ORIGINAL RESEARCH ARTICLE

Evolutionary history of microgastrine wasps (hymenoptera: braconidae: microgastrinae) in Sundaland: insights from Peninsular Malaysia

Ameyra Aman-Zuki¹ · Muhamad Azmi Mohammed² · Aqilah Sakinah Badrulisham³ · Muhammad Ikhwan Idris^{3,4} · Mohd Fuat Salbi⁵ · Salmah Yaakop³

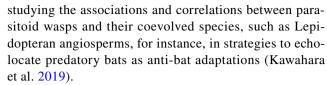
Received: 20 November 2024 / Accepted: 1 May 2025 / Published online: 29 May 2025 © African Association of Insect Scientists 2025

Abstract

Microgastrinae is a subfamily of lepidopteran endoparasitoids that consume angiosperm nectar as their primary food source. Despite several studies on their biology and phylogeny, the evolutionary history of Microgastrinae remains poorly resolved. A total of 146 sequences were obtained from three markers—28S, 16S, and COI—from 55 Microgastrinae individuals collected from oil palm plantations and forests in Peninsular Malaysia. The objective of this study was to investigate the evolutionary history of this subfamily, using organisms from Peninsular Malaysia as a model. Thirteen genera were included in the analysis. The molecular clock analysis estimated that the Sundaland Microgastrinae species diverged around 51.93 million years ago (mya) in the Eocene, which is consistent with the crown age of this family. The *Fornicia* genus was estimated to be the earliest genus, evolving approximately 51 mya. The *Apanteles* group radiated from 45.83 mya. The *Microplitis* group diverged at 29.74 mya, while the *Neoclarkinella* genus evolved at 24.16 mya. The paraphyletic group of *Cotesia* diverged multiple times, between 32.39 and 13.88 mya. Angiosperms radiated during the Eocene to Oligocene, around 55–23 mya, while lepidopteran species evolved at the beginning of the Miocene, from 23.0 to 15.0 mya; thus, both groups overlapped with the radiation of Microgastrinae. Interestingly, the coevolution between microgastrines, angiosperms, and lepidopteran species from Sundaland was found to be congruent and supported by global data. These findings may contribute new information on the systematics, biology, and evolution of Microgastrinae by providing samples collected from Peninsular Malaysia with a particular focus on Sundaland coevolution with angiosperms and Lepidoptera.

 $\textbf{Keywords} \ \ Endoparasitoid \ was p \cdot Mitochondria \cdot Nuclear \cdot Sundaland \cdot Malaysia$

- Ameyra Aman-Zuki ameyraaman@upm.edu.my
- Department of Forestry Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia



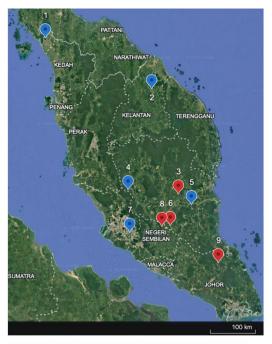
Introduction

Microgastrinae is a taxonomic group of highly diverse, cosmopolitan endoparasitoid wasps that parasitize a wide range of Lepidopteran larvae. This subfamily encompasses over 2,999 recognized species, with estimates suggesting a total of between 17,000 and 46,000 species worldwide (Whitfield et al. 2018). According to Fernandez-Triana et al. (2020), a total of 46 genera and 752 species have been documented in the Oriental region. In Malaysia, research on this subfamily has been primarily limited to the systematics and diversity of the taxa (Aman-Zuki et al. 2019; Rabibah et al. 2018), with nearly all studies focusing on species that serve as biological control agents for Lepidopteran pests in oil palm plantations (Cheong et al. 2010; Halim et al. 2017; 2018; Yusdayati et al. 2014).

Members of Microgastrinae select Lepidopteran larvae as hosts or substrates for oviposition and derive nourishment from nectar obtained from shallow flowers, which is typical behavior among wasp species (Jervis et al. 1993; Shaw 1997). Several records document the presence of various microgastrine species inhabiting oil palm plantations, where they exhibit considerable diversity due to the presence of beneficial plants that attract these parasitoids (Bianchi and Wankers 2008; Fuat et al. 2022b). Their presence is significant in agricultural ecosystems, such as oil palm plantations. Halim et al. (2017; 2018) noted that several braconid species act as parasitoids of Metisa plana, a predominant pest of oil palm, including Dolichogenidea metesae, Apanteles aluella, and Apanteles sp.1, all of which belong to the Microgastrinae family. These wasps also function as parasitoids of forestry pests in forest ecosystems; for example, Apanteles ruidus infests Hyblaea puera, a defoliator of teak (Yousuf and Ikram 2019). Salmah et al. (2012) highlighted that Apanteles metesae (now classified as Dolichogenidea metese) feeds on nectar from wild plants and flowers surrounding oil palm areas. The presence of these parasitoids is vital in oil palm plantations due to their functional role as parasitoids of the principal pest, Metisa plana, in Malaysia and other tropical regions (Fuat et al. 2022a).

Murphy et al. (2008) conducted the most recent study on the evolutionary history and phylogeny of this group utilizing seven molecular markers; however, their discussion was limited to the phylogeny and evolution of the subfamilies that are sister groups to Microgastrinae, namely Cardiochilinae + Miracinae and Khoikhoiinae, due to a restricted sample size. Furthermore, study from Murphy et al. (2008) was limited to 11 Microgastrinae samples compared to this study's multi-marker approach with 55 Microgastrinae samples. Understanding the evolutionary biology and phylogeny of Microgastrinae is crucial for

The gradual yet consistent transformation of geographical features and the conversion of forests into oil palm plantations in recent years have had a significant impact on the divergences in the ancestral lineages of rapidly evolving organisms, such as insect species. Peninsular Malaysia was formed within the Sundaland region following the Last Glacial Maximum period, approximately 110 to 15 million years ago (Cannon et al. 2009). The rise in sea levels resulted in the current configuration of Peninsular Malaysia, Borneo Island, and the Indonesian archipelago. Notably, Peninsular Malaysia represents a critical biogeographic zone that served as a refugial area for biodiversity during and after the Last Glacial Maximum, preserving lineages that may have gone extinct (Wurster et al. 2010). Thus, the historical context of the geographical zone substantially influences species distribution and evolution, warranting comprehensive investigation. Therefore, the objective of this study is to reconstruct the divergence times of Microgastrinae in Sundaland and test for temporal congruence with angiosperm/Lepidoptera radiations.


