Biodegradation of Industrial Oil-Polluted Wastewater in Egypt by Bacterial Consortium Immobilized in Different Types of Carriers. *Polish Journal of Environmental Studies*, 25(5).
- Elhamrouni, I. A., Ishak, M. Y., Johari, W. L. W., & Halimoon, N. (2023). A novel characterization of alginate-attapulgite-calcium carbonate (AAC) gel adsorption in bacterial biodegradation of used engine oil (UEO). *Biotechnology & Biotechnological Equipment*, 37(1), 126-138.

- Eloff, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. *Planta medica*, 64(08), 711-713.
- Elzeini, H. M., Abdel Rahman, A. A.A., Nasr, F. N., Mariam, H., Ashwaa, A. H.&Yasser, E. E. (2021). Probiotic capability of novel lactic acid bacteria isolated from worker honey bees gut microbiota. *FEMS Microbiology Letters*, 368.
- Ezeji, U., Anyadoh, S. O. &Ibekwe, V. I. (2007). Clean up of crude oil-contaminated soil. *Terrestrial and Aquatic Environmental Toxicology* 1(2), 54-59.
- Farag, S., Soliman, N. A., & Abdel-Fattah, Y. R. (2018). Enhancement of crude oil biodegradation by immobilized bacterial consortium in small batch and continuous bioreactor Modes. *Egyptian Journal of Chemistry*, 61(6), 1019-1030.
- Farahat, L. A., & El-Gendy, N. S. (2008). Biodegradation of Baleym Mix crude oil in soil microcosm by some locally isolated Egyptian bacterial strains. *Soil & Sediment Contamination*, 17(2), 150-162.
- Farn, R.J., (2008). Chemistry and Technology of Surfactants. John Wiley & Sons.
- Fibriarti, B. L., Feliatra, F., Amin, B., & Darwis, D. (2021). Biodegradation of LDPE plastic by local strain of *Bacillus* sp. isolated from dump soil of Pekanbaru, Indonesia. *Biodiversitas Journal of Biological Diversity*, 22(12).
- Filipp V. Lavrentev; Mariia S. Ashikhmina; Sviatlana A. Ulasevich; Olga V. Morozova; Olga Yu Orlova; Ekaterina V. Skorb; Natalia& V. Iakovchenko; (2021). Perspectives of *Bacillus coagulans* MTCC 5856 in the production of fermented dairy products. LWT *Food Science and Technology* 148 (2021) 111623.
- Franzetti, A., Gandolfi, I., Bestetti, G., Banat, I. (2010). (Bio) surfactant and Bioremediation, Successes and Failures. *In Trends in Bioremediation and Phytoremediation* (pp. 145-156). Research Signpost.
- Frini-Srasra, N. & Srasra, E. (2010). Acid treatment of south Tunisian palygorskite: removal of Cd (II) from aqueous and phosphoric acid solutions, *Desalination* 250: 26–34.
- Fritsche, W. and &Hofrichter, M. (2000). Aerobic degradation by microorganisms. In: Klein J (Ed) Environmental processes-soil decontamination. Wiley-VCH, Weinheim, pp146–155.
- Fu, X., Wu, T., Li, H., Xue, J., Sun, J., Li, L. & Li, C. (2021). Study on the preparation conditions and degradation performance of an efficient immobilized microbial agent for marine oil pollution. *Environmental Technology*, 1–7.
- Galan, E. (1996). Properties and applications of palygorskite-sepiolite. *Clays Clay Minerals* 31, 443-453.

- Gallegos Martínez, M., Gómez Santos, A., González Cruz, L., Montes de Oca García, M. A., Yañez Trujillo, L., Zermeño Eguía Lis, J. A., & Gutiérrez-Rojas, M. (2000). Diagnostic and resulting approaches to restore petroleum-contaminated soil in a Mexican tropical swamp. Water Science and Technology, 42(5-6), 377-384.
- Gardin, H., & Pauss, A. (2001). κ-carrageenan/gelatin gel beads for the coimmobilization of aerobic and anaerobic microbial communities degrading 2, 4, 6-trichlorophenol under air-limited conditions. *Applied microbiology and biotechnology*, 56, 517-523.
- Gargouri, B., Aloui, F., & Sayadi, S. (2012). Reduction of petroleum hydrocarbons content from an engine oil refinery wastewater using a continuous stirred tank reactor monitored by spectrometry tools. *Journal of Chemical Technology & Biotechnology*, 87(2), 238-243.
- Gargouri, B., Karray, F., Mhiri, N., Aloui, F., & Sayadi, S. (2014). Bioremediation of petroleum hydrocarbons-contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant. *Journal of Chemical Technology & Biotechnology*, 89(7), 978-987.
- Gargouri, B., Karray, F., Mhiri, N., Aloui, F., & Sayadi, S. (2011). Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. *Journal of Hazardous Materials* 189: 427–434.
- Gaur, S., Gupta, S. & Jain, A. (2021). Characterization and oil recovery application of biosurfactant produced during bioremediation of waste engine oil by strain Pseudomonas aeruginosa gi KP 16392 isolated from Sambhar Salt Lake. *Bioremediation Journal*, 1–18.
- Gaur, V. K., Gautam, K., Sharma, P., Gupta, P., Dwivedi, S., Srivastava, J. K., & Parra-Saldívar, R. (2022). Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation. *Science of The Total Environment*, 155083.
- Gaur, V. K., Tripathi, V., & Manickam, N. (2022). Bacterial-and fungal-mediated biodegradation of petroleum hydrocarbons in soil. In *Development in Wastewater Treatment Research and Processes* (pp. 407-427). Elsevier.
- Geetha, S. J., Banat, I. M. & Joshi, S. J. (2018). Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). *Biocatalysis and Agricultural Biotechnology*, 14: 23-32.
- Geets, J., Borremans, B., Diels, L., Springael, D., Vangronsveld, J., van der Lelie, D., &Vanbroekhoven, K. (2006). DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. *Journal of Microbiological Methods*, 66(2), 194-205.

- Gentry, T., Rensing, C., & Pepper, I. A. N. (2004). New approaches for bioaugmentation as a remediation technology. *Critical reviews in environmental science and technology*, 34(5), 447-494.
- Germaine, K. J., Byrne, J., Liu, X., Keohane, J., Culhane, J., Lally, R. D., ... & Dowling, D. N. (2015). Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. *Frontiers in Plant Science*, 5, 756.
- Ghoreishi, G., Alemzadeh, A., Mojarrad, M., & Djavaheri, M. (2017). Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. *Sustainable Environment Research*, 27(4), 195-202.
- Ghribi, M., Meddeb-Mouelhi, F. & Beauregard, M. (2018). Degradation of used Engine Oil Alkanes by its Indigenous Bacteria, Production of PHA and Secretion of an Elastomer-Like Biopolymer, *International Journal of Science and Research* (IJSR) 7 (8): 108-1016.
- Gieg, L. M., Fowler, S. J., & Berdugo-Clavijo, C. (2014). Syntrophic biodegradation of hydrocarbon contaminants. *Current opinion in biotechnology*, 27, 21-29.
- Gondal, A. H., Qammar, F., Sidra, S., Shamal, S. K., Muhammad, Danish, T., Asma, Z., & Bushra, R. (2021). Adaptability of soil pH through innovative microbial approach. *Current Research in Agricultural Sciences*, 8(2), 71-79.
- Goveas, L. C., Menezes, J., Salian, A., Krishna, A., Alva, M., Basavapattan, B., & Sajankila, S. P. (2020). Petroleum hydrocarbon degradation in soil augmented with used engine oil by novel *Pantoea wallisii* SS2: Optimisation by response surface methodology. *Biocatalysis and Agricultural Biotechnology*, 25, 101614.
- Groboillot, A., Boadi, D. K., Poncelet, D., & Neufeld, R. J. (1994). Immobilization of cells for application in the food industry. *critical reviews in biotechnology*, 14(2), 75-107.
- Guzmán-López, O., Cuevas-Díaz, M. del C., Martínez Toledo, A., Contreras-Morales, M. E., Ruiz-Reyes, C. I., Ortega Martínez, A. & del C. (2021). Fenton-biostimulation sequential treatment of a petroleum-contaminated soil amended with oil palm bagasse (Elaeisguineensis). *Chemistry and Ecology*, 1–16.
- Habib, S., Ahmad, S.A., Wan johori, L.W., Shukor, M.Y.A., Alias, S.A., & Khalil, K.A (2018). Evaluation of conventional and response surface level optimisation of n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica. Microbial Cell Factories, 17, 1–21.
- Haftka, J. J. H., Hammer, J., & Hermens, J. L. (2015). Mechanisms of neutral and anionic surfactant sorption to solid-phase microextraction fibers. *Environmental Science & Technology*, 49(18), 11053-11061.

