

UNIVERSITI PUTRA MALAYSIA

DIGITAL PROTECTION OF POWER TRANSFORMER USING MICROCONTROLLER-BASED RELAY

ADEL HAMAD RAFA

FK 2002 74

DIGITAL PROTECTION OF POWER TRANSFORMER USING MICROCONTROLLER-BASED RELAY

By

ADEL HAMAD RAFA

.

Thesis Submitted to the School Graduate Studies, Universiti Putra Malaysia, in Partial Fulfillment of the Requirement for the Degree of Master of Science

September 2002

Abstract of thesis presented to the senate of Universiti Putra Malaysia in partial fulfillment of requirement for the degree of Master of Science

DIGITAL PROTECTION OF POWER TRANSFORMER USING MICROCONTROLLER-BASED RELAY

By

ADEL HAMAD RAFA

september 2002

Chairman: Senan Mahmod Bashi, Ph.D.

Faculty: Engineering

In this thesis the fault types in the power transformer as well as their protection scheme have been studied, and the factors which lead to mal operation of differential protection such as : magnetizing inrush, over excitation, ratio mismatch and current transformer saturation have been investigated. The existing methods of discriminating internal faults from inrush magnetizing condition have been reviewed.

A method to discriminate internal fault from inrush current depended on the rate of change of primary current with respect to time at the first quarter cycle has been used in this work.

The percentage differential protection, over current protection, over voltage protection and under voltage protection are implemented in a microcontroller-based system. The design implementation and testing of the system are also presented. The performance of

the system was checked in the laboratory. The experimental results gave a good agreement with the theoretical ones.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

DIGITAL PERLINDUNGAN UNTUK TRANSFORMER KUASA DENGAN MENGGUNAKAN GEGANTI BERASAKAN PENGAWALMIKRO

Oleh

ADEL HAMAD RAFA

September 2002

Pengerusi: Senan Mahmod, Ph.D.

Fakulti: Kejuruteraan

Dalam tesis ini, jenis-jenis kerosakan dan skim-skim perlindungan telah dikaji. Faktorfaktor yang menjurus kepada kepincangan tugas oleh perlindungan pembeza termasuklah: rempuh masuk pemagnetan, pengujaan melampau, nisbah tak padan dan pengubah arus ketepuan telah juga dikaji. Keadaan-keadaan rempuh-masuk pemagnetan telah juga diberi perhatian.

Kaedah untuk membezalayan kerosakan dalaman daripada arus rempuh-masuk bergantung kepada kadar tukaran primer permasa pada suku kitaran pertama telah diterangkan.

Peratusan pelindungan pembeza, perlindungan arus lampau, perlindungan voltan lampau dan perlindungan voltan kurang telah diimplementasikan pada sistem berasaskan pengawalmikro.

Rekabentuk sistem dan ujian keatas sistem tersebut juga dipersembahkan. Prestasi sistem yang telah direkabentuk telah diperiksa di makmal. Keputusan-keputusan ujikaji telah memberikan persamaan yang memuaskan dengan teori yang telah diterangkan.

ACKNOWLEDGEMENTS

First and foremost I thank Allah, swt, for helping me to complete this thesis. I would like to convey my deepest gratitude and most sincere thanks to my supervisor, Dr. Sinan Mahmod Bashi, who keep advising and commenting throughout this project until it turns to real success.

My thanks as well go to Assoc. Prof. Ir. Dr. Norman Mariun and Mr. Wan Zuha Bin Wan Hasan serving in my supervisory committee and providing guidance and suggestions.

I express my greatest appreciation to the department of Electrical and Electronic Engineering and Faculty of Engineering for providing the facilities and the components required to undertake this project.

I would like to forward my appreciation to my parents, my wife, my children and my brothers. Finally thanks are also extended to all the Power Electronic Laboratory members, and all of my friends, here in Malaysia and back in Libya.

This thesis submitted to the senate of Universiti Putra Malaysia has been accepted as partial fulfillment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

SENAN MAHMOD ABDULLAH, Ph.D.

Department Of Electrical And Electronic Engineering Faculty Of Engineering Universiti Putra Malaysia. (Chairman)

NORMAN MARIUN, Ph.D.