Materials and methods

Sampling collection

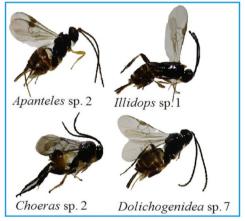

Specimens were collected from nine distinct localities within Peninsular Malaysia. The selected sampling sites comprised primary, secondary, and fragmented forests, as well as oil palm plantations (see Fig. 1). Peninsular Malaysia has approximately 5.74 million hectares of forested areas including permanent reserve forest (Forestry Department of Peninsular Malaysia 2023). The oil palm plantation was specifically chosen due to its status as the largest plantation in Malaysia, covering an area of approximately 4.49 million hectares (MPOC 2019). Among the efforts to avoid potential bias in sampling was making sure the number of sampling sites between forest and plantation is balanced. Additionally, samples from Aman-Zuki et al. (2015; 2016; 2019) were incorporated to enhance the analytical framework of this study. The sampling methodology involved the use of malaise traps, which were deployed for a duration of one month at each locality before the specimens were transported to the laboratory for sorting and identification. Throughout the sampling period, specimens were preserved in 70% ethanol, which was subsequently replaced with 99% ethanol after sorting and identification to prevent the degradation of DNA samples.

Fig. 1 Sampling localities of microgastrine throughout Peninsular Malaysia with blue placemark icon refers to forest area and red refers to plantation sites. 1. Hutan Simpan Kekal Bukit Bintang, Perlis. 2. Kuala Krai, Kelantan. 3. Jengka, Pahang. 4. Bukit Fraser, Pahang. 5. Tasik Chini, Pahang. 6. Felda Tembangau, Pahang. 7. Hutan Simpan Bangi, Selangor. 8. Felda Lui Muda Serting, Negeri Sembilan. 9. Ladang Zamrud, Kluang, Johor. Photograph of specimens in colour boxes are provided to represent each group of Microgastrinae. Google Earth was used to construct the map

Morphological identification

A total of 55 specimens were sorted and identified to the genus and species level utilizing the identification keys developed by Austin and Dangerfield (1992), Gupta and Fernandez-Triana (2015), Liu et al. (2019), Long and van Achterberg (2013), Song et al. (2014) and Veena et al. (2014). The identification process was facilitated by a Stemi DV4 microscope (Carl Zeiss, Germany), and photographs of the specimens were captured using a Canon DS1000

camera attached to the microscope. All identified specimens were preserved in 99% ethanol at -20 °C to ensure sample integrity.

DNA extraction and polymerase chain reaction (PCR)

Specimens were rinsed with distilled water and 99% ethanol to eliminate any dust or mites that may have remained on the samples, thereby preventing contamination. DNA

extractions were conducted utilizing the DNeasy Blood and Tissue Kit (Qiagen, Germany). The protocol was modified in the initial step of DNA extraction to preserve morphological characteristics, in accordance with the methodology outlined by Yaakop et al. (2013). The extracted DNA samples were stored at $-20\,^{\circ}\text{C}$.

Polymerase chain reaction (PCR) was performed using three molecular markers: 28S, 16S, and cytochrome c oxidase subunit I (COI). Table 1 presents the primer sequences utilized for PCR and sequencing in this study. Each PCR reaction was conducted using Green MasterMix (Promega, USA), with the following volume and concentration: 12.5 μ l of 1X MasterMix, 1 μ l of 0.4 μ M of each reverse and forward primer, 3 μ l of 10 ng/ μ l template DNA, and 7.5 μ l of double-distilled water (ddH2O) to achieve a total reaction volume of 25 μ l. The PCR conditions adhered to those established by Aman-Zuki et al. (2016; 2019), with slight modifications to the annealing temperature, which ranged between 45–48 °C.

Sequencing and sequence editing

Successful PCR products were outsourced for sequencing analysis at Apical Scientific Sdn. Bhd. (Serdang, Selangor). The results from the sequencing analyses were provided in.ab1 and.seq file formats. Both forward and reverse sequences were contiguated using BioEdit version 7.0.5.3 (Hall 1999) to generate a consensus sequence for each sample.

BLAST and BOLD analyses

Each sequence was subjected to analyses using the Basic Local Alignment Search Tool (BLAST) (McGinnis and Madden 2004) and The Barcode of Life Data System

(BOLD) to verify the absence of cross-contamination (Ratnasingham and Hebert 2007).

Sequences alignment

A total of 1800 bp of concatenated data from all sequences were aligned by referencing outgroup sequences (095 Cheloninae and 063 Braconinae) using ClustalW in MEGA7 (Kumar et al. 2016). Cheloninae was selected as the closest subfamily (microgastroid complex) and the most recent ancestor to Microgastrinae, while Braconinae was chosen as a representative of ancestral traits within Braconidae (cyclostome ectoparasitoids) (Austin and Dowton 2000). The alignment of COI, 16S, and 28S sequences was performed using Clustal W with default parameters, prior to the application of McClade 4.08. Subsequently, the 16S and 28S sequences were aligned manually. The sequences of the secondary structure model served as a guide for the manual alignment: the model of chalcidoid wasps (Gillespie et al. 2005) was utilized for the 28S D2 region, while the model for evaniid wasps (Deans et al. 2006) was employed for the 16S sequences; the alignment of the COI region was conducted according to its protein codon positions.

Molecular time divergence

The divergence time of Microgastrinae was formulated using BEAUTi v1.7 and estimated with BEAST v1.7 (Drummond et al. 2012). The parameters established for the analysis included an uncorrelated lognormal relaxed clock for the clock model, a Speciation: Birth–Death Process for the tree prior, an HKY nucleotide substitution model, an estimated base frequency, and a random starting tree with a mean of 0 and standard deviation of 10 defined as uniform.

Table 1 List of primer sequences used in PCR with their references and information on the PCR product and anneal temperature

Primer sequences 5'-3'	PCR prod- uct (bp)	Annealing temperature (°C)	References
COI	750	47	
LCO1490 GGTCAACAAATCATAAAGATATTGG			Folmer et al. (1994)
HC02198 TAAACTTCAGGGTGACCAAAAAATCA			Folmer et al. (1994)
28S	550	45	
28S D2 forward AGAGAGAGTTCAAGAGTACGTG			Belshaw and Quicke (1997)
28S D2 reverse TTGGTCCGTGTTTCAAGACGGG			Campbell et al. (1994)
16S	500	48	
16S Wb CACCTGTTTATCAAAAACAT			Dowton and Austin (1998)
16S outer CTTTAATTCAACATCGAGGTC			Whitfield (1997)

The analysis was conducted in accordance with the methodologies outlined by Aman-Zuki et al. (2021) and Yaakop et al. (2015). The fossil data utilized in this analysis were sourced from Murphy et al. (2008) and Whitfield (1997). Despite many fossil specimens of Microgastrinae have been found, revised and recorded over the years, the fossil data for Microgastrinae date back to 20-44 mya during the Eocene to Miocene epochs (Fernandez-Traina et al. 2020). Furthermore, the fossil taxa used for calibration in Murphy et al. (2008) were described at the species level, while some newly recorded fossils represented higher taxa (Antropov et al. 2013). Fossil taxa from Braconidae and Cheloninae were designated as stem ages, while Microgastrinae was assigned as the crown age. The Markov Chain Monte Carlo (MCMC) analysis was executed for 10 million generations, with trees sampled every 1,000 generations. Tracer 1.5 (Rambaut and Drummond 2009) was employed to verify the adequacy of all parameters by confirming that the estimated sample size (ESS) exceeded 200. TreeAnnotator v1.7 was utilized to generate the molecular clock tree, discarding 25% of the trees as burn-in. The resultant molecular clock tree was visualized using FigTree v1.4.

Results

Morphological identification

The morphological identification of 55 microgastrine individuals has successfully delineated 29 species across 13 genera, namely *Apanteles* Foerster, *Choeras* Mason, *Cotesia* Cameron, *Diolcogaster* Ashmead, *Dolichogenidae* Viereck, *Fornicia* Brulle, *Glyptapanteles* Ashmead, *Illidops* Mason, *Microplitis* Foerster, *Nyereria* Mason, *Parapanteles* Ashmead, *Snellenius* Westwood, and *Neoclarkinella* Rema and Narendran. These species were classified into four groups: Apanteles, Microplitis, Cotesia, and an Unplaced Genera group following Fernandez-Triana et al. (2020). Two specimens (074, 102) that exhibited incomplete morphological features were excluded from the identification process. This morphological identification was conducted prior to the molecular analysis.

Molecular identification

Three molecular regions were amplified in this study, i.e., COI, 16S and 28S. COI amplified in 100% of samples while 16S and 28S amplified in 98% of samples, respectively. BLAST and BOLD analyses led to the identification of 13 genera, exhibiting similarity values ranging from 89 to 100%. Notably, the BOLD analysis also identified 13 genera with similarity values between 89.04% and 100%.

Furthermore, the BLAST analysis successfully identified 42 individuals at the genus level (see Table 2).

Molecular time divergence

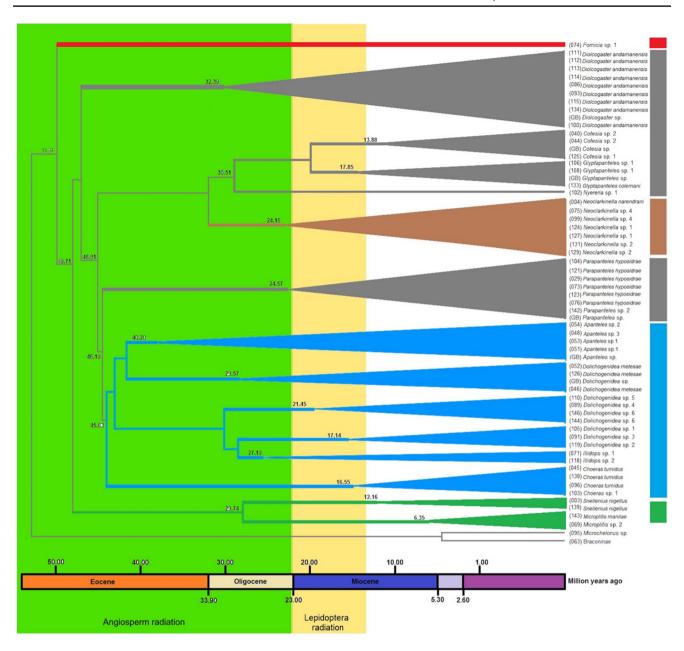
The molecular time divergence tree was constructed using concatenated data from 28S, 16S, and COI genes. As illustrated in Fig. 2, the estimated divergence time for the Microgastrinae during the Eocene epoch was approximately 51.93 million years ago (mya). The genus Fornicia, identified as the earliest genus, is estimated to have radiated around 51 mya, followed by subsequent diversification of other groups. The Apanteles group is believed to have diverged around 45.83 mya. The *Microplitis* group, which includes the genera Microplitis and Snellenius, diverged approximately 29.74 mya, while the genus Neoclarkinella, categorized under the unplaced genera group, radiated around 24.16 mya. The paraphyletic group of Cotesia exhibited multiple divergence events occurring between 32.39 and 13.88 mya. Paraphyletic refers to a taxonomic group of organisms where it includes one or some of the most recent common ancestors but not all of its descendants (Horandl and Stuessy 2010). The evolutionary history of the microgastrines presented in this study has been calibrated using fossil records of lepidopteran species and angiosperms documented from the Sundaland region. The angiosperms underwent significant radiation during the Eocene to Oligocene epochs, estimated to have occurred between 55 and 23 mya, whereas lepidopteran species are thought to have evolved at the onset of the Miocene, approximately between 23.0 and 15.0 mya. Both outgroup species, Cheloninae and Braconinae, are hypothesized to have diverged prior to the Microgastrinae, specifically before 52.0 mya.

Discussion

Divergence time analysis in this study was conducted to visualize and enhance the understanding of the evolutionary history of microgastrines. Peninsular Malaysia served as the model location for the Sundaland or Sunda Shelf in this study due to the close evolutionary relationships among species across all islands and the mainland of the Sunda Shelf, such as those from the Malay Peninsula and Sumatra, which are sister to those from Borneo. In contrast, bird species from Java were found to be the most divergent and more closely related to other locations on the Sunda Shelf (Leonard et al. 2015). Our sampling however, lacks specimens from key areas like Java and Borneo. These gaps limit our understanding of Microgastrinae diversity in Sundaland and may overlook unique or endemic lineages. Broader geographic sampling will be essential to refine these biogeographic patterns. In the present study, three DNA data

Table 2 List of microgastrine specimens used in this study with sampling site, date of collection and GenBank Accession Number. Samples with citation were from previous studies and without citation are from this study

Sample Code	Genus/Species	GenBank Acession No			
		COI	28S	16S	
Bukit Fraser, Paha 3°43′20.6"N 101° 17–20/X/2014					
051	Apanteles sp.	KT699082 (Aman-Zuki et al. 2016)	KY441862 (Aman-Zuki et al. 2019)	KX354731 (Aman-Zuki et al. 2016)	
053	Apanteles sp.	KT699084 (Aman-Zuki et al. 2016)	KY441865 (Aman-Zuki et al. 2019)	KX354733 (Aman-Zuki et al. 2016)	
054	Apanteles sp.	KT699085 (Aman-Zuki et al. 2016)	KY441850 (Aman-Zuki et al. 2019)	KX354734 (Aman-Zuki et al. 2016)	
048	Apanteles sp.	KT699080 (Aman-Zuki et al. 2016)	KY441849 (Aman-Zuki et al. 2019)	KX354729 (Aman-Zuki et al. 2016)	
052	Dolichogenidea sp. 7	KT699083 (Aman-Zuki et al. 2016)	KY441871	KX354732 (Aman-Zuki et al. 2016)	
046	Dolichogenidea sp. 7	KT699078 (Aman-Zuki et al. 2016)	KY441870	KX354727 (Aman-Zuki et al. 2016)	
045	Choeras sp. 2	MK568910	MK568818	MK568866	
040	Cotesia sp. 2	KT699076 (Aman-Zuki et al. 2016)	MG198615 (Aman-Zuki et al. 2019)	KX354725 (Aman-Zuki et al. 2016)	
044	Cotesia sp. 2	MK568916	MK568838	MK568886	
029	Parapanteles sp. 1	MK568923	MK568822	MK568870	
Felda Lui Muda, 3 3°01'41.7"N 102° 19/V/2015	Serting, Negeri Sembilan, Malaysia 22'05.1"E				
110	Dolichogenidea sp. 5	MK568904	MK568811	MK568859	
089	Dolichogenidea sp. 4	MK568905	MK568808	MK568856	
091	Dolichogenidea sp. 3	MK568908	MK568809	MK568857	
111	Diolcogaster andamanensis	MK568930	MK568846	MK568894	
112	Diolcogaster andamanensis	MK568931	MK568847	MK568895	
113	Diolcogaster andamanensis	MK568932	MK568848	MK568896	
114	Diolcogaster andamanensis	MK568933	MK568849	MK568897	
086	Diolcogaster andamanensis	MK568934	MK568843	MK568891	
093	Diolcogaster andamanensis	MK568935	MK568844	MK568892	
115	Diolcogaster andamanensis	MK568937	MK568850	MK568898	
Bukit Rupa, Huta 2°55′10.9"N 101° 01/XII/2015	n Simpan Bangi, Selangor, Malaysia 46′01.2″E				
105	Dolichogenidea sp. 1	MK568906	MK568810	MK568858	
103	Choeras sp. 1	MK568912	MK568820	MK568868	
104	Parapanteles sp. 1	MK568918	MK568825	MK568873	
076	Parapanteles sp. 1	MK568921	MK568824	MK568872	
106	Glyptapanteles sp. 1	MK568925	MK568840	MK568888	
108	Glyptapanteles sp. 1	MK568926	MK568841	MK568889	
102	Nyereria sp. 1	MK568939	MK568829	MK568877	
075	Neoclarkinella sp. 4	MK568948	MK568832	MK568880	
Ladang Zamrud, 1 2°20′53.4"N 103° 12/IV/2014	Kluang, Johor, Malaysia				
119	Dolichogenidea sp. 2	MK568907	MK568812	MK568860	
071	Illidops sp. 1	MK568914	MK568816	MK568864	
118	Illidops sp. 2	MK568915	MK568817	MK568865	


Table 2 (continued)

