

LIGNIN-CONTAINING CELLULOSE NANOFIBRILS IMPROVING THE PAPERMAKING PROCESS AND THE PROPERTIES OF HANDSHEET PAPER

Ву

FARAH NABILA BINTI MHD IDRIS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2023

IPTPH 2023 8

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

LIGNIN-CONTAINING CELLULOSE NANOFIBRILS IMPROVING THE PAPERMAKING PROCESS AND THE PROPERTIES OF HANDSHEET PAPER

Ву

FARAH NABILA BINTI MHD IDRIS

May 2023

Chair : Professor Ts. Hidayah Ariffin, PhD
Institute : Tropical Forestry and Forest Products

The addition of cellulose nanofibrils (CNF) during papermaking is associated with lower productivity processing due to the increase in drainage time, as the CNF addition contributes to the improved inter-fiber network due to hydrophilic interaction. Additionally, its nano-sized enables it to fill the empty space in between the fibers and eventually slows down the water removal. To overcome this issue, partially hydrophilic CNF was prepared by retaining the lignin content in CNF to produce lignin-containing CNF (LCNF). Four types of LCNF samples namely UB, D1, D2 and D3 with various lignin content of 9.7%, 7.7%, 2.8%, and 0.5%, respectively, were prepared from oil palm empty fruit bunch (OPEFB) by manipulating the pulping condition and introducing controlled bleaching process. The effects of LCNF lignin content and LCNF loading (1, 2, 4 and 8 wt%) on drainage time and handsheet characteristics were evaluated. Unbleached OPEFB base pulp was used as control. Overall results showed that lignin content played a significant role in drainage time, whereby the lower the lignin content, the longer the drainage time. For instance, D3 sample which contained almost no lignin gave the longest drainage time at 35.6 s. compared to control sample (8.0 s). LCNF loading also affected the drainage time with 2 wt% of D1 LCNF sample gave the shortest drainage time among all of the LCNF samples. In terms of the mechanical properties of the handsheet, LCNF incorporation seemed to contribute to better results compared to the control sample. For example, the incorporation of 4 wt% D1 LCNF had a tensile index of 36.9 Nm/g, burst index of 5.4 kPa.m²/g, and folding strength of 152 double folds compared to the control sample which had a tensile index of 31.8 Nm/g, burst index of 4.3 kPa.m²/g, and folding strength of 62 double folds. Overall results showed that the use of LCNF in papermaking shortened the drainage time as compared to CNF which contributed to better paper processing. Additionally, the LCNF exhibited incorporation effects with improved physical and mechanical properties as compared to the control sample.

Keywords: Lignin-containing cellulose nanofibrils, papermaking, drainage time, oil palm empty fruit bunch paper, mechanical properties

SDG: GOAL 9: Industry, innovation and infrastructure, GOAL 12: Responsible, consumption and production

NANOFIBRIL SELULOSA YANG MENGANDUNGI LIGNIN MENAMBAH BAIK PROSES PEMBUATAN KERTAS DAN SIFAT HELAIAN KERTAS

Oleh

FARAH NABILA BINTI MHD IDRIS

Mei 2023

Pengerusi : Profesor Ts. Hidayah Ariffin, PhD Institut : Perhutanan Tropika dan Produk Hutan

Penambahan nanofibril selulosa (CNF) semasa pembuatan kertas dapat dikaitkan dengan proses produktiviti yang lebih rendah disebabkan oleh peningkatan dalam masa penyaliran, kerana penambahan CNF menyumbang kepada rangkaian antara gentian yang lebih baik akibat interaksi hidrofilik. Tambahan pula, saiz nanonya membolehkan ia mengisi ruang kosong di antara gentian dan akhirnya melambatkan penyingkiran air. Untuk mengatasi masalah ini, CNF separa hidrofilik telah disediakan dengan mengekalkan kandungan lignin dalam CNF untuk menghasilkan CNF yang mengandungi lignin (LCNF). Empat jenis sampel LCNF iaitu UB, D1, D2,8 dan D3 dengan pelbagai kandungan lignin pada 9.7%, 7.7%, 2.8%, dan 0.5% telah disediakan daripada tandan kosong kelapa sawit (OPEFB) dengan memanipulasi kondisi pemulpaan dan memperkenalkan proses pelunturan terkawal. Kesan kandungan lignin LCNF dan beban LCNF (1, 2, 4 dan 8 wt%) pada masa penyaliran dan sifat helaian kertas telah dinilai. Pulpa asas OPEFB yang tidak diluntur digunakan sebagai kawalan. Keputusan keseluruhan menunjukkan bahawa kandungan lignin memainkan peranan yang penting dalam masa penyaliran, di mana semakin rendah kandungan lignin, semakin lama masa penyaliran. Sebagai contoh, sampel D3 yang hampir tiada lignin memberikan masa penyaliran paling lama pada 35.6 s, berbanding sampel kawalan (8.0 s). Beban LCNF juga mempengaruhi masa penyaliran dengan 2 wt% D1 LCNF memberikan masa penyaliran terpendek antara semua sampel LCNF. Dari segi sifat mekanikal helaian kertas, penambahan LCNF menyumbang kepada keputusan yang lebih baik berbanding dengan sampel kawalan. Sebagai contoh, penambahan 4 wt% D1 LCNF mempunyai indeks tensil 36.9 Nm/g. indeks pecahan 5.4 kPa.m2/g, dan kekuatan lipatan sebanyak 152 lipatan berganda berbanding sampel kawalan yang mempunyai indeks tensil sebanyak 31.8 Nm/g, indeks pecahan 4.3 kPa.m2/g, dan kekuatan lipatan sebanyak 62 lipatan berganda. Keputusan keseluruhan menunjukkan bahawa penggunaan LCNF dalam pembuatan kertas dapat memendekkan masa penyaliran berbanding CNF yang menyumbang kepada pemprosesan kertas yang lebih baik. Selain itu, LCNF mempamerkan kesan penambahan dengan sifat fizikal dan mekanikal yang lebih baik berbanding dengan sampel kawalan.

Keywords: Nanofibril selulosa yang mengandungi lignin, pembuatan kertas, masa penyaliran, kertas tandan kosong kelapa sawit, sifat mekanikal

SDG: MATLAMAT 9: Industri, inovasi dan infrastruktur, MATLAMAT 12: Bertanggungjawab, penggunaan dan pengeluaran

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah and all praises to Allah SWT the Almighty for blessing me with the strength, patience, good health, knowledge, ability, and opportunity in completing this study. Without His blessings, this achievement would not be possible.

I would like to express my deepest appreciation to my supervisor, Professor Ts. Dr. Hidayah Ariffin for her guidance, support, tolerance, encouragement, inspiring, and limitless patience throughout the period. Her continuous help and guidance helped me in all the time of my study journey. My sincere thanks also goes to my supervisory committee: Professor Dr. Paridah Md Tahir and Dr. Rushdan Ibrahim for their insightful comments and suggestions.

I would also like to offer my deepest gratitude to my parents, Mr. Mhd Idris bin Masior and Mrs. Sapiah binti Aman, my brothers and sister, for their prayers, endless support and understanding throughout this journey. A special thanks to my fellow labmates in the Faculty of Biotechnology and Biomolecular Sciences (Biotech 3 and Biomass Technology Laboratory), and the Institute of Tropical Forestry and Forest Products (Pulp and Paper Laboratory) for your help and assistance throughout my study. I also appreciate the science officers and lab technicians at Forest Research Institute of Malaysia (Pulp and Paper Laboratory) who were very helpful during my experimental process. May Allah recompense all of you with goodness. Lastly, this journey also would not have been possible without the support from my best friends and postdoctoral researcher. Thank you for listening, supporting, offering me advice, and encouraging me with their best effort throughout this challenging journey.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hidayah Ariffin, PhD

Professor Ts.
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Paridah Md. Tahir, PhD

Professor Institute of Tropical Forestry and Forest Products Universiti Putra Malaysia (Member)

Rushdan Ibrahim, PhD

Research Officer
Forest Product Division
Forest Research Institute of Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 18 April 2024

TABLE OF CONTENTS

ABSTRACT ABSTRAK ACKNOWL APPROVAL DECLARAT LIST OF TAL LIST OF AL	EDGEI L TION ABLES GURES	S	Page i iii v vi viii xiii xiv
CHAPTER			
1	1.1 1.2 1.3	RODUCTION Background Problem statement Objectives Scopes of study	1 1 2 3 4
2	LITE 2.1	Pulp and paper industry 2.1.1 Raw materials 2.1.2 Pulping technology 2.1.3 Bleaching technology 2.1.4 Paper manufacturing	5 5 5 8 9 11
	2.2	Additives in papermaking 2.2.1 Functional additives in papermaking 2.2.2 Process additives in papermaking	12 12
	2.3	Cellulose nanofibrils 2.3.1 Cellulose nanofibrils as additive in papermaking 2.3.2 Issues in the addition of cellulose	14
	2.4	nanofibrils Drainability in papermaking process 2.4.1 Drainability/drainage time 2.4.2 Factors affecting drainability 2.4.3 Improvement of drainability in	18 18 19 21
	2.5	papermaking Lignin-containing cellulose nanofibrils 2.5.1 Production of lignin-containing cellulose nanofibrils	22 23
		 2.5.2 Uses of lignin-containing cellulose nanofibrils 2.5.3 The potential of lignin-containing cellulose nanofibrils as additive in papermaking 	24

3	OF NAI	DDUCTION AND CHARACTERIZATION INTERPRETATION INTO CELLULOSE NOFIBRILS FROM OIL PALM EMPTOUT BUNCH	
	3.1	Introduction	26
	3.2	Experimental	27
		3.2.1 Materials	27
		3.2.2 Soda pulping of OPEFB for L	.CNF 27
		production	00
		3.2.3 Bleaching of OPEFB pulp	28
		3.2.4 Production of LCNF via wet o	disk 29
	3.3	mill Characterization of OPEFB pulp	30
	3.3	3.3.1 Chemical composition	30
		3.3.2 Fourier transform infrared (F	
		spectroscopy	111() 52
	3.4	Characterization of LCNF	32
	5.4	3.4.1 Field emission scanning elec	
		microscopy (FESEM)	32
		3.4.2 Thermogravimetric analysis (TGA) 32
		3.4.3 Nanofibrillation yield	33
		3.4.4 Zeta potential	33
	3.5		33
		3.5.1 Pulp properties	33
		3.5.2 LCNF properties	36
	3.6	Conclusions	42
4		ALUATION OF LIGNIN-CONTAINING	44
		LULOSE NANOFIBRILS	
		ORPORATION ON THE PAPERMAK	ING
		OCESS AND HANDSHEET	
		ARACTERISTICS	
		Introduction	44
	4.2		45
		4.2.1 Materials	45
		4.2.2 Soda pulping of OPEFB for the preparation of base pulp	he 45
		4.2.3 Handsheet making	46
		4.2.4 Characterization of handshee	
	4.3	Results and Discussion	51
	4.5	4.3.1 Drainage time of handsheet	51
		making	31
		4.3.2 Physical properties of handsl	neet 53
		4.3.3 Optical properties of handshe	
		4.3.4 Mechanical properties of	57
		handsheet	31
		4.3.5 Morphological properties of	62
		handsheet	32
		4.3.6 Permeability property of hand	dsheet 69
	4.4	Evaluation of handsheet characteris	
	15		71

5	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH		73
	5.1	Conclusions	73
	5.2	Recommendations for Future Research	74
REFEREN	CES		75
BIODATA OF STUDENT			94
PUBLICAT	ION		95

LIST OF TABLES

Table		Page
2.1	Examples of non-wood resources for papermaking	6
2.2	Chemical agents of the bleaching process	10
2.3	Functional additives and their function in papermaking	12
2.4	Process additives and their function in papermaking	13
2.5	Summary of CNF uses in paper	15
2.6	Effect of CNF addition on drainage time	20
2.7	Example of the LCNF uses	24
3.1	The condition of OPEFB pulping process for LCNF production	28
3.2	Bleaching condition	28
3.3	Chemical composition of raw OPEFB fibre and pulps with different lignin content	34
3.4	The thermal stability of the LCNF samples	41
3.5	Nanofibrillation yield of LCNF with different lignin content	41
3.6	Zeta potential of LCNF with different lignin content	42
4.1	The conditions of the OPEFB pulping process for base pulp	45
4.2	List of handsheet samples prepared in this research	47
4.3	Physical properties of handsheet at different LCNF loading and lignin content	54
4.4	SEM micrographs of surface and cross-section of handsheet at different LCNF loading and lignin content. The corresponding images acquired at 500x magnification are presented	63
4.5	Overall evaluation for the best formulation of handsheets from unbleached OPEFB pulp	70

LIST OF FIGURES

Figures		Page
2.1	Physical appearance and morphological structure of CNF (a) CNF suspension in water, (b) CNF powder, and (c) FESEM image of CNF	14
3.1	Multi-stage bleaching to produce D1, D2 and D3 pulps	29
3.2	FTIR spectra of raw OPEFB fibre and pulps with different lignin content	36
3.3	FESEM images of LCNF with different lignin content	38
3.4	TGA thermograms of LCNF with different lignin content	40
3.5	DTG thermograms of LCNF with different lignin content	40
4.1	Division of handsheet for mechanical testing	49
4.2	Effect of lignin content in LCNF on the drainage time of handsheet making	52
4.3	Effect of LCNF loading on drainage time. All data are means of 4 replicates ± S.D. Different alphabets indicate significant differences (P < 0.05) among different type of LCNF in the same LCNF loading	53
4.4	Brightness of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates ± S.D. Different alphabets indicate a significant difference (P<0.05) among different type of LCNF in the same LCNF loading	56
4.5	Opacity of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates ± S.D. Different alphabets indicate a significant difference (P < 0.05) among different type of LCNF in the same LCNF loading	57
4.6	Tensile index of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates \pm S.D. Different alphabets indicate a significant difference (P < 0.05) among different type of LCNF in the same LCNF loading	58

4.7 Burst index of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates ± S.D. Different alphabets indicate a significant difference (P 60 < 0.05) among different type of LCNF in the same LCNF loading 4.8 Tear index of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates ± S.D. 61 Different alphabets indicate a significant difference (P < 0.05) among different type of LCNF in the same LCNF loading 4.9 Number of double folds of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates ± S.D. Different alphabets indicate a 62 significant difference (P < 0.05) among different type of LCNF in the same LCNF loading 4.10 Cobb value of handsheet at different LCNF loading and lignin content. All data are means of 5 replicates ± S.D. Different alphabets indicate a significant difference (P 70 < 0.05) among different type of LCNF in the same LCNF loading

LIST OF ABBREVIATIONS

α Alpha

 ς Zeta

°C Degree Celsius

% Percentages

wt.% Weight Percent

μm Micrometres

cm Centimetres

ml Millilitres

nm Nanometres

m Metres

Nm Newton Metre

w Weight

g Grams

kg Kilograms

mg Milligrams

kV Kilovolts

mV Millivolts

hr Hours

s Seconds

min Minutes

kPa Kilopascal

mN Millinewton

Hz Hertz

rpm Revolutions per Minute

pH Potential Hydrogen

C₃H₆O Acetone

CH₃COOH Acetic Acid

C₂H₅OH Ethanol

C₇H₈ Toluene

H₂O₂ Hydrogen Peroxide

H₂SO₄ Sulphuric Acid

Na₂S₂O₃ Sodium Thiosulfate

NaClO₂ Sodium Chlorite

NaOH Sodium Hydroxide

KMnO₄ Potassium Permanganate

KI Potassium Iodide

CNF Cellulose Nanofibrils

LCNF Lignin-containing Cellulose Nanofibrils

OPEFB Oil Palm Empty Fruit Bunch

UB Unbleached

WDM Wet Disk Milling

CHAPTER 1

INTRODUCTION

1.1 Background

When paper was initially used, which was around 2000 years ago, it was mostly for writing and recording significant drawings, like maps. Paper is used in a variety of ways these days, including the printing of books, magazines, bank notes, tissue, toilet paper, packaging, and construction paper. Woody material is the most often used source of raw materials for making paper. The process of pulping is used to separate cellulose from wood or any other lignocellulosic material in order to create cellulose pulp. Wood resources, such as hardwood and softwood, and non-wood resources can both be used to manufacture pulp (Azeez, 2018). Pulp suspension is the term for pulp diluted with water, and dewatering the pulp suspension produces a paper. The characteristics of the paper that is produced are influenced by both the cellulose fibre network structure and the formulation of pulp suspension. In addition to using lignocellulosic resources to create virgin pulp, recycled paper can also be used to create pulp. The use of recycled paper will require an additional step which involves deinking to ensure that the pulp is safe and suitable to be used (Saxena et al., 2016).

Nowadays, non-wood resources have been the emerging bioresources for the production of paper. Lignocellulose from agricultural residues, such as sugarcane bagasse, rice straw, wheat straw, and oil palm empty fruit bunch (OPEFB) can be used to produce paper. Particularly in Asia, non-wood resources are widely available and this has contributed to their potential use in the production of pulp and paper (Bajpai, 2021). Non-wood resources are defined as any plant material that is not classified as a tree and grows rapidly each year compared to wood, which takes a long time to mature (Kamoga et al., 2013; Liu et al., 2018). Nevertheless, the paper manufactured from several non-wood fibres with short fibres has a low strength (Abd El-Sayed et al., 2020; Otieno et al., 2021). In this case, additives are also commonly added to enhance the quality of the paper.

Various additives can be used in papermaking such as for sizing, dry-strength, wet-strength, dyes, and pigment agents (Hubbe, 2004). These additives are primarily used to enhance the process of papermaking operation as well as the paper properties. Recently, the use of nanocellulose, particularly cellulose nanofibrils (CNF) as an additive in papermaking is getting more popular in the paper industry (Zambrano et al., 2020). Apart from its superior properties as an additive, it offers other great advantages including the ability for the paper mills to produce their own inhouse CNF. This is simply because CNF is a nano-sized form of cellulose

which can be easily processed at the mill. There have been several reports on the use of CNF in papermaking, which targeted its use as a paper additive and coating material (Das et al., 2020; Shanmugam, 2022). For instance, CNF could serve as a coating material for paper-based packaging by improving the water and oxygen barrier (Yook et al., 2020; Al-Gharrawi et al., 2022), oil barrier (Tayeb et al., 2020; Yi et al., 2022), and grease barrier (Mousavi et al., 2018; Al-Gharrawi et al., 2022) properties. The tiny size of CNF contributes to the formation of a smooth and even surface of the coating material when it is being applied to the paper products (Brodin et al., 2014). Meanwhile, as an additive, CNF incorporated into the paper could increase the bonding between the fibres through the formation of hydrogen bonds (Hu et al., 2020). It was reported that the mechanical properties of papers incorporated with CNF improved, indicating its capability to function as a dry-strength additive (Guan et al., 2018; Kasmani & Samariha, 2019).

Oil palm empty fruit bunch (OPEFB) is a non-wood fibre resource that can be a good alternative to the primary fibre sources for pulp and paper production, mainly in Malaysia (Ali et al., 2020). Additionally, Malaysia produces up to 22-23 million tonnes of OPEFB as a residue each year (Padzil et al., 2020). The OPEFB is a by-product of the processing of crude palm oil (CPO). It is generated from the empty stalks of the fresh fruit bunch (FFB) after the fruits have been removed. Lignocellulosic fibres of OPEFB are composed of chemical constituents such as cellulose (43-56%) and hemicellulose (17-33%) that are covered in a lignin (13-37%) matrix (Rafidah et al., 2017). Several studies have been conducted to explore the potential of OPEFB in papermaking (Hafizuddin et al., 2017; Daud et al., 2017; Aripin et al., 2020). The paper made from OPEFB has promising potential because it has good printing qualities and a good formation in the papermaking process. Furthermore, OPEFB could produce thin, specialty papers such as security papers, cigarettes as well as photographic papers (Abdullah & Sulaiman, 2013).

1.2 Problem statement

CNF contributes to the enhancement of the mechanical, barrier, and optical properties of the paper. Nevertheless, it is important to note that there is an issue with the addition of CNF during papermaking, whereby the CNF tends to create a stronger inter-fibre network contributing to the difficulty in water drainability. This has caused the dewatering step during papermaking to take a very long time (Demuner et al., 2019; Hu et al., 2020; Sanchezsalvador et al., 2020; Tajik et al., 2021). The deterioration in drainability throughout the papermaking process occurs mostly due to the large surface area and availability of hydroxyl groups in the structure of CNF, which causes it to hold a significant amount of water via hydrogen bonding. Furthermore, because CNF is smaller in size, it might become trapped and

plug the pores between the fibres matrix as water is removed (Merayo et al., 2017; Salas et al., 2019).

CNF is mechanically processed cellulose which is commonly made of bleached pulp. In bleached pulp, the lignin portion in the lignocellulose fibre is removed during the bleaching process, leaving cellulose as the primary component of the pulp. Cellulose consists of mainly a large number of hydroxyl groups along its structural chain, which gives CNF a hydrophilic property. It was hypothesized that retaining the lignin content by controlling the bleaching process able to improve the drainage time during the papermaking process since the hydrophilic property of the CNF can be controlled.

Manipulation of the bleaching process by controlling the use of chemicals used and the number of bleaching stages is expected to produce lignin-containing cellulose nanofibrils (LCNF), which is the derivative of nanocellulose with different lignin content. The use of LCNF as an additive in paper manufacturing is expected to improve drainability during papermaking process, and improve the handsheet properties particularly its strength as the presence of lignin is expected to hinder the free hydroxyl groups of CNF from forming hydrogen bonds with water molecules, thereby improving drainability together with handsheet properties. The chemical structure of lignin which is made up of various functional groups gives lignin both hydrophobic and hydrophilic properties (Nair et al., 2018; Zhang et al., 2020; Zhang et al., 2021; Lisý et al., 2022), and thus it is hypothesized that the use of LCNF will improve the above-mentioned properties compared to CNF.

In this study, LCNF was used as additive with the aim to improve the mechanical properties of the handsheet. Effect of LCNF lignin content and LCNF loading were tested on: (i) drainage time during handsheet making, and (ii) the characteristics of the handsheet produced.

1.3 Objectives

The general objective of this study was to determine the effect of LCNF on the drainage time and characteristics of non-wood handsheet derived from OPEFB. The specific objectives of this research were:

- 1. To characterise the LCNF derived from OPEFB.
- 2. To evaluate the effect of LCNF lignin content and loading on the drainage time of unbleached OPEFB pulp during handsheet making.

3. To investigate the effect of LCNF incorporation on the OPEFB handsheet properties.

1.4 Scope of study

This research consisted of two parts: (i) production and characterization of LCNF with different lignin content from OPEFB, and (ii) evaluation of the effect of LCNF incorporation on the handsheet making process and the characteristics of handsheet produced.

For the first part, unbleached OPEFB pulp was firstly prepared by soda pulping process at 16% chemical charged for 150°C and 2 hr. Following that, the unbleached OPEFB pulp was bleached by controlling the bleaching process to produce pulp with various lignin content for LCNF production. Each pulp sample was nanofibrillated by using wet disc mill to produce LCNF. The LCNF samples were characterized for its morphological, thermal, nanofibrillation yields and zeta potential properties.

Non-wood handsheet samples were prepared by using unbleached OPEFB pulp incorporated with LCNF of various lignin content and LCNF loading (1, 2, 4, and 8 wt%). Control sample was prepared without LCNF incorporation. All samples were assessed in terms of drainage time during the handsheet making process, as well as handsheet properties such as physical, mechanical, optical, morphological, and permeability properties.

REFERENCES

- Abd El-Sayed, E. S., El-Sakhawy, M. A. M., & El-Sakhawy, M. A. M. (2020). Non-wood fibers as raw material for pulp and paper industry. *Nordic Pulp and Paper Research Journal*, 35(2), 215–230.
- Abdul Karim, M. H., Mohd Shah, M. K., Jundam, M. F., & Abdullah, S. (2020). Investigation of tensile properties of the eco-board of hybrid composite that consist of oil palm empty fruit bunch (OPEFB) fiber added with rice husk. *IOP Conference Series: Materials Science and Engineering*, 834(1).
- Abdullah, N., & Sulaiman, F. (2013). The oil palm wastes in malaysia. Biomass Now - Sustainable Growth and Use, 76-94.
- Afra, E., Yousefi, H., Hadilam, M. M., & Nishino, T. (2013). Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. *Carbohydrate Polymers*, 97(2), 725–730.
- Ago, M., Ferrer, A., & Rojas, O. J. (2016). Starch-based biofoams reinforced with ignocellulose nanofibrils from residual palm empty fruit bunches: water sorption and mechanical strength. ACS Sustainable Chemistry and Engineering, 4(10), 5546–5552.
- Ahmad, A. L., Wong, S. S., Teng, T. T., & Zuhairi, A. (2008). Improvement of alum and PACI coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. *Chemical Engineering Journal*, 137(3), 510–517.
- Ahola, S., Österberg, M., & Laine, J. (2008). Cellulose nanofibrils Adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. *Cellulose*, *15*(2), 303–314.
- Al-Gharrawi, M., Ollier, R., Wang, J., & Bousfield, D. W. (2022). The influence of barrier pigments in waterborne barrier coatings on cellulose nanofiber layers. *Journal of Coatings Technology and Research*, 19(1), 3–14.
- Al-Gharrawi, M. Z., Wang, J., & Bousfield, D. W. (2022). Improving water vapor barrier of cellulose based food packaging using double layer coatings and cellulose nanofibers. *Food Packaging and Shelf Life*, 33(4), 100-895.
- Al-Ghouti, M. A., & Dib, S. S. (2020). Utilization of nano-olive stones in environmental remediation of methylene blue from water. *Journal of Environmental Health Science and Engineering*, 18(1), 63–77.

- Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues wheat straw and soy hulls. *Bioresource Technology*, 99(6), 1664–1671.
- Aliff, S. (2022). NextGreen inks MoU to set 20 collection centres for palm oil waste. Retrieved from https://themalaysianreserve.com/2022/01/19/nextgreen-inks-mou-to-set-20-collection-centres-for-palm-oil-waste/
- Annette, H. (2009). Introduction to timber as an engineering material. *ICE Manual of Construction Materials*, 12(1), 1–9.
- Anyaoha, K. E., Sakrabani, R., Mouazen, A. M., & Patchigolla, K. (2018). Evaluating oil palm fresh fruit bunch processing in Nigeria. *Waste Management & Research*, 36(3), 236-246.
- Aripin, A. M., Hamzah, A., Rashid, A., Syarifah, S. M., Ming, C. C., Zainulabidin, H., Mohd, A. S. (2020). Oil palm empty fruit bunch (OPEFB) handsheet production from optimized biodelignification of Rhynchophorus Ferrugineus microbiome's enzymes. *International Journal of Emerging Trends in Engineering Research*, 8(1.2), 253—263.
- Ashori, A., Cordeiro, N., Faria, M., & Hamzeh, Y. (2013). Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper. *International Journal of Biological Macromolecules*, *58*, 343–348.
- Asif, M. (2009). Sustainability of timber, wood and bamboo in construction. In Sustainability of Construction Materials, 31–54.
- Azeez, M. A. (2018). Pulping of non-woody biomass. *Pulp and Paper Processing*. 56-82.
- Bajpai, P. (2012). ECF and TCF bleaching. Environmentally Benign Approaches for Pulp Bleaching, 263–286.
- Bajpai, P. (2016). Pulp and paper production processes and energy. In *Pulp and Paper Industry: Energy Conservation*, 15–49.
- Bajpai, P. (2018). *Pulping fundamentals*. Biermann's Handbook of Pulp and Paper. 295-351.
- Bajpai, P. (2021). Nonwood plant fibers for pulp and paper. Elsevier. 107-145.
- Balea, A., Fuente, E., Monte, M. C., Merayo, N., Campano, C., Negro, C., & Blanco, A. (2020). Industrial application of nanocelluloses in solutions , and market perspectives. *Molecules*. 25(526). 1-30

- Balea, A., Merayo, N., De La Fuente, E., Negro, C., & Blanco, Á. (2017). Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. *Industrial Crops and Products*, 97, 374–387.
- Balea, A., Merayo, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blanco, A., & Negro, C. (2016). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. *BioResources*, 11(2), 3416–3431.
- Balea, A., Merayo, N., Fuente, E., Negro, C., Delgado-Aguilar, M., Mutje, P., & Blanco, A. (2018). Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. *Cellulose*, *25*(2), 1339–1351.
- Banavath, H. N., Bhardwaj, N. K., & Ray, A. K. (2011). A comparative study of the effect of refining on charge of various pulps. *Bioresource Technology*, 102(6), 4544–4551.
- Besbes, I., Vilar, M. R., & Boufi, S. (2011). Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential. *Carbohydrate Polymers*, 86(3), 1198–1206.
- Biermann, C. J. (1996). *Pulping and Papermaking*. Academic Press. 209-462.
- Bildik, A. E., Hubbe, M. A., & Güle, M. E. (2019). Neutral/alkaline sizing of paper with fortified, saponified wood rosin premixed with alum and retained using cationic polymer. *Appita Journal*, 72(1), 41–51.
- Blanco, A., Monte, M. C., Campano, C., Balea, A., Merayo, N., & Negro, C. (2018). Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). Handbook of Nanomaterials for Industrial Applications. Elsevier.
- Boufi, S., González, I., Delgado-Aguilar, M., Tarrès, Q., & Mutjé, P. (2017). Nanofibrillated cellulose as an additive in papermaking process. In *Cellulose-Reinforced Nanofibre Composite*, 153–173.
- Boufi, S., González, I., Delgado-Aguilar, M., Tarrès, Q., Pèlach, M. À., & Mutjé, P. (2016). Nanofibrillated cellulose as an additive in papermaking process: A review. *Carbohydrate Polymers*, *154*, 151–166.
- Brodin, F. W., Gregersen, Ø. W., & Syverud, K. (2014). Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material A review. *Nordic Pulp & Paper Research Journal*, 29(1), 156–166.
- Bucher, W. (2006). Bleaching 101: The Basics. Metso Paper, 2(7).

- Bundy, W. M., & Ishley, J. N. (1991). Kaolin in paper filling and coating. *Applied Clay Science*, *5*(5–6), 397–420.
- Cameron, J. H. (2004). Mechanical pulping. In *Encyclopedia of Forest Sciences*, 899–904.
- Cellulose NanoFiber (CNF). (n.d.). Retrieved from https://www.daio-paper.co.jp/en/development/cnf/
- Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. *Biomass and Bioenergy*, 62, 174–181.
- Charani, P. R., & Moradian, M. H. (2019). Utilization of cellulose nanofibers and cationic polymers to improve breaking length of paper. *Cellulose Chemistry and Technology*, 53(7–8), 767–774.
- Chauhan, S. V., & Bhardwaj, K. N. (2012). Effect of particle size of talc filler on structural and optical properties of paper. *Lignocellulose*, *1*(3), 241–259.
- Chen, H., Nair, S. S., Chauhan, P., & Yan, N. (2019). Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. *Chemical Engineering Journal*, *360*, 393–401.
- Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., & Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. *Cellulose*, *18*(2), 433–442.
- Curley, R. (2015). Kraft process. Retrived from https://www.britannica.com/technology/kraft-process
- Das, A. K., Islam, M. N., Ashaduzzaman, M., & Nazhad, M. M. (2020). Nanocellulose: its applications, consequences and challenges in papermaking. *Journal of Packaging Technology and Research*, 4(3), 253–260.
- Davidsdottir, B. (2013). Forest products and energy. In Environment and Natural Resources, 1–11.
- Delgado-Aguilar, M., González, I., Tarrés, Q., Pèlach, M. À., Alcalà, M., & Mutjé, P. (2016). The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. *Industrial Crops and Products*, 86, 295–300.
- Delgado-Aguilar, M., Tarrés, Q., Puig, J., Boufi, S., Blanco, Á., & Mutjé, P. (2015). Enzymatic refining and cellulose nanofiber addition in papermaking processes from recycled and deinked slurries. *BioResources*, *10*(3), 5730–5743.

- Demuner, I. F., Colodette, J. L., Gomes, F. J. B., & Oliveira, R. C. (2019). Production and characterization of CNF and LCNF, and manufacture of LCNF-nanostructured packaging papers. *Chemical Engineering Transactions*, 73(9), 43–48.
- Deshwal, G. K., Narender, R. P., & Alam, T. (2019). An overview of paper and paper based food packaging materials: health safety and environmental concerns. *Journal of Food Science and Technology*, 56(10), 4391–4403.
- Dhiman, R., & Chattