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Peatland forest fires threaten biodiversity, ecosystems, and human health in Southeast Asia, especially during the
dry season. Limited in-situ data collection necessitates Long Range (LoRa) sensor-based remote monitoring for its
long-range communication, low power consumption, and cost-effectiveness. However, dense vegetation affects

I;{oRat Low-Power Wide Area Network (LPWAN) signal propagation through scattering, reflection, and diffraction,
emote sensor . . P N . . . . .

IoT impacting data transmission. This study investigates LoRa RF propagation in peatland environments through
RSSI a measurement campaign at Raja Musa Forest Reserve (RMFR), Selangor. File transfer success rate (FT%) across

various land-cover types was analyzed using six Data Rate (DR) and Spreading Factor (SF) configurations. Results
show that DR5/SF7 and DRO/SF12 achieve over 80% FT% in moderate and dense vegetation, respectively. The
findings enhance LoRa RF planning in challenging ecosystems, offering practical guidelines to improve data
transmission reliability in RMFR and other peatlands.

1. Introduction

Peatland areas play a crucial role in fulfilling a wide range of es-
sential ecological functions, including water storage, carbon seques-
tration, and biodiversity conservation. Despite covering only approx-
imately 2.84% of the global land area, peatlands store 10% of the
world’s freshwater and a substantial amount of hydrocarbons [1]. These
ecosystems are characterized by a unique dome-shaped terrain, which
supports biomass accumulation from centuries of organic decomposi-
tion [2]. Tropical peatlands also serve as genetic reservoirs for valuable
plant species and vital wildlife habitats. However, increasing deforesta-
tion has severely impacted these ecosystems, leading to biodiversity loss
and ecosystem degradation [1].

In Southeast Asia (SEA), human activities such as deforestation and
land conversion have exacerbated peatland degradation, leaving them
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prone to fires during dry seasons. These fires, particularly during El Nino
events, contribute to significant carbon emissions and environmental
damage [3-6]. Local practices, such as open burning for agriculture, fur-
ther increase fire risks [7]. Additionally, peat subsidence from drainage
intensifies these vulnerabilities by lowering the water table, further
destabilizing the ecosystem [8]. The resulting fires have wide-ranging
impacts, including health issues [9], economic losses [10], and social
challenges [11,12].

Peatland monitoring and restoration, Greta. C. Dargie et al. [13] iden-
tified four distinguishing features: 1) low vegetation species richness, 2)
distinctive vegetation structure, 3) distinctive topography, and 4) high
water table. Often, lack access to power grids and cellular networks.
Traditional in-situ methods for measuring groundwater levels (GWL)
are labor-intensive and difficult to scale. Recent advances, such as the
integration of Low-Power Wide-Area Networks (LPWAN) with sensors,
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Fig. 1. Location of Raja Musa Forest Reserved (RMFR) in Selangor, Malaysia.

offer promising solutions for remote monitoring [14]. For example, stud-
ies have demonstrated the use of LoRa-based sensors to monitor GWL
and predict fire danger using advanced models like the Canadian Fire
Weather Index [15]. A brief regarding LoRa, which is part of LPWAN
technology, will be described in Section 2.1.

At present, monitoring efforts in Malaysia’s peatlands remain lim-
ited [16,17], particularly due to insufficient expertise in deploying LoRa
technology for these specific environments. Existing studies on LoRa
have primarily focused on urban and suburban areas [18-21] or spe-
cific localized environments like estuaries and forests [22-25]. There
remains a critical gap in understanding LoRa’s performance in peat
swamp forests, particularly in Malaysia.

This study aims to address this gap by evaluating the optimal Data
Rate (DR) and Spreading Factor (SF) configurations for reliable LoRa
data transmission in the Raja Musa Forest Reserve (RMFR), as shown
in Fig. 1. The findings contribute to refining LoRa RF planning strate-
gies for challenging environments, ensuring robust data transmission for
environmental monitoring and resource management, not only within
RMFR but also in other peatland ecosystems worldwide, supporting
large-scale conservation and monitoring efforts beyond the context of
Peninsular Malaysia.

1.1. Contributions

In line with the Malaysian government’s mandate to utilize innova-
tive technologies for forest fire management [26], this study contributes:

1) A novel Fresnel Zone model is proposed, incorporating vegetation-
specific parameters and propagation characteristics observed in the
RMFR ecosystem.

2) Evaluation of LoRa performance metrics through a measurement
campaign to determine file transfer success rates at different land-
covers within RMFR.

3) Optimal DR/SF pairing configuration for reliable LoRa data trans-
mission at different land-covers within RMFR.

The rest of the paper is organized as follows: A brief introduction and
a literature review are given in Section 1. Section 2.1 reviewed related
studies that employ low-power wireless area network (LPWAN) tech-
nology including LoRa, specifically Section 2.2 LoRa propagation and
Section 2.3 LoRa DR/SF. The characteristics of signal transmission and
propagation, including the RSSI, SNR, and Fresnel Zone are explained
in Section 3. Section 4 describes the experimental methodology. The ex-
perimental results are presented in Section 5. Finally, the findings are
discussed in Section 6.
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2. Related works

The diversity of peatland forests varies in different climatic zones
and holds discrete vegetation formations on different continents [27].
As a result, the strategy for mapping peatland areas varies by continent
[28]. Based on references [27,28], it can be concluded that the vegeta-
tion formations in peatland forests are unique in different climatic zones
and continents. Mainly, vegetation formations at different regions af-
fect the wireless signal propagation and hence the LoRa performance,
which is unique to the specific location. This section aims to contribute
to the field by reviewing recent propagation studies of in-situ LoRa per-
formance, building upon existing knowledge, and filling a gap in the
literature.

2.1. Motivation in peatland forest restoration

In recent years, international bodies have taken a global initiative to
restore, monitor, and manage peatland forests under the United Nations
(UN) 17 Sustainable Development Goals (SDG). This peatland forest
restoration falls under the Climate Action and Life on Land categories
under the SDG. Simultaneously, a handbook for peatland mapping and
monitoring was published in 2020, providing methodologies and so-
lutions to peatland mapping and monitoring challenges, especially in
developing countries [12].