- Hambali, I. U., Allamin, I. A., Oba, A. J., Salihu, I., Yarima, F. U., Hassan, A. M. & Jesse, F. F. A. (2021). Environmental Assessment of Petrophilic Bacteria Associated with Bioremediation and Biodegradation of Engine Oil Contaminated Soil in Maiduguri. Sahel Journal of Veterinary Sciences, 18(4), 21-28.
- Harisha, G. K. & Lakshmi, C. M. V. V. (2016). Biodegradation of used engine oil using Pseudomonas putida and Azotobacterchrocoocum as Biosurfactant. International Journal of Engineering sciences & Research 5 (10).
- Hartman, M. (2005). Ordered mesoporous materials for bioadsorption and biocatalysis. *Chem Mater*, 17: 4577-93.
- Hasanuzzaman, M., Ueno, A., Ito, H., Ito, Y., Yamamoto, Y., Yumoto, I., & Okuyama, H. (2007). Degradation of long-chain n-alkanes (C36 and C40) by *Pseudomonas aeruginosa* strain WatG. *International biodeterioration & biodegradation*, 59(1), 40-43.
- Head, I. M. (1998). Bioremediation: towards a credible technology. *Microbiology*, 144(3), 599-608.
- Heinaru, E., Merimaa, M., Viggor, S., Lehiste, M., Leito, I., Truu, J., & Heinaru, A. (2005). Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol-and oil-polluted area. *FEMS microbiology ecology*, 51(3), 363-373.
- Hinchee, R. E. (2017). Bioventing of petroleum hydrocarbons. *In Handbook of Bioremediation* (1993) (pp. 39-60). CRC Press.
- Hossain, M. F., Akter, M. A., Sohan, M. S. R., Sultana, N., Reza, M. A., & Hoque, K. M. F. (2022). Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi Journal of Biological Sciences, 29(1), 211-216.
- Hosseini, M. S. (2006). In situ thermal desorption of polycyclic aromatic hydrocarbons from lamp-black impacted soils using natural gas combustion. PhD thesis, University of California, Los Angeles, UK, pp 1–144.
- Hou, D., Shen, X., Luo, Q., He, Y., Wang, Q., & Liu, Q. (2013). Enhancement of the diesel oil degradation ability of a marine bacterial strain by immobilization on a novel compound carrier material. *Marine pollution bulletin*, 67(1-2), 146-151.
- Hou, J.; Gai, W-m.; Cheng, W-y & Deng, Y-f. (2021). Hazardous chemical leakage accidents and emergency evacuation response from 2009 to 2018 in China: A review. *Safety Science*,135,105101.
- Houbron, E., Cruz-Carmona, E., Ponciano-Rosas, A., Rustrián-Portilla, E., & Canul-Chan, M. (2021). Motor oil wastewater treatment in a packed bed bioreactor using immobilized native microbial consortium. *Revista Mexicana de Ingeniería Química*, 20(2), 761-773.

- Huang, L., Ma, T., Li, D., Liang, F. L., Liu, R. L., & Li, G. Q. (2008). Optimization of nutrient component for diesel oil degradation by *Rhodococcuserythropolis*. *Marine Pollution Bulletin*, 56(10), 1714-1718.
- Hugenholtz, P. (2002). Exploring prokaryotic diversity in the genomic era. *Genome biology*, 3, 1-8.
- Husain, T. (2004). Risk-based remediation of contaminated soil. In: Singh A, Ward OP (eds) *Applied bioremediation and phytoremediation, soil biology*, vol 1. Springer, Berlin, pp 255–275.
- Husaini, A., Roslan, H. A., Hii, K. S. Y., & Ang, C. H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. *World Journal of Microbiology and Biotechnology*, 24(12), 2789-2797.
- Hylland, K. (2006). Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. *Journal of Toxicology and Environmental Health*, Part A, 69(1-2), 109-123.
- Iaiani, M.; Moreno, V. C.; Reniers, G.; Tugnoli, A. & Cozzani, V. (2021). Analysis of events involving the intentional release of hazardous substances from industrial facilities. *Reliability Engineering and System Safety* 212, 107593.
- Ibe, F. C., Duru, C. E., Isiuku, B. O. and Akalazu, J. N. (2021). Ecological risk assessment of the levels of polycyclic aromatic hydrocarbons in soils of the abandoned sections of Orji Mechanic Village, Owerri, Imo State, Nigeria. *Bulletin of the National Research Centre*, 45(1), 1-16.
- Ibrahim, H. M. (2016). Biodegradation of used engine oil by novel strains of *Ochrobactrum anthropi* HM-1 and *Citrobacter freundii* HM-2 isolated from oil-contaminated soil. *3 Biotech*, 6(2), 226.
- Irfan-Maqsood, M., & Seddiq-Shams, M (2014). Rhamnolipids: Well-Characterized Glycolipids with Potential Broad Applicability as Biosurfactants. *Industrial Biotechnology*, 10 (4):1-7.
- Irwin, R. J., VanMouwerik, M., Stevens, L., Seese, M. D., & Basham, W. (1997). Environmental Contaminants Encyclopedia. National Park Service. *Water Resources Division, Fort Collins, Colorado*, 112, 354.
- Iwamoto, T., Tani, K., Nakamura, K., Suzuki, Y., Kitagawa, M., Eguchi, M., & Nasu, M. (2000). Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. *FEMS Microbiology Ecology*, 32(2), 129-141.
- Iyobosa, E., Fang, Z. S., Jun, N. H., Jiehao, S., & Gang, M. X. (2021). Development of a robust bacterial consortium for petroleum hydrocarbon degradation. *Fresenius Environmental Bulletin*, 30(3), 2356-2367.

