

EFFECTS OF SLOPE AND ASPECTS ON SOIL PROPERTIES, LEAF NUTRIENT STATUS, AND OIL PALM YIELD IN A PLANTATION IN SELANGOR, MALAYSIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2022

FPAS 2022 29

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF SLOPE AND ASPECTS ON SOIL PROPERTIES, LEAF NUTRIENT STATUS, AND OIL PALM YIELD IN A PLANTATION IN SELANGOR, MALAYSIA

By

OMAR MOHAMED LBRAHIM ABDALRAHEM

December 2022

Chairman : Professor Gs. Ts. Mohd Hasmadi bin Ismail, PhD

Faculty : Forestry and Environment

Oil palm is an important crop in Malaysia that has contributed significantly to the country's economy. However, with limited land for oil palm cultivation, Malaysia has moved to convert marginal areas, including hilly and sloping land, into plantations. This can lead to soil erosion in these areas, resulting in loss of nutrients and water through runoff, reducing soil fertility and negatively affecting oil palm growth and production. There is limited research on how slope and aspect affect soil fertility and oil palm yields. Therefore, this study aimed to determine the relationship between slope, aspect and soil depth, properties and leaf nutrient and their effect on yield productivity in oil palm plantations. The study took place at FELDA Gedangsa plantations in Selangor, and data were collected on two slopes: one facing north and one facing south. Each slope was divided into three observation plots based on topography: the lower, middle, and upper slope positions. Soil samples were collected from the upper, middle, and lower slope positions at two depths: surface (0-20 cm) and subsurface (20-40 cm). Leaf tissue samples were also collected according to a systematic sampling design. Statistical analysis was performed using ANOVA and a post hoc comparison test with a 95% confidence interval to evaluate differences between soil indicators of different land use types. A paired-sample T-test was used to evaluate the differences in TN, pH, EC, soil texture, P, K, Ca, and Mg between the two soil depths and the two aspects. The results showed no significant difference (P<0.05) among the soil's physical properties and slope positions between the north and south aspects, the pH level was acidic in both aspects. The statistical analysis revealed a significant difference (P<0.05) among the soil properties in different slope positions and soil depths. Slope position significantly affected (p<0.05) all soil properties studied. Soil depth had a significant effect (p<0.05) on soil P, exchangeable Mg and Ca. And on the contrary, exchangeable K content was significantly different in the subsoil. Leaf nutrient contents varied, with nitrogen and Mg, rated as optimum,

and K, Ca, and P rated as excess. Fresh fruit bunch (FFB) yield was highest at the base of the slope and lowest at the top at both study sites. Statistical analysis indicated a relationship between FFB and nutrients in the soil and leaf tissues, and there was no significant difference (P<0.05) between FFB and the aspect.

Keywords, soil properties, slope position, aspect, leaf status, oil palm yield,

SDG: GOAL 15: Life on Land

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN CERUN DAN ASPEK TERHADAP SIFAT TANAH, STATUS NUTRIEN DAUN DAN HASIL KELAPA SAWIT DI LADANG GEDANGSA, SELANGOR, MALAYSIA.

Oleh

OMAR MOHAMED LBRAHIM ABDALRAHEM

Disember 2022

Pengerusi : Profesor Gs.Ts. Mohd Hasmadi bin Ismail, PhD

Fakulti : Perhutanan dan Alam Sekitar

Kelapa sawit merupakan tanaman penting di Malaysia yang memberikan sumbangan bes<mark>ar kepada ekonomi negara. Namun, d</mark>engan keterbatasan lahan untuk budidaya kelapa sawit, Malaysia telah beralih ke pengubahan kawasan marjinal, termasuk lahan berbukit dan berlereng, menjadi perkebunan. Hal ini dapat menyebabkan erosi tanah di kawasan tersebut, mengakibatkan hilangnya nutrien dan air melalui aliran permukaan. mengurangi kesuburan tanah dan mempengaruhi negatif pertumbuhan dan produksi kelapa sawit. Terdapat kajian terbatas mengenai bagaimana lereng dan aspek mempengaruhi kesuburan tanah dan hasil kelapa sawit. Oleh karena itu, kajian ini bertujuan untuk menentukan hubungan antara lereng, aspek dan kedalaman tanah, sifat tanah dan nutrien daun serta pengaruhnya terhadap produktivitas hasil di perkebunan kelapa sawit. Kajian ini dilakukan di perkebunan FELDA Gedangsa di Selangor, dan data dikumpulkan pada dua lereng: satu menghadap utara dan satu lagi menghadap selatan. Setiap lereng dibahagikan kepada tiga plot pemerhatian berdasarkan topografi: posisi lereng bawah, posisi lereng tengah dan posisi lereng atas. Sampel tanah dikumpulkan dari posisi lereng atas, tengah, dan bawah pada dua kedalaman: permukaan (0-20 cm) dan subsuperfisial (20-40 cm). Sampel jaringan daun juga dikumpulkan mengikut reka bentuk pensampelan sistematik. Untuk menilai perbezaan antara petunjuk tanah dari jenis penggunaan tanah yang berbeza, analisis statistik dilakukan menggunakan ANOVA dan ujian perbandingan post hoc dengan selang kepercayaan 95%. Ujian T sampel berpasangan digunakan untuk menilai perbezaan dalam TN, pH, EC, tekstur tanah, P, K, Ca, dan Mg antara kedua-dua kedalaman tanah dan kedua-dua aspek. Hasilnya menunjukkan tidak ada perbezaan yang signifikan (P<0.05) di antara sifat fizikal tanah dan posisi lereng antara aspek utara dan selatan, tahap pH adalah asid dalam kedua-dua aspek. Analisis statistik menunjukkan perbezaan yang signifikan (P<0.05) di antara sifat-sifat tanah pada posisi lereng yang berbeza dan kedalaman tanah. Posisi lereng mempengaruhi secara signifikan (p<0.05) semua sifat tanah yang dikaji. Kedalaman tanah mempunyai kesan yang signifikan (p<0.05) terhadap P tanah, Mg dan Ca yang boleh ditukar. Sebaliknya, kandungan K yang boleh ditukar adalah berbeza secara signifikan dalam lapisan subsoil. Kandungan nutrien daun bervariasi, dengan nitrogen dan Mg, dinilai sebagai optimum, dan K, Ca, dan P dinilai sebagai berlebihan. Hasil tandan buah segar (FFB) tertinggi di dasar lereng dan terendah di puncak pada kedua-dua lokasi kajian. Analisis statistik menunjukkan hubungan antara FFB dan nutrien dalam tanah dan jaringan daun, dan tidak ada perbezaan yang signifikan (P<0.05) antara FFB dan aspek.

Kata Kunci, Sifat tanah, Kedudukan cerun, Aspek, Status daun, Hasil kelapa sawit

SDG: MATLAMAT 15: Kehidupan di Darat

ACKNOWLEDGEMENTS

First and foremost, I express my gratitude and praise to Allah the Almighty, the Most Gracious and the Most Merciful, for the blessings bestowed upon me during my studies and the completion of this thesis. May Allah's blessings be upon Prophet Muhammad (peace be upon him), his family, and his companions.

I would like to extend my deepest and sincere appreciation to my research supervisor, Professor Gs. Ts. Dr. Mohd Hasmadi Ismail from Universiti Putra Malaysia, for granting me the opportunity to conduct this research and for providing invaluable guidance throughout the entire process. It has been an immense privilege and honor to work and study under his guidance, and I am truly grateful for all that he has offered me.

In addition to my advisor, I would like to express my gratitude to the other members of my thesis committee, Associate Professor Dr. Pakhriazad Hassan Zaki and Dr. Daljit Singh A/L Karam Singh, for their encouragement and insightful comments.

I am extremely grateful to my parents for their unwavering love, prayers, care, and sacrifices in educating and preparing me for my future.

I would like to extend my heartfelt thanks to my wife, daughter, and son for their love, understanding, prayers, and continuous support throughout the completion of this research work. I am also grateful to my sisters and brothers for their support and valuable prayers.

I would like to acknowledge the support and assistance provided by the management of FELDA Gedangsa in facilitating this work and helping me complete the fieldwork for this thesis. While I am unable to mention each individual by name, I am grateful for their collective help and support.

Finally, I extend my gratitude to all my friends and those who have directly or indirectly supported me in completing this research work.