Associate professor Department Of Electrical And Electronic Engineering Faculty Of Engineering Universiti Putra Malaysia (Member)

WAN ZUHA BIN WAN HASAN, MSc.

Department Of Electrical And Electronic Engineering Faculty Of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

TABEL OF CONTENTS

Page

ABSTRACT	II
ABSTRAK	IV
ACKNOWLEDGMENTS	VI
APPROVAL SHEETS	VII
DECLARATION FORM	IX
TABLE OF CONTENTS	Х
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
LIST OF ABBREVIATIONS	XVIII

CHAPTER

1	INTE	RODUC '	TION		1
	1.1	Basic	Componer	nts of A Digital Relay	2
	1.2	Aim ar	nd Importa	nce of the Work	4
	1.3	Scope	and Object	tive of the Research	5
	1.4	Structu	ure of the	Thesis	5
2	LITE	ERATU	RE REVII	EW	
	2.1	Introd	uction		7
	2.2	Transf	ormer Fau	lts	7
		2.2.1	Internal	Faults	7
			2.2.1.1	Phase to Earth fault	8
			2.2.1.2	Phase to Phase Fault	8
			2.2.1.3	Interturn Fault	8
			2.2.1.4	Interwinding Fault	8
			2.2.1.5	Bushing Failure	9
			2.2.1.6	Core Insulation Failure	9
		2.2.2	Overload	d and External Faults	9
			2.2.2.1	Overload	9
			2.2.2.2	Transformer Over Excitation	10
			2.2.2.3	Faults on Transformer Connections	11
			2.2.2.4	Short Circuits	11
	2.3	Transf	former Pro	tection Schemes	11
		2.3.1	Time-Ov	er Current Protection	11
		2.3.2	Distance	Relay for Backup Protection	12
		2.3.3	Earth Fau	alt Protection	12
		2.3.4	Overload	Protection	13
		2.3.5	Gas-Accu	umulator and Pressure Relay	14
		2.3.6	Sudden-H	Pressure Relay(SPR)	14
		2.3.7	Transform	ner Over excitation Protection	16

	2.3.8	Differentia	al Protection	16
2.4	Factors	affecting	differential protection	19
	2.4.1	Magnetiz	ing Inrush	19
	2.4.2	Ratio-Mi	smatch	19
	2.4.3	Differenc	es in Current Transformer Characteristics and	
		Burd	en	21
	2.4.4	CT Satura	ation	22
2.5	Percent	tage Diffe	rential Protection	22
2.6	Digital	Different	ial Protection of Power Transformer	26
2.7	Digital	Algorithm	ns for Transformer Protection	27
	2.7.1	Harmonic	Restraint Algorithms	27
		2.7.1.1	Least - Squares Curve Fitting Technique	29
		2.7.1.2	Fourier-Based Technique	31
		2.7.1.3	Kalman Filtering Technique	32
	2.7.2	Wave Sha	ape Recognition Methods	34
	2.7.3	Algorithm	ns Using Transformer Models	35
	2.7.4	Different	ial Power Method	38
	2.7.5	Flux-Bas	ed Inrush Restraint Algorithms	39
	2.7.6	Voltage-(Current Similarity Algorithm	40
	2.7.7	A numeri	cal Technique Based on Symmetrical	
		Compone	ents	42
2.8	Discus	sion		46
2.9	Summa	arv		48
3.2 3.3	Microco Design 3.3.1 3.3.2	ontroller R Hardware Isolation Data Acq	Relay Design System and Analog Scaling uisition System	50 52 52 54
		3.3.2.1	Analog – To-Digital Converter	56
		3.3.2.2	Input Range and Resolution	57
		3.3.2.3	ADC Hardware Equation	57
~ 1		3.3.2.4	A/D Initialization	58
3.4	Microc	omputer B	llock	61
	3.4.1	Initialize	Input And Output Ports	62
	3.4.2	Initialize	Port A as Output Port	62
2 5	3.4.3	Initialize	Port D as Output Port	62
3.5	Circuit	Diagram o	of Microcontroller-Based Relay	63
3.6	The Sys	stem Softv	vare	64
	3.6.1	Data Aco	quisition Software	64
	3.6.2	Develop	ed Software	69
		3.6.2.1	Inrush Current and Internal Fault	
			Discrimination Software	69
		3.6.2.2	Instantaneous Over Current Protection and	_
			Differential Protection Software	70
		3.6.2.3	Instantaneous Over Current Protection	70