Sample Code	Genus/Species	GenBank Acession No			
		COI	28S	16S	
073	Parapanteles sp. 1	MK568919	MK568823	MK568871	
074	Fornicia sp. 1	MK568940	MK568830	MK568878	
069	Microplitis sp. 2	MK568944	MK568853	MK568901	
Tekam-Jengka, Pa 3°50′11.4″N 102° 19/X/2014					
126	Dolichogenidea sp. 7	MK568909	MK568813	MK568861	
125	Cotesia sp. 1	MK568917	MK568839	MK568887	
123	Parapanteles sp. 1	MK568920	MK568827	MK568875	
121	Parapanteles sp. 1	MK568922	MK568826	MK568874	
124	Neoclarkinella sp. 1	MK568946	MK568834	MK568882	
127	Neoclarkinella sp. 1	MK568949	MK568835	MK568883	
129	Neoclarkinella sp. 2	MK568950	MK568836	MK568884	
131	Neoclarkinella sp. 2	MK568951	MK568837	MK568885	
Tasik Chini, Paha 3°25′17.1"N 102° 23/III/2015					
096	Choeras sp. 2	MK568911	MK568819	MK568867	
138	Choeras sp. 2	MK568913	MK568821	MK568869	
142	Parapanteles sp. 2	MK568924	MK568828	MK568876	
139	Snellenius sp. 1	MK568942	-	-	
143	Microplitis sp. 1	MK568943	MK568854	MK568902	
095	Microchelonus sp.	MK568952	MK568855	MK568903	
Hutan Simpan Ke 6°32′09.3"N 100° 10–16/II/2015	ekal Bukit Bintang Perlis, Malaysia				
133	Glyptapanteles sp. 2	MK568927	MK568842	MK568890	
100	Diolcogaster andamanensis	MK568936	MK568845	MK568893	
134	Diolcogaster andamanensis	MK568938	MK568851	MK568899	
099	Neoclarkinella sp. 4	MK568947	MK568833	MK568881	
Kuala Krai, Kelar 5°36′30.6"N 102° 07/X/2015					
144	Dolichogenidea sp. 6	MK568928	MK568814	MK568862	
146	Dolichogenidea sp. 6	MK568929	MK568815	MK568863	
Hutan Pendidikan 2°54′45.1"N 101° 19/XII/2013	n Alam, Bangi, Selangor, Malaysia 447'12.2"E				
003	Snellenius sp. 1	MK568941	MK568852	MK568900	
004	Neoclarkinella sp. 3	MK568945	MK568831	MK568879	
Felda Tembangau 3°06'48.8"N 102° 15/X/2014	ı, Pahang, Malaysia 231'48.1"E				
063	Braconinae	KY441903 (Aman-Zuki et al. 2019)	KY441874 (Aman-Zuki et al. 2019)	KY441840 (Aman-Zuki et al. 2019)	

sets (mitochondrial and nuclear regions) were combined for molecular time divergence analysis to mitigate bias in the time divergence results (Zheng et al. 2012). To reduce bias from mitochondrial DNA, which can suffer from saturation

and misleading signals at deeper nodes, we used nuclear data to improve phylogenetic accuracy. Nuclear markers evolve more slowly and offer independent inheritance, helping to clarify both recent and older evolutionary splits

Fig. 2 Molecular time divergence of microgastrine generated using BEAST software by concatenated *16S*, *28S* and *COI* molecular markers. The estimated time divergence was shown above the branches.

Colours represent the group. Blue: *Apanteles* group. Brown: unplaced genera group. Red: *Fornicia* genus. Gray: *Cotesia* group. Green: *Microplitis* group. The bar shows the geological time scale

(Kaur and Singh 2020). The molecular clock constructed solely from mitochondrial data yielded older time estimates, which were inordinately biased towards calibration points for the ingroup. This bias is attributed to the saturation of mitochondrial data concerning older divergences and the loss of calibration points for recent taxa. Furthermore, the maternal inheritance of mitochondrial DNA contributes to demographic asymmetry (Toews and Brelsford 2012). The inclusion of nuclear data facilitates stabilization in the estimation of divergence time due to its slower mutational rate, thereby preventing potential bias in molecular clock analyses

(Chippindale et al. 2004; San Mauro 2010). Nuclear data are also capable of providing calibration points for basal and internal branches (Wilson et al. 2011).

The divergence time of Microgastrinae in this study is presented according to its group classification (Fernandez-Triana et al. 2020). Our estimate for Microgastrinae crown age (51.93 mya) aligns with Murphy et al. (2008) (~ 54 mya). Four groups, namely *Apanteles*, *Microplitis*, *Cotesia*, and the unplaced genera group, successfully had their divergence times calculated. The *Apanteles* group diverged at approximately 45.83 million years ago, the *Microplitis*

group at approximately 29.74 million years ago, the genus *Fornicia* at approximately 51.93 million years ago, the genus *Neoclarkinella* at approximately 24.16 million years ago, and the divergence time of the *Cotesia* group appeared ambiguous, with the formation of the clades estimated to have occurred around approximately 32.32 to 24.57 million years ago; however, the divergence time for its genera was successfully estimated. The *Cotesia* group exhibited multiple divergence events between 32.39 and 13.88 million years ago (mya). These events are believed to have resulted from a rapid radiation of Microgastrinae, as indicated by previous studies (Banks and Whitfield 2006). Additionally, the presence of short inner branches within the phylogenetic trees of Microgastrinae supports the rapid radiation hypothesis (Abdoli et al. 2024; Whitfield and Lockhart 2007).