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Gs.Ts. Mohd Hasmadi bin Ismail, PhD

Professor Gs. Ts.
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Chairman)

Daljit Singh a/I Karam Singh, PhD

Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Pakhriazad bin Hassan Zaki, PhD

Associate Professor
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 August 2024

TABLE OF CONTENTS

			Page
ABSTRAC ABSTRAC ACKNOW APPROVA DECLARA LIST OF T LIST OF F LIST OF A	(LEDGE AL ATION ABLES IGURE	S	i iii v vi viii xiv xv xvii
CHAPTER			
1	INTE	DDUCTION	1
•	1.1		1
		Background	
	1.2	Importance of the Study	3
	1.3		3
	1.4		4
	1.5	Scope and Limitation	4
2	LITER	RATURE REVIEW	5
	2.1	Introduction	5
	2.2	Background Information on Oil Palm Plantations in	-
		Malaysia	5
		2.2.1 Importance of Oil Palm Productivity in	0
		Malaysia Malaysia	7
			7
	2.3	2.2.2 Growth of the Palm Oil Industry Soil Factors	9
	2.3		9
		2.3.1 Impacts of Topography on Soil Properties	•
		and Yield	9
		2.3.2 Terraces in the Slopes	11
	2.4	Fertilization	12
	2.5	The Yield of Oil Palm	12
		2.5.1 Definitions of Yield	12
		2.5.2 Site Yield	13
		2.5.3 Actual Yield2.5.4 Site Yield Potential Model of Oil Palm	13
		2.5.4 Site Yield Potential Model of Oil Palm	13
		2.5.5 Harvesting	14
3	MATE	RIALS AND METHODS	16
	3.1	Introduction	16
	3.2	Site Description	16
		3.2.1 The Study Area	16
		3.2.2 Site Location	16
		3.2.3 The Climate of the Study Area	17
	3.3	Research Methodology	19
	5.5	3.3.1 The Experimental Design	19

		3.3.2 3.3.3 3.3.4 3.3.5	Soil Sampling Collecting the Fresh Fruit Bunches (FFB)	20 20 22 23
	3.4	Analys 3.4.1	Soil Analysis 3.4.1.1 Determination of Soil Texture 3.4.1.2 Determination of Soil pH 3.4.1.3 Determination Of Electrical Conductivity (EC) 3.4.1.4 Determination of Total N 3.4.1.5 Determination of Available P 3.4.1.6 Determination of Exchangeable K,	23 23 23 25 25 26 26
		3.4.2	3.4.2.1 Determination of N 3.4.2.2 Determination of P, K, Ca, and Mg	26 26 27 27
		3.4.3	Statistical Analysis	27
4			SLOPE POSITIONS AND ASPECTS ON CTED SOIL AND LEAF NUTRIENT STATUS	
		Introdu Materia	ALM PLANTATION action als and Methods a and Discussion	28 28 29 30
			4.3.1.1 Soil pH 4.3.1.2 Electrical Conductivity (EC) 4.3.1.3 Calcium (Ca), Magnesium (Mg),	30 31
			and Potassium (K) 4.3.1.4 Total Nitrogen (N) 4.3.1.5 Available Phosphorus (P) 4.3.1.6 Soil Texture	32 33 34 34
		4.3.2	Effect of Slope Aspect on Selected Soil Properties for the Northern Slope and Southern Slope at a Depth of (20-40)cm	35
			4.3.2.1 Soil pH 4.3.2.2 Electrical Conductivity (EC) 4.3.2.3 Calcium (Ca), Magnesium (Mg) and Potassium (K)	35 36 37
			4.3.2.4 Total Nitrogen (N) 4.3.2.5 Available Phosphorus (P) 4.3.2.6 Soil Texture	37 38 38
		4.3.3	Comparison of Leaf's Nutrient Contents across Topography at Both Aspects for the Northern and Southern Slope	39
	4.4	Conclu	·	41

5	FACT		SLOPES AND ASPECTS AND THE YIELD	
	OF OI	L PALIV		42
	5.1	Introdu		42
	5.2	Materia	al and Methods	43
	5.3	Results	and Discussion	43
		5.3.1	Yield Trend	43
		5.3.2	Yield Trend of Oil Palm at Northern Slope	
			Aspect for Two Years	43
		5.3.3	Yield Trend of Oil Palm at Southern Slope	
			Aspect for Two Years	45
		5.3.4	Comparison of the Oil Palm Yield between	
			the Northern and Southern Slope Aspects	
			for Two Years	46
	5.4	Conclu	sion	47
6	THE	SOIL A	ONSHIP BETWEEN NUTRIENT STATUS IN NO LEAF TISSUE, FFB YIELD ACROSS CTS IN OIL PALM PLANTATION	48
	6.1	Introdu		48
	6.2	Materia	als and Methods	49
	6.3	Results	and Discussion	49
		6.3.1	The Relationship between Nutrient Status in	
			the Soil, Leaf Tissue, and the Yield of FFB	
			across the Northern Slope Aspect	49
			6.3.1.1 Total Nitrogen (N)	49
			6.3.1.2 Available Phosphorus (P)	50
			6.3.1.3 Exchangeable Potassium (K)	51
			6.3.1.4 Exchangeable Calcium (Ca)	52
			6.3.1.5 Exchangeable Magnesium (Mg)	53
		6.3.2	The Relationship between Nutrient Status in	
			the Soil, Leaf Tissue, and the Yield of FFB	
			across the Southern Slope Aspect	54
			6.3.2.1 Total Nitrogen (N)	55
			6.3.2.2 Available Phosphorus (P)	55
			6.3.2.3 Exchangeable Potassium (K)	56
			6.3.2.4 Exchangeable Calcium (Ca)	57
			6.3.2.5 Exchangeable Magnesium (Mg)	58
		6.3.3	Pearson's Correlations between Nutrient	
		0.0.0	Status in the Soil, Leaf Tissue, and the Yield	
			of FFB across the Northern Slope Aspect	59
		6.3.4	Pearson's Correlations between Nutrient	00
		0.0.1	Status in the Soil, Leaf Tissue, and the Yield	
			of FFB across the Southern Slope Aspect	61
		6.3.5	Relationship of Soil and Leaf Chemical	01
		0.5.5	•	
			Properties and Yield between the Northern Slope Aspect and the Southern Slope	
			·	60
	6.4	Const	Aspect	62
	6.4	Conclu	PIUI	63

7	GEN	ERAL	DISCUSSION,	CONCLUSION	AND	
	REC	OMMEN	DATION			64
	7.1	Gener	al Discussion			64
	7.2	Conclu	ısion			66
	7.3	Recon	nmendations			66
DE	EDEN	CEC				67
REFERENCES						67
APPENDICES BIODATA OF STUDENT					83	
BIODATA OF STUDENT						88
LIS	LIST OF PUBLICATIONS					89

LIST OF TABLES

Table		Page
4.1	Comparison of the Mean of Some Selected Soil Properties at 0-20 cm Depth on Both the Northern and Southern Slope Aspects for Two Years, 2019 and 2020	31
4.2	Comparison of the Mean of Some Selected Soil Properties at 20-40 cm Depth of the Northern and Southern Slope Aspects for Two Years, 2019 and 2020	36
4.3	The Mean of Leaf Nutrient Contents across Positions at Both the Northern and Southern Slope Aspect for Two Years, 2019 and 2020	40
5.1	The Mean of Oil Palm Yields during Two Years in Northern Aspect Slope	43
5.2	The Mean of Oil Palm Yields during Two Years in Southern Aspect Slope	44
5.3	Comparison of the Means of the Palm Yield for Two Years between the Northern and Southern Slope Aspects	46
6.1	Pearson's Correlations between Soil and Leaf Chemical Properties and Yield across the Northern Slope Aspect	60
6.2	Pearson's Correlations between Soil and Leaf Chemical Properties and Yield across the Southern Slope Aspect	61

LIST OF FIGURES

Figure		Page
3.1	The FELDA Gedangsa; Hulu Bernam, in the District of Hulu Selangor	17
3.2	Map Showing the Study Site of Northern and Southern Slope Aspects at FELDA Gedangsa	18
3.3	Monthly Rainfall Distribution at Study Sites	19
3.4	Typical Slope Layout for the Experimental Design and Sampling Protocol for Leaf, Soil, and Yield within a Typical Block	21
3.5	Determination of Frond 17 th	22
3.6	Layout Soil Sampling at Oil Palm Plantation in FELDA Gedangsa	22
3.7	Conceptual Framework of the Research Methodology	24
3.8	Weighing of a Fresh Fruit Bunch FFB at the Field	25
5.1	Mean of Oil Palm Yields in Northern Aspect Slope during Two Years at the Three-Month Interval	44
5.2	Mean of Oil Palm Yield in the Southern Aspect Slope during the Two Years at an Interval of Three Months	45
5.3	Mean Value of the Palm in Northern and Southern Slope Aspects for Two Years Measured at the Three-Month Interval	47
6.1	Means Comparison of soil Total Nitrogen (N) and Leaf N with Yield under the Three Slope Positions at Northern Aspect	50
6.2	Means Comparison of Soil Available Phosphorus (P) and Leaf P with Yield under the Three Slope Positions at Northern Aspect Slope	51
6.3	Mean Comparison of Exchangeable Soil Potassium (K) and Total Leaf K with Yield for Three Slope Positions at Northern Aspect Slope	52
6.4	Mean Comparison of Exchangeable and Total Calcium (Ca) of Soil and Leaf, Respectively, with Yield under the Three Slope Positions at the Northern Aspect Slope	53