3

			3.6.2.4.	Differential Protection Software	71
			3.0.2.3.	Protection Software	75
4	RESU	ULTS A	ND DISC	USSIONS	
	4.1	Introdu	uction		78
	4.2	Testing	g the Relay	Hardware	78
		4.2.1	Testing a	nd Calibration of Primary Voltage Channel	79
		4.2.2	Testing a	nd Calibration of Primary Current Channel	81
		4.2.3	Testing a	nd Calibration of Secondary Current Channel	84
		4.2.4	Testing th	ne Clamping Circuits	86
	4.3	Testing	g the System	m Software	88
		4.3.1	Testing D	Data Acquisition Software	88
		4.3.2	Testing th	ne Developed Software	88
			4.3.2.1	Testing Inrush and Internal Fault	~~
				Discrimination Software	89
			4.3.2.2	Testing the Differential Protection And	
				Instantaneous Over Current Protection	00
			4 2 2 2	Software	92
			4.3.2.3	and Under Voltage Protection Software	97
F	CON			EUTUDE DECOMMENDATION	
5	5 1	Conclus	vions AND	FUTURE RECOMMENDATION	102
	5.1	Decomr	nendation l	For Future Work	102
	J.2	Recom			104
	REF	ERENC	ES		105
	APPI	ENDIX			
		A Ha	all Effect C	urrent Transducer	108
		B M	68HC11E9	Microcontroller Board	109
	BIOI	DATA C	OF THE A	UTHOR	111

XII

LIST OF TABLES

Table		Page
3.1	Single-channel conversion table MULT=0.	60
3.2	Multiple channel operation MULT=1.	60

LIST OF FIGURES

F	igure		Page
	1.1	Basic components of a digital relay.	3
	2.1	Exciting current of an overexcited transformer.	10
	2.2	Circuit diagram of restricted earth fault protection for delta-wye transformer.	13
	2.3	Sudden pressure relay (SPR).	15
	2.4	Overexcition restraint using volts/hertz relay for transformer differential protection.	17
	2.5	Basic differential protection scheme for Δ -Y transformer.	18
	2.6	A typical magnetizing inrush current wave.	20
	2.7	Prolonged inrush currents with parallel transformers.	21
	2.8	Typical secondary current for symmetrical CT saturation.	22
	2.9	Typical differential relay connection diagram.	23
	2.10	Differential relay with dual slope characteristic.	25
	2.11	Transformer differential relay with harmonic restraint.	25
	2.12	Differential relay blocking based on recognizing the duration time of low current intervals.	35
	2.13	Two winding single-phase transformer.	37
	2.14	Magnetizing characteristics of a typical single-phase power Transformer.	37
	2.15	Measured waveforms of the voltage v_1 and current i_1 on the source side when the transformer without faults is switched on.	41
	2.16	Measured waveforms of the voltage v_1 and current i_1 on the source side when the transformer with an internal fault is switched on.	41

2.17	Circuit diagram of power system.	42
2.18	Positive-sequence network showing thevenin's equivalent circuit for an external fault.	44
2.19	Positive-sequence network showing thevenin's equivalent circuit for an internal fault.	45
2.20	Fault-detecting characteristics (a) internal fault (b) external fault.	45
3.1	A block diagram of the microcontroller based protection system.	51
3.2	The isolation analogue scaling for input voltage signal.	53
3.3	Clamping circuit.	53
3.4	The isolation analogue scaling for input current signal.	55
3.5	Port E is pins 43-50 of M68HC11E9 microcontroller.	55
3.6	M68HC11 analogue to digital converter block diagram.	56
3.7	Circuit diagram of microcontroller relay.	64
3.8	Flowchart of data acquisition software.	67
3.9	The flowchart of inrush and internal fault discrimination program.	73
3.10	Instantaneous over current relay and differential protection flowchart.	74
3.11	The characteristic of a percentage differential protection.	75
3.12	The flow chart of over voltage protection and under voltage protection software.	77
4.1	Wave form of primary voltage measurement after PT.	80
4.2	Waveform of primary voltage measurement after auxiliary transformer.	80
4.3	DC primary voltage input to PE3 after bridge rectifier.	81
4.4	Current waveform after current transducer for primary current Measurement.	82

