

UNIVERSITI PUTRA MALAYSIA

VIDEOGRAMMETRY TECHNIQUE FOR ARM POSITIONING OF BIO-PRODUCTION ROBOT

MOHD. HUDZARI RAZALI

FK 2002 65

VIDEOGRAMMETRY TECHNIQUE FOR ARM POSITIONING OF BIO-PRODUCTION ROBOT

By

MOHD. HUDZARI RAZALI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the Degree of Master of Science

September 2002

DEDICATION

"Indeed We have sent Our Messengers with clear proofs, and revealed with them the Scripture and the Balance (justice) that mankind may keep up justice. And We brought forth iron wherein is mighty power, as well as many benefits for mankind, that Allâh may test who it is that will help Him (His religion), and His Messengers in the unseen. Verily, Allâh is All-Strong, All-Mighty."

(Al-Quran means, AL-Hadiid (iron), 25)

iii

Abstract of thesis to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Master of Science

VIDEOGRAMMETRY TECHNIQUE FOR ARM POSITIONING OF

BIO-PRODUCTION ROBOT

By

MOHD. HUDZARI RAZALI

September 2002

Chairman: Prof. Dr. Ir. Wan Ishak Wan Ismail

Faculty: Engineering

This thesis describes the development of the 'robot eye' system for agriculture robot to

predict actual distance of the target object. Videogrammetry technique and triangulation

method were used to measure distance of the target object. By 'clicking' on the image

displayed on the user interface, the 3-dimensional (3D) distance of the target from robot

arm will be generated and sending a signal to the robot to grip the selected target. The

mathematical model of the robot arm applied real time simulation and was developed for

use in the computing process. The 'robot eye' used WebCam digital cameras for 3D

coordinate measurement that displayed the real environment in the user interface that was

created using Visual Basic Version 6. The robot tool was designed, built and modified for

this project using computer control and pneumatic drive system. The emphasis of the

fabrication was to emulate the function of picking and harvesting of agricultural products.

Robot communication was developed using ICP- DAS I/O modules that remotely sense

up to a distance of 100 meters. This conceptual project is suitable for further research on

'robot eye' development using the non-contact measurement of 3D coordinate detection of the target object in real time mode.

v

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Master Sains

VIDEOGRAMMETRY TEKNIK UNTUK PENENTUAN PERGERAKAN LENGAN ROBOT PERTANIAN

Oleh

MOHD, HUDZARI RAZALI

September 2002

Pengerusi: Prof. Dr. Ir. Wan Ishak Wan Ismail

Fakulti: Kejuruteraan

Tesis ini mengolah tentang pembangunan sistem 'robot eye' untuk robot pertanian yang

berkeupayaan untuk menentukan jarak sebenar objek sasaran. Teknik Videogrammetry

dan penyegitigaan digunakan dalam menentukan ukuran jarak objek sasaran. Dengan

'mengklik' imej pada paparan antaramuka penguna di skrin monitor komputer, kordinat

3-dimensi (3D) titik sasaran dari robot diperolehi dan isyarat akan dihantar ke robot

seterusnya bergerak untuk mencapai objek sasaran. Model matematik telah dibangunkan

dalam komputer bagi menghasilkan simulasi robot masa sebenar. Sistem 'robot eye' ini

menggunakan dua buah kamera digital berjenama WebCam bertujuan untuk memaparkan

imej persekitaran pada paparan antaramuka penguna di komputer yang dibangunkan

mengunakan perisian Visual Basic Versi ke-6. Dalam projek ini, sistem robot telah

melalui proses rekabentuk, penyambungan dan pengubahsuaian dengan mengambilkira

sistem kawalan berkomputer dengan pemanduan sistem berkuasa pneumatik. Tujuan

utama sistem adalah untuk menjalankan kerja menuai dan memungut produk pertanian.

Sistem komunikasi robot dibangunkan dengan menggunakann ICP-DAS I/O modul yang dapat dikawal secara kawalan tanpa wayar berjarak 100 meter. Konsep projek yang dijalankan adalah sesuai diterokai dalam membangunkan 'robot eye' yang berkebolehan untuk menentukan sasaran kordinat 3D tanpa sentuh dalam masa sebenar.

