|| UNIVERSITI PUTRA MALAYSIA
[BERILMU BERBAKTI

MULTI-OBJECTIVE ALGORITHMS FOR EFFECTIVE RESOURCE
MANAGEMENT IN EDGE-FOG-CLOUD COMPUTING

By

FATEN AMEEN SAIF MOHAMMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of
Philosophy

August 2023

FSKTM 2023 6



All material contained within the thesis, including without limitation text, logos, icons,
photographs and all other artwork, is copyright material of Universiti Putra Malaysia
unless otherwise stated. Use may be made of any material contained within the thesis for
non-commercial purposes from the copyright holder. Commercial use of material may
only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
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Chair : Rohaya Binti Latip, PhD
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Edge-Fog-Cloud computing is a platform that facilitates the processing of IoT tasks that
generate a massive amount of data from edge computing. Small or delay-sensitive tasks
should be sent to fog computing, while complex or large-scale tasks must be transferred
to the cloud data center due to its enormous capabilities in computation and storage.

However, workload allocation remains a critical concern, involving the allocation of
sensitive tasks to edge-fog computing and large complex tasks to edge-cloud computing
to meet user requirements based on their specific characteristics. The diversity of task
attributes, such as input length, computing unit requirements, and sensitivity to delays,
presents challenges in distributing workloads across different computing layers,
resulting in both load overhead and increased transmission delays. The second crucial
issue is task scheduling, which revolves around efficiently scheduling tasks to suitable
resources across various computing layers while considering the unique characteristics
of each task. Inefficient scheduling can result in increased transmission delays in edge-
cloud computing, particularly due to the long distances involved, as well as higher
energy consumption in edge-fog computing. The third problem concerns task offloading.
When processing massive Edge tasks, computational devices may unexpectedly shut
down due to the network's dynamic nature or power issues, leading to the interruption
of task execution and incomplete processing. Offloading uncompleted tasks randomly
to any computational node for execution can result in inefficient resource utilization and
increased energy consumption.

There are three (3) main objectives laid out in this thesis to tackle these issues. First,
proposed the Non-dominated Particle Swarm Optimization (NPSO) algorithm for
workload allocation to reduce transmission delay in edge-cloud computing and
imbalance load degree in edge-fog computing. Second, proposed a Multi-objective Grey
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Wolf Optimizer (MGWO) algorithm for optimizing task scheduling to reduce
transmission delay on edge-cloud computing and energy consumption on edge-fog
computing. Third, proposed a Multi-objective Firefly (MFA) algorithm for task
offloading to maximize resource utilization on edge-cloud computing and reduce energy
consumption on edge-fog computing. Simulations were conducted to evaluate the
proposed algorithms compared to the PSO algorithm, Cloud-Fog Cooperation
Scheduling algorithm, and Task offloading algorithm. The experimental results prove
the effectiveness of the proposed algorithms and outperform comparing them. Thus, the
NPSO algorithm reduces the imbalance load degree in edge-fog computing by an
average of 6% and the transmission delay in Edge-cloud computing by an average of
25%, respectively. In addition, the MLLF algorithm reduces the maximum delay
threshold by an average of 11% compared with other related algorithms. Besides that,
the MGWO algorithm reduces energy consumption in edge-fog computing by an
average of 32% and the transmission delay on edge-cloud computing by an average of
22% compared to another approach. In comparison, the MFA algorithm reduces energy
consumption in edge-fog computing and maximizes resource utilization in edge-cloud
computing by an average of 23% and 86%, respectively. Finally, this study has several
limitations that can serve as avenues for future research. These include the consideration
of heterogeneous resources, the incorporation of additional QoS objectives, and the
adoption of machine learning techniques for detecting threats within the edge-fog-cloud
computing environment and predicting incoming tasks.
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ALGORITMA BERGANDA UNTUK PENGURUSAN SUMBER YANG
EFEKTIF DALAM KOMPUTASI HUJUNG-KABUT-AWAN