6.5	Mean Comparison of the Available and Total Magnesium (Mg) of Soil and Leaf, Respectively, with Yield under the Three Slope Positions at the Northern Aspect Slope	54
6.6	Mean Comparison of the Total Soil and Leaf N with Yield under the Three Slope Positions at the Southern Aspect Slope	55
6.7	Mean Comparison of Soil Available Phosphorus (P) and Total Leaf P with Yield under the Three Slope Positions at Southern Aspect Slope	56
6.8	Means Comparison of Soil Exchangeable K and Total Leaf K with Yield for Three Slope Positions at Southern Aspect Slope	57
6.9	Mean Comparison of the Exchangeable Soil Calcium (Ca) and Leaf Total Ca with Yield under the Three Slope Positions at Southern Aspect Slope	58
6.10	Comparison of Mean Values of Available Magnesium (Mg) of Soil and Leaf with Yield for Three Slope Positions at Southern	50

LIST OF ABBREVIATIONS

UPM Universiti Putra Malaysia

UNCBD United Nation's Convention on Biological Diversity

AHFR Ayer Hitam Forest Reserve

MARDI Malaysian Agricultural Research and Development Institute

RUGS Research University Grant Scheme

USDA United States Department of Agriculture

FAO Food and Agriculture Organization

IAS Invasive alien species

EIS Exotic Invasive Species

ESI Exotic Species Invasion

ISSG Invasive Species Specialist Group

SSC Species Survival Commission

SGH Stress-gradient hypothesis

NFS N-fixing species

OG Open ground

AM Acacia mangium

TZ Transition Region

NF Non-Invaded Natural Forest

GPS Global Positioning System

Mg Milligram

m Meter

ha Hectares

ml Milliliter

GWC Gravimetric water content

OM Organic Matter

EC Electrical Conductivity

CEC Cation-exchange capacity

DS/m DeciSiemens per meter

Cmol/kg Centimole per kilogram; also written as cmol(+)kg-1

N Nitrogen

K Potassium

Ca Calcium

Mg Magnesium

CEC Cation Exchange Capacity

Sq m Square metres

Cbh Circumference at Breast Height

μg Microgram

Cm Centimetres

Ht Height

DBH Diameter at Breast Height

IVI Importance Value Indices

IV Important Value

RD Relative Density

RF Relative frequency

RA Relative abundance

RBA Relative Basal Area

A/F Ratio of Abundance to Frequency

H' Shannon-Weiner Diversity Index

S Number of species

N Total Recorded Number of Individuals

Pi Proportion of Individuals Belonging to Species

Ln Natural Log (i.e., 2.718)

Cd Concentration of Dominance

Jsw Pielou's Evenness Index

Dmg Margalef's index of species richness

RHGR Relative Height Growth Rates

RRGR Radial Growth Rates

Hf Initial Height
Hi Final Height

Rf Initial Diameter

Ri Final Diameter (Radial)

Tf Initial Time

Ti Final Time

Ln Logarithm

MHa Million Hectares

NFS N-fixing species

α Alpha

β Beta

°C Degree celsius

% Percentage

A_{600nm} Optical density at wavelength 600 nanometer

μL Microliter

µm Micrometer

µmoles Micromoles

APS Ammonium persulfate

ATCC American Type Culture Collection

ATP Adenosine triphosphate

bp Base pair

CaCl₂ Calcium chloride

cAMP Cyclic adenosine monophosphate

cDNA Complementary deoxyribonucleic acid

Crp cAMP receptor Protein

csc Chromosomally encoded sucrose catabolism genes

DNA Deoxyribonucleic acid

E. coli Escherichia coli

EC Enzyme Commission

EDTA Ethylenediaminetetraacetic acid

g Gram

IPTG Isopropyl β-D-1-thiogalactopyranoside

kb Kilobase

kDA kilodaltons

L Litre

LB Luria-Bertani

M Molar

mA MilliAmps

CHAPTER 1

INTRODUCTION

1.1 Background

Understanding yields in specific landscape positions is vital for realizing the highest financial returns of plantation operations. Identifying soil limiting factors for the production of important crops helps policymakers with sustainable planning and management of soils, thereby increasing crop productivity (Balasundram et al., 2006; Ahmed, 2021).

Oil palm is Malaysia's most lucrative plantation crop, with 5.9 million hectares under cultivation (Ahmad. & Kadir, 2021). The history of oil palm in Malaysia began in 1890 when it was first introduced through the Botanical Gardens in Singapore. However, the first commercial planting did not occur until 1917 at Tennamaram Estate in Kuala Selangor. In 1968, the area under oil palm was 204,000 ha, and it increased significantly to 850,000 ha ten years later (Nambiappan et al., 2018). In 2000, the oil palm area in Malaysia was 3,463,000 ha (Ministry of Finance Malaysia, 2000), covering about 57.7% of the total area under selected crop plantations (Ministry of Primary Industries Malaysia, 2000). In 2019, oil palm production reached 19.86 million tons. However, in 2020, crude palm oil (CPO) production declined by 3.6%, to 19.14 million tons (Ahmad. & Kadir, 2021).

The palm oil industry in Malaysia continues to perform well, contributing significantly to the national economy. However, Malaysia has almost run out of suitable land for oil palm cultivation, leading to the transformation of marginal areas, including hilly and sloping lands, into oil palm plantations. High precipitation in these marginal areas can cause soil erosion, resulting in nutrient and water losses via runoff, which would lead to a decline in soil fertility and adversely affect the growth and productivity of oil palm. Therefore, site selection for oil palm planting is crucial in the oil palm business, as it affects crop productivity (Corley & Tinker, 2016). Paramananthan (2013) stated that the plantation corporation would suffer significant losses if the plantation were situated in an incorrect location. He further presented the best management practices to consider throughout the development of oil palm farming in terms of land selection (Paramananthan, 2013).

Despite the importance of soils in the Roundtable on Sustainable Palm Oil's (RSPO) principles and objectives, agronomists and planters in the business showed a noticeable lack of interest in soils during the 1990s (Goh & Chew, 1994) This situation contrasts with the early years of oil palm expansion in Malaysia when the extensive use of soil information was common. This included selecting suitable lands for oil palm, understanding the dynamic mechanism of soil water and nutrient relations, which are often the most

limiting agronomic factors to oil palm production in Malaysia, and formulating fertilizer recommendations for oil palm. Furthermore, since oil palm is mostly rain-fed, most of its demands, except carbon dioxide for photosynthesis, are met by the soils. Goh & Chew (1994) speculated that the reason for this lack of interest is unknown. However, Goh et al. (1994) attributed it to the experience of achieving similar high fresh fruit bunch (FFB) yields in diverse soil types and current immediate challenges in the oil palm business that are not directly related to soils. Additionally, many, if not all, local colleges have deemphasized soil science in agricultural courses, which is likely a key factor contributing to the lack of knowledge and use of soil science in oil palm agriculture (Goh et al., 2016; Sumathi et al., 2008).

No agricultural system can be called sustainable unless it is affordable for farmers and their society (Johnston, 1995). Therefore, the economic significance of high early yields and long-term yields is evident. Oil palm is a perennial crop with significant yield and input/output price volatility. Due to the industry's large investments and fixed costs, the optimal economic yield is typically found at or near the site yield potential (Goh & Chew, 1994a). Evidence now shows that the inputs required to enhance a site's production potential do not necessarily harm the environment, soil quality, or product quality (Goh et al., 1999; Ahmed, 2021).

Oil palm productivity results from a complex relationship between the palm's insatiable demand for nutrients to maintain its development and output, and the soil environment around it, which contains a range of materials. According to Goh et al. (2016) on oil palm nutrition, "Such a scenario can only be effectively resolved by extensive field research on diverse soil types, repeated under varied environmental conditions, which would, unfortunately, demand a large number of experiments and take a long time to complete," and/or substantial field management expertise on similar soil types and settings to better understand and alter soil parameters to increase production (Goh et al., 2016).

Goh et al., (2016) suggested that a tropical environment provides ideal conditions for high yields of a wide range of crops, but only when proper management, inputs, and other factors impacting outputs per unit area and unit time are employed. Soil management is one of the most significant aspects of this. For many years, the primary goals of soil management have been to maintain and improve soil fertility and synchronize soil productivity, both with and without improvement, with crop requirements for high-yielding, long-term growth. Consequently, we can create soil conditions conducive to crop productivity (Goh et al., 2016).

A reliable oil palm production system depends on good agronomic practices that preserve soil and water. Climate and rainfall patterns, soil type, slope gradient, soil cover, drainage, road pattern, and crop management all influence erosion risk. Terracing hilly areas, creating drains, managing water catchment areas, and using silt pits are recommended soil conservation measures to

reduce soil erosion on sloping lands (Mohsen, B. et al., 2014). Using oil palm residues such as empty fruit bunches (EFB) and pruned fronds as mulches to encourage nutrient recycling can also reduce soil and nutrient loss via surface run-off. These residues contain essential plant nutrients that can be recycled into the soil during decomposition, and they provide organic matter to boost soil fertility properties (A M Afandi et al., 2017b). To assess the potential for increasing productivity in current stands and ongoing (re)planting initiatives, a full understanding and measurement of the contribution of key production parameters to oil palm output are critically needed (Woittiez, et al., 2017).