4.5	Current waveform after auxiliary transformer for primary current measurement.	83
4.6	Current waveform after full wave bridge rectifier for primary current measurement.	83
4.7	Current waveform after current transducer for secondary current measurement.	85
4.8	Current waveform after auxiliary transformer for secondary current measurement.	85
4.9	Waveform of secondary current measurements after full wave bridge rectifier.	86
4.10	Waveform of primary current after clamping circuit	87
4.11	Waveform of secondary current after clamping circuit.	87
4.12	The primary current recorded by the microcontroller based system.	89
4.13	Inrush and internal fault wave form of primary current.	91
4.14	Inrush current waveform recorded by microcontroller based relay when transformer unloaded.	91
4.15	Inrush current waveform recorded by microcontroller-based relay when transformer energized on full loaded.	92
4.16	Primary, secondary and differential currents at normal operation.	93
4.17	Circuit shows the internal fault in differential relay zone.	94
4.18	Primary current, secondary currents and differential current waves in case of internal fault.	95
4.19	Circuit shows the external fault out side the zone of differential relay.	96
4.20	Primary current, secondary currents and differential current waves in case of an external fault.	97
4.21	Load current waveform when transformer overloaded	98
4.22	Value of voltage when over voltage state occurs.	100

4.23	Value of voltage when under voltage state occurs.	100
4.24	Hardware components.	101
4.25	Microcontroller-based relay during building and testing.	101

LIST OF ABBREVIATIONS

Symbols

A/D	Analogue To Digital Converter.
ADCTL	A/D Control Status Register.
an	The Real Part of nth Harmonic.
bn	The Imaginary Part of nth Harmonic.
CPU	Central Processor Unit.
СТ	Current Transformer.
D	Decimal Value of the Digital Output Word.
DAS	Data Acquisition System.
DC	Direct Current.
D/I	Data Input.
D/A	Digital to Analogue Converter.
D/O	Data Output.
di/dt	Change Of Current With Respect to Time.
F	The State Transition Matrix.
Н	The Matrix Giving The Noiseless Connection Between the Measurement and State Vector.
I&AS	The Isolation and Analog Scaling Block.
i ₁	The Current in the Primary Windings.
i ₂	The Currents in the Secondary Windings.
i _{ln}	The nth Samples of the Primary Current.
i _{2n}	The nth Sample of the Secondary Current.

I_{a1}, I_{b1} and I_{c1}	Are Primary Currents for Three Phase, A, B, C.
I_{a2} , I_{b2} and I_{c2}	Are Secondary Currents for Three Phase, A, B, C.
I _d	Differential Current.
I _R	Restraining Current.
I _{PU}	Pickup Current.
I _{CH}	Combined Harmonic Component in the Differential Current.
I _{CD}	Combined Differential Current.
Io	The Initial Value of the DC Offset At Time T=0.
In	The Peak Value of the nth Harmonic Component.
I _{f2}	The Second-Harmonic Which Present in the Differential Current.
I _{f1}	Fundamental Components, Which Present in the Differential Current.
$I_{Rx1(fault)}$	The Currents at R_x Before the Occurrence of A Fault.
$I_{Rx1(pre-fault)}$	The Currents at R_x After the Occurrence of A Fault.
I _{y1}	The Pre-Fault Positive-Sequence Current at the Fault Location.
К	A Compensation Factor.
L	The Leakage Inductances of the Primary Windings.
L ₂	Are the Leakage Inductances of the Secondary Windings.
LP	Low Pass.
nı	Turns Ratios of Primary Current Transformer.
n ₂	Turns Ratios of Secondary Current Transformer.
PT	Potential Transformer.
Т	The Sampling Interval in Second.
TF	Threshold Value of Minimum di/dt.

ТР	Tripping Permission From the Inrush Detector.
SPR	Sudden-Pressure Relay.
SHR	Second-Harmonic and Fundamental Components Harmonic Ratio.
SLP	The Slope Percentage Differential Protection Characteristic.
VA	Volt-Amperes.
V_1	The Voltage of the Primary Windings.
V ₂	The Voltages of the Secondary Windings.
V_{ln}	The nth Samples of the Primary Voltage.
V _x	The Real Part of the Phasor that Represents Fundamental Component of the Faulted Voltage.
V _{yt}	The Imaginary Part of the Phasor that Represents The Fundamental component of the faulted voltage.
v _J	The Samples of Voltage Waveform.
V _{Rx1(fault)})	The Voltages at R_x Before the Occurrence of A Fault.
$V_{Rx1(pre-fault)}$)	The Voltages at R_x After the Occurrence Of A Fault.
V/Hz	The Voltage/Frequency Ratio.
Vk	The Measurement Error.
V _y 1	The Pre-Fault Positive-Sequence Voltage at the Fault Location.
X _k	The Process State Vector at Time t_k
Wk	Noise Vector-Assumed.
W (t)	The Average Power Flowing into Transformer During One Period.
Z _k	The Vector Measurement at t_k
ω	The Fundamental Supply Frequency in Radian Per Second.
Zſ	The Fault Impedance.

ΔV_{yl}	The Positive-Sequence Incremental Voltage.
ΔI_{yl}	The Positive-Sequence Incremental Current.
Z _{gx1}	The Positive-Sequence Impedance of Generator G_x .
Z _{t1}	The Positive-Sequence Impedance of Transformer.
Z _{gx2}	The Negative-Sequence Impedances of Generator G_x .
Z _{t2}	The Negative-Sequence Impedances of the Transformer.
Z _{gx2}	The Negative-Sequence Impedances of Generator G_x .
Z _{t2}	The Negative-Sequence Impedances of the Transformer.
у	Dependent Output Variable (Digital Code).
m	Slope Or Conversion Gain.
x	Independent Input Variable (Analog Input).
b	Y-Axis Intercept or Offset.
р	The Highest Harmonic Measured.
τ	The Time Constant of Any Decaying DC Component.
ω ₀	The Fundamental Frequency of System In Radians/Second.
i (t)	The Instantaneous Value of the Current at Any Time T.
θ_n	Phase Angle of nth Harmonic Component.
$\theta_n^{\ (r)}$	Voltage Waveform Phase Angle.
λ	The Mutual Flux Linkages.
ΔT	The Sampling Interval Time.

CHAPTER 1

INTRODUCTION

Electric power system elements such as: generators, transformers and transmission lines are usually protected by relays. The purpose of protection relays is to minimize the effects of faults on electrical power system components.

The early relays designed for power systems used electromechanical technology. The various types of electromechanical relays such as magnetic attraction, magnetic induction, D'Arsonval, and thermal relays are provided for significant improvement in the protection of power systems [1].

In the late 1950's solid state relays were introduced. The solid state relays use various low power components: diodes, transistors, thyristors, associated resistors and capacitors. For several reasons, utilities did not accept those relays for almost fifteen years. However, their use has increased gradually during last several years [2].

Electromechanically and solid-state relays were and still used for protecting power system for the past several years, researchers have been studying the feasibility of designing relays using microprocessors. As a consequence of substantial research in the area of digital relaying, advancements in digital technology, and decrease in digital hardware prices, microprocessor relays are now available and being used for protecting power system [3].

Microprocessor-based distribution relays contribute to improved reliability and reduced costs on electric power systems. Microprocessor-based relays, also called digital relays, have a proven track record of reliability. A digital relay uses software to process quantized signals for implementing the relay logic.

Digital relays provide technical improvements and cost savings in several ways as below

- The relays use programmable logic to reduce and simplify wiring.
- The relays provide protection for bus faults, breaker failure, and high-side transformer blown fuse detection at no or minimal additional cost.
- The relays have metering functions to reduce or eliminate the need for panel meters and transducers.
- The relays reduce maintenance costs by providing self-test functions and high reliability.
- The relays provide remote targets and fault location information to assist operators in restoration of electrical service [4].

1.1. Basic Components of Digital Relay

Any digital relay can be thought of as comprising three fundamental subsystems as shown in Figure 1.1.

- i. A signal conditioning subsystem
- ii. A conversion subsystem
- iii. A digital processing relay subsystem.

The first two subsystems are generally common to all digital protective schemes, while the third varies according to the application of particular scheme. Each of the three subsystems is built up of a number of components and circuits [5].

Figure 1.1: Basic components of a digital relay [5]