Furthermore, the article reviewed in [29] offers an in-depth analysis
of the literature on the management and rehabilitation of peatlands,
incorporating diverse strategies and policies. It is worth noting that
S. Monteverde et al. work also emphasize the consequences of limited
funding, which often results in lagging progress in peatland manage-
ment. Reed et al. highlighted the substantial financial implications of
peatland management and the effects of peatland changes on the allo-
cation of ecosystem services [30]. Their analysis suggests the replication
of a similar co-existing method for comparable purposes. In 2019, UN
Environment Assembly urged UNEP and Ramsar Convention to estab-
lish a global peatland inventory and record interventions, aligning with
Ramsar Resolution XIII.13 on remote sensing and geophysical surveys
(UNEP, 2019) [31]. By utilizing technological innovations like remote
sensing-based systems, local authorities can expand the scope of peat-
land management and restoration, adopting a broader perspective with
specific, measurable, achievable, relevant, and time-bound (SMART)
goals [32].

2.2. Technical setup in peatland forest restoration

Numerous studies have utilized remote sensing-based systems, in-
cluding satellites (microwave sensors) and light detection and ranging
(LiDAR), for peatland restoration and management tasks. Satellites rely
on the backscatter signal and employ synthetic aperture radar (SAR)
processing for mapping and imaging, as documented in [33-35]. This
method is preferred due to its ability to provide up-to-date informa-
tion and good resolution across multiple spatial scales for soil mapping.
Satellites can also detect hotspots in peatland, providing additional ana-
lytic input for managing forest fires [36]. However, microwave sensors,
including satellites, are susceptible to scattering and propagating effects.
The peatland canopy acts as a large umbrella, attenuating the backscat-
ter signal received by satellites, which degrades the mapping and imag-
ing resolution. Therefore, analyzing the appropriate wavelength is cru-
cial to ensure the signal can penetrate the canopy for effective imaging
production [37]. LiDAR is also used for similar purposes, offering high-
resolution imaging up to one meter in spatial resolution [38]. However,
LiDAR has limited mapping capabilities compared to satellites in terms
of range sensing. Despite the detailed surface properties provided by
these sensors, the in-situ method remains the only way to gather ground-
water level (GWL) data.
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Table 1
List of Low-Power Wireless Area Network (LPWAN).
Standard  Data Rate Range Battery
Technology Body (kbps) (km) Lifetime
LoRa 50 Urban:2-5,
LoRa [39] Alliance Suburban:15 >10 years
NB-IoT [39]  3GPP 200 10-15 > 10 years
(with a 5Wh battery)
SIGFOX Urban:3-10 10 years
[39] SIGFOX <100bps Rural:30-50 (Depending
no. of message sent)
INGENU DL:624 Urban 15
[39] INGENU UL:156 10-20 years
ISO/IEC 13, 55, 200 Multi-years
Dash7 [40] 18000-7 (16, 8, 4 1-2 (Not
channels) Specify)

2.3. Low-power wireless area network (LPWAN)-based sensors

A list of key features of LPWAN technologies, including data rate,
range, battery life, and applications, has been thoroughly reviewed in
[39-51]. Table 1 compares these key features of LPWAN-based sensors
commonly used in remote-based applications. From this table, Long
Range (LoRa) technology is often used in the Internet of Things (IoT)
due to its low power, low cost, and flexible interface with various sen-
sors [40].

Several applications in forestry monitoring and management have
been successfully deployed; some examples include assisting and track-
ing tourists inside the forest for tourism [42], animal tracking [43],
geographical surveillance [44-46], impact on foliage [47], visual and
image surveillance [48,49], fire monitoring and management [50], and
peatland monitoring and management [51].

The performance metric used to measure the power of the received
signal at the wireless receiver (also known as radio frequency, or RF) is
the received signal strength indicator (RSSI) [52]. In LPWAN, the RSSI
is commonly used to estimate the range between transmitter and re-
ceiver apart [53]. Often, the RSSI reading is analyzed to understand the
relationship between distance and received signal strength [54-56]. In
recent years, several works have reported on how the RSSI has been used
as an essential modality in various algorithm strategies, including local-
ization applications to track and estimate the object of interest, such
as Trilateration [57-59], Vector Similarity Degree, Support Vector Ma-
chine (SVM), Kalman Filter (KF) [60], and Recurrent Neural Network
[61].

LoRa RSSI is also susceptible to propagation effects like any other
LPWAN. Studies have investigated the RF’s behavior in the foliage envi-
ronment [48], and its propagation characteristic [18,62-64]. The stud-
ies are essential to understanding the relationship between RF behavior
and local vegetation indices. LoRa uses a modulation scheme for data
transmission based on Data Rate (DR) and Spreading Factor (SF). These
two parameters are important for the success of data transfer over a
long distance. Under harsh environments, the most suitable pair com-
bines the highest DR with the lowest SF, and the opposite setup applies
for good LOS [19,65-67]. Some reviews of LoRa transmission perfor-
mance with DR and SF pairs can be found in [63], healthcare in [66],
and utility [67].

2.4. LoRa propagation model

A recent study reported that the new development of LoRa, which
operates in the 2.4 GHz band and outperforms other technologies in
similar bands in terms of communication range [68]. The results re-
veal that the maximum communications distance is 74 m in an indoor
office environment and 443 m in an urban-type outdoor environment.
LoRa communications range was also tested in the Antarctic region [69].
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The longest recorded range in line-of-sight (LOS) was 30 km using the
LoRa 484 MHz and 868 MHz bands. In subsequent works, measurement
campaigns and modeling work observed successful communication dis-
tances of 4 km and 1 km for LOS and densely forested terrain [64].