This study highlights the close coevolution between Microgastrinae wasps and angiosperms, emphasizing their shared history with Lepidoptera hosts. As angiosperms and Lepidoptera diversified together, so too did Microgastrinae, which parasitize Lepidopteran larvae. This three-way coevolution likely drove major diversification events in the subfamily. The current formation of Sundaland was preceded by the Last Glacial Maximum period (110-15 mya) (Cannon et al. 2009). The rising sea levels resulted in a reduction and contraction of floral distribution (Woodruff 2010). Angiosperm radiation in the Sundaland region is estimated to have occurred around the Eocene/Oligocene boundary (Clark et al. 2009; Grudinski et al. 2014; Su and Saunders 2009), while the radiation of its associated group, Papilionidae (Lepidoptera), occurred in the early to middle Miocene (Kondo et al. 2003). Microgastrines, as endoparasitoid wasps, parasitize lepidopteran larvae. The divergence of microgastrines in the early Eocene and the subsequent radiation of the tribes from the middle of the Oligocene to the Miocene support the rapid radiation proposed by Murphy et al. (2008). The overlapping divergence times for Lepidoptera and microgastrines in Sundaland indirectly provide evidence for a rapid radiation event within the lineage. The short branches in the phylogenetic tree forming the paraphyletic group of Cotesia are indicative of the loss of signal during rapid adaptation and mutation within the tribe in response to its host.

Conclusion

In the molecular divergence study, samples from Sundaland were utilized to estimate the divergence times of microgastrines during the Eocene epoch, taking into account the coevolution of lepidopteran hosts and angiosperm food sources. The genus *Fornicia*, identified as the earliest genus, is estimated to have undergone radiation approximately 51 million years ago (mya), followed by the radiation of other

genera beginning around 49.71 mya. The Apanteles group exhibited radiation from 45.83 mya, whereas the *Microplitis* group diverged at 29.74 mya, and the genus Neoclarkinella evolved at 24.16 mya. The paraphyletic group of Cotesia diverged multiple times, within the timeframe of 32.39 to 13.88 mya. The evolutionary history of microgastrines delineated in this study has been calibrated against the fossil records of lepidopterans and angiosperms documented from Sundaland. Angiosperms are believed to have radiated during the Eocene to Oligocene epochs, approximately 55 to 23 mya, while lepidopteran species are thought to have evolved at the onset of the Miocene, between 23.0 and 15.0 mya. Both outgroup species, Cheloninae and Braconinae, are posited to have diverged prior to 52.0 mya, predating the Microgastrinae. These findings are congruent and provide support for the estimation of phylogeny and molecular divergence times for this group, based on worldwide species. The results contribute to a deeper understanding of the systematics, biology, and evolution of Microgastrinae by incorporating samples collected from Peninsular Malaysia.

Acknowledgements Thank goes to Mrs. Rabibah Razali for the specimens for the molecular work.

Author contributions A.A.Z designed and performed the experiments, data analysis, identification, interpretation, drafted and wrote the manuscript. M.A.M and A.S.B interpreted and revised the manuscript. M.I.I and M.F.S revised the manuscript and format preparation. S.Y designed the experiments, revised the manuscript and oversaw the whole project.

Funding This research was funded by grant no. GUP-2018-037, GP-K013317-2022 and TAP-K013317.

Data availability All data generated in this study are available in manuscript.

Declarations

Conflict of interest All the authors declare that they have no conflict of interest.

References

Abdoli P, Talebi AA, Kavallieratos NG, Khosravi R, Bidari F (2024) Contribution to the phylogeny of Microgastrinae (Hymenoptera: Braconidae) based on mitochondrial COI and nuclear 28S rDNA genes, with comments on the identity of Pholetesor circumscriptus (Nees, 1834). J Insect Biodiv Syst 10(4):965–981

Aman-Zuki A, Mohammed MA, Md-Zain BM, Yaakop S (2015) Molecular evidence on symbiotic relationships of *Bracovirus* and *Cotesia* species based on PTP R Region. J Life Sci and Technol 3(1):16–19. https://doi.org/10.18178/jolst.3.1.16-19

Aman-Zuki A, Mohammed MA, Md-Zain BM, Yaakop S (2016) Determination of host adaptation for wild highland population of Microgastrinae (Hymenoptera: Braconidae) using viral *Histone H4*. J Asia-Pacific Entomol 19(3):811–819. https://doi.org/ 10.1016/j.aspen.2016.07.009

- Aman-Zuki A, Mohammed MA, Md-Zain BM, Yaakop S (2019) Phylogenetic relationships of five oriental *Apanteles* species-groups (Hymenoptera: Braconidae: Microgastrinae) by concatenating four molecular markers. J Asia-Pacific Entomol 22(1):341–352. https://doi.org/10.1016/j.aspen.2019.01.01
- Aman-Zuki A, Ghazali SZ, Badrulisham AS, Hazmi IR, NurulWahida O, Yaakop S (2021) Proof on the divergence times of two sympatric species, Rhynchophorus ferrugineus and R. vulneratus (Coleoptera: Curculionidae) by Molecular Clock Analysis. J Entomol Res Soc 23(1):11–26. https://doi.org/10.51963/jers. v23i1.1851
- Antropov AV, Belokobylskij SA, Compton SG, Dlussky GM, Khalaim AI, Kolyada VA, Kozlov MA, Perfilieva KS, Rasnitsyn AP (2013) The wasps, bees and ants (Insecta: Vespida= Hymenoptera) from the insect limestone (Late Eocene) of the Isle of Wight, UK. Earth Environ Sci Trans R Soc Edinb 104(3-4):335-446
- Austin A, Dowton M (2000). Hymenoptera: Evolution, Biodiversity and Biological Control: Evolution, Biodiversity and Biological Control. CSIRO Publishing, Clayton South, Australia. 1–468. https://doi.org/10.1071/9780643090088
- Austin AD, Dangerfield PC (1992) Synopsis of Australasian Microgastrinae (Hymenoptera: Braconidae), with a key to genera and description of new taxa. Invertebr Taxon 6(1):1–76. https://doi.org/10.1071/IT9920001
- Banks JC, Whitfield JB (2006) Dissecting the ancient rapid radiation of microgastrine wasp genera using additional nuclear genes. Mol Phylogenet Evol 41(3):690–703
- Belshaw R, Quicke DL (1997) A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). Mol Phylogenet Evol 7(3):281–293. https://doi.org/10.1006/mpev.1996.0400
- Bianchi FJJA, Wackers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46(3):400–408. https://doi.org/10.1016/j.biocontrol.2008.04.010
- Campbell BC, Steffen-Campbell JD, Werren JH (1994) Phylogeny of the *Nasonia* species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol Biol 2(4):225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x
- Cannon CH, Morley RJ, Bush AB (2009) The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc Natl Acad Sci 106(27):11188–11193. https://doi.org/10.1073/pnas.0809865106
- Cheong YL, Sajap AS, Hafidzi MN, Omar D, Abood F (2010) Outbreaks of bagworms and their natural enemies in an oil palm, *Elaeis guineensis*, plantation at Hutan Melintang, Perak Malaysia. J Entomology 7(3):141–151. https://doi.org/10.3923/je.2010.141.
- Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58(12):2809–2822. https://doi.org/10.1111/j.0014-3820.2004.tb01632.x
- Clark JR, Wagner WL, Roalson EH (2009) Patterns of diversification and ancestral range reconstruction in the southeast Asian-Pacific angiosperm lineage *Cyrtandra* (Gesneriaceae). Mol Phylogenet Evol 53(3):982–994. https://doi.org/10.1016/j.ympev.2009.09.002
- Deans AR, Gillespie JJ, Yoder MJ (2006) An evaluation of ensign wasp classification (Hymenoptera: Evaniidae) based on molecular data and insights from ribosomal RNA secondary structure. Syst Entomol 31(3):517–528. https://doi.org/10.1111/j.1365-3113. 2006.00327.x
- Dowton M, Austin AD (1998) Phylogenetic relationships among the microgastroid wasps (Hymenoptera: Braconidae): combined analysis of 16S and 28S rDNA genes and morphological data. Mol Phylogenet Evol 10(3):354–366

- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973. https://doi.org/10.1093/molbev/mss075
- Fernandez-Triana J, Shaw MR, Boudreault C, Beaudin M, Broad GR (2020) Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae). ZooKeys 920:1–1089. https://doi.org/10.3897/zookeys.920.39128
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5):294–299
- Forestry Department of Peninsular Malaysia (2023) Statistics. Available form: https://www.forestry.gov.my/en/2016-06-07-02-53-46/2016-06-07-03-12-29
- Fuat S, Adam NA, Hazmi IR, Yaakop S (2022a) Interactions between *Metisa plana*, its hyperparasitoids and primary parasitoids from good agriculture practices (GAP) and non-gap oil palm plantations. Community Ecol 23:429–438. https://doi.org/10.1007/s42974-022-00092-9
- Fuat S, Badrulisham AS, Adam NA, Hazmi IR, Yaakop S (2022b) Metabarcoding in diet assessment of adult parasitoid species, *Dolichogenidea metesae* (Hymenoptera: Braconidae) towards its conservation and management in the oil palm plantation. J Oil Palm Res 1–11. https://doi.org/10.21894/jopr.2022.0070
- Gillespie JJ, Munro JB, Heraty JM, Yoder MJ, Owen AK, Carmichael AE (2005) A secondary structural model of the 28S rRNA expansion segments D2 and D3 for chalcidoid wasps (Hymenoptera: Chalcidoidea). Mol Biol Evol 22(7):1593–1608. https://doi.org/ 10.1093/molbev/msi152
- Grudinski M, Wanntorp L, Pannell CM, Muellner-Riehl AN (2014) West to east dispersal in a widespread animal-dispersed woody angiosperm genus (Aglaia, Meliaceae) across the Indo-Australian Archipelago. J Biogeogr 41(6):1149–1159. https://doi.org/10.1111/jbi.12280
- Gupta A, Fernandez-Triana JL (2015) Four new species of the genus Diolcogaster Ashmead, 1900 (Hymenoptera: Braconidae: Microgastrinae) from South East Asia with a key to the Indian species. Syst Parasitol 90(3):285–300. https://doi.org/10.1007/ s11230-014-9546-8
- Halim M, Muhaimin AD, Masri MM (2017) Evaluation of infestation in parasitoids on *Metisa plana* Walker (Lepidoptera: Psychidae) in three oil palm plantations in Peninsular Malaysia. Serangga 22(2):135–149
- Halim M, Aman-Zuki A, Syed Ahmad SZ, Muhaimin MD, Atikah AR, Masri MMM, Md-Zain BM, Yaakop S (2018) Exploring the abundance and DNA barcode information of eight parasitoid wasps species (Hymenoptera), the natural enemies of the important pest of oil palm, bagworm, *Metisa plana* (Lepidoptera: Psychidae) toward the biocontrol approach and it's application in Malaysia. J Asia-Pacific Entomol 21(4):1359–1365. https://doi.org/10.1016/j.aspen.2018.10.012
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser 41:95–98. https://doi.org/10.12691/ajmr-3-2-1
- Horandl E, Stuessy TF (2010) Paraphyletic groups as natural units of biological classification. Taxon 59(6):1641–1653
- Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27(1):67– 105. https://doi.org/10.1080/00222939300770051
- Kaur R, Singh D (2020) Molecular markers a valuable tool for species identification of insects: a review. Ann Entomol 38(1):1–20
- Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EF, Donath A, Gimnich F, Frandsen PB, Zwick A, dos Reis M, Barber JR (2019) Phylogenomics reveals the evolutionary timing