1.2 Importance of the Study

This study was conceptualized to examine the impact of slope and aspect on soil properties, leaf tissue, and oil palm yield in Malaysia. By understanding the relationship between these factors, we can improve nutrient management strategies and more effectively monitor soil properties in oil palm plantations. This information is vital for the proper monitoring of soil properties and oil palm plantations in Malaysia and for optimizing management strategies, particularly nutrient management.

1.3 Problem Statement

Oil palm cultivation is a vital industry in Malaysia, but suitable land for planting is becoming increasingly scarce. As a result, marginal areas like hilly and sloping lands are being transformed into oil palm plantations. However, high levels of precipitation in these areas can cause soil erosion, leading to nutrient and water losses through runoff. This can decrease soil fertility and negatively impact oil palm growth and productivity. Therefore, selecting the right location for oil palm planting is crucial to ensure high crop yields (Corley & Tinker, 2016). Paramananthan (2013) noted that choosing an unsuitable location could result in significant losses for plantation corporations. Understanding the dynamic relationship between soil water and nutrients is also crucial, as these are often limiting agronomic factors for palm oil production in Malaysia.

The study area is located in mountainous, hilly, or sloping terrain, which makes it susceptible to soil erosion and depression formation. This can affect soil properties and, in turn, oil palm yield (Balasundram et al., 2006). However, there is limited information on the impact of topographic characteristics on palm oil yield and soil physio-chemical properties (Balasundram et al., 2006).

This study aims to investigate the relationship between slope and aspect and their impact on soil properties and oil palm yield in different positions. Understanding these relationships can help with monitoring and managing soil features under oil palm plantations in Malaysia. This information is essential for developing effective management strategies, particularly for nutrient management.

1.4 Objectives

The aim of this study is to investigate the relationships among slope, aspect, soil properties to yield of the oil palm. Based on the main objective, the following specific objectives are formed.

- 1- To determine the status of Nitrogen (N), Phosphorous (P), Potassium (k), Calcium (Ca) and Magnesium (Mg) levels in the soil and leaf tissue in different slope positions and aspects in oil palm plantation.
- 2- To investigate the relationship between physio-graphic factors (i.e., slopes and aspects) and the yield oil palm.
- 3- To determine the relationship between soil and leaf nutrient status and FFB yield across different slope positions and aspects of oil palm plantations.

1.5 Scope and Limitation

The scope of the study is limited to studying selected areas on the northern and southern slopes of the FELDA oil palm plantation located at Hulu Bernam, in the Hulu Selangor region, Selangor. This plantation is known as FELDA Gedangsa.

The oil palm plantation at FELDA Gedangsa was selected as a study site due to the presence of slopes planted with oil palm trees, to find the relationship between these slopes and their direction, the extent of their influence on some of the soil physio-chemical properties, at two depths: surface (0-20 cm) and subsurface (20-40 cm), and their effect on yield quantity on three different levels from the top of the slope to the bottom of the slope, and the leaf content of nutrients. The field study lasted for 2 years, from September 2018 to August 2020.

REFERENCES

- Ab Rahman, A. K., Abdullah, R., Balu, N., & Shariff, F. M. (2013). The impact of La Niña and El Niño events on crude palm oil prices: An econometric analysis. *Oil Palm Industry Economic Journal*, *13*(2), 38–51.
- Afandi, A M;, Zuraidah, Y., Nurzuhaili, H. A. Z. A., Zulkifli, H., & Yaqin, M. (2017). Managing Soil Deterioration and Erosion under Oil Palm. *Oil Palm Bulletin*, *75*(November), 1–10.
- Afandi, A M, Zuraidah, Y., Nurzuhaili, H. A. Z. A., Zulkifli, H., & Yaqin, M. (2017a). Managing Soil Deterioration and Erosion under Oil Palm. In *Oil Palm Bulletin* (Vol. 75, Issue November, pp. 1–10).
- Afandi, A M, Zuraidah, Y., Nurzuhaili, H., Zulkifli, H., & Yaqin, M. (2017b). Managing soil deterioration and erosion under oil palm. *Oil Palm Bulletin*, *75*(November), 1–10.
- Ahmad, ghulam kadir, Hishamuddin, E., Loh, soh kheang, Ong-abdullah, M., Salleh, kamalrudin mohamed, Bidin, mohd noor izuddin zanal, Sundram, S., Hasan, zafarizal aldrin azizul, & Idris., Z. (2020). Oil Palm Economic Performance in Malaysia and R&D Progress in 2019.pdf (p. 32). Journal of Oil Palm Research Vol. https://doi.org/https://doi.org/10.21894/jopr.2020.0032
- Ahmad Parveez Hj., & Kadir, G. (2021). Overview of the Malaysian Oil Palm Industry 2020 (p. 6). MPOB.
- Ahmed, F. (2021). Study of Economic Aspects of Oil Palm Cultivation. 11(11), 7–18.
- Akbari, A., Azimi, R., & Ramli, N. I. Bin. (2014). Influence of slope aspects and depth on soil properties in a cultivated ecosystem. *Electronic Journal of Geotechnical Engineering*, 19(Y), 8601–8608.
- Akbas, F., Gunal, H., & Acir, N. (2017). Spatial variability of soil potassium and its relationship to land use and parent material. *Soil and Water Research*, 12(4), 202–211. https://doi.org/10.17221/32/2016-SWR
- Alam, S., Purwanto, B. H., Hanudin, E., & Putra, E. T. S. (2020). Soil diversity influences on oil palm productivity in ultramafic ecosystems, Southeast Sulawesi, Indonesia. In *Biodiversitas* (Vol. 21, Issue 11, pp. 5521–5530). https://doi.org/10.13057/biodiv/d211161
- Angelsen, A. (2010). Policies for reduced deforestation and their impact on agricultural production. *Proceedings of the National Academy of Sciences*, 107(46), 19639–19644.
- Arif, S., Shahrakbah, Y., & Kee, K. K. (2007). Impact of leguminous covers and palm chips on soil nutrient losses in oil palm replants. *Proceedings of*

- International Conference on Oil Palm and Environment (ICOPE).
- Aweto, A., & Enaruvbe, G. (2010). Catenary Variation of Soil Properties under Oil Palm Plantation in South Western Nigeria. *Ethiopian Journal of Environmental Studies and Management*, *3*(1), 1–7. https://doi.org/10.4314/ejesm.v3i1.54389
- Bakar, R. A., Darus, S. Z., Kulaseharan, S., & Jamaluddin, N. (2011). Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. *Nutrient Cycling in Agroecosystems*, *89*(3), 341–349. https://doi.org/10.1007/s10705-010-9398-9
- Balasundram, S., Robert, P., Mulla, D., & Allan, D. (2006). Relationship between oil palm yield and soil fertility as affected by topography in an indonesian plantation. *Communications in Soil Science and Plant Analysis*, 37(9–10), 1321–1337. https://doi.org/10.1080/0010362
- Basiron, Y. (2001). Global oils and fats business: challenges in the new millenium. Oil Palm Industry Economic Journal, 1(1), 1–10.
- Begum, F., Bajracharya, R. M., Sharma, S., & Sitaula, B. K. (2010). Influence of slope aspect on soil physico-chemical and biological properties in the mid hills of central Nepal. *International Journal of Sustainable Development and World Ecology*, 17(5), 438–443. https://doi.org/10.1080/13504509.2010.499034
- Behera, S. K., Rao, B. N., Suresh, K., & Manoja, K. (2016). Soil Nutrient Status and Leaf Nutrient Norms in Oil Palm (Elaeis guineensis Jacq.) Plantations Grown on Southern Plateau of India. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86*(3), 691–697. https://doi.org/10.1007/s40011-015-0508-y
- Behera, S. K., Rao, B. N., Suresh, K., Manorama, K., Ramachandrudu, K., & Manoja, K. (2015). Distribution variability of soil properties of oil palm (Elaeis guineensis) plantations in southern plateau of India. *Indian Journal of Agricultural Sciences*, *85*(9), 1170–1174.
- Behera, S. K., Suresh, K., Ramachandrudu, K., Manorama, K., & Rao, B. N. (2016). Mapping spatial variability of leaf nutrient status of oil palm (Elaeis guineensis Jacq.) plantations in India. *Crop and Pasture Science*, 67(1), 109–116. https://doi.org/10.1071/CP15029
- Behera, S K, Suresh, K., Rao, B. N., Ramachandrudu, K., Manorama, K., & Harinarayana, P. (2017). Soil Fertility and Yield Limiting Nutrients in Oil Palm Plantations of North-Eastern State Mizoram of India. *ICAR-Indian Institute of Oil Palm Research, Pedavegi, West Godavari District, Andhra Pradesh, India*, 1–18. https://doi.org/10.1080/01904167. 2016.1264592
- Behera, Sanjib K., Shukla, A. K., Suresh, K., Manorama, K., Mathur, R. K., Kumar, A., Harinarayana, P., Prakash, C., & Tripathi, A. (2020). Oil