- Iyobosa, E., Xianagang, M., Jun, N. H., Fang, S., & Zhennan, W. (2020). Biodegradation of petroleum hydrocarbon polluted soil. *Indian J. Microbiol. Res.* 7(2), 104-112.
- Jack, T. R., &Zajic, J. E. (1977). The immobilization of whole cells. *In Advances in Biochemical Engineering*, Volume 5 (pp. 125-145. Berlin, Heidelberg: Springer.
- Jacques, R. J., Okeke, B. C., Bento, F. M., Teixeira, A. S., Peralba, M. C., & Camargo, F. A. (2008). Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. *Bioresource Technology*, 99(7), 2637-2643.
- Jain, P. K., Gupta, V. K., Pathak, H., Lowry, M., & Jaroli, D. P. (2010). Characterization of 2T engine oil degrading indigenous bacteria, isolated from high altitude (Mussoorie), *India. World Journal of Microbiology and Biotechnology*, 26, 1419-1426.
- Jamal, M. T. (2022). Enrichment of potential halophilic Marinobacter consortium for mineralization of petroleum hydrocarbons and also as oil reservoir indicator in Red Sea, Saudi Arabia. *Polycyclic Aromatic Compounds*, 42(2), 400-411.
- Janikowski, T., Velicogna, D., Punt, M. & Daugulis, A. (2002). Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a *Sphingomonas* sp. Appl Microbiol Biotechnol, 59(2–3):368-376.
- Javed, S., Faisal, M., Raza, Z. A., Rehman, A., & Shahid, M. (2022). Isolation and characterization of indigenous biosurfactant producing *Bacillus* and *Staphylococcus* spp. during motor oil degradation. *Applied Ecology and Environmental Research*, 20(1), 79-102.
- Jesubunmi, O. C., K Phil, E., & C Chigbu, C. (2022). Isolation and Optimization of Hydrocarbon–Degrading Bacteria. *Asian Journal of Biotechnology and Bioresource Technology*, 8(1), 46-54.
- Jia, W., Guo, A., Zhang, R., & Shi, L. (2022). Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. *Food Chemistry*, 134541.
- Kadri, T., Magdouli, S., Rouissi, T., Brar, S. K., Daghrir, R., & Lauzon, J. M. (2018). Bench-scale production of enzymes from the hydrocarbonoclastic bacteria Alcanivoraxborkumensis and biodegradation tests. *Journal of biotechnology*, 283, 105-114.
- Kahng, H.-Y., Malinverni, J. C., Majko, M. M., & Kukor, J. J. (2001). Genetic and Functional Analysis of the tbc Operons for Catabolism of Alkyland Chloroaromatic Compounds in *Burkholderia* sp. Strain JS150. *Applied and Environmental Microbiology*, 67(10), 4805–4816.
- Kalyani, K. A. & Pandey, K K. (2014). Waste to energy status in India: A short review. *Renewable and Sustainable Energy Reviews*, 31: 113–120.

- Karatum, O., Steiner, S. A., Griffin, J. S., Shi, W. & Plata, D. L. (2016). Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery. ACS Appl Mater Interfaces, 8(1): 215-224.
- Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. *Enzyme research* 2011, 1-11.
- Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. R. & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review, *Petroleum*, 4: 241-249.
- Mahendhran, K., Arthanari, A., Dheenadayalan, B., & Ramanathan, M. (2018). Bioconversion of oily bilge waste to polyhydroxybutyrate (PHB) by marine *Ochrobactrum intermedium. Bioresource Technology Reports*, 4, 66-73.
- Kavitha, V., Mandal, A. B., & Gnanamani, A. (2014). Microbial biosurfactant mediated removal and/or solubilization of crude oil contamination from soil and aqueous phase: an approach with *Bacillus licheniformis* MTCC 5514. *International Biodeterioration & Biodegradation*, 94, 24-30.
- Khamehchiyan, M., Amir, H. C., & Majid, T. (2007). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. *Engineering Geology*, 89, 220–229.
- Khanpour-Alikelayeh, E., Partovinia, A., Talebi, A. & Kermanian, H. (2021). Enhanced biodegradation of light crude oil by immobilized *Bacillus licheniformis* in fabricated alginate beads through electrospray technique. *Environmental Monitoring and Assessment*, 193(6).
- Kierek-Pearson, K., & Karatan, E. (2005). Biofilm development in bacteria. *Advances in applied microbiology*, 57, 79-111.
- Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. *Environment international*, 60, 71-80.
- Kim, M. K., Singleton, I., Yin, C. R., Quan, Z. X., Lee, M., & Lee, S. T. (2006). Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1. *Letters in applied microbiology*, 42(5), 495-500.
- Kirk, J. L., Lee, A. B., Hart, M., Moutoglis, p., Klironomos, J. N., Hung, L. &Trevors, J. T. (2004). Methods of studying soil microbial diversity, *Journal of Microbiological Methods*, 58(2): 169–188.
- Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S. Y., & Kubo, M. (2003). Degradation of car engine base oil by *Rhodococcus* sp. NDKK48 and *Gordonia* sp. NDKY76A. *Bioscience, biotechnology, and biochemistry*, 67(7), 1590-1593.

- Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S. Y., & Kubo, M. (2003). Degradation of car engine base oil by *Rhodococcus* sp. NDKK48 and *Gordonia* sp. NDKY76A. *Bioscience, biotechnology, and biochemistry*, 67(7), 1590-1593.
- Kördel, W., Bernhardt, C., Derz, K., Hund-Rinke, K., Harmsen, J., Peijnenburg, W., ... & Terytze, K. (2013). Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. *Journal of Hazardous Materials*, 261, 854-862.
- Kotresha, D., & Vidyasagar, G. M. (2017). Phenol degradation in a packed bed reactor by immobilized cells of *Pseudomonas aeruginosa* MTCC 4997. *Biocatalysis and agricultural biotechnology*, 10, 386-389.
- Kshirsagar, S. D., Mattam, A. J., Jose, S., Ramachandrarao, B., & Velankar, H. R. (2020). Heavy hydrocarbons as selective substrates for isolation of asphaltene degraders: A substrate-based bacterial isolation strategy for petroleum hydrocarbon biodegradation. *Environmental Technology & Innovation*, 19, 100832.
- Kumar, G. P., Mir Hassan, A. S. K., Desai, S., Amalraj, E. L.D. and Rasul, A. (2014). In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of *Pseudomonas* and *Bacillus* spp. *International Journal of Bacteriology*, 2014.
- Kumar, V., Agrawal, S., Bhat, S. A., Américo-Pinheiro, J. H. P., Shahi, S. K., & Kumar, S. (2022). Environmental impact, health hazards, and plant-microbes synergism in remediation of emerging contaminants. *Cleaner Chemical Engineering*, 100030.
- Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: a critical perspective. *Reviews of Environmental Contamination and Toxicology* Volume 236, 117-192.
- Kuppusamy, S., Thavamani, P., Megharaj, M. & Naidu, R. (2016d). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings assessments in liquid-and slurry-phase systems. *Int BiodeterBiodegr* 108:149–157.
- Kuppusamy, S., Thavamani, P., Megharaj, M. & Naidu, R.(2016c). Bioaugmentation with novel microbial formula vs. natural attenuation of a long-term mixed contaminated soil—treatability studies in solid-and slurry-phase microcosms. *Water Air Soil Pollut* 227:25.
- Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. *Chemosphere*, 148, 336-353.