ACKNOWELDGEMENTS

ALHAMDULILLAH, PRAISES and THANKS belong ONLY to ALLAH

S.W.T for giving me the opportunity to interact with the following people throughout the course of this study which I hope will contribute to the welfare of mankind for LIFE AND HEREAFTER successfully.

First and foremost, I would like to express sincere thanks and gratitude to those involved direct and indirectly in giving advice, encouragement, guidance, understanding and assistance throughout this research project and in the preparation of the thesis. They are Prof. Dr. Ir. Wan Ishak Wan Ismail, whose excellent supervision and numerous discussions were instrumental for the completion of the thesis and members of the supervisory committee, Assoc. Prof. Dr. Napsiah Ismail, Dr. Abdul Rashid Mohamed Shariff and Assoc. Prof. Dr. Md. Nasir Sulaiman.

My deepest appreciation also goes to Mr. Zakiria Ismail, the laboratory technician, for his ideas and support and to officer science Mr. Mohd Saufi Mohd Kassim, research engineer Mr. Mohd. Sal Salsidu, master student Mr. Steven Lim and not forget also to my colleagues at STMicroelectronics, Muar and KUiTTHO, Parit Raja for their invaluable assistances.

Finally, I would like to thank my parents, family and members who cared, supported, prayed and motivated me to seek knowledge and to complete the research project.

TABLE OF CONTENTS

		Page
DEDICATIO	ON	ii
ABSTRACT		iii
ABSTRAK		v
ACKNOWL	EDGEMENTS	vii
APPROVAL	SHEETS	viii
DECLARAT	TION FORM	x
LIST OF FIG	GURES	xv
LIST OF PLA	ATES	xvii
LIST OF TABLES		xvii
LIST OF AB	BREVIATIONS	xix
CHAPTER		
1	INTRODUCTION	1
	Objectives	4
2	LITERATURE REVIEW	6
	Agriculture Robot System Design	9
	Robot Control System	11
	Robot Drive System	11

Robot in Industrial Application	13
Vision Application On Semiconductor Industry	15
Robot in Agricultural Application	20
Vision System On Agriculture Application	23
Robot Kinematics and Dynamic	24
The Denavit-Hertenberg Algorithm Notation	26
Digital Camera	29
Sensor and Data Acquisition	31
Image Processing and Display	32
Videogrammetry Application	33
Vision Application in Metrology Services	34
Videogrammetry Application in Measurement Industries	35
Automation and Control System	36
Universal Serial Bus Port	37
Wireless Data Acquisition Hardware	39
Programmable Logic Controller	43
Visual Basic Programming language	44
Software Automation	45
MATERIALS AND METHODOLOGY	47
Introduction	47
Design and Fabrication of Robot Arm System	48
Modification of Robot Arm	50
Robot Structure	53

3

Robot Drive System	55
Robot Technical Specifications	56
Robot Control System	59
Robot Pneumatic Circuit	59
System Algorithm	61
Automation Software	63
Intelligent Robot System	65
Cameras and Data Acquisition	68
Mathematical Model	70
Videogrammetry and Triangulation	73
Calculation Method	80
Forward Kinematics Problem	83
Inverse Kinematics Problem	87
Robot System Calibration	91
Videogrammetry Calibration	93
Robot System Accuracy	96
RESULT AND DISCUSSION	97
Robot System Modification	97
Robot Positional Accuracy	98
Real Time Simulation Error	99
Mathematical Model	100

4

BIODATA OF THE AUTHOR

127

LIST OF FIGURES

Figure		Page
1	Reconstruction 3 - dimensional (3D) coordinates using	
	2-projection shadow for triangulation	18
2	D-H represent the transformation matrix between links	27
3	ICP-DAS output module block diagram	41
4	Complete robot communication system	51
5	Interaction between the system components	54
6	The arrangement of robot actuators	56
7	Robot arm parameters and configuration	58
8	Symbol of DC24V solenoid directional valve	60
9	Control system pneumatic circuit	61
10	Flow chart of robot operation	62
11	Relation function of DLL file	64
12	Complete graphics simulation algorithm	71
13	Top view of robot angle movements	72
14	Overlap area for 3D coordinate reconstruction	73
15	3D coordinates extraction by triangulation	75
16	The 3D measurement of the target base on robot	
	Cartesian coordinate	78