- palm cultivation enhances soil pH, electrical conductivity, concentrations of exchangeable calcium, magnesium, and available sulfur and soil organic carbon content. *Land Degradation and Development*, *31*(18), 2789–2803. https://doi.org/10.1002/ldr.3657
- Behera, Sanjib Kumar, Suresh, K., Shukla, A. K., Kamireddy, M., Mathur, R. K., & Majumdar, K. (2021). Soil and leaf potassium, calcium and magnesium in oil palm (Elaeis guineensis Jacq.) plantations grown on three different soils of India: Status, stoichiometry and relations. *Industrial Crops and Products*, 168, 113589. https://doi.org/10.1016/j.indcrop.2021.113589
- Braconnier, S., & d'Auzac, J. (1985). Anatomical study and cytological demonstration of potassium and chlorine fluxes associated with oil palm and coconut stomatal opening. *Comptes Rendus Des Séances de l'Académie Des Sciences, III (Sciences de La Vie)*, 301(9), 457–462.
- Bronkhorst, E., Cavallo, E., van Dorth tot Medler, M., Klinghammer, S., Smit, H. H., Gijsenbergh, A., & van der Laan, C. (2017). Current practices and innovations in smallholder palm oil finance in Indonesia and Malaysia:

 Long-term financing solutions to promote sustainable supply chains (Vol. 177). CIFOR.
- Burnett, B. N., Meyer, G. A., & McFadden, L. D. (2008). Aspect-related microclimatic influences on slope forms and processes northeastern Arizona. *Journal of Geophysical Research: Earth Surface*, *113*(3), 1–18. https://doi.org/10.1029/2007JF000789
- Camerlengo, A., & Somchit, N. (2000). Monthly and Annual Rainfall Variability in Peninsular Malaysia. In *Pertanika Journal of Science & Technology* (Vol. 8, Issue 1, pp. 73–83).
- Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M., Trigg, S. N., & Marion Adeney, J. (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. *Nature Climate Change*, *3*(3), 283–287.
- Carr, M. K. V. (2011). The water relations and irrigation requirements of oil palm (Elaeis guineensis): a review. *Experimental Agriculture*, *47*(4), 629–652.
- Corley, R. H. V., & Tinker, P. B. (2016). *The Oil Palm* (Fifth edit). wiley-blackwell.
- Corley, R. H. V. (2009). How much palm oil do we need? *Environmental Science & Policy*, 12(2), 134–139.
- Corley, R. H. V, & Mok, C. K. (1972). Effects of nitrogen, phosphorus, potassium and magnesium on growth of the oil palm. *Experimental Agriculture*, *8*(4), 347–353.

- Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. *Computers and Electronics in Agriculture*, 46(1–3), 11–43.
- Dahlgren, R. A., Boettinger, J. L., & Huntington, G. L. (1997). Soil development along an elevational transect in the western Sierra Nevada. California. In *Geoderma* (Vol. 78, pp. 207–236). Geoderma.
- Dalal, R. C., Allen, D. E., Wang, W. J., Reeves, S., & Gibson, I. (2011). Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil and Tillage Research, 112(2), 133–139. https://doi.org/10.1016/ J.STILL.2010.12.006
- Danielsen, F., Beukema, H., Burgess, N. D., Parish, F., Brühl, C. A., Donald, P. F., Murdiyarso, D., Phalan, B. E. N., Reijnders, L., & Struebig, M. (2009). Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. *Conservation Biology*, *23*(2), 348–358.
- Danso, I., Okyere, S. A., Larbi, E., Danso, F., & Nuertey, B. N. (2019). Assessment of nutrients status of areas supporting optimum oil palm (Elaeis guineensis Jacq. L) cultivation in Ghana. *Ghana Journal of Agricultural Science*, *54*(2), 1–14. https://doi.org/10.4314/gjas.v54i2.1
- De Blécourt, M., Hänsel, V. M., Brumme, R., Corre, M. D., & Veldkamp, E. (2014). Soil redistribution by terracing alleviates soil organic carbon losses caused by forest conversion to rubber plantation. In *Forest Ecology and Management* (Vol. 313, pp. 26–33). https://doi.org/10.1016/j.foreco.2013.10.043
- Dearborn, K. D., & Danby, R. K. (2017). Aspect and slope influence plant community composition more than elevation across forest-tundra ecotones in subarctic Canada. *International Journal of Laboratory Hematology*, 38(1), 42–49. https://doi.org/10.1111/ijlh.12426
- Doran, J W, & Parkin, T. B. (1996). Quantitative indicators of soil quality: a minimum data set. In John W. Doran & A. J. Jones (Eds.), *Methods for assessing soil quality* (pp. 25–37). SSSA Spec. Publ. 49. SSSA, Madison, WI.
- Dubos, B., Caliman, J.-P., Corrado, F., Quencez, P., Suyanto, S., & Tailliez, B. (2000). *Importance of magnesium nutrition in oil palm. Result of several years' experiments*.
- Dykes, A. P., & Thornes, J. B. (2000). Hillslope hydrology in tropical rainforest steeplands in Brunei. *Hydrological Processes*, *14*(2), 215–235.
- Emiru, N., & Gebrekidan, H. (2013). Effect Of Land Use Changes and Soil Depth on Soil Organic Matter, Total Nitrogen and Available Phosphorus Contents of Soils in Senbat Watershed, Western Ethiopia. *ARPN Journal of Agricultural and Biological Science*, 8(3), 206–212.

- Estefan, G. (2013). *Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region.* International Center for Agricultural Research in the Dry Areas (ICARDA).
- Ezeaku, P. I., & Eze, F. U. (2014). Effect of land use in relation to slope position on soil properties in a semi-humid Nsukka area, Southeastern Nigeria. *Journal Agricultural Research*, *52*(8), 369–381.
- Fairhurst, T., & Griffiths, W. (2014). Oil palm: best management practices for yield intensification.
- FAO. (2006). Plant nutrition for food security A guide for integrated nutrient management. Fertilizer and Plant Nutrition Bulletin No. 16. Food and Agriculture Organization of the United Nations: Rome, Italy.
- Farhan, Y., & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. *Environmental Earth Sciences*, 74, 4649–4669.
- Fischer, R. A., Byerlee, D., & Edmeades, G. (2014). Crop yields and global food security. *ACIAR: Canberra, ACT*, 8–11.
- Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & Phalan, B. (2008). How will oil palm expansion affect biodiversity? *Trends in Ecology & Evolution*, *23*(10), 538–545.
- Foster, H. L., Mohammed, A. T., & Zakaria, Z. Z. (1988). Foliar diagnosis of oil palm in Peninsular Malaysia. *International Oil Palm/Palm Oil Conferences-Progress and Prospects 1987-Conference 1: Agriculture, Kuala Lumpur, 23-26 Jun 1988.*
- Gadana, D. B., Sharma, P. D., & Selfeko, D. T. (2020). Effect of Soil Management Practices and Slope on Soil Fertility of Cultivated Lands in Mawula Watershed, Loma District, Southern Ethiopia. 2020.
- Gatiboni, L. (2018). Soils and Plant Nutrients. In K. A. Moore & L. K. Bradley (Eds.), North Carolina Extension Gardener Handbook.
- Gaveau, D. L. A., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N. K., Ancrenaz, M., Nasi, R., Quinones, M., & Wielaard, N. (2014). Four decades of forest persistence, clearance and logging on Borneo. *PloS One*, *9*(7), e101654.
- Geering, H. R., & So, H. B. (2006). Texture. In R. Lal (Ed.), *Encyclopedia of Soil Science* (2nd ed., pp. 1759–1764). Taylor & Francis Group, New york, USA.
- Gérard, A., Wollni, M., Hölscher, D., Irawan, B., Sundawati, L., Teuscher, M., & Kreft, H. (2017). Oil-palm yields in diversified plantations: Initial results from a biodiversity enrichment experiment in Sumatra, Indonesia. *Agriculture, Ecosystems and Environment*, 240, 253–260. https://doi.org/10.1016/j.agee.2017.02.026