- and pattern of butterflies and moths. Proceed Nat Acad Sci 116(45):22657–22663. https://doi.org/10.1073/pnas.1907847116
- Kondo K, Shinkawa T, Matsuka H (2003) Molecular systematics of birdwing butterflies (Papilionidae) inferred from mitochondrial ND5 gene. J-Lepidopterists Soc 57(1):17–24
- Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
- Leonard JA, den Tex RJ, Hawkins MT, Muñoz-Fuentes V, Thorington R, Maldonado JE (2015) Phylogeography of vertebrates on the Sunda Shelf: a multi-species comparison. J Biogeogr 42(5):871–879. https://doi.org/10.1111/jbi.12465
- Liu Z, He JH, Chen XX, Gupta A, Moghaddam MG (2019) The ultor-group of the genus *Dolichogenidea* Viereck (Hymenoptera, Braconidae, Microgastrinae) from China with the descriptions of thirty-nine new species. Zootaxa 4710(1):1–134. https://doi.org/10.11646/zootaxa.4710.1.1
- Long KD, van Achterberg K (2013) New records of the genus *Snellenius* Westwood, 1882 (Hymenoptera: Braconidae: Microgastrinae) from Vietnam, with description of two new species. Tap Chi Sinh Hoc 35(3):272–280. https://doi.org/10.15625/0866-7160/v35n3. 3371
- McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25. https://doi.org/10.1093/nar/gkh435
- MPOC (2019) The Oil Palm Tree. Malaysian Palm Oil Council. Available from: http://mpoc.org.my/the-oil-palm-tree/. Accessed January 2020
- Murphy N, Banks JC, Whitfield JB, Austin AD (2008) Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol Phylogenet Evol 47(1):378–395. https://doi.org/10.1016/j.ympev.2008.01.022
- Rabibah R, Muhaimin AMD, Yaakop S (2018) Altitudinal Diversity of Braconid Wasps (Hymenoptera: Braconidae) at Fraser's Hill, Pahang, Malaysia. Pertanika J Trop Agric Sci 41(1):463–476
- Rambaut A, Drummond AJ (2009) Tracer: MCMC trace analysis tool, version 1.5. University of Oxford: Oxford.
- Ratnasingham S, Hebert PD (2007) BOLD: The Barcode of Life Data System. Mol Ecol Notes 7(3):355–364. https://doi.org/10.1111/j. 1471-8286.2007.01678.x
- Salmah M, Basri MW, Idris AB (2012) Effects of honey and sucrose on longevity and fecundity of *Apanteles metesae* (Nixon), A major parasitoid of the oil palm bagworm, *Metisa plana* (Walker). Sains Malaysiana 41(12):1543–1548
- San Mauro D (2010) A multilocus timescale for the origin of extant amphibians. Mol Phylogenet Evol 56(2):554–561. https://doi.org/10.1016/j.ympev.2010.04.019
- Shaw SK (1997) Subfamily Cheloninae. In: Wharton RA, Marsh PM, Sharkey MJ (eds) Identification Manual to the New World Genera of the Family Braconidae Hymenoptera. International Society of Hymenopterists Special Publication, Washington, pp 192–201
- Song SN, He JH, Chen XX (2014) The subgenus Choeras Mason, 1981 of genus Apanteles Foerster, 1862 (Hymenoptera, Braconidae, Microgastrinae) from China, with descriptions of eighteen new species. Zootaxa 3754(5):501–554. https://doi.org/10.11646/zootaxa.3754.5.1
- Su YC, Saunders RM (2009) Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of *Pseuduvaria* in Sundaland with subsequent diversification in New Guinea. BMC Evol Biol 9:1–19

- Toews DP, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21(16):3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
- Veena T, Ranjith AP, Santhosh S, Kishore L (2014) Review of the Oriental genus *Neoclarkinella* Rema and Narendran, 1996 (Hymenoptera: Braconidae, Microgastrinae) with the description of two new species from India. Zootaxa 3857(3):423–432. https://doi. org/10.11646/zootaxa.3857.3.5
- Whitfield JB (1997) Molecular and morphological data suggest a single origin of the polydnaviruses among braconid wasps. Sci Nat 84(11):502–507. https://doi.org/10.1007/s001140050434
- Whitfield JB, Lockhart PJ (2007) Deciphering ancient rapid radiations. Trends Ecol Evol 22(5):258–265
- Whitfield JB, Austin AD, Fernandez-Triana JL (2018) Systematics, biology, and evolution of microgastrine parasitoid wasps. Annu Rev Entomol 63(1):389–406
- Wilson JJ, Rougerie R, Schonfeld J, Janzen DH, Hallwachs W, Hajibabaei M, Kitching IJ, Haxaire J, Hebert PD (2011) When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths. BMC Ecol 11(1):1–18. https://doi.org/10.1186/1472-6785-11-18
- Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today's patterns and the future of the remaining refugial-phase biodiversity. Biodiv Conserv 19(4):919–941. https://doi.org/10.1007/s10531-010-9783-3
- Wurster CM, Bird MI, Bull ID, Creed F, Bryant C, Dungait JAJ, Pz V (2010) Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. PNAS 107(35):15508–15511. https://doi.org/10.1073/pnas.1005507107
- Yaakop S, van Achterberg C, Idris AB, Aman-Zuki A (2013) Freezing Method as a New Non-Destructive Modification of DNA Extraction. Pertanika J Trop Agric Sci 36(4):373–392
- Yaakop S, Ibrahim NJ, Shariff S, Md-Zain BM (2015) Molecular clock analysis on five *Bactrocera* species flies (Diptera: Tephritidae) based on combination of *COI* and NADH sequences. Oriental Insects 150–164. https://doi.org/10.1080/00305316.2015.1081421
- Yousuf M, Ikram M (2019) First report on *Apanteles ruidus*, Wilkinson reared on *Hyblaea puera* (Lepidoptera: Hyblaeidae) teak defoliator from India. Arch Agri Environ Sci 4(2):219–223. https://doi.org/10.26832/24566632.2019.0402014
- Yusdayati R, Che S, Abu HA, Noor HH (2014) Diversity and distribution of natural enemies (predators and parasitoids) of bagworms (Lepidoptera: Psychidae) on selected host plants in an oil palm plantation. Planter 90(1055):91–101
- Zheng HX, Yan S, Qin ZD, Jin L (2012) MtDNA analysis of global populations support that major population expansions began before Neolithic Time. Sci Rep 2(745):1–8. https://doi.org/10.1038/srep00745

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