17	Comparisons Between Single and Multiple	
	Point Triangulation	79
18	Top view of basic simulation program of robot rotation	81
19	Basic simulation program for up/down movement of	
	robot top view	82
20	The D-H link approach of robot arm	88
21	The top and side view of robot workspace	90
22	The relationship between format size, lens focal length	
	and field of view	92
23	The target arrangement of a camera calibration device	95
24	The complete algorithm system	102

LIST OF PLATES

Plate		Page
1	The first robust walking forestry manipulator	10
2	The schematic of USB ports load capability	39
3	The completed robot structure	49
4	Arrangement of robot gripper and scissors of end-effector	50
5	The main window of user interface	52
6	The simulation window of robot user interface	53
7	Arrangement of robot solenoid valves	55
8	DLL file for video source code programming	66
9	Camera control parameter of user interface	68
10	Camera position on robot arm	76
11	Method of on-job Videogrammetry calibration	
	(Indicator shows the reflective object positions)	95
A	The main windows of VBP	115
В	The robot simulation form	116
C	Desktop shows WebCam.exe and VBP.VBP	117
D	Line shows the Source menu bar	117
Е	Camera control toolbox	118
F	Capture button on WebCam window	118
G	Video source menu for camera selection	119
Н	Camera control on VBP menu bar	119
I	Line indicated load image menu bar	120

LIST OF TABLES

Table		Page
1	The propriety rating schematic of drives system	12
2	Robot actuators specifications	56
3	Pneumatic motor characteristics	57
4	Robot arm dimension	58
5	Robot parameters for simulation development	83
6	Results from D-H robot parameters	84
7	The Target Distance for; $X = 0 - 10$ mm,	
	Y = 25mm, $Z = 0 - 5$ mm	107
8	The Target Distance for ; $X = 0 - 10$ mm,	
	Y = 30mm, $Z = 0 - 10$ mm	107
9	The Target Distance for; $X = 0 - 10$ mm,	
	Y = 48mm, Z = 0 - 10mm	108
10	The Target Distance for ; $X = 0 - 10$ mm,	
	Y = 48mm, Z = 0 - 15mm	108
11	Results for camera calibration	110

LIST OF ABBREVIATIONS

API : Application Programming Interface

ASIC : American Standard Intergrated Circuits

BASIC : Beginner's All Purpose Symbolic Instruction Code

CCD : Charge Couple Device

CMOS : Complementary Metal Oxide Semiconductor

CPU : Computer Processing Unit

D-H : Denavit and Hertenberg

DLL : Dynamic Link Library

DOF : Degree of Freedom

f : Focus Len

FDP : Forward Dynamic Problem

ICP-DAS : Industrial Computer Processing – Data Acquisition System

IDE : Integrated Development Environment

IDP : Inverse Dynamic Problem

INCA : Intelligent Camera

I/O : Input/Output

IK : Inverse Kinematic

OGP : Optical Gauging Product

PLC : Programming Logic Controller

RF : Radio Frequency

RS : Remote Sensing

UI : User Interface

USB : Universal Serial Bus

VB : Visual Basic

VMS : Vision Metrology Service

Ai : Joint Link no.

 θ_{ι} Rotation angle including axes $x_{\iota-1}$ and x_{ι} about $z_{\iota-1}$ axis

 α_i : Rotation angle including axes z_{i-1} and z_i about x_i axis

 d_i Translating distance of intersection z_{i-1} from x_i along z_{i-1} axis

 a_i Translating distance of intersection x_i from z_{i-1} along x_i axis

3D : 3-Dimension

CHAPTER 1

INTRODUCTION

Malaysia is a developing country with a rapidly growing manufacture-based economy. With the recent economic recession, agriculture emerged as a fundamental resource which is once again gaining increasing importance in our economy. For several decades, Malaysia was the largest producer of agricultural products especially palm oil and rubber. This makes Malaysia a model to emulate for other third world countries seeking information and technology relating to our agricultural activities. The onus is on researchers and academicians to carry out value-added research to modernise our agricultural sector towards vision 2020.

The idea of applying robotics technology in agriculture is new. Today, there are many projects related to robot development for agriculture that is mostly related to application of industrial robot and information technology on agriculture. Robots and automation in agriculture are required mainly at the harvesting stage, irrigation, fertilization and monitoring activities For instance the fruit picking robot and sheep shearing robot are designed to replace human labour. The agricultural industry is lagging behind other industries in using robots because agriculture involves jobs that are not mechanized and though repetitive, the tasks change with time. In most cases, several factors have to be considered like size and colour of the fruit to be picked before the commencement of a task.

The agricultural sector is very different from the industrial sector. Unlike in the industrial situation, where each component on a production line is the same, variability is ever present in agricultural sector. Despite the best efforts of plant and animal breeders, agricultural products even if genetically identical are quite different

when measured in engineering terms. The physical properties of agricultural products such as size, colour, shape, hardness are vary even when they are of the same variety and the robot for agricultural sector are required to work under various conditions as above such as natural illumination, hilly terrain and weather conditions. These robots have to be robust to withstand the problems caused by water, dust and weather conditions and still needs to review with certain consideration and suitability.

As agriculture deals with the natural world, fabrication of robots is difficult, as it has to meet variable requirement. Few, if any, robotic systems have reached commercial realization for example, milking, mushroom harvesting and grass cutting (the latter being an amenity rather than an agricultural application). Thus, agricultural robotics is mainly appears to be an area of research interest to research scientists and engineers to industrialise the nature variability. Natural variability generally means that any agricultural robot needs to sense changes in the products to be handled. Perhaps the most investigated sensing technique is machine vision where the attractions include the non-contact nature of the sensor, the large amount of data delivered, the cheap and commonly available hardware, and the realization to make very effective use of vision application. The downside to machine vision is that it is at least as difficult as robotics, especially when dealing with natural situations.

The retina of the human eye does not perceive light in a precisely uniform manner. Further, the eye tends to overestimate or underestimate the level of intensity of an image under varying conditions, such as in situations when relative contrasts are exceptionally high or low. Also, the eye tends to become fatigued over time. The variations of lighting intensity from time to time and place to place, causing difficulty in developing a complete vision system in terms of automatic recognition of the object's colour especially the mature fruit. The developed system should have

a bundle of mature fruit database including a variant degree of illuminating intensity at certain times and place, the object or fruit pattern, weather condition, example cloudy. During the system operation, all databases will be retrieved and compared with various models of expected results to infer the true nature of the original or set of objects from images formed. The system should also be able to coordinate the distance of the recognized object in random space. According to the rules of Images Process:

- The pixel dynamics is 256 grey values per pixel (picture elements) measured on bit 8 bit digital value.
- A grey value 0 means completely black while a grey value of 255 means completely white.

This principle was widely used in machine vision system, where programs can be developed to sense every reading of grey values of pixels in digital terms, which can be manipulated for controlling such devices. From this point of view, the entire video scene can be programmed according to the specific requirements of user applications.

In this project, the developed system was able to generate 3D coordinates of the object based on information given by the video and picture scene and the picture character can controlled which burden the illumination problem that happen on existing vision development system using RGB camera. Inside the camera control box there is brightness controller, illumination and sharpness. These 3D coordinates were applied in mathematical model approach for the movement of robot manipulator simulation. By predicting the robot's work area, a scale was developed to simulate the robot's working area in the computer system where the robot will move to a selected target using a mouse click action with the actual and visual robot

movement being exactly the same. This method referred to as Videogrammetry, uses video to ascertain the geometry of the object. It has an advantage in terms of non-contact measurement application that has emerged from the contact measurement technology like using laser range sensor. The video and picture will be collected in a dynamic scene mode using stereo camera. By developing the interface software, the above concept can be applied on robotics and combined with solenoid robot for developing an actuating device. The communication between the interface software, the camera and the solenoid valve will be activated using driven software that can be stored in any computer system termed Dynamic Link Library file (DLL). Visual Basic programming language can be used to manipulate it according to requirements.

Objectives

The use of engineering equipment in agriculture activities is projected to increase the productivity compared to the conventional methods. Even though, the use of robotics is very new but as a starting point there should be an extensive research to identify all the challenges in the agriculture field. Each component on agriculture is an ever present whereby most variable concerns are the position of the fruit.

This project used an application of the stereo camera to predict the 3D target distance by using 'mouse clicking' action on a computer screen. This distance value will be sent through the mathematical algorithm on developed software and finally will act as electrical signals to trigger solenoid valves causing real time robot movement. Otherwise the general aim of this research is to introduce the application of a non-contact measurement system for the agriculture robot.