Oleh

FATEN AMEEN SAIF MOHAMMED

Ogos 2023
Pengerusi : Rohaya binti Latip, PhD
Fakulti : Sains Komputer Dan Teknologi Maklumat

Komputasi hujung- kabut- awan adalah satu platform yang memudahkan pemprosesan
tugas-tugas loT yang menghasilkan jumlah data yang besar daripada komputasi Hujung.
Tugas-tugas yang kecil atau peka terhadap kelewatan sepatutnya dihantar kepada
komputasi kabut, manakala tugas-tugas yang kompleks atau berskala besar harus
dipindahkan ke pusat data awan kerana kapabilitinya yang besar dalam pengkomputeran
dan penyimpanan.

Walau bagaimanapun, lokasi beban kerja tetap merupakan satu kebimbangan penting,
yang melibatkan penyerahan tugas-tugas yang peka kepada komputasi Hujung-Kabut
dan tugas yang kompleks kepada komputasi hujung-awan untuk memenuhi keperluan
pengguna berdasarkan ciri-ciri khas mereka. Pelbagai ciri-ciri tugas, seperti panjang
input tugas, keperluan unit pengkomputeran, dan kepekaan terhadap kelewatan,
mencipta cabaran dalam pengagihan beban kerja di antara lapisan komputasi yang
berbeza, mengakibatkan beban berlebihan dan peningkatan kelewatan penghantaran. Isu
kedua yang penting adalah penjadualan tugas, yang berkisar dalam kecekapan menjadual
tugas kepada sumber yang sesuai di seluruh lapisan komputasi yang berbeza sambil
mempertimbangkan ciri-ciri unik setiap tugas. Penjadualan yang tidak cekap boleh
mengakibatkan peningkatan kelewatan penghantaran di dalam komputasi hujung-awan,
terutamanya disebabkan oleh jarak yang jauh, serta penggunaan tenaga yang lebih tinggi
dalam komputasi Hujung-Kabut. Isu ketiga melibatkan penyerahan tugas. Apabila
memproses tugas loT yang besar, peranti pengkomputeran mungkin mati dengan tiba-
tiba disebabkan oleh sifat dinamik rangkaian atau masalah kuasa, menyebabkan
gangguan dalam pelaksanaan tugas dan pemprosesan yang tidak lengkap. Penyerahan
tugas yang tidak lengkap secara rawak ke nod komputasi apa pun untuk pelaksanaan
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boleh menghasilkan penggunaan sumber yang tidak efisien dan peningkatan penggunaan
tenaga.

Terdapat tiga (3) objektif utama yang ditetapkan dalam tesis ini untuk menangani isu-isu
ini. Pertama, mencadangkan Algoritma Optimisasi Tumpuan Partikel yang Tidak
Ditentukan (NPSO) untuk penyerahan beban kerja dengan tujuan mengurangkan
kelewatan penghantaran dalam komputasi hujung-awan dan tahap ketidakseimbangan
beban dalam komputasi hujung-kabut. Kedua, mencadangkan Algoritma Pengoptimum
Serigala Kelabu Objektif Berganda (MGWO) untuk mengoptimalkan penjadualan tugas
dengan tujuan mengurangkan kelewatan penghantaran di dalam komputasi Hujung-
Awan dan penggunaan tenaga di dalam komputasi kabut. Ketiga, dicadangkan Algoritma
Kunang-kunang Objektif Berganda (MFA) untuk penyerahan tugas dengan tujuan
memaksimumkan penggunaan sumber dalam komputasi Hujung-Awan dan
mengurangkan penggunaan tenaga dalam komputasi Hujung-Kabut. Simulasi telah
dijalankan untuk menilai Algoritma yang dicadangkan berbanding dengan algoritma
PSO, algoritma Penjadualan Kerjasama awan-kabut, dan algoritma Penyerahan Tugas.
Keputusan eksperimen membuktikan keberkesanan Algoritma yang dicadangkan dan
melebihi pendekatan yang dibandingkan. Oleh itu, Algoritma NPSO mengurangkan
tahap ketidakseimbangan beban dalam komputasi hujung-kabut secara purata sebanyak
6% dan kelewatan penghantaran dalam komputasi hujung-awan secara purata sebanyak
25%. Selain itu, Algoritma MLLF mengurangkan ambang kelewatan maksimum secara
purata sebanyak 11% berbanding dengan Algoritma yang berkaitan yang lain. Selain itu
lagi, Algoritma MGWO mengurangkan penggunaan tenaga dalam komputasi Kabut
secara purata sebanyak 32% dan kelewatan penghantaran dalam komputasi hujung-awan
secara purata sebanyak 22% berbanding dengan pendekatan yang lain. Sebagai
perbandingan, Algoritma MFA mengurangkan penggunaan tenaga dalam komputasi
hujung-kabut dan memaksimumkan penggunaan sumber dalam komputasi hujung-awan
secara purata sebanyak 23% dan 86% secara purata, masing-masing. Akhirnya, kajian
ini mempunyai beberapa kelemahan yang boleh menjadi hala tuju untuk kajian masa
depan. Ini termasuk mempertimbangkan sumber-sumber yang heterogen,
menggabungkan objektif QoS tambahan, dan mengadopsi teknik pembelajaran mesin
untuk mengesan ancaman dalam persekitaran hujung-kabut-awan computing dan
meramalkan tugas-tugas yang akan datang.
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CHAPTER 1