- Ghosh, B. N., Sharma, N. K., Alam, N. M., Singh, R. J., & Juyal, G. P. (2014). Elevation, slope aspect and integrated nutrient management effects on crop productivity and soil quality in North-west Himalayas, India. In *Journal of Mountain Science* (Vol. 11, Issue 5, pp. 1208–1217). https://doi.org/10.1007/s11629-013-2674-9
- Gofb-adm. (2017). Celebrating 100 years of Malaysian palm oil (Part 1). https://www.nst.com.my/news/nation/2017/05/240770/celebrating-100-years-malaysian-palm-oil-part-1
- Goh; K.J.;, Mahamooth, T. N., Patrick Ng, H. C., Teo, C. B., & Liew, Y. A. (1994). Managing soil environment and its major impact on oil palm nutrition and productivity in Malaysiam. *Advanced Agriecological Research Sdn. Bhd.*, 11, 1–71. https://doi.org/10.1007/s13365-015-0386-3
- Goh, K. J., & Chew, P. S. (1994). The need for soil information to optimise oil palm yields. *Selangor Planters' Association Annual Journal/Report*, 1994, 44–48.
- Goh, K. J., & Chew, P. S. (2000). A Lecture note on agronomic requirements and management of oil palm for high yields in Malaysia. Seminar on Managing Oil Palm For High Yields: Agronomic Principles, 39–73.
- Goh, K. J., Härdter, R., & Fairhurst, T. (2003). Fertilizing for maximum return. International Plant Nutrition Institute, 279–306.
- Goh, K. J., Kee, K. K., Chew, P. S., Gan, H. H., Heng, Y. C., & Ng, H. C. P. (2000). Concept of site yield potential and its applications in oil palm plantations. *Oils and Fats International Congress*, 57–63.
- Goh, K. J., Mahamooth, T. N., Ng, H. P., Teo, C. B., & Liew, Y. A. (2016). Managing soil environment and its major impact on oil palm nutrition and productivity in Malaysia. *Advanced Agriecological Research Sdn. Bhd*, *11*, 1–71.
- Goh, K. J., Teo, C. B., Chew, P. S., & Chiu, S. B. (1999). Fertiliser management in oil palm–agronomic principles and field practices. *Fert Manage Oil Palm Plant*, 20, 21.
- Gopal, B. (2013). Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. *Aquatic Sciences*, *75*, 39–61.
- Hamdan, J., Burnham, C. P., & Ruhana, B. (2000). Degradation effect of slope terracing on soil quality for Elaeis Guineensis Jacq. (Oil palm) cultivation. In *Land Degradation and Development* (Vol. 11, Issue 2, pp. 181–193). LAND DEGRADATION & DEVELOPMENT. https://doi.org/10.1002/(sici)1099-145x(200003/04)11:2<181::aid-ldr377>3.0.co;2-u
- Hamid, A. A. A., & Arashad, F. M. (2007). The Malaysian palm oil industry: Development and challenges. 50 years of Malaysian Agriculture:

- Transformational Issues, Challenges and Directions. *Universiti Putra Malaysia*, *Malaysia*, 371-400.
- Hannan, J. M. (2011). *Potassium-magnesium antagonism in high magnesium vineyard soils*. Iowa State University.
- Härdter, R. (1999). A review of magnesium nutrition in oil palm. Branch Seminar on Reforming the Mindset of Plantation Management into the Next Millennium, 29.
- Hashim, Z., Nayan, N., Saleh, Y., & Scheme, G. (2020).REAUTHENTICATION OF THE RAINFALL REGION WITHIN **ENINSULAR** *MALAYSIA* IN THE CONTEXT OF HYDROCLIMATOLOGY (Vol. 7, Issue August, pp. 2221–2228).
- Hoffmann, M. P., Castaneda Vera, A., van Wijk, M. T., Giller, K. E., Oberthür, T., Donough, C., & Whitbread, A. M. (2014). Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: Model description, evaluation and application. *Agricultural Systems*, *131*, 1–10. https://doi.org/10.1016/j.agsy.2014.07.006
- Jiang, P., & Thelen, K. D. (2004). Effect of Soil and Topographic Properties on Crop Yield in a North-Central Corn-Soybean Cropping System. Agronomy Journal, 96(1), 252–258. https://doi.org/10.2134/agronj2004. 0252
- Kasno, A., & Subardja, D. (2010). Soil fertility and nutrient management on spodosol for oil palm. *AGRIVITA, Journal of Agricultural Science*, 32(3), 285–292.
- Kavitha, C., & Sujatha, M. P. (2015). Evaluation of soil fertility status in various agro ecosystems of Thrissur District, Kerala, India. *International Journal of Agriculture and Crop Sciences (IJACS)*, 8(3), 328–338.
- Kee, K K, & Soh, A. C. (2002). Management of oil palms on slopelands in Malaysia. *IOPRI International Palm Oil Conference*, 8–12.
- Kee, Khan Kiang, Goh, K. J., & Chew, P. S. (1995). Effects of NK fertiliser on soil pH and exchangeable K status on acid soils in an oil palm plantation in Malaysia. In *Plant-Soil Interactions at Low pH: Principles and Management* (pp. 809–815). Springer.
- Khan, F., Hayat, Z., Ahmad, W., Ramzan, M., Shah, Z., Sharif, M., Mian, I. A., & Hanif, M. (2013). Effect of slope position on physico-chemical properties of eroded soil. In *Soil and Environment* (Vol. 32, Issue 1, pp. 22–28).
- Khan, H. R., Elahi, S. F., Hussain, M. S., & Adachi, T. (1994). Soil characteristics and behavior of potassium under various moisture regimes. *Soil Science and Plant Nutrition*, *40*(2), 243–254.

- Khormali, F., Ayoubi, S., Foomani, F. K., & Fatemi, A. (2007). Tea yield and soil properties as affected by slope position and aspect in Lahijan area, Iran. *International Journal of Plant ProductionPlant Production*, 1(March), 99–111. http://80.191.248.19:8080/Jm/Programs/JurnalMgr/VolumArticle/EN 6 10.pdf
- Koh, L. P., & Wilcove, D. S. (2008). Is oil palm agriculture really destroying tropical biodiversity? *Conservation Letters*, 1(2), 60–64.
- Kraip, J., & Nake, S. (2006). Response of oil palm (Elaeis guineensis Jacq.) to additions of nitrogen, phosphorus and potassium from planting to 7 years after planting: PNG OPRA Trial 501. *Oil Palm Research Association, Papua New Guinea*.
- Kravchenko, A. N., & Bullock, D. G. (2000a). Correlation of corn and soybean grain yield with topography and soil properties. *Agronomy Journal*, 92(1), 75–83.
- Kravchenko, A. N., & Bullock, D. G. (2000b). Correlation of corn and soybean grain yield with topography and soil properties. In *Agronomy Journal* (Vol. 92, Issue 1, pp. 75–83). https://doi.org/10.2134/agronj2000. 92175x
- Kumar, M., Kumar, V., Kumar, R., & Pratap, R. (2017). Correlation between soil nutrient and plant nutrient concentration in mustard. *J. Pharmacogn. Phytochem*, *6*(4), 751–754.
- Kushairi, A., Loh, S. K., Azman, I., Hishamuddin, E., Ong-Abdullah, M., Izuddin, Z. B. M. N., Razmah, G., Sundram, S., & Parveez, G. K. A. (2018). Oil palm economic performance in Malaysia and r&d progress in 2017. *Journal of Oil Palm Research*, 30(2), 163–195. https://doi.org/10.21894/jopr.2018.0030
- Kushairi, Ahmad, Rajanaidu, N., & Jalani, B. S. (2001). Response of oil palm progenies to different fertilizer rates. *Journal of Oil Palm Research*, *13*, 84–96.
- Kwabiah, A. B., Stoskopf, N. C., Voroney, R. P., & Palm, C. A. (2001). Nitrogen and Phosphorus Release from Decomposing Leaves under Sub-Humid Tropical Conditions 1. *Biotropica*, 33(2), 229–240.
- Laekemariam, F., Kibret, K., & Shiferaw, H. (2018). Potassium (K)-to-magnesium (Mg) ratio, its spatial variability and implications to potential Mg-induced K deficiency in Nitisols of Southern Ethiopia. *Agriculture & Food Security*, 7(1), 1–10.
- Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., & Folke, C. (2001). The causes of land-use and land-cover change: moving beyond the myths. *Global Environmental Change*, *11*(4), 261–269.

- Law, M. C., Balasundram, S. K., Husni, M. H. A., & Ahmed, O. H. (2009). Spatial variability of soil organic carbon in oil palm. *International Journal of Soil Science*, *4*(4), 93–103.
- Lesure, S. E. (2016). Agricultural Development and the State: Oil Palm in Malaysia and Nigeria. New York University.
- Li, X., & W. McCarty, G. (2019). Application of Topographic Analyses for Mapping Spatial Patterns of Soil Properties. *Earth Observation and Geospatial Analyses [Working Title]*. https://doi.org/10.5772/intechopen.86109
- Lias, B. (2011). Oil palm NPKMg fertiliser trial (Sei Lakitan) EXPT EG00. 1412A. Bah Lias Annual Report, 1, 89–92.
- LING, A. H. (2012). Weather effects on palm oil production: Supply outlook 2012/2013. Paper Presented at the Palm Oil Trade Fair and Seminar (POTS) 2012. MPOC. Malaysia.
- Lord, S., & Clay, J. (2006). Environmental impacts of oil palm–practical considerations in defining sustainability for impacts on the air, land and water. International Planters Conference on Higher Productivity and Efficient Practices for Sustainable Agriculture, 26–28.
- Lozano-García, B., Parras-Alcántara, L., & Brevik, E. C. (2016). Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. *Science of the Total Environment*, *544*, 963–970. https://doi.org/10.1016/j.scitotenv.2015.12.022
- Mahmud, M. S., & Chong, K. P. (2022). Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. *Agriculture* (Switzerland), 12(3). https://doi.org/10.3390/agriculture12030322
- McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients–food safety issues. *Field Crops Research*, *60*(1–2), 143–163.
- Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. *Global Change Biology*, *17*(7), 2261–2270.
- Mikkelsen, R. (2010). Soil and fertilizer magnesium. Better Crops, 94(2), 26–28.
- Miller, M. P., Singer, M. J., & Nielsen, D. R. (1988). Spatial variability of wheat yield and soil properties on complex hills. *Soil Science Society of America Journal*, *52*(4), 1133–1141.
- Mohsen, B., T. B. ., Christopher, H., M.H.A., & A.R., Z. (2014). Soil, Nutrients and Water Conservation Practices in Oil Palm Plantations on Sloping and Steep Lands in Malaysia. *International Agriculture Congress* 2014,

November.

- Moradi, A., Sung, C. T. B., Joo, G. K., Mohd Hanif, A. H., & Ishak, C. F. (2012). Evaluation of four soil conservation practices in a non-terraced oil palm plantation. *Agronomy Journal*, 104(6), 1727–1740. https://doi.org/10.2134/agronj2012.0120
- Morris, K. I. (2016). Computational study of Klang Valley's urban climatology, and urbanisation of Putrajaya city, Malaysia. University of Nottingham.
- MPOB. (2017). Malaysian Oil Palm Statistics 2016. MPOB, Bangi., 36th Editi.
- MPOB. (2018). Overview of the Malaysian Oil Palm Industry 2018. In *Official Portal of Malaysian Palm Oil Board: Vol. d* (Issue January, pp. 1–6). http://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2018. pdf
- Musa, A. M., Ishak, C. F., Karam, D. S., & Md Jaafar, N. (2020). Effects of fruit and vegetable wastes and biodegradable municipal wastes co-mixed composts on nitrogen dynamics in an Oxisol. *Agronomy*, *10*(10), 1609.
- Musa, H. (2003a). A spatial site yield potential model of oil palm. Universiti Teknologi MARA.
- Musa, H. (2003b). A Spatial Site Yield Potential Model of Oil Palm. December.
- Nadal-Romero, E., Petrlic, K., Verachtert, E., Bochet, E., & Poesen, J. (2014). Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. *Earth Surface Processes and Landforms*, 39(13), 1705–1716. https://doi.org/10.1002/esp.3549
- Nambiappan, B., Ismail, A., Hashim, N., Ismail, N., Nazrima, D., Abdullah, N. I. K., Idris, N. I. K., Omar, N., Salleh, K. M., Ain, N. U. R., & Hassan, M. (2018). Malaysia: 100 Years of Resilient Palm Oil Economic Performance. Journal of Oil Palm Research Vol. 30 (1) March 2018 p. 13 25, 30(March), 13–25.
- Narasimha Rao, B., K., Suresh, S. K. Behera, K. R., & Manorama., K. (2014). Nutrient management in oil palm. *Pedavegi, Andhra Pradesh, India:* DOPR. Nayak, 1–24.
- Negasa, T., Ketema, H., Legesse, A., Sisay, M., & Temesgen, H. (2017). Variation in soil properties under different land use types managed by smallholder farmers along the toposequence in southern Ethiopia. *Geoderma*, 290, 40–50. https://doi.org/10.1016/j.geoderma.2016. 11.021
- Ng, S. K. (1986). Phosphorus nutrition and fertilization of oil palms. *Oleagineux*, *41*(7), 307–313.
- NSTOnline. (2017). A 100 Year Journey | Global Oil & Fats Business Online gofbonline.com. http://gofbonline.com/a-100-year-journey/2/

- Nurul Mayzaitul Azwa, J., Hanafi, M. M., Hakim, M. A., Idris, A. S., Sahebi, M., & Rafii, M. Y. (2022). The relationship between soil characteristics and the nutrient status in roots of mangrove (Rhizophora apiculata) trees. *Arabian Journal of Geosciences*, *15*(12), 1145.
- Ofori, E., Atakora, E. T., Kyei-Baffour, N., & Antwi, B. O. (2013). Relationship between landscape positions and selected soil properties at a Sawah site in Ghana. *African Journal of Agricultural Research*, 8(27), 3646–3652. https://doi.org/10.5897/ajar12.150
- Ogidi, E. G. O., Okore, I. K., & Dike, J. C. (2018). Correlation Analysis of Nutrient Soil-Plant Content and Bud Take Success in Hevea Brasiliensis Muell. Arg. in Acidic Soil of South Eastern Nigeria. *Journal of Experimental Biology and Agricultural Sciences*, *6*(1), 116–123. https://doi.org/10.18006/2018.6(1).116.123
- Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I., & Edwards, J. (2013). Review: soil physical and chemical properties as indicators of soil quality in Australian viticulture. *Australian Journal of Grape and Wine Research*, 19(2), 129–139. https://doi.org/10.1111/ajgw.12016
- Olubanjo, O. O., & Maidoh, F. U. (2017). Influence of Slope and Depth on Soil Chemical Properties in an Oil Palm Plantation. *Nigerian Journal of Soil Sciences*, 27 pp. 173-, 172–184.
- Olubanjo, O. O., Maidoh, F. U., & Oviasogie, P. O. (2017). Slope Position and Depth Effects on Selected Soil Physical Properties Under Oil Palm (Elaeis guineensis) Plantation. 208–215.
- Paramananthan, S. (2013). Managing Marginal Soils for Sustainable Growth of Oil Palms in the Tropics. *Journal of Oil Palm and the Environment*, *4*(1), 1–16. https://doi.org/10.5366/jope.2013.1
- Pauli, N., Donough, C., Oberthür, T., Cock, J., Verdooren, R., Rahmadsyah, Abdurrohim, G., Indrasuara, K., Lubis, A., Dolong, T., & Pasuquin, J. M. (2014). Changes in soil quality indicators under oil palm plantations following application of 'best management practices' in a four-year field trial. Agriculture, Ecosystems & Environment, 195, 98–111. https://doi.org/10.1016/j.agee.2014.05.005
- Pawar, D. R., & Shah, K. M. (2009). Laboratory testing procedure for soil and water sample analysis. *Government of Maharashtra Water Resources Department, Directorate of Irrigation Research and Development, Pune.*
- Potter, L. (2015). Managing oil palm landscapes: A seven-country survey of the modern palm oil industry in Southeast Asia, Latin America and West Africa (Vol. 122). CIFOR.
- Pretty, K. M., & Sanders, J. L. (1984). *Maximizing the yield of perennial crops through integrated management.*

- Qin, Y., Adamowski, J. F., Deo, R. C., Hu, Z., Cao, J., Zhu, M., & Feng, Q. (2019). Controlling factors of plant community composition with respect to the slope aspect gradient in the Qilian Mountains. *Ecosphere*, *10*(9), 13. https://doi.org/10.1002/ecs2.2851
- Rafii, M. Y., Jalani, B. S., Rajanaidu, N., Kushairi, A., Puteh, A., & Latif, M. A. (2012). Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments. *Genetics and Molecular Research*, 11(4), 3629–3641. https://doi.org/10.4238/2012.October.4.10
- Rasiah, R., & Shahrin, A. (2001). Development of Palm Oil and Related Products in Malaysia and Indonesia. Malaysia 1986.
- Rasiah, R., & Shahrin, A. (2006). Development of palm oil and related products in Malaysia and Indonesia. *University of Malaya*, 1–54.
- Rasool, S., Gaikwad, S. W., & M.A, T. (2014). Relationships Between Soil Properties and Slope Segments of Sallar Wullarhama Watershed in the Liddar Catchment of. *Asian Journal of Engineering Research, Article* 1(II Jan March 2014), 10. http://www.technicaljournalsonline.com/ajer/Article 1 Vol II Issue II Jan March 2014.pdf
- Rezaei, H., Jafarzadeh, A. A., Alijanpour, A., Shahbazi, F., & Kamran, K. V. (2015). Effect of slope position on soil properties and types along an elevation gradient of Arasbaran forest, Iran. *International Journal on Advanced Science, Engineering and Information Technology*, *5*(6), 449–456.
- Richard, Y., Brener, L., Martin, G., & Leblanc, C. (1979). Study of the nitrification of surface water. *Ninth International Conference on Water Pollution Research*, 17–32. https://doi.org/10.1016/B978-0-08-022939-3.50008-8
- Rosenani, A. B., Rovica, R., Cheah, P. M., & Lim, C. T. (2016). Growth Performance and Nutrient Uptake of Oil Palm Seedling in Prenursery Stage as Influenced by Oil Palm Waste Compost in Growing Media. *International Journal of Agronomy*, 2016, 9. https://doi.org/10.1155/2016/6930735
- Rush, J. E. (2019). Soil Fertility. *Science*, *42*(1088), 309–325. https://doi.org/10.1017/9781316809785.014
- Sáez-Plaza, P., Michałowski, T., Navas, M. J., Asuero, A. G., & Wybraniec, S. (2013). An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. *Critical Reviews in Analytical Chemistry*, *43*(4), 178–223.
- Samarakoon, U. C., Weerasinghe, P. A., & Weerakkody, W. A. P. (2006). Effect of Electrical Conductivity [EC] of the Nutriernt Solution on Nutrient Uptake, Growth and Yield of Leaf Lettuce (Lactuca sativa L.) in Stationary Culture. Tropical Agricultural Research, 18: 13-1, 7.

- http://hdl.handle.net/123456789/1386
- Scheffer, F., Schachtschabel, P., Blume, H. P., Brümmer, G., Hartge, K. H., & Schwertmann, U. (2002). Lehrbuch der Bodenkunde.,(Spektrum Akademischer Verlag GmbH: Heidelberg, Germany).
- Shaul, O. (2002). Magnesium transport and function in plants: the tip of the iceberg. *Biometals*, *15*(3), 307–321.
- Shehu, S., Salleh, M. A., & Ahmad, A. A. (2020). The sustainable palm oil policies in Malaysia. *The Journal of Management Theory and Practice (JMTP)*, 56–60.
- Sikora, L. J., & Stott, D. E. (1996). Soil organic carbon and nitrogen. In J. J. Doran (Ed.), *Methods for assessing soil quality* (pp. 157–167). Soil Science Society of America Special Publication No. 49.
- Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. *Soil Research*, 48(7), 516–525.
- Smith, J. L., & Doran, J. W. (1997). Measurement and use of pH and electrical conductivity for soil quality analysis. *Methods for Assessing Soil Quality*, 49, 169–185. https://doi.org/10.2136/sssaspecpub49.c10
- Sternberg, M., & Shoshany, M. (2001). Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site. In *Ecological Research* (Vol. 16, Issue 2, pp. 335–345). https://doi.org/10.1046/j.1440-1703.2001.00393.x
- Stibig, H.-J., Achard, F., Carboni, S., Raši, R., & Miettinen, J. (2014). Change in tropical forest cover of Southeast Asia from 1990 to 2010. *Biogeosciences*, 11(2), 247–258.
- Stone, J. R., Gilliam, J. W., Cassel, D. K., Daniels, R. B., Nelson, L. A., & Kleiss, H. J. (1985). Effect of erosion and landscape position on the productivity of Piedmont soils. Soil Science Society of America Journal, 49(4), 987–991.
- Su, A. S. M., & Tan, S. Q. (2019). A Review of Fertilization Assessment Methods in Oil Palm Plantation.
- Suhaila, J., Deni, S. M., Zawiah Zin, W. A. N., & Jemain, A. A. (2010). Trends in Peninsular Malaysia rainfall data during the southwest monsoon and northeast monsoon seasons: 1975-2004. In *Sains Malaysiana* (Vol. 39, Issue 4, pp. 533–542).
- Sumathi, S., Chai, S. P., & Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. *Renewable and Sustainable Energy Reviews*, *12*(9), 2404–2421.

- Sung, C. T. B., Joo, G. K., Chien, L. C., & Seng, S. T. (2011). Short-term changes in the soil physical and chemical properties due to different soil and water conservation practices in a sloping land oil palm estate. *Pertanika Journal of Tropical Agricultural Science*, *34*(1), 41–62.
- Tajudin, N. S., Hanafi, M. M., Idris, A. S., & Balasundram, S. K. (2016). Determination and mapping of calcium and magnesium contents using geostatistical techniques in oil palm plantation related to basal stem rot disease. Songklanakarin Journal of Science and Technology, 38(1), 23–30.
- Tan, N. P., Wong, M. K., Yusuyin, Y., Abdu, A. Bin, Iwasaki, K., & Tanaka, S. (2014). Soil Characteristics in An Oil Palm Field, Central Pahang, Malaysia with Special Reference to Micro Sites under Different Managements and Slope Positions. *Tropical Agriculture and Development*, 58(4), 146–154. https://doi.org/10.11248/jsta.58.146
- Tan, Z.-X., Lal, R., & Wiebe, K. D. (2005). Global soil nutrient depletion and yield reduction. *Journal of Sustainable Agriculture*, 26(1), 123–146.
- Tanaka, S., Tachibe, S., Wasli, M. E. Bin, Lat, J., Seman, L., Kendawang, J. J., Iwasaki, K., & Sakurai, K. (2009). Soil characteristics under cash crop farming in upland areas of Sarawak, Malaysia. *Agriculture, Ecosystems & Environment*, 129(1–3), 293–301.
- Taubner, H., Roth, B., & Tippkötter, R. (2009). Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. *Journal of Plant Nutrition and Soil Science*, *17*2(2), 161–171.
- Tengku Ahmad, T., & Tawang, A. (1999). Effects of Trade Liberalization on Agriculture in Malaysia: Commodity Aspects. In Working Papers.
- USDA-NRCS. (2014). Soil Quality Kit Guide for Educators. Natural Resources Conservation Service, United States Department of Agriculture.
- Verheye, W. (2010a). Growth and production of oil palm. In *Land use, land cover and soil sciences*. UNESCO-EOLSS Publishers.
- Verheye, W. (2010b). Growth and Production of Oil Palm. Soils, Plant Growth and Crop Production, 32. https://doi.org/10.1017/CBO978110 7415324.004
- Wacal, C., Ogata, N., Basalirwa, D., Sasagawa, D., Masunaga, T., Yamamoto, S., & Nishihara, E. (2019). Growth and K nutrition of sesame (Sesamum indicum L.) seedlings as affected by balancing soil exchangeable cations Ca, Mg, and K of continuously monocropped soil from Upland Fields converted paddy. *Agronomy*, *9*(12), 819.
- Wich, S. A., Garcia-Ulloa, J., Kühl, H. S., Humle, T., Lee, J. S. H., & Koh, L. P. (2014). Will oil palm's homecoming spell doom for Africa's great apes? *Current Biology*, *24*(14), 1659–1663.

- Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. *European Journal of Agronomy*, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002
- Woittiez, L. S., Van Wijk, M. T., Slingerland, M., Van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. *Europ. J. Agronomy*, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002
- Wong, C. L., Liew, J., Yusop, Z., Ismail, T., Venneker, R., & Uhlenbrook, S. (2016). Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set.pdf (p. 16). mdpi journal/water. https://doi.org/10.3390/w8110500
- Wright, R. J., & Stuczynski, T. (1996). Atomic absorption and flame emission spectrometry. *Methods of Soil Analysis: Part 3 Chemical Methods*, *5*, 65–90.
- Yang, C., Peterson, C LYang, C., Peterson, C. L., Shropshire, G. J., & Otawa, T. (1998). Spatial variability of field topography andwheat yield in the palouse region of the Pacific Northwest. Transactions of the ASAE, 41(1), 17., Shropshire, G. J., & Otawa, T. (1998). Spatial variability of field topography andwheat yield in the palouse region of the Pacific Northwest. *Transactions of the ASAE*, 41(1), 17.
- Yao, R.-J., Yang, J.-S., Zhang, T.-J., Gao, P., Wang, X.-P., Hong, L.-Z., & Wang, M.-W. (2014). Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. *Geoderma*, 232, 381–393.
- Yasin, S., & Yulnafatmawita. (2018a). Effects of slope position on soil physicochemical characteristics under oil palm plantation in wet tropical area, West Sumatra Indonesia. *Agrivita*, 40(2), 328–337. https://doi.org/10.17503/agrivita.v40i2.880
- Yasin, S., & Yulnafatmawita. (2018b). Effects of slope position on soil physicochemical characteristics under oil palm plantation in wet tropical area, West Sumatra Indonesia. In *Agrivita* (Vol. 40, Issue 2, pp. 328–337). https://doi.org/10.17503/agrivita.v40i2.880
- Yusuyin, Y., Tan, N. P., Wong, M. K., Abdu, A. Bin, Iwasaki, K., & Tanaka, S. (2016). Chemical Forms and Distribution of Soil Micronutrients at An 18-year-old Oil Palm Field in Central Pahang, Malaysia. *Tropical Agriculture and Development*, 60(4), 263–274.
- Zaini, S. N. A. M., Zheng, C. W., & Abu, M. Y. (2020). Costing structure improvement using activity based costing in palm oil plantation of Malaysia. *Journal of Modern Manufacturing Systems and Technology*, 4(1), 95–109. https://doi.org/10.15282/jmmst.v4i1.3838

- Zhang, S., Huffman, T., Zhang, X., Liu, W., & Liu, Z. (2014). Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. *Journal of Soils and Sediments*, *14*, 1775–1789.
- Zhang, S., Zhang, X., Huffman, T., Liu, X., & Yang, J. (2011). Influence of topography and land management on soil nutrients variability in Northeast China. *Nutrient Cycling in Agroecosystems*, *89*(3), 427–438. https://doi.org/10.1007/s10705-010-9406-0
- Zin, Z. Z., Foster, H. L., Tarmizi Mohammed, A., & Dolmat, M. T. (1992). Yield responses to phosphate fertilizer in oil palm.
- Životić, L. B., Radmanović, S. B., Gajić, B. A., Mrvić, V. V., & Đorđević, A. R. (2017). Classification and spatial distribution of soils in the foot and toe slopes of mountain Vukan, East-Central Serbia. Catena, 159(August), 70–83. https://doi.org/10.1016/j.catena.2017.08.003