In addition, the propagation of LoRa in the Malaysian region has
been experimentally validated at a field test. Reference [48] proposed
an algorithm to overcome the limitations of the LoRa physical layer in
image transmission. The work presents encrypted image data in hex-
adecimal format, followed by segmenting the file into packets upon
transmitting and receiving data ranging from 1 km to 7 km in the
mangrove forest. The study in [70] reported that the weather condi-
tions (including solar radiation, humidity, temperature, and rain) in the
Malaysia region do not affect the LoRa RSSI performance. Moreover,
studies associated with LOS in the Malaysia region have been evaluated
in [71]. The results conclude that local vegetation, as a result of the trop-
ical climate, contributes to greater attenuation in LoRa performance.
The studies in [70,71] highlight an apparent discrepancy, emphasizing
the need to address the research gap through further localized LoRa per-
formance studies in Malaysia.

2.5. LoRa data rate/spreading factor pairs

A series of studies have investigated the SF setup for LoRa perfor-
mance. A related study published in 2018 looked at LoRa performance
under various levels of interference, and a heavy path environment [19].
Upon transmission, the packet error rate (PER) in LoRa was measured
via a three-parameter setup (spreading factor, bandwidth, and coding
error rate). As it turns out, only SF has direct impacts on PER, which are
grouped into two configurational space regions: the multipath-immune
(or 0% PER) region for SF = 12-10 and the multi-path-sensitive (100%
PER) region for SF = 9-7. In a healthcare study, a miniature LoRa was
implanted into the human body to evaluate the low data rate transmis-
sion using LoRa backscatter signal as reported in [66]. Results demon-
strated that the sensitivity and reliability of data transmission were
better when using high SF (SF = 12) than lower SF (SF = 7). In ad-
dition, the high SF (SF = 12) setup used in the pilot study focuses on
the design, implementation, optimization, and verification of smart me-
ter systems using LoRa [67]. The high SF setup revealed the average
relative error was below 3%, with all land-cover with LoRa signal de-
spite strong signal attenuation.

3. Signal transmission and propagation

This section is divided into two parts: the first part introduces the
terminology of LoRa, RSSI, and SNR, while the second part explores the
theory of Fresnel zone for wireless communication in space. The primary
objective of this section is to provide readers with a clear understanding
of the technical definitions used in Section 4 and to establish a founda-
tion for the results presented in Section 5.

3.1. RSSI and SNR

A simple relationship for radio circuit communication in free space
can be portrayed using the ratio of power at the received antenna over
the transmitter antenna, which can be written in (1) [72],

P, GG.)? o
P, P(4xd)?’

where P, and P, are the receiving power and transmitting power mea-
sured in mW, G, and G,, are the gain for transmitting and receiving
antennas, respectively, A is the wavelength in m, P, are generalized path
losses in mW, and d is the distance between two antennas in m.

Hence, the path loss for any communication can be defined as P, over
P, ratio. The ratio is described logarithmically in units of dBm because
the value is often very low. Rearranging (1), the P, described in unit
dBm given in (2) [72].
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FZ mid-point

d (Distance between hy, and hg, in meter)

Fig. 2. Fresnel Zone illustration.
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Note that P, G,, and G, are often expressed in dBm. Hence, it is
appropriate to perform a unit conversion from mW to dBm given in (3).

P.[dBm]=10"log, 2)

P[dBm]=10-log,, <P[mw]>

1[mW] 3)
(PLdBm])

PmW]=10"10

A typical LPWAN communication is best represented by free-space
path loss (FSPL), as given in (2) [73]. In a real-world environment, the
communication signal experiences reflection from the ground, repre-
sented by the ground reflection coefficient (R) based on the height of
the antenna transmitter (Tx) and receiver (Rx), respectively. For sim-
plicity, this effect is known as the full two-ray model given in (4).

(22(/L)-(/ID)
(FEE=)

i)Z \% Grr +R V Gtr671 ‘
4’ |12 L,

L, =d*+(h, +h,)? “
L_=d*—(h,—h,)

P.=P

r

G, =G,G,,

where A, is the height of LoRa node (Tx) and h,, is the height of LoRa
gateway (Rx) antenna in meter, L, is positive path-length, L_ is neg-
ative path-length, G, to represent antenna gain of G, and G,, respec-
tively, and R constant given by (-1 represents perfect ground reflection,
and O represents zero ground reflection) [74,75].

In free-space propagation, the background noise is accounted for by
the signal-to-noise ratio (SNR). It measures the ratio between the desired
received signal power level, P, to the power level of background
noise, P,,;... SNR is often represented in the logarithmic decibel scale
as many signals have a significant dynamic range, as given in (5). In the
LoRa system environment, the SNR reading subject to SF is used, reflect-
ing its ability for long-distance communication discussed in Section 4.
P, signal

SNR,p =10 log 5)

noise

3.2. Fresnel zone at RMFR

The diverse landscape at RMFR introduces additional communica-
tion losses between the Tx and Rx antennas. These obstacles appear in
the so-called “Fresnel zone (FZ)” due to obstacles (e.g., palm oil trees,
forest trees, and bushes), defined as a point-to-point network drawn in
the shape of a cylindrical ellipse between Rx and Tx. A simple LOS point-
to-point LoRa communications test environment is shown in Fig. 2 to
portray the Fresnel Zone at RMFR.

The FZ mathematical expression given in (6) [48],

Rpy =8.656x 1/ <
F ©)

Dpy = \/df +R2FZ+\/dr2+Rf,Z —n%
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Fig. 3. Illustration of Fresnel zone (FZ) point-to-point LoRa communication at
RMFR a) Fresnel zone 1: ideal-LOS, b) Fresnel zone 2: near-LOS, c) Fresnel zone
3: non-LOS.

Ry is the radius of FZ, d, and d, is the distance between Tx and Rx
reference to FZ mid-point calculated using (7), F is the frequency of
LoRa, and n denoted as n-th FZ.

With reference to (7), FZ mid-point can be calculated by using (6),

hp.+h
FZm: Tx2 Rx
(7)
Fz _hy +hy,
ave — 2

where FZ, is FZ mid-point, A7, and hp, is height of Tx and Rx re-
spectively, FZ,,, is average obstacle height, h, and h;, referring to a
highest and lowest obstacle (e.g. palm oil tree, forest tree, and bushes)
respectively.