INTRODUCTION

This chapter presents the research background, problem statements, and motivations of
the current work. It also discusses the research objectives, the scope of the research, and
research significance. In addition, it highlights the research contributions that justify the
benefits and clarify the implications of this research. Finally, this chapter summarizes
the organization of this thesis.

1.1 Background

Internet of Things (IoT) has known as Edge computing which is a new paradigm
representing the connectivity of the billions of physical devices over the world with the
Internet (Ezechina et al., 2015), all gathering and sharing data with confirming the use
of smart devices that can act without human involvement. Hence, the increasing growth
of edge devices/sensors in daily life facilitates various aspects that enables devices,
humans, and things to instantly communicate for making a smarter world, such as smart
cities, smart transportation systems, smart health services, smart industries, smart homes,
smart farming, and smart security. The total number of edge devices connected
worldwide will increase to 30 million by 2020, and it will dramatically increase to 80
billion by 2025, almost triple within a five-year. In 2025 the prediction is that 152,000
new devices will connect to the Internet per minute (Kanellos, 2016). Even more, the
astronomical amount of data that demands storage, decision-making, managing, and
analysis is delivered to the Cloud computing, which are massive pools of virtualized
resources that can be accessed and reconfigured dynamically for a large-scale workload
that is valuable for the services of Cloud that are delivered with a pay-as-you-go cost
model (Vaquero et al., 2009). Generally, the innovation of Cloud computing provides
massive benefits to the IoT environments through its models that can be shared as
services through the Internet, such as storage, the infrastructure of the network,
computing energy, and online applications (Mebrek et al., 2017). On the other side, the
innovation of fog computing provides a huge benefit to overcome the limitation of the
cloud computing which is considered as a middleware containing multiple
heterogeneous devices that are ubiquitously connected, such as base stations, routers,
switches, surveillance cameras, and others that can deploy in places such as power poles,
vehicles, and commercial centers. These devices are decentralized on the edge
computing to provide instant processing of raw data from the sensors. Furthermore, fog
computing can communicate within the same layer regarding processing problems
(Aburukba et al., 2020). Fog commuting act as an intermediate layer between terminal
devices and the cloud, and extend the cloud in low latency-sensitive application to the
end users like video conferencing, online gaming, sensor networks, pipeline monitoring,
smart connected vehicles, smart traffic lights, and so on (Deng et al., 2016b). However,
the various features and capabilities of edge, fog, and cloud motivated the researchers to
executing tasks in collaborated platform called edge-fog-cloud computing as seen in
Figure 1.1 (Stojmenovic et al., 2016). It is a new paradigm that cooperates edge-fog-