- Lanthier, M., Villemur, R., Lépine, F., Bisaillon, J. G., & Beaudet, R. (2000). Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors. *Environmental microbiology*, 2(6), 703-708.
- Larik, I. A., Qazi, M. A., Kanhar, A. R., Mangi, S., Ahmed, S., Jamali, M. R., & Kanhar, N. A. (2016). Biodegradation of petrochemical hydrocarbons using an efficient bacterial consortium: A2457. Arabian Journal for Science and Engineering, 41, 2077-2086.
- Ławniczak, Ł., Woźniak-Karczewska, M., Loibner, A. P., Heipieper, H. J., & Chrzanowski, Ł. (2020). Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. *Molecules*, 25(4), 856.
- Leahy, J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. *Microbiological reviews*, 54(3): 305–315.
- Lee, H. &Upatham, S. (2009). Comparing phenanthrene degradation by alginate-encapsulated and free *Pseudomonas* sp UG14Lr cells in heavy metal contaminated soils. *Journal of Chemical Technology and Biotechnology*, 84, 1660–68.
- Lee, L.P., Karbul, H. M., Citartan, M., Gopinath, S. C. B., Lakshmipriya, T. & Tang, T. H. (2015). Lipase-secreting bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. Biomed. Res. Int. 1–9.
- Leon, R., Fernandes, P., Pinheiro, H. M., & Cabral, J. M. S. (1998). Whole-cell biocatalysis in organic media. *Enzyme and Microbial Technology*, 23(7-8), 483-500.
- Li, H., Li, Y., Bao, M., & Li, S. (2021). Solid inoculants as a practice for bioaugmentation to enhance bioremediation of hydrocarbon contaminated areas. *Chemosphere*, 263, 128175.
- Li, X., Qu, C., Bian, Y., Gu, C., Jiang, X. & Song, Y. (2019). New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics. *Environmental Pollution*, 255, 113312.
- Liu, D., Zhang, J., Yang, T., Liu, X., Hemar, Y., Regenstein, JM., & Zhou, P. (2019). Effects of skim milk pre-acidification and retentate pH-restoration on spray-drying performance, physico-chemical and functional properties of milk protein concentrates. *Food Chemistry*, 272, 539–548.
- Liu, P.W. G., Chang, T. C., Whang, L. M., Kao, C. H., Pan, P. T., and Cheng, S. S. (2011). Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. *International Biodeterioration & Biodegradation*, 65, 1119–27.
- Liu, S., Sun, R., Cai, M., Kong, Y., Gao, Y., Zhang, T. & Huang, G. (2022). Petroleum spill bioremediation by an indigenous constructed bacterial consortium in marine environments. *Ecotoxicology and Environmental Safety*, 241, 113769.

- Lozinsky, V. I. &Plieva, F. M. (1998). Poly (vinyl alcohol) cryogens employed as matrices for cell immobilization. 3. Overview of recent research and developments. *Enzyme and Microbial Technology*, 23(3):227-242.
- Lu, M., Zhang, Z., Qiao, W., Wei, X., Guan, Y., Ma, Q., & Guan, Y. (2010). Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation. *Bioresource technology*, 101(7), 2106-2113.
- Ludwig, W. & Schleifer, K. H. (1994) 'Bacterial phylogeny based on 16S and 23S rRNA sequence analysis', FEMS Microbiol.Rev., 15(0168–6445 SB–M), 155–173. doi: 0168-6445(94)90110-4.
- Lv, H., Su, X., Wang, Y., Dai, Z & Liu, M. (2018). Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. *Chemosphere*, 206, 293-301.
- Ma, X.K., Ding, N. & Peterson, E. C. (2015). Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including *Acremonium* sp. *Biodegradation* 26:259–269.
- MacNaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y-J., & White, D. C. (1999). Microbial Population Changes during Bioremediation of an Experimental Oil Spill. *Applied and Environmental Microbiology*, 65(8), 3566–3574.
- Magalhães, S. M. C., Jorge, R. F., & Castro, P. M. (2009). Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes—a transition regime between bioventing and soil vapour extraction. *Journal of hazardous materials*, 170(2-3), 711-715.
- Mahendhran, K., Arthanari, A., Dheenadayalan, B., & Ramanathan, M. (2018). Bioconversion of oily bilge waste to polyhydroxybutyrate (PHB) by marine *Ochrobactrum intermedium. Bioresource Technology Reports*, 4, 66-73.
- Mahmoud, N. S. & Ghaly, A. E. (2004). Influence of temperature and pH on the nonenzymatic reduction of triphenyltetrazolium chloride. *Biotechnology Progress*, 20, 346-353.
- Maleki, H. (2016). Recent Advance in Aerogels for Environmental Remediation Applications, *Chemical Engineering Journal*, 300: 98-118.
- Malherbe, L. (2002). Designing a contaminated soil sampling strategy for human health risk assessment. *Accreditation and quality assurance*, 7(5), 189-194.
- Mallah, M. A., Changxing, L., Mallah, M. A., Noreen, S., Liu, Y., Saeed, M., & Zhang, Q. (2022). Polycyclic aromatic hydrocarbon and its effects on human health: an updated review. *Chemosphere*, 133948.
- Mandal, A. K., Sarma, P. M., Jeyaseelan, C. P., Channashettar, V. A., Bina, S., Banwari, L., & Jayati, D. (2012). Large scale bioremediation of petroleum hydrocarbon

- contaminated waste at Indian oil refineries: Case studies. *International Journal of Life science & Pharma Research*, 2(4).
- Manohar, S., Kim, C., & Karegoudar, T. (2001). Enhanced degradation of naphthalene by immobilization of *Pseudomonas* sp. strain NGK1 in polyurethane foam. *Applied Microbiology and Biotechnology*, 55, 311-316.
- Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. *Applied microbiology and biotechnology*, 56, 650-663.
- Margesin, R., Zimmerbauer, A. & Schinner, F. (1999). Soil lipase activity a useful indicator of oil biodegradation. *Biotechnology Techniques* 13, 859–863.
- Marin, J. A., Hernandez, T., & Garcia, C. (2005). Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. *Environmental research*, 98(2), 185-195.
- Markowicz, A., Płaza, G., & Piotrowska-Seget, Z. (2016). Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils.
- Martin-Laurent, F., Piutti, S., Hallet, S., Wagschal, I., Philippot, L., Catroux, G., & Soulas, G. (2003). Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR. *Pest Management Science: formerly Pesticide Science*, 59(3), 259-268.
- Maryam, J. & Richard, G. (2009). A Correlation to Estimate the Bioventing Degradation Rate Constant, *Bioremediation Journal*, 13:3, 141-153.
- Matheson, F. E. (2008). Microcosms. Encyclopedia of ecology, 2393-2397.
- Mavrodi, D.V., Kovalenko, N.P., Sokolov, S.L., Parfenyuk, V.G., Kosheleva, I. A. & Boromin, A.M. (2003). Identification of the key genes of naphthalene catabolism in soil DNA. *Microbiology*, 72:597–604.
- Mayumi, D., Mochimaru, H., Yoshioka, H., Sakata, S., Maeda, H., Miyagawa, Y., ... & Kamagata, Y. (2011). Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). *Environmental Microbiology*, 13(8), 1995-2006.
- McKew, B. A., Coulon, F., Osborn, A. M., Timmis, K. N., & McGenity, T. J. (2007). Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. *Environmental microbiology*, 9(1), 165-176.
- Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, JS., Cunha, T.P., Weyrauch, P., Dong, X. & Himmelber, AM. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons.', *Journal of Microbiology and Biotechnology*, 26, 92–118.
- Meena, K. R., Dhiman, R., Singh, K., Kumar, S., Sharma, A., Kanwar, S. S. & Mandal, A. K. (2021). Purification and identification of a surfactin biosurfactant and

- engine oil degradation by *Bacillus velezensis* KLP2016. *Microbial Cell Factories*, 20(1).
- Mei, X. & Richard, G. (2019). The effect of age on petroleum hydrocarbon contaminants in soil for bioventing remediation, *Bioremediation Journal*, 1-15.
- Michael, J. M. & Richard, G. Z. (2017). Large-scale bioventing degradation rates of petroleum hydrocarbons and determination of scale-up factors. *Bioremediation Journal*,1-14.
- Miri, S., Perez, J. A. E., Brar, S. K., Rouissi, T & Martel, R. (2021). Sustainable production and co-immobilization of cold-active enzymes from *Pseudomonas* sp. for BTEX biodegradation. *Environmental Pollution*, 285, 117678.
- Miyamoto-Shinohara, Y., Sukenobe, J., Imaizumi, T., & Nakahara, T. (2006). Survival curves for microbial species stored by freeze-drying. *Cryobiology*, 52(1), 27-32.
- Mohd, M. B., Shiu, S. S., Mohammad, Y. & Shukai, R. N. (2011). Remediation of hydrocarbon contaminated soil through microbial degradation FTIR based production, *Advances in Applied Science Research*, 2(2), 321-326.
- Morris, B. E., Henneberger, R., Huber, H., & Moissl-Eichinger, C. (2013). Microbial syntrophy: interaction for the common good. *FEMS microbiology reviews*, 37(3), 384-406.
- Moursy, A. S., & Abdel-Shafy, H. I. (1983). Removal of hydrocarbons from Nile water. *Environment international*, 9(3), 165-171.
- Mousa, M., Evans, N.D., Oreffo, RO. C. & Dawson, JI. (2018). Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. *Biomaterials* 159: 204-214.
- Moussa, S. H., Tayel, A. A., Al-Hassan, A. A., & Farouk, A. (2013). Tetrazolium/formazan test as an efficient method to determine fungal chitosan antimicrobial activity. *Journal of Mycology*, 2013, 1-7.
- Mrudula, S., & Shyam, N. (2012). Immobilization of *Bacillus megaterium* MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production. *Brazilian Archives of Biology and Technology*, 55, 135-144.
- Muhammad, A., & Adamu, F. A. (2022). Biodegradation of Used Engine Oil by *Pseudomonas* sp. Isolated from an Automobile Workshop's Soil. *Journal of Environmental Microbiology and Toxicology*, 10(2), 59-62.
- Mulla, S. I., Talwar, M. P., Bagewadi, Z. K., Hoskeri, R. S., & Ninnekar, H. Z. (2013). Enhanced degradation of 2-nitrotoluene by immobilized cells *of Micrococcus* sp. strain SMN-1. *Chemosphere*, 90(6), 1920-1924.
- Myriam, M., Suarez, M., & Martin-Pozas, J. M. (1998). Structural and textural modifications of palygorskite and sepiolite under acid treatment. *Clays and clay minerals*, 46, 225-231.

- Naidu, R., Wong, M. H., & Nathanail, P. (2015). Bioavailability—the underlying basis for risk-based land management. *Environmental Science and Pollution Research*, 22, 8775-8778.
- Nasr, M. S., Shubbar, A. A., Abed, Z. A. A. R., & Ibrahim, M. S. (2020). Properties of eco-friendly cement mortar contained recycled materials from different sources. *Journal of Building Engineering*, 31, 101444.
- Nayak, N.S.; Purohit, M.S.; Tipre, D.R. & Dave, S.R. (2020). Biosurfactant production and engine oil degradation by marine halotolerant *Bacillus licheniformis* LRK1. *Biocatalysis and Agricultural Biotechnology*, 29,101808.
- Nguyen, S. T., Feng, J., Le, N. T., Le, A. T., Hoang, N., Tan, V. B., & Duong, H. M. (2013). Cellulose aerogel from paper waste for crude oil spill cleaning. *Industrial & engineering chemistry research*, 52(51), 18386-18391.
- Nikakhtari, H. & Hill, G. A. (2005). Hydrodynamic and oxygen mass transfer in an external loop airlift bioreactor with a packed bed. *Biochemical Engineering Journal*. 27(2):138-14.
- Nkem, B. M., Halimoon, N., Yusoff, F. M., & Johari, W. L. W. (2022). Use of Taguchi design for optimization of diesel-oil biodegradation using consortium of *Pseudomonas stutzeri*, *Cellulosimicrobium cellulans*, *Acinetobacter baumannii* and *Pseudomonas* balearica isolated from tarball in Terengganu Beach, Malaysia. *Journal of Environmental Health Science and Engineering*, 20(2), 729-747.
- Nunal, S. N., Santander, D. E. & Leon, S. M. (2014). Bioremediation of oil contaminated seawater and sediment by an oil-degrading bacterial Consortium. *Biocontrol Sci.* 19 (1): 11-22.
- Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. *Environmental Pollution* 239, 788-802.
- Nzila, A., Razzak, S. A., & Zhu, J. (2016). Bioaugmentation: an emerging strategy of industrial wastewater treatment for reuse and discharge. *International journal of environmental research and public health*, 13(9), 846.
- Okino-Delgado, C. H., Zanutto-Elgui, M. R., do Prado, D. Z., Pereira, M. S., & Fleuri, L. F. (2019). Enzymatic bioremediation: current status, challenges of obtaining process, and applications. *Microbial metabolism of xenobiotic compounds*, 79-101.
- Okoh, E., Yelebe, Z. R., Oruabena, B., Nelson, E. S., & Indiamaowei, O. P. (2020). Clean-up of crude oil-contaminated soils: bioremediation option. *International Journal of Environmental Science and Technology*, 17(2), 1185-1198.
- Okolo, J. C., Amadi, E. N., & Odu, C. T. I. (2005). Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil. *Applied ecology and environmental research*, 3(1), 47-53.

- Olajire, A. A., & Essien, J. P. (2014). Aerobic degradation of petroleum components by microbial consortia. *Journal of Petroleum & Environmental Biotechnology*, 5(5), 1.
- Oliver, J. D. (2005). The viable but nonculturable state in bacteria. *The journal of microbiology*, 43(1), 93-100.
- Oluwafemi SO, Lateef BS, & Oluwatoba SO (2014). Biodegradation of fresh and used engine oil by *Pseudomonas aeruginosa* LP5. *J of Bioremed and Biodegrad.*, 5(1):1-7
- Oluwatosin, S. O., Tai, S. L., & Fagan-Endres, M. A. (2022). Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic–towards a freezedried Lactobacillus plantarum topical probiotic. *Biotechnology Reports*, 33, e00696.
- Onwurah, I. N. E., Ogugua, V. N., Onyike, N. B., Ochonogor, A. E. & Otitoju, O. F. (2007). Crude oil spills in the environment, effects and some innovative cleanup biotechnologies. *Int J Environ Res* 1:307–320.
- Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. *Environmental Technology & Innovation*, 17, 100526.
- Osuji, L. C., Egbuson, E. J., &Ojinnaka, C. M. (2005). Chemical reclamation of crude-oil-inundated soils from Niger Delta, Nigeria. *Chemistry and Ecology*, 21(1), 1-10.
- Ouyang, X., Yin, H., Yu, X., Guo, Z., Zhu, M., Lu, G., & Dang, Z. (2021). Enhanced bioremediation of 2, 3', 4, 4', 5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar. *Science of The Total Environment*, 788, 147774.
- Palanisamy, N, Ramya, J., Kumar, S., Vasanthi, N. S., Chandran, P. & Khan, S. (2014). Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil. *Journal of Environmental Health Science and Engineering*, 12(1), 142
- Paleček, E., Tkáč, J., Bartosik, M., Bertók, T., Ostatná, V., & Paleček, J. (2015). Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. *Chemical reviews*, 115(5), 2045-2108.
- Palmfeldt, J., Rådström, P., & Hahn-Hägerdal, B. (2003). Optimisation of initial cell concentration enhances freeze-drying tolerance of *Pseudomonas chlororaphis*. *Cryobiology*, 47(1), 21-29.
- Parach, A., Rezvani, A., Assadi, M. M., & Akbari-Adergani, B. (2017). Biodegradation of heavy crude oil using Persian Gulf *autochthonous bacterium*. *International journal of environmental research*, 11, 667-675.
- Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. *Biotechnology advances*, 18(4), 303-319.

- Parthipan, P., Cheng, L., Rajasekar, A., & Angaiah, S. (2021). Microbial surfactants are next-generation biomolecules for sustainable remediation of polyaromatic hydrocarbons. *Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine*, 139-158.
- Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. *Critical Reviews in Environmental Science and Technology*, 48(1), 1-38.
- Patel, B. P., & Kumar, A. (2016). Biodegradation of 4-chlorophenol in an airlift inner loop bioreactor with mixed consortium: effect of HRT, loading rate and biogenic substrate. *3 Biotech*, 6(2), 1-9.
- Patel, J., Borgohain, S., Kumar, M., Rangarajan, V., Somasundaran, P., & Sen, R. (2015). Recent developments in microbial enhanced oil recovery. *Renewable and Sustainable Energy Reviews*, 52, 1539-1558.
- Pathak, S. S. H. & Jaroli, D. P. (2014). Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. *Int J. Pure App. Biosci.* 2(3):185–202.
- Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2016). Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. *Frontiers in microbiology*, 7, 1092.
- Pepper, D. (2002). Modern environmentalism: An introduction. Routledge.
- Phulpoto, I. A., Wang, Y., Qazi, M. A., Hu, B., Ndayisenga, F., & Yu, Z. (2021). Bioprospecting of rhamnolipids production and optimization by an oil-degrading *Pseudomonas* sp. S2WE isolated from freshwater lake. *Bioresource Technology*, 323, 124601.
- Pilon-Smits, E. A. H. (2005). Phytoremediation., Annual Review of Plant Biology.
- Pongsilp, N., & Nimnoi, P. (2022). *Paenibacillus* sp. strain OL15 immobilized in agar as a potential bioremediator for waste lubricating oil-contaminated soils and insights into soil bacterial communities affected by inoculations of the strain and environmental factors. *Biology*, 11(5), 727.
- Prescott, LM; Harley, JP & Klein, DE (2002). Microbiology. Fifth Edition, McGraw Hill Inc., New York. p. 20-38, 96-132, 1012-1018.
- Prince, RC., McFarlin, KM., Butler, JD., Febbo, EJ., Wang, FC.Y. &Nedwed, TJ. (2013). The primary biodegradation of dispersed crude oil in the sea, Chemosphere. 90(2), 521–526. doi: 10.1016/j.
- Quan, X., Shi, H., Wang, J., & Qian, Y. (2003). Biodegradation of 2, 4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture. *Chemosphere*, 50(8), 1069-1074.
- Radwan, S. S., Al-Hasan, R. H., Salamah, S., & Al-Dabbous, S. (2002). Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. *International biodeterioration & biodegradation*, 50(1), 55-59.

- Rahman, R. N. Z. A., Ghazali, F. M., Salleh, A. B. & Basri, M. (2006). Biodegradation of hydrocarbon contamination by immobilized bacterial cells. *J. Microbiol.* 44(3):354–359.
- Raju, M. N., Leo, R., Herminia, S. S., Morán, R. E. B., Venkateswarlu, K., & Laura, S. (2017). Biodegradation of diesel, crude oil and spent lubricating oil by soil isolates of *Bacillus* spp. *Bulletin of Environmental Contamination and Toxicology*, 98(5), 698-705.
- Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative survival and evaluation of functional probiotic properties of spray dried lactic acid bacteria. *International Journal of Dairy Technology*, 62(2), 240-248.
- Rhitu, K., Piyush, P. (2019). Rhizosphere mediated biodegradation of benzo (A) pyrene by surfactin producing soil bacilli applied through Meliaazadirachta rhizosphere, *International Journal of Phytoremediation*.
- Ricardo, P. D.S. O., A, C. R. F., Patrizia, P., Maricê, N. D. O., & Attilio, C. (2011). Use of lactulose as prebiotic and its influence on the growth, acidification profile and viable counts of different probiotics in fermented skim milk, *International Journal of Food Microbiology*, 145(1), 22-27.
- Richard, J. Y., & Vogel, T. M. (1999). Characterization of a soil bacterial consortium capable of degrading diesel fuel. *International Biodeterioration & Biodegradation*, 44(2-3), 93-100.
- Robles-González, I. V., Fava, F., & Poggi-Varaldo, H. M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. *Microbial Cell Factories*, 7, 1-16.
- Rockne, K. J., & Reddy, K. R. (2003). Bioremediation of contaminated sites. In Invited theme paper, international e-conference on modern trends in foundation engineering: geotechnical challenges and solutions, Indian Institute of Technology, Madras, India.
- Roling, W. F., Milner, M. G., Jones, D. M., Lee, K., Daniel, F., Swannell, R. J., & Head, I. M. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. *Applied and environmental microbiology*, 68(11), 5537-5548.
- Ron, E. Z., & Rosenberg, E. (2014). Enhanced bioremediation of oil spills in the sea. *Current Opinion in biotechnology*, 27, 191-194.
- Rosenberg, M., & Rosenberg, E. (1985). Bacterial adherence at the hydrocarbon-water interface. *Oil and Petrochemical Pollution*, 2(3), 155-162.
- Roslee, A. F. A., Zakaria, N. N., Convey, P., Zulkharnain, A., Lee, G. L. Y., Gomez-Fuentes, C., & Ahmad, S. A. (2020). Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, *Rhodococcus* sp. strain AQ5–07. *Extremophiles*, 24(2), 277-291.

- Sabina, K., Fayidh, Mohammed A., Archana, G., Sivarajan, M., Babuskin, S., Babu, P., Azhagu Saravana., Radha krishnan, K. & Sukumar, M. (2014). Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain *Bacillus subtilis* moh3. *Environmental Technology*, 35(17), 2194-2203.
- Saeki, H., Sasaki, M., Komatsu, K., Miura, A., & Matsuda, H. (2009). Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by *Gordonia* sp. strain JE-1058. *Bioresource technology*, 100(2), 572-577.
- Safaa, E-A., Elsayed, N., Hashem, M. & Elkashef, H. (2021) Development of fermented skimmed milk fortified with yellow sweet Potato (Ipomoea batatas L.) with prebiotic and antioxidant Activity. *Journal of Food and Nutrition Research*, 60, 66-75.
- Sajna, K. V., Sukumaran, R. K., Gottumukkala, L. D., & Pandey, A. (2015). Crude oil biodegradation aided by biosurfactants from *Pseudozyma* sp. NII 08165 or its culture broth. *Bioresource technology*, 191, 133-139.
- Samar, J. B. & Michael, R. L. (2012). BTEX remediation under challenging Site conditions using in-situ ozone injection and soil vapor extraction technologies: A Case Study, *Soil and Sediment Contamination: An International Journal*, 21(4): 545-556.
- Sánchez-Monedero, M. A., Roig, A., Paredes, C., & Bernal, M. P. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. *Bioresource technology*, 78(3), 301-308.
- Sayed, K., Baloo, L., & Sharma, N. K. (2021). Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. *International Journal of Environmental Research and Public Health*, 18(5), 2226.
- Schloss, P. D., & Handelsman, J. (2004). Status of the microbial census. *Microbiology and molecular biology reviews*, 68(4), 686-691.
- Schwieger, F. & Tebbe, C. C. (1998). A New Approach to Utilize PCR Single-Strand-Conformation Polymorphism for 16S rRNA Gene-Based Microbial Community Analysis', *Applied and environmental microbiology*, 64(12), pp. 4870–4876.
- Scragg, A. H. (1991). Bioreactors in biotechnology: A practical approach.
- Sharma, A., Kumar, p. & Rehman, M. B. (2015). Biodegradation of Diesel Hydrocarbon in Soil by Bioaugmentation of *Pseudomonas aeruginosa*: A Laboratory Scale Study. *International Journal of Environmental Bioremediation & Biodegradation*, 2 (4): 202-212.

- Shen, T., Pi, Y., Bao, M., Xu, N., Li, Y., & Lu, J. (2015). Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. *Environmental Science: Processes & Impacts*, 17(12), 2022-2033.
- Sheppard, P. J., Simons, K. L., Kadali, K. K., Patil, S. S., & Ball, A. S. (2012). The importance of weathered crude oil as a source of hydrocarbonoclastic microorganisms in contaminated seawater. *Journal of microbiology and biotechnology*, 22(9), 1185-1192.
- Shettima, H., Allamin, I.A., Halima, N., Ismail, H.Y. & Musa, Y (2021), Isolation and Characterization of Hydrocarbon-degrading Bacteria in Soils of Mechanical Workshops in Maiduguri. *Journal of Environmental Bioremediation and Toxicology*, 4(2), 35-38.
- Shi, H. X., Cui, J. T., Shen, H. M., & Wu, H. K. (2014). Preparation of silica aerogel and its adsorption performance to organic molecule. *Advances in Materials Science and Engineering*, 2014.
- Shivlata, L., & Satyanarayana, T. (2015). Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. *Frontiers in microbiology*, 6, 1014.
- Shuler, M. L. and Kargi, F. (2008). Bioprocess Engineering Basic Concepts. 2nd ed. Prentice Hall Pvt. Ltd.
- Sieber, J. R., McInerney, M. J., & Gunsalus, R. P. (2012). Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. *Annual review of microbiology*, 66, 429-452.
- Singh, A., Kuhad, R. C., & Ward, O. P. (Eds.). (2009). Advances in applied bioremediation. Berlin: Springer-Verlag.
- Singha, L. P., & Pandey, P. (2021). Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. *Critical Reviews in Biotechnology*, 41(5), 749-766.
- Soares, A. A., Albergaria, J. T., Domingues, V. F., Alvim-Ferraz, M. C. M. and Delerue-Matos C. (2010). Remediation of soils combining soil vapor extraction and bioremediation: benzene. *Chemosphere* 80(8): 823–828.
- Soltani, M. (2004). Lipids Distribution and Metabolic Pathways in Four Gram-Negative Hydrocarbonoclastes. Variation in Relation to Carbon Source. Doctorate Thesis, University of Paris VI, Paris, 288 p.
- Sood, U., Singh, D. N., Hira, P., Lee, J-K., Kalia, V.C., Lal, R., Shakarad, M., (2020). Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier *Pseudomonas aeruginosa* strain CR1. *Journal of Biotechnology*, 307: 98–106.
- Souza, E. C., Vessoni-Penna, T. C., & de Souza Oliveira, R. P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: An overview. *International biodeterioration & biodegradation*, 89, 88-94.

- Sprocati, A.R., Alisi, C., Tasso, F., Marconi, P., Sciullo, A., Pinto, V., Chiavarini, S., Ubaldi, C., &Cremisini, C. (2012). Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. *Process Biochem* 47:1649–1655.
- Struchtemeyer, C. G., Duncan, K. E., & McInerney, M. J. (2011). Evidence for syntrophic butyrate metabolism under sulfate-reducing conditions in a hydrocarbon-contaminated aquifer. FEMS microbiology ecology, 76(2), 289-300.
- Su, W. T., Wu, B. S., & Chen, W. J. (2011). Characterization and biodegradation of motor oil by indigenous *Pseudomonas aeruginosa* and optimizing medium constituents. *Journal of the Taiwan Institute of Chemical Engineers*, 42(5), 689-695.
- Sulayman, H. O. (2019). Bioremediation of Spent Engine Oil in Some Selected Contaminated Soils (Doctoral dissertation, Kwara State University (Nigeria)).
- Sun, N., Du, C., & Han, Z. (2019). Study on the adsorption properties of modified attapulgite for petroleum hydrocarbon contaminants in the petroleum hydrocarbon contaminated wastewater. *In 2019 2nd International Conference on Sustainable Energy, Environment and Information Engineering (SEEIE 2019)* (pp. 88-95). Atlantis Press.
- Sun, W. & Griffiths, M.W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan—xanthan beads. *International Journal of Food Microbiology*, 61: 17-25.
- Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2016). *Remediation engineering: design concepts.* CRC press.
- Taubert, M., Vogt, C., Wubet, T., Kleinsteuber, S., Tarkka, M. T., Harms, H., ... & Seifert, J. (2012). Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. *The ISME journal*, 6(12), 2291-2301.
- Thapa, B., Kc, A. K., & Ghimire, A. (2012). A review on bioremediation of petroleum hydrocarbon contaminants in soil. *Kathmandu university journal of science, engineering and technology*, 8(1), 164-170.
- Theron, J., & Cloete, T. E. (2000). Molecular techniques for determining microbial diversity and community structure in natural environments. *Critical reviews in microbiology*, 26(1), 37-57.
- Throne-Holst, M., Wentzel, A., Ellingsen, T.E., Kotlas. H.K. &Zotchev, S.B. (2007). Identification of novel genes involved in long-chain n-alkane degradation by *Acinetobacter* sp. strain DSM 17874. *Appl Environ Microbiol* 73:3327–3332.
- Trelles, J. A., & Rivero, C. W. (2013). Whole cell entrapment techniques. *Immobilization of Enzymes and Cells: Third Edition*, 365-374.

- Trevors, J. T. (1992). Use of alginate and other carries for encapsulation of microbial cells for use in soil. *Microvial. Rel.*, 1, 61-69.
- Udeani, T. K. C., Obroh, A. A., Okwuosa, C. N., Achukwu, P. U., & Azubike, N. (2009). Isolation of bacteria from mechanic workshops' soil environment contaminated with used engine oil. *African journal of Biotechnology*, 8(22).
- Ueno, A., Hasanuzzaman, M., Yumoto, I., &Okuyama, H. (2006). Verification of degradation of n-alkanes in diesel oil by *Pseudomonas aeruginosa* strain WatG in soil microcosms. *Current microbiology*, 52(3), 182-185.
- Ugwoha, E. (2020). Modeling the Biodegradation of Used Engine Oil in Soil. *J Eng*, 10(7), 19-28.
- Vaishnavi, J., Devanesan, S., AlSalhi, MS., Rajasekar, A., Selvi, A., Srinivasan, P. & Govarthanan, M. (2021). Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment. *Chemosphere*, 264, 128377.
- Van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Röthlisberger, M., & Witholt, B. (2001). Analysis of *Pseudomonas putida* alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. *Microbiology*, 147(6), 1621-1630.
- Varjani, S. J., & Upasani, V. N. (2013). Comparative studies on bacterial consortia for hydrocarbon degradation. *Screening*, 2(10), 5377-5383.
- Varjani, S. J. & Upasani, V. N. (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of *Pseudomonas aeruginosa* NCIM 5514, *Bioresource Technology*. 222, 195–201.
- Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. *Bioresource technology*, 223, 277-286.
- Varjani, S. J., Rana, D. P., Bateja, S., Sharma, M. C., & Upasani, V. N. (2014). Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India. *Int J Inno Res Sci Eng Technol*, 3(2).
- Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. *Bioresource technology*, 223, 277-286.
- Vasilyeva, G., Kondrashina, V., Strijakova, E., & Ortega-Calvo, J. J. (2020). Adsorptive bioremediation of soil highly contaminated with crude oil. *Science of the Total Environment*, 706, 135739.
- Vidali, M. (2001). Bioremediation. an overview. *Pure and applied chemistry*, 73(7), 1163-1172.
- Wakase, S., Sasaki, H., Itoh, K., Otawa, K., Kitazume, O., Nonaka, J., ... & Nakai, Y. (2008). Investigation of the microbial community in a microbiological additive used in a manure composting process. *Bioresource technology*, 99(7), 2687-2693.

- Walker, C. (2006). Principles of Ecotoxicology, CRC, Taylor and Francis, Boca Raton, U.S.A.
- Wang, H. Q., Hua, F., Zhao, Y. C., Li, Y., & Wang, X. (2014). Immobilization of *Pseudomonas* sp. DG17 onto sodium alginate—attapulgite—calcium carbonate. *Biotechnology & Biotechnological Equipment*, 28(5), 834-842.
- Wang, J., Wang. M. and Wei, X. (2012). Effects of petroleum in soil growth of maize in loess hilly region of north Shaanxi. *Environ Poll Contr.* 34(2):55–59.
- Wang, T., Su, D., Wang, X. and He., Z. (2020). Adsorption-Degradation of Polycyclic Aromatic Hydrocarbons in Soil by Immobilized Mixed Bacteria and Its Effect on Microbial Communities. *J. Agric. Food Chem.* 68, 50, 14907–14916.
- Ward, O., Singh, A. &Van, Ha J. (2003). Accelerated biodegradation of petroleum hydrocarbon waste. *J Ind Microbiol Biotechnol* 30:260–270.
- Watanabe, K., & Hamamura, N. (2003). Molecular and physiological approaches to understanding the ecology of pollutant degradation. *Current Opinion in Biotechnology*, 14(3), 289-295.
- Weber, W. J., & Morris, J. C. (1963). Intraparticle diffusion during the sorption of surfactants onto activated carbon. *J. Sanit. Eng. Div. Am. Soc. Civ. Eng*, 89(1), 53-61.
- Whyte, L. G., Slagman, S. J., Pietrantonio, F., Bourbonnière, L., Koval, S. F., Lawrence, J. R., Inniss, W. E. & Greer, C. W. (1999). Physiological Adaptations Involved in Alkane Assimilation at a Low Temperature by *Rhodococcus* sp. Strain Q15. Applied and Environmental Microbiology, 65(7), 2961–2968.
- Wilkes, H., Buckel, W., Golding, B. T., & Rabus, R. (2016). Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. *Journal of molecular microbiology and biotechnology*, 26(1-3), 138-151.
- Wolak, A., Fijorek, K., & Zając, G. (2020). Professional Car Drivers' Attitudes toward Technical, Marketing and Environmental Characteristics of Engine Oils: A Survey Study. *Energies*, 13(8), 2069.
- Wu, X. L, Wang, Y. Y., Liang, R. X., Dai, Q. Y., Chao, W. L. (2010). Degradation of Din-butyl Phthalate by Newly Isolated *Ochrobactrum* sp. *B Environ Contam Tox*. 85, 235–237.
- Xu, M., Bao, W., Xu, S., Wang, X., & Sun, R. (2016). Porous cellulose aerogels with high mechanical performance and their absorption behaviors. *BioResources*, 11(1), 8-20.
- Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Xiong, W., Song, B., Wu, S., Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. *Resour Conserv Recycl.* 140: 278–285.

- Yiming, L., Haiyue, G., Hua, C., Lisha, W., &Mutai, B. (2017). Individually immobilized and surface-modified hydrocarbon-degrading bacteria for oil emulsification and biodegradation. *Marine Pollution Bulletin*, 125(1-2), 433-439.
- Li, Y., Gong, H., Cheng, H., Wang, L., & Bao, M. (2017). Individually immobilized and surface-modified hydrocarbon-degrading bacteria for oil emulsification and biodegradation. Marine Pollution Bulletin, 125(1-2), 433-439.
- Ying, T., Luo, Y.M., Sun, M.M., Liu, Z.J., Li, Z.G. & Christie, P. (2010). Effect of bioaugmentation by *Paracoccus* sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. *BioresourTechnol* 101:3437–3443.
- Yousef, R. I., El-Eswed, B., & Ala'a, H. (2011). Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. *Chemical engineering journal*, 171(3), 1143-1149.
- Yu, W. H.; Li, N.; Tong, D. S.; Zhou, C. H.; Lin, C. X. & Xu, C. Y. (2013). Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. *Applied Clay Science*, 80-81, 443–452.
- Zahed, M. A., Matinvafa, M. A., Azari, A., & Mohajeri, L. (2022). Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. *Discover Water*, 2(1), 5.
- Zaida, N. &Piakong, M. T. (2017). Effectiveness of single and microbial consortium in bioaugmentation of oil sludge contaminated soil at different concentration levels: a laboratory scale. *J Bioremed Biodegr* 9:430.
- Zaida, Z.N. &Piakong, M. T. (2019). Bioaugmentation of petroleum hydrocarbon in contaminated soil: a review. *Microbial action on hydrocarbons*,415–439.
- Zajic, J. E., &Supplisson, B. (1972). Emulsification and degradation of "Bunker C" fuel oil by microorganisms. *Biotechnology and Bioengineering*, 14(3), 331-343.
- Zakaria, N. N., Roslee, A. F. A., Zulkharnain, A., Gomez-Fuentes, C., Abdulrasheed, M., Sabri, S., & Ahmad, S. A. (2019). Bacterial growth and diesel biodegradation in the presence of As, Cu and Pb by Antarctic marine bacteria. Malaysian Journal of Biochemistry and Molecular Biology, 22(3), 8-15.
- Zengler, K., Walcher, M., Clark, G., Haller, I., Toledo, G., Holland, T., ... & Keller, M. (2005). High-throughput cultivation of microorganisms using microcapsules. *Methods in enzymology*, 397, 124-130.
- Zhan, Y., Xu, Q., Yang, M. M., Yang, H. T., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Screening of freeze-dried protective agents for the formulation of biocontrol strains, *Bacillus cereus* AR156, *Burkholderia vietnamiensis* B418 and *Pantoea agglomerans* 2Re40. *Letters in applied microbiology*, 54(1), 10-17.

- Zhang, X., Zhang, Q., Yan, T., Jiang, Z., Zhang, X., & Zuo, Y. Y. (2015). Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. *Environmental science & technology*, 49(10), 6164-6171.
- Zhang, Z., Gai, L., Hou, Z., Yang, C., Ma, C., Wang, Z., ... & Xu, P. (2010). Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. *Bioresource Technology*, 101(21), 8452-8456.
- Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F., & Xu, P. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated *Pseudomonas aeruginosa* DQ8. *Bioresource Technology*, 102(5), 4111-4116.
- Zhentao, C., Linzhou, Z., Suoqi, Z., Quan, S. &Chunming, X. (2015). Molecular Structure and Association Behavior of Petroleum Asphaltene, Struct Bond, DOI: 10.1007/430_2015_181.
- Zhen-Yu, W., Ying, X. U., Hao-Yun, W., Jian, Z., Dong-Mei, G., Feng-Min, L. I., & Xing, B. (2012). Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. *Pedosphere*, 22(5), 717-725.
- Zhou, H., Jiang, L., Li, K., Chen, C., Lin, X., Zhang, C., & Xie, Q. (2021). Enhanced bioremediation of diesel oil-contaminated seawater by a biochar-immobilized biosurfactant-producing bacteria Vibrio sp. LQ2 isolated from cold seep sediment. *Science of The Total Environment*, 793, 148529.