The space between Tx and Rx needs to be kept as clear as possible to
maximize communication efficiency. In that case, maximum obstruction
is maintained at 40%, the recommended obstacle is 20% or less [76].
Due to several FZ at RMFR, it can be grouped into three categories as
illustrated in Fig. 3, referred to as Fresnel zone 1 (FZ1) for ideal-LOS,
Fresnel zone 2 (FZ2) for near-LOS, and Fresnel zone 3 (FZ3) for non-LOS.

At this point, three FZ categories, as illustrated in Fig. 3 can be de-
noted via the approximate function given in (8) to portray the terrain
and landscape at RMFR [77]. As given in (4), received power P, varies
with d and hr, and hp,, respectively. Thus, FZ free zone can be calcu-
lated as given in (9).

Fresnel Zone 1 if d < hp,,
P. =1 Fresnel Zone 2 if hp, <d < hy,, (8)

Fresnel Zone 3 if d > hy,

FZ
FZy = (100 - —= X 100%)
Drz

FZcr:FZave _FZch ©)
FZ.,=FZ,—Rp,

where FZy is the available FZ, F Z,, is distance of the obstacle which
crossed the FZ_,, and FZ_, is the FZ center height.
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The most apparent feature of LoRa is its capability to communicate
over a long distance. To achieve this, the data that is represented as
a symbol is transmitted and received using the chirp spread spectrum
(CSS) technique, multiplied with the spreading code or chip sequence
known as the SF [78]. The duration of a chirp signal, T is defined as a
function of bandwidth (BW), and SF as given in (10) [19].

2SF

TS = W (10)

The available BW are 125 kHz, 250 kHz, and 500 kHz, with the
smallest BW contributing to the highest sensitivity for long transmission.
Such a modulation design helps the receiver maintain the received data
even at a further distance.

It is worth noting that the lowest DR with a higher SF provides ample
time on-air with less data transmitted per unit of time, making it suitable
for harsher terrain and landscapes. Under the near-LOS environment,
the highest DR with the lowest SF and shortest time on-air allowed more
data to be transmitted per unit time, becoming an appropriate setup
[19]. The sensitivity level of the receiver relies on the following formula
[79]:

Sensitivity =—170+ log;((BW)+ NF + SNR (11

where NF is the fixed noise floor for a given hardware, and SNR is the
signal-to-noise ratio. SNR is inversely proportional to SF. Consequently,
as BW decreases and SF increases, sensitivity decreases, allowing com-
munication distance to increase. The DR formula is given in (12) [79],

and the list of DR/SF pairs is listed in Table 6.
BW 4
DR=SFX ——-
25F 4+ CR (12)
CR=1,2,3,0r4

4. Data collection and experimental setup

The Malaysian peatland forest is estimated at 1.54 Mha, with 70%
of these forests found in Sarawak, situated in the northern part of Bor-
neo Island; less than 20% in Peninsular Malaysia, and the remainder in
Sabah [80], next to Sarawak. In terms of composition, Malaysian peat-
land is similar to Indonesian peatland in that it is acidic, waterlogged (up
to a 25 m thick layer), and rich in phenol compounds [81]. Despite nu-
merous studies on Malaysian peatland so far, only a few monitoring and
management activities have been carried out in recent years, such as in
[82-85]. To manage fire risk, after work, a system called FDRS has been
adopted from the Canadian Forest Fire Danger Rating System for com-
bating fire events in 1998 [15]. FDRS is a system that monitors forest
fire risk and supplies information that assists in fire management. The
system assists and guides policymakers in developing actions to protect
life, property, and the environment.

The RMFR is a peatland forest reserve, in the district of Kuala Selan-
gor, in the state of Selangor, Malaysia (GPS Coordinates: 3°27°57.42”N,
101°26’29.69”E) as shown in Fig. 1 was chosen for experiment site.
Previously, this peatland belonged to the state government and had
been extensively logged since the 1950s before it was gazetted to be re-
served in 1990. Since then, a series of rehabilitation processes have been
conducted to restore its landscape and return it to its original state. How-
ever, in 2014, RMFR suffered a massive fire that destroyed a large part of
the peatland forest. The burned areas are dominated mainly by species,
such as Macaranga spp. and Imperata cylindrica. The consequence is in-
evitable, with the loss of high-value timber, herbs, habitat, and wildlife
[86].

Two sets of LoRa sensor nodes were set up in the IoT system (refer
Fig. 7), linked to the network infrastructure of the LTE LoRaWAN gate-
way, powered by a solar panel backed by a deep cycle battery. The other
instruments were a weather station and CCTV for security observations,
as shown in Fig. 4.

A 5 dBi dipole antenna was installed on the top of the tower, located
south of the RMFR peatland forest. Presently, the two LoRa nodes mea-
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Fig. 4. Aeriel view of LoRaWAN facilities and infrastructure at RMFR.

sure the GWL under the peat soil surface, developing an improved FRDS
for RMFR peatland forest.

4.1. Land-covers characteristic

The decision to select the land-covers was made to cover diverse
landscapes caused by post-fire events after seeking advice from the
Institute of Tropical and Forestry and Forest Product (INTROP), Uni-
versiti Putra Malaysia (UPM), and Selangor State Forestry Department
(JPNS). Due to differences in forest canopy height, different land use
types emerge at the RMFR, including grassland, light bushes, and dense
palm oil tree plantations. As a result, each land-cover has a distinct FZ
profile, worthwhile to study. Ideally, there should be three FZ categories
labeled at each land-cover as described in Section 3.2. However, none of
these land-cover fall under FZ1, because peatland is prone to regenerat-
ing cycles. After a few years, when fire invades the area, new vegetation
will grow, which is common in peatland after it has caught fire. Because
of this, the region between the transmitter and receiver no longer has
an ideal-LOS.

In this paper, land-cover that the receiver can still see from the trans-
mitter was labeled as FZ2, although there is a forest canopy in between.
While areas in which the region between receiver and transmitter was
completely blocked by forest canopy were labeled as FZ3. Hence, seven
land-covers have been chosen for the RF measurement campaign as
shown in Fig. 5. The land-covers consist of oil palm, forest trees, bushes,
disused sand mines, or a combination of those vegetation types, as re-
ported in [87]. The description of land-covers is depicted in Table 2.

4.2. Fresnel zone model at RMFR

A simple model of F Z; at RMFR was calculated in this paper using
(9) to guide us in interpreting the results in Section 5. A simple model
of FZg consists of two types of plants: a thick and solid trunk tree (rep-
resenting oil palm and forest trees) and a shrub (representing bushes),
as shown in Fig. 6.

The tree height estimation is taken from the observations of the In-
stitute of Tropical and Forestry and Forest Product (INTROP) UPM and
the Selangor State Forestry Department (JPNS) at RMFR. As the height
of plants at RMFR varies depending on its land-covers, the estimation
for maximum and minimum height was considered in the equation, with
heights for Rx and Tx equal to 25 m and 2.26 m, respectively.

« In the thick and solid trunk tree area, the maximum and minimum
heights are 10 m and 4 m, respectively.

« In the shrub area, the maximum and minimum heights are 7 m and
3 m, respectively.

The calculated FZ,, for thick and solid trunk trees and shrubs at
RMFR are tabulated in Table 3 and Table 4, respectively. Seven LoRa
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Fig. 5. Location of LoRa RF measurement campaign at RMFR.

Table 2

Land-covers description (Refer Fig. 5 for each land-covers pictures.

Land-Covers Distance (km) Fresnel Zone

Land-Cover Description

Regeneration peatland area.

Light bushes vegetation with a height range from 3 m to 7 m.

South from gateway tower.
GPS coordinate: 3.4461458, 101.4421353

Replanting peatland area.

Dense forest tree vegetation with height range 5 m to 7 m

Southwest from gateway tower.
GPS coordinate: 3.4574351, 101.4363652

Palm oil plantation.

Dense palm oil tree plantation with height range 4 m to 6 m.

Northeast from gateway tower.
GPS coordinate: 3.4769299, 101.44559924

Regeneration peatland area.

Surrounded by bushes with height range 3 m to 7 m.

Southwest from gateway tower.
GPS coordinate: 3.4464222,101.4342872

Natural peatland area.

Dense forest tree vegetation with height range 7 m to 10 m.

Southwest from gateway tower.
GPS coordinate: 3.4414102, 101.4303454

Regeneration peatland area.

Moderate bushes vegetation with height range 3 m to 7 m.

Southwest from gateway tower.
GPS coordinate: 3.431551, 101.4247281

Natural peatland area.

1 0.1 FzZ2
2 1.1 FZ3
3 1.3 FZ3
4 2.3 FZ2
5 3 FZ2
6 4 FZ2
7 5 FZ2

Dense bushes vegetation with height range 4 m to 5 m.

Southwest from gateway tower.
GPS coordinate: 3.4254318, 101.422008

Channels (Ch) were used to calculate the F Zy, at those frequencies ap-
proved by the Malaysian Communications and Multimedia Commission
(MCMQ), the national communications regulatory agency. The land-
covers nearest to Rx offers the largest FZ,, and this reading subse-
quently degrades as the Tx moves away from the Rx locations.

From Fig. 6, the F Z,, for shrubs is generally higher than the F Z,, for
thick and solid trunk trees at the same distance. Hence, the transmission
path loss and FZg, contribute to the LoRa RF signal quality and data
transmission performance; F'Z, is larger in shrub areas than in large
trees and forest areas. Moreover, there is no or little degradation of F Z,
at different Ch (frequency) on the same land-cover.

As a result, reduced F Zq, contributes to higher path loss, resulting
in lower RSSI, SNR, and FT rate within the RMFR presented in Section 5
and discussed in Section 6. After all, none of these land-covers for data
collection fall into FZ1 (referring to Fig. 5 and Table 2).

4.3. Experimental methodology

The experimental setup consists of a LoRa node (model RHF3M076),
a laptop computer, an external antenna, and a GPS logger, as shown in
Fig. 7. The LoRa node must be registered in an existing LTE LoRaWAN
infrastructure before data can be pushed into the cloud server via an
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Table 3
The Fresnel Zone, F Z,,, as given in (9), was calculated at RMFR for shrub land-
cover.
Land- Available Fresnel Zone, FZy,
Covers Channel, Ch (MHz)
Ch1l Ch2 Ch3 Ch4 Ch5 Ché Ch7
923.2 923.4 922.2 922.4 922.6 922.8 923
1 201.46 201.48 201.38 201.39 201.41 201.43 201.44
2 95.66 95.67 95.64 95.64 95.65 95.65 95.66
3 92.00 92.01 91.98 91.99 91.99 91.99 92.00
4 81.58 81.58 81.56 81.56 81.57 81.57 81.57
5 77.65 77.65 77.63 77.64 77.64 77.64 77.65
6 73.94 73.95 73.93 73.93 73.94 73.94 73.94
7 71.42 71.42 71.40 71.41 71.41 71.41 71.41
Table 4

The Fresnel Zone, FZ,, as given in (9),
solid trunk trees land-cover.

was calculated at RMFR for thick and

55

LoRa frequency

Tabulated in Table 6

Land- Available Fresnel Zone, F Z,,
Covers/ Channel, Ch (MHz)
Ch1l Ch2 Ch3 Ch4 Ch5 Ché Ch7
923.2 923.4 922.2 922.4 922.6 922.8 923
1 157.58 157.59 157.52 157.54 157.55 157.56 157.57
2 82.43 82.44 82.42 82.42 82.42 82.43 82.43
3 79.83 79.84 79.82 79.82 79.82 79.83 79.83
4 72.43 72.43 72.42 72.42 72.42 72.42 72.43
5 69.64 69.64 69.63 69.63 69.63 69.63 69.64
6 67.01 67.01 67.00 67.00 67.00 67.00 67.00
7 65.21 65.21 65.20 65.20 65.21 65.21 65.21
100 SN LoRa Channel Table 5
95 it K Ch1:923.2MHz LoRa system setup.
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Fig. 6. Plot of the calculated available Fresnel Zone, F Z,,, for shrub, thick and
solid trunk trees land-cover at RMFR, based on (9). a) Shrub plants, b) Solid and
thick plants.

LTE network. The LoRa node is enclosed in a rugged case suitable for
outdoor use. An off-road four-wheel drive vehicle was used since the
road and terrain along the land-covers can be harsh, such as gravel,
sand, and mud. An external antenna was attached to the LoRa node
and placed on top of the vehicle to maximize signal reception. Data
collection was entirely controlled and monitored on the laptop com-
puter via a Python script, so individual execution and action could be
taken immediately to address any problem. The setup is illustrated in
Fig. 7.

4.4. LoRa RF setup

The LoRa system setup is summarized in Table 5. As presented in
Table 6, seven channels (Ch) were tested. This frequency spectrum is
reserved for the Malaysian region and approved by the Malaysian Com-
munications and Multimedia Commission (MCMC) [88]. The effect of
LoRa frequency on F Z,,, which reflects the RSSI, SNR, and file transfer
success rate, will be further described in Section 5.

Six DR/SF pairs for the Malaysia region were used [78], with ten
file transfer (FT) attempts for a file size of 13 bytes; this is summarized
in Table 7. For monitoring purposes, each FT transfer sequence is la-
beled as FT,,, where n (n = 1,2,3,...,10) represents the sequence of FT.
The bandwidth (BW) is fixed, at 125 kHz and was used throughout the
measurement campaign.
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Fig. 7. Experimental setup for RF measurement campaign at RMFR.

Table 6
LoRa channels and frequency.

LoRa Channel (Ch)  Frequency (MHz)

923.2
923.4
922.2
922.4
922.6
922.8
923.0

NO s W=

Table 7
LoRa RF Parameter and File Transfer Setup.

Data  Spreading File File
Rate Factor (SF) Transfer Size
(DR)  /Bandwidth (kHz)  Attempt (FT)  (byte)

DRO 12/125 10 13
DR1 11/125 10 13
DR2 10/125 10 13
DR3 9/125 10 13
DR4 8/125 10 13
DR5 7/125 10 13

For easier notation, data collection in this paper included RSSI, SNR,
and FT, which were implemented using Python scripts, summarized in
Algorithm 1. The script is initiated using a single channel, followed by
a DR/SF pair before the FT process. The routine is repeated for the sub-
sequent channels at all land-covers. Then, the FT success rate, FTy, is
calculated and given in (13) at each land-cover.

FT,
FTy = —= x100%
FTry 13)

i=1,2,3, .., 10

where FT is file transfer successfully received, i is file transfer count,
and FT; is total file transfer transmitted for individual pair DR/SF.

Algorithm 1 Classification Process Algorithm.

Input: Set up the LoRa RF with a bandwidth of 125 kHz, using a combination
of 7 channels (Ch) and 6 DR/SF pairs as shown in Table 7. Transmit 10 files
per setup.

Output: Record the LoRa RSSI, SNR, and successful file transmissions at differ-
ent land-cover types, and save the data into CSV format for post-processing
in MATLAB. Store the data as time-series in the CSV file format.
Initialisation:

1: LOOP Process
2: for ch=1to 7 do

3:  while condition DR/SF = True do

4 if FT; <10 then

5: FT, = FT, + 1

6

7

8

9

else {FT; >10}
count FT
Record the RSSI and SNR readings.
end if
10: Proceed with the next DR/SF pair.
11:  end while
12:  Break save the data.
13: end for
14: return

5. Results

This section divides the results into two sub-sections: i) RSSI and SNR
were collected with distance (land-covers), and ii) FT,, was calculated
using DR/SF pairs. First, RSSI and SNR readings (all channels) were
averaged and plotted against land-covers. The FT;, trend at each land-
cover type was then plotted against DR and SF. The Rx and Tx heights
were maintained at 25 m and 2.26 m, respectively.

5.1. RSSI and SNR reading versus distance at RMFR

The theoretical FZ, plotted in Fig. 6 revealed an insight into how
the RSSI and SNR from data collection at RMFR will appear. As pre-
sented in (1) and (5), RSSI reading tends to degrade with the Tx-Rx sep-
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Fig. 8. The average plotted trend for LoRa RF numerical value versus land-covers, and versus DR/SF pairs. The combination of path loss and F Z,, largely contributes
to the degradation of both RSSI and SNR reading as discussed in Section 3. To ensure successful data transmission, rugged vegetation caused by forest canopy often
required a combination of the lowest DR (DRO), highest SF (SF12), and a narrow bandwidth setup, whereas the opposite setup for surrounding with good LOS was
required. [48]. The overall FT success rate trend revealed, the best FT success rate was achieved using a lower DR/higher SF pair at near-LOS (FZ2), and a higher
DR/lower SF pair at non-LOS (FZ3) respectively at land-covers within RMFR as shown in Fig. 8e. a) Average RSSI vs land-covers, b) Average RSSI vs DR/SF pairs,
¢) Average SNR vs land-covers, d) Average SNR vs DR/SF pairs, e) File transfer success rate, FTy, group into respective DR/SF pairs.

aration land-covers, d (height Tx and Rx are maintained in this work).
Furthermore, blockage (referred to as F Z,, factor) between Tx and Rx
contributes to the signal losses. To characterize this event, we grouped
the landscape and terrain at each land-cover given in (7).

The trend in Fig. 8a and Fig. 8c respectively, showed that the RSSI
and SNR degrade with Tx-Rx distance due to path loss. Furthermore, as
discussed in Section 3, the F Z,, contributes significantly to the degra-
dation of both RSSI and SNR. Other observations that can be derived
from these plots are:

Land-cover 1 obtained the best RSSI and SNR readings because it
is closest to the gateway tower (Rx) despite being surrounded by
light vegetation.

Due of the F Z,, factor, land-covers 4 and 5 have higher RSSI and
SNR readings than land-covers 2 and 3.

Land-cover 2 and 3, surrounded by dense oil palm trees and thick
solid trunk trees, respectively, scored lower RSSI and SNR readings
than land-cover 4 and 5.

Land-cover 6 and 7 (near LOS) obtained among the lowest RSSI and
SNR readings due to F Z, and distance factors.
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Average RSSI at each land-cover.
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Land- Available RSSI Reading (dBm)
Covers Channel, Ch (MHz)
Chl Ch2 Ch3 Ch4 Ch5 Ché Ch7
923.2 923.4 922.2 922.4 922.6 922.8 923
1 -60.35 -65.77 -62.64 -62.64 -67.88 -67.28 -67.16
2 -119.50 -119.58 -118.78 -119.41 -120.31 -118.05 -119.30
3 -114.90 -118.59 -117.66 -118.51 -118.93 -117.00 -118.64
4 -108.08 -107.48 -106.42 -107.04 -107.72 -106.37 -106.69
5 -107.04 -109.19 -107.73 -108.41 -111.68 -107.60 -106.52
6 -119.33 -119.71 -118.54 -119.45 -120.50 -118.00 -118.50
7 -119.84 -119.90 -119.10 -119.33 -120.25 -118.45 -119.50
Table 9 Table 10
Average SNR at each land-cover. Best file transfer success rate, FT,, based on DR/SF pairs.
Land- Available SNR Reading (dB) Land- Data Spreading  Average  Average  FT
Covers Channel, Ch (MHz) Covers Rate Factor RSSI SNR Success
0,
chi Ch2  Ch3  Ch4  Chs  Ch6  Ch7 (DR)  (5B) (Bm) (dB) Rate(%)
923.2 923.4 922.2 922.4 922.6 922.8 923 1 5 7 -64.75 9.45 75.71
1 9.81 11.15 1093 1097 11.30  11.15  8.40 § g 1(2) 'E?'zg ':132;9 g;'zg
2 1131 -12.48 881 -10.64  -10.40  -10.92  -8.59 B 3 9 '108'32 ;5 s 88.57
3 2.6122 -3.12 -4.05 -2.52 -3.07 -4.66 -3.68 5 4 s _108‘32 8‘45 94'29
4 6.17 8.39 7.94 8.04 8.13 7.21 6.11 6 0 12 -119'21 1'5 16 27'14
5 7.90 6.65 7.47 7.47 4.85 6.11 6.13 - 5 10 ’119'40 '13‘60 50,00
6 -13.40 -13.62 -13.55 -13.08 -13.85 -17.10 -14.95 ~ . e .
7 -11.70 -13.37 -14.27 -11.91 -13.10 -14.60 -16.60

» Hence, we concluded land-cover 1, 4, 5, 6, and 7, and land-cover 2
and 3 fall into FZ2 and FZ3, respectively.

The plots of the trend shown in Fig. 8a and Fig. 8c are tabulated in
Table 8 and 9, respectively, for easier numerical comparison. Hence, we
can verify that an increased distance between Tx and Rx introduced RF
losses, as explained in Section 3. Therefore, we could hypothesize that
the combination of path loss characteristics and FZ largely contributes
to the observed RSSI and SNR result trend at RMFR.

5.2. File transfer success rate based on DR/SF pairs

The DR/SF pairs and bandwidth determine the transmission and re-
ceiving LoRa system performance in various environments. The rugged
vegetation necessitated a combination of the lowest DR (DRO) and high-
est SF (SF12) and a narrow bandwidth configuration, as well as the
opposite configuration for surrounding areas with good LOS [19]. Since
the land-covers at RMFR vary, it is better to study and analyze FT suc-
cess rates by flagging them according to DR/SF pairs.

At this stage, we managed FTy results by categorizing FT status
based on the pair of DR and SF profiles. From (13), the total FT samples
equal 420 at each land-cover, but the actual FT sample is expected to
be lower because some of the FT failed upon data collection. Table 10
exhibits the best FT success rate based on DR/SF pairs at each land use.
Based on Table 10, the following points could be observed for FTy, at
land-cover within RMFR:

+ At land-cover 1, closest to the Rx, the highest FT success rate is
achieved using the DR5/SF7 pair.

+ At land-cover 7, the farthest point from the Rx, a slightly lower
DR/SF pair is used (DR2/SF10).

+ At land-cover 2 and 6, the DRO/SF12 pair is the most suitable pair,
as the vegetation of the land-cover was harsher than the other land-
cover.

Fig. 8b and Fig. 8d respectively, show the plots of RSSI and SNR

readings received by the LoRa gateway (Rx) from the LoRa node (Tx)
against various DR/SF pairs. The modulation scheme of LoRa strongly
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depends on DR/SF pairs, as described in Section 3 given in (12). From
this plot, the following conclusion could be drawn:

+ Land-cover 1 exhibits the highest RSSI, and SNR reading is expected
since it has the highest F'Z,, and closest to the LoRa gateway (Rx).

+ Land-cover 3 and 4 have RSSI and SNR higher than land-cover 2
and 3, mainly due to the FZ factor, as described in (8).

« The RSSI and SNR readings of LoRa are related to the path loss
characteristics and FZ when they are grouped by DR/SF pairs.

The overall FT success rate trend is portrayed in Fig. 8e, and it shows
that the land-covers of near-LOS within RMFR achieved the best FT suc-
cess rate using a lower DR and higher SF pair. In contrast, for land-covers
under non-LOS within RMFR, a higher DR and lower SF pair is more ap-
propriate. Under these circumstances, the DR5/SF7 pair failed to receive
the data, mainly due to the longer distances and harsh terrain and land-
scape within RMFR.

6. Discussion

Results in Section 5 demonstrate that each land-cover achieved the
highest FTy, by utilizing a dedicated pair of DR/SF, as indicated in Ta-
ble 6. Based on these findings, we propose that LoRa sensor nodes within
the RMFR be configured with specific DR/SF pairs to optimize trans-
mission performance, as illustrated in Fig. 9. For instance, the DR5/SF7
pair is well-suited for good LOS conditions, as observed in land-cover
1. Conversely, in areas with dense vegetation, such as land-cover 2, the
DRO/SF12 pair is ideal for non-LOS scenarios.

We have observed that the positioning of the gateway tower antenna,
as depicted in Fig. 4, potentially impacts the quality of FTy, within the
land-cover areas of RMFR. By referring to Fig. 5, we note that only land-
cover 1 and 3 have the gateway antenna facing away from the LoRa test
node situated at the respective land-covers. The FTy, trend, particularly
for land-covers 1 and 3, will be discussed in the following points:

+ FT,, atland-cover 1 scores lower than other land-cover despite be-
ing closer and having the best RSSI and SNR readings (refer Table 7
and 8 respectively) compared to other land-cover locations.
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Fig. 9. Visual representation of RMFR land-cover types with corresponding LoRa performance parameters (DR/SF pairs setup), based on experimental results reported
in this paper. Light vegetation areas (DR5/SF7) are shown to be suitable for LOS communications, while dense vegetation areas (DR0/SF12) are suited for non-LOS

communications.

Table 11
Correlation Coefficient Score of LoRa RF Parameter
against Ambient Temperature.

Land- Average Correlation Correlation

Covers  Temperature  Coefficient Coefficient
Q) (RSSIvs °C)  (SNR vs °C)

1 29.22 -0.4776 -0.1506

2 30.70 0.1276 0.1849

3 32.01 0.1220 0.2641

4 32.46 -0.1146 -0.0997

5 27.73 -0.0826 -0.0291

6 23.93 0.2796 -0.3349

7 24.32 0.3542 -0.3243

+ Land-cover 3 FTy, scores lower than land-cover 2, despite having
slightly higher F Z,, as shown in Fig. 6.

» The cone-shaped roof of the gateway tower where the antenna is
attached might have introduced additional blockage and interfer-
ence between Tx and Rx, which results in higher failed file transfers
for land-cover 1 and 3. This is shown in Fig. 4.

In evaluating the performance of FTy, at different land-cover areas
within RMFR, it is beneficial to group them based on DR/SF pairs. This
approach has been validated and extensively investigated in recent stud-
ies [20,21], as supported by the FTy, results presented in Section 5. Ad-
ditionally, we analyzed the correlation between LoRa RF performance
and the average RSSI and SNR readings in relation to ambient temper-
ature. However, none of the temperature readings exhibited a strong
correlation coefficient, as indicated in Table 11. Therefore, the ambient
temperature factor does not significantly influence the performance of
LoRa RF in the land-cover areas within RMFR.

Seamless data transmission from LoRa in the land-cover areas within
RMFR is crucial to ensuring that data recorded by the sensor nodes are
successfully transmitted and stored in the cloud. This reliable data can
then be utilized to feed the FDRS prediction model, specifically designed
for the peatland forest in RMFR, to enhance the accuracy of the peatland
forest fire prediction. Furthermore, the following associated works are
planned for future research:
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1) To conduct a measurement campaign in other RMFR land-covers in
order to collect LoRa data. This is important to obtain insights on
how LoRa RF will behave in the thick peatland forest ecosystem.

2) To raise the LoRa gateway antenna higher to maximize the recep-
tion signal between Tx and Rx within the RMFR peatland forest.

3) Tuning the CR provides insight into the LoRa end-to-end commu-
nications performance, such as data rate, error correction capacity,
and range factor [89].

4) To develop an improved FDRS prediction model for RMFR by com-
bining satellite images of topography and land-covers at RMFR with
in-situ data from a LoRa sensor node.

While the main focus of this paper is studying the optimal DR/SF
pairs for reliable data transmission using LoRa in peat swamp forests
in Malaysia, the utilization of remote-based technology aligns with the
keywords used in the methodology by S. Monteverde et al. in their
work on ‘management and rehabilitation of peatland’ [29]. This paper
contributes to identifying gaps in the existing literature (discussed in
Section 1) and aligns with ongoing efforts in peatland restoration and
management. The implementation of the LoRa system has the potential
to complement and enhance peatland forest management, as discussed
in Section 2. In Section 3, a comprehensive technical description of
the use of LoRa has been provided, offering a clear understanding of
the technical definitions used to explain the methodology. LoRa oper-
ates under a spectrum reserved internationally for industrial, scientific,
and medical (ISM) use and is widely used for research and scientific
purposes, without any financial commitment required for spectrum li-
censing. Combining the keywords of lower operating costs, lower power
consumption, and remote capability, the study presented in this paper is
expected to significantly contribute to reducing financial commitments
in efforts to restore and manage peatland forests [30].

7. Conclusion

This study investigated the optimal DR/SF configurations for reliable
LoRa data transmission across different land-cover types within RMFR.
The analysis evaluated the file transfer success rate (FT %) across six
Data Rate (DR) and Spreading Factor (SF) values, identifying DR/SF
pairings that maximize transmission reliability. These configurations en-
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able consistent data collection within RMFR’s peatland forest, support-
ing the development of an improved Fire Danger Rating System (FDRS).
Beyond RMFR, the proposed DR/SF model provides a practical refer-
ence for LoRa RF planning in other peatland forests across Peninsular
Malaysia, such as those in Batu Enam, Jalan Pekan, and Penor/Kuantan
District, Pahang. The findings offer valuable insights for local authori-
ties, researchers, and stakeholders in mitigating peatland forest fires and
ensuring the sustainability of communities reliant on peatland ecosys-
tems. Furthermore, these results contribute to a broader understanding
of LoRa RF deployment in complex environments. The proposed model
and transmission guidelines could serve as a reference for optimizing
LoRa-based monitoring in other peatland ecosystems, facilitating ad-
vancements in environmental surveillance, resource management, and
ecological conservation.
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