cloud in one platform to exploit their benefits for serving edge tasks. It consists of three-
level: the bottom level consists of the edge layer with terminal devices, embedded
systems, actuators, sensors, limited bandwidth, and energy that send the data from smart
devices sends them to a higher level when they require a high computational. However,
edge computing have limited battery life, storage, and processing power (Postoaca et al.,
2020). Meanwhile, the second level comprises the fog layer, acting as a bridge between
edge computing and cloud computing such as switches, gateways, routers, and access
points that operate on various protocols such as Wi-Fi, LTE, 3G, and 4G. It has more
storage and processing than terminal devices. While the upper level is the cloud
computing that has high storage and processing power capabilities (Aburukba et al.,
2020).

The significant increase in the development of the Internet of Things application is still
facing challenges according to the great distance between the edge computing and the
cloud computing. Besides, most edge tasks are typically manipulated on the fog layer
near where the data is generated. However, the computational capacity of fog computing
is limited, which is not compatible with the continuous growth of real-time edge tasks
and the demand for computational. Consequently, it motivated to Figure out alternative
techniques to exploit the features of edge-fog-cloud computing through the collaboration
between them and present a new distributed computing platform, the edge-fog-cloud
computing. It is a promising platform that can serve billions of edge devices by
processing delay-sensitive data in applications that require real-time response (J. Xu et
al., 2019). It contains local fog computing and remote cloud computing to reduce delays
and network traffic while increasing energy efficiency.

Furthermore, it enables the processing of tasks from edge tasks via a suitable layer
among edge, fog, and cloud. This platform becomes a promising platform to guarantee
high performance to facilitate utilizing the edge tasks that demand high computation
from the cloud besides the low latency and meet the QoS requirements (Y. Yang et al.,
2018). The main features of the collaboration are exploiting the ability of fog computing
to minimize the transmission latency of utilizing cloud resources. While cloud
computing plays a prominent role in satisfying large-scale applications' offloading. The
new paradigm becomes the proper technology to optimize the energy consumption and
ultra-low-latency application of edge that needs real-time responses (J. Xu et al., 2019).
The environment of edge-fog-cloud are distributed geographically and jointly over the
network and connected to the cloud simultaneously, such as train terminals, parks, and
shopping points. The primary role of fog computing is to store data before sending it to
the cloud computing and manipulate the requests between the edge computing and the
cloud computing. This feature promotes reducing the latency to satisfy the user's
requirements. On the other hand, if the limitations of fog computing fail to process large-
scale tasks and latency tolerant, in this case, the tasks send to the cloud computing (J.
Xu etal., 2019).

However, besides the massive benefits of executing tasks in edge-fog-cloud-computing
but still facing the critical challenges in resource management due to the diversity of



generating tasks from edge computing in their characteristic and requirement to meet the
user’s requirements. Hence, the most three challenges in the resource management are
workload allocation, task scheduling, and task offloading. Thus, it is mandatory to
discuss the resource management which plays a crucial role in optimizing the utilization
of network resources (Javaid et al., 2018). This study has primarily focused on the key
sub-areas of resource management impacting edge-fog-cloud computing, as follows.

Core

Cloud

Edge

Locations
Figure 1.1: IoT environment
(Stojmenovic et al., 2016)

e  Workload and Delay

Transmasculine data from edge devices to data computing causes applicable propagation
delays due to the long distance between cloud computing and generated tasks, and that
makes cloud computing a critical challenge. To this end, a novel technology known as
edge computing has emerged to enable data processing with a minimum delay that is
due to the proximity of these devices to users, requests see minimal emission delay and
are responded to more quickly. Edge-based devices and network cores, such as base
stations, modems, and routers, welcome computations and storage spaces requested by
users, thereby acting as a replacement for clouds. As a direct consequence of bringing
the processing resources and storage spaces closer to the end-users, the transmission
delay is reduced (Abbasi et al., 2020). Given the importance of latency, the loads must
be continuously distributed between the cloud and the fog so that the optimal values can
be achieved on this parameter. Thus, Workload allocation among edge-fog-cloud
computing is a key technique that affects QoS provisioning. It determines where a task
is serviced in fog computing. However, the dynamic traffic characteristics and
computation capabilities of fog nodes and the cloud center present many challenges for
workload allocation. Hence, the tasks are generated stochastically and the amount of
computation also varies for different tasks and over time and an online algorithm would
thus be required to solve a workload allocation (Li et al., 2019).



. Scheduling and Energy

In recent times, there has been a rising fascination with the examination of energy
communities. Consequently, the escalating energy consumption, driven by the
substantial computational requirements of users, poses a significant environmental
concern (Cruz-De-Jesus et al., 2023). Where is minimizing energy usage represents a
crucial necessity for service providers when managing resources in light of the
substantial computational demands (Salimi et al., 2021). Thus, among the numerous
approaches to achieving energy efficiency, the responsibility for resource management
and optimization, particularly in the realm of task scheduling, is considered a pivotal
area to explore for effective solutions to address the problem of energy consumption.
Task scheduling plays a crucial role in influencing both resource utilization and Quality
of Service (QoS) in response to user requests. Hence, it represents a prime arena for
exploring innovative designs aimed at efficiently managing resources while
simultaneously meeting a variety of real-time user requirements in an energy-efficient
manner (Ding et al., 2020). Utilizing an efficient scheduling technique presents an
appealing avenue for reducing energy consumption without compromising Service
Level Agreement (SLA) adherence. Additionally, this approach not only effectively
shortens user task response times and accommodates varying constraints but also
enhances the utilization of cloud resources, leading to reduced energy consumption and
operational costs. Energy consumption and scheduling performance represent critical
concerns when enhancing the task scheduling algorithm for executing cloud applications
within a data center. Task execution performance is not only the primary determinant of
suitable task scheduling, but it also encompasses the energy consumed during task
execution by the processors. Inefficient allocation of cloud applications across multiple
processors can lead to some processors operating with low utilization rates.
Consequently, this inefficient processor execution results in wasted energy within the
data center (Kumar et al., 2019).

e  Offloading and Migration

Numerous researches have undertaken studies on improving energy efficiency in
distributed environments, taking into account various factors like virtual machine (VM)
migration, device offloading, and VM allocation algorithms (Abro et al., 2019). Hence,
Migration is among the most prevalent methods for computational offloading, involving
the transfer of intermediate-level instructions between a mobile device and a server
(Yousafzai et al., 2020). Therefore, in a dynamic environment, the design of a migration
strategy should be shaped by the prevailing conditions, and this strategy should
continuously adapt and evolve in response to changing circumstances (Cui et al., 2019).
Even more, optimized task migration can additionally alleviate congestion in the access
network and compensate for deficiencies in local devices and Edge computing nodes
regarding computing and storage capacity (Abro et al., 2019). The migration process can
introduce extra costs in terms of energy consumption and time delays. Migration failures
may arise due to issues like tardy migration, premature migration, or migrating to a Fog
Computing Node (FCN) with significantly higher latency. Furthermore, there may be
situations where the targeted FCN lacks sufficient available capacity to support new User
Equipment’s (UEs). In such cases, newly migrated tasks must queue up for execution,



resulting in increased time delays and the consumption of storage space (Wang et al.,
2019).

1.2 Problem statement

The revolution of edge tasks in various fields contributes to facilities people and
companies, along with the cooperation of edge-fog-cloud computing by exploiting their
benefits to accomplish the end-user’s tasks and guarantee to satisfy the users'
requirements in minimum time. However, besides the capabilities of edge-fog-cloud
computing still faces barriers that affect the manipulation of the edge tasks and that need
to optimize enhance the performance of resource management to satisfy the QoS.

Although, many studies have been conducted to address the problems of resource
management in edge-fog-cloud computing with significant contributions, several issues
have been left unaddressed. Three of such problems are described in what follows:

1- workload allocation trend that is yet to subside; instead, it is progressing rapidly in
multiple perspectives to enhance the performance of the edge-fog-cloud computing.
Hence, workload allocation is an essential technique that significantly improves the
execution of tasks incurred in data processing, especially when end users choose the
appropriate resource to send their workload to. In addition, it plays a leading role in
determining the most suitable computing layer for processing tasks, like allocating
sensitive tasks to the edge-fog computing and large complex tasks to the edge-cloud
computing to meet user requirements according to their characteristics. However, the
dynamic nature of the edge environment and the diversity of task characteristics, such
as task input length, computing unit requirements, and degree of delay sensitivity, pose
challenges when distributing workloads across different computing layers. Randomly
allocating workloads to resources or disproportionately assigning workloads to one
resource over another can result in a load overhead. This, in turn, affects task processing
and leads to an increase in transmission delay, particularly when workloads are allocated
to cloud computing due to the significant distance from edge computing.

2-The second crucial issue raised in this research is focused on task scheduling. It is one
of the main factors in edge-fog-cloud computing during the processing of edge tasks for
assigning tasks to appropriate resources based on the QoS. Task scheduling significantly
accelerates the processing of tasks and is compatible with the dynamic nature of the edge
environment. Eventually, the researchers and developers are eagerly focusing on
enhancing the strategies in various perceptions to improve the performance of task
scheduling in edge-fog-cloud computing. The challenge lies in how to efficiently
schedule tasks to appropriate resources, taking into account the diverse characteristics
of tasks, such as their varying lengths, computing unit requirements, and latency
sensitivities, across the pools of computing nodes in edge-fog cloud computing, each
with its unique execution capabilities. Inefficient scheduling can create obstacles to task
execution, leading to increased energy consumption in fog computing from the user's



perspective. Moreover, inefficient scheduling can lead to longer task scheduling times,
thereby increasing transmission delays, especially given the long distances involved.

3- The third problem addressed in this research is task offloading, which is the main
factor in resource management. It is about offloading tasks to another suitable
computational device. However, when processing massive edge tasks, the computation
device shuts off due to the dynamic nature of the network or runs power-off, and that
leads to interrupting the execution and unfinished processing of tasks. The critical issue
is offloading uncompleted tasks randomly to any computational node for execution, and
that leads to wasteful utilization of resources and then increases energy consumption.
This issue requires finding an ideal solution to utilizing the resources effectively and
reducing energy consumption on edge-fog-cloud computing.

1.3  Motivation

Numerous advantages gain by gathering edge, fog, and cloud computing in one platform.
First, the close distance between edge computing and fog computing connected via a
LAN network can guarantee rapid response and the giant capabilities of cloud computing
for analyzing the processing and storage of the high complexity of tasks. Thus,
improving the problem of workload allocation, task scheduling, and task offloading will
provide a significant effect during processing edge tasks effectively by exploiting the
capabilities of various computing among edge, fog, and cloud computing according to
the task’s characteristics. On the other side, energy consumption and transmission delay
are the most objectives that require to consider due to their critical impact. Hence,
processing edge tasks in fog computing will increase energy consumption. In contrast,
transferring tasks to the cloud will increase transmission. Thus, providing a solution to
develop the system's performance according to the energy consumption and delay will
improve the edge industry in various aspects. For instance, in intensive care, the patients
have connected to many wearable devices to sense vital science such as thermometers,
blood pressure, Electrocardiography, etc. Even more, CCTV is placed in the patient's
room for recording. All these signs monitor all seconds and send the results. In this case,
these critical signs must send to the fog computing due to the proximity. Hence, these
are considered complex tasks and require sending to the cloud for analysis, processing,
and storage. In the case of the critical case, the sensor detects it and then sends a direct
notification to the doctor for instant response to get action.

This notification required rapid processing and analysis from a shorter distance to save
a patient's life see Figure 1.2 Furthermore, tackling these challenges will improve the
network traffic and avoid overload which causes long delays and that is not compatible
with the edge requirements.
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Figure 1.2: Example of The Intensive Care Operation with Edge-Fog-Cloud
Computing

1.4 Research Objectives

The main objectives of this research are to achieve the following:

1- To propose Non-dominates Particle Swarm Optimization (NPSO) algorithm for
workload allocation to reduce the imbalance load degree in edge-fog computing and
the transmission delay in edge-cloud computing.

2- To propose a Multi-objectives Grey Wolf Optimizer (MGWO) algorithm for task
scheduling to reduce delay in edge-cloud computing and energy consumption in
edge-fog computing.

3- To propose Multi-objectives Firefly (MFA) algorithm for task offloading to
complete unfinished tasks to increase the resource utilization in edge-cloud
computing and reduce energy consumption in edge-fog computing.

1.5 Research Scope

This research focuses on developing resource management in edge-fog-cloud
computing, with the primary emphasis on multi-objectives using metaheuristic
algorithms to meet QoS requirements. Firstly, the research aims to provide effective
solutions for resource management. It concentrates on reducing the imbalance in



workload distribution on fog computing and minimizing delays in cloud computing
during workload allocation by proposing an NPSO. Additionally, to ensure a reduction
in delays, the study introduces the MLLF algorithm to lower the upper bound as the
delay threshold. To tackle the scheduling optimization problem, an efficient
metaheuristic called the MGWO algorithm is proposed for task scheduling techniques,
creating an optimization strategy to reduce delays in cloud computing and energy
consumption in fog computing, thereby enhancing resource management. Finally, the
research investigates how to maximize resource utilization in cloud computing to
prevent idle states, which simultaneously accelerates processing and reduces energy
consumption in fog computing. All of these strategies contribute to the overall
effectiveness of resource management.

Unlike the advanced techniques from other researchers, this research does not require
additional costing nor resources. An extensive experiment was conducted for individual
contributions in this research. The results showed advancement QoS objectives. Similar
to the base work research, simulation was led using the MATLAB R2018b simulation
tool, and all related objectives were proven analytically.

1.6 Research Significance

The improvement of workload allocation, task scheduling, and task offloading has
numerous significances in edge-fog-cloud computing, like increasing the efficiency and
quality of service while processing edge applications. Even more, it achieves minimum
energy consumption, and that plays a significant impact in guaranteeing the QoS,
especially indirectly affecting the experience of users. Besides, reducing the
transmission delay will shorten the execution time of tasks and is a significant factor,
especially in the delay-sensitive application.

This study aims to enhance metaheuristic algorithms that are well-suited for distributed
environments and for large-size problems that are compatible with a variety of edge
tasks. These algorithms are chosen for their low complexity, which ensures a reduction
in task execution times on resources, consequently minimizing overall energy
consumption. Moreover, by reducing execution times, it can also decrease transmission
delay.

1.7  Thesis Organization

This thesis is organized as follows:



Chapter 1 presents the research background, problem statements and motivations of this
work. It discusses the research objectives, scope and research significance. It also
highlights the research contributions that justify the benefits of this research.

Chapter 2 presents a thorough discussion on the taxonomy of optimization mode, the
research framework, related works that share workload allocation, task scheduling, and
task offloading. Similar research works are further detailed on the proposed algorithms,
advantages and disadvantages of the algorithms.

Chapter 3 The methodology illustrated more about the research framework and explains
the research stages. The algorithm, the method used, the parameters and workloads
included as well as the simulator used and validation of the model, are also presented in
this chapter.

Chapter 4 presents the proposed an NPSO algorithm for workload allocation. It
describes the Algorithm and shows the enhancement in the results obtained with respect
to reduce the delay and increase the load balancing.

Chapter 5 demonstrates the proposed MGWO algorithm for task scheduling. Show the
framework of Fog broker operation for assigning tasks between Fog and Cloud servers.
It explains the operations of the algorithm and provides the performance evaluation in
terms of delay and energy consumption.

Chapter 6 presents the proposed MFA algorithm for task offloading. The Chapter also
highlights the performance evaluation of the algorithm in term of energy consumption
and resource utilization compares it with other previous works.

Chapter 7 concludes this thesis and recommends promising directions for further
research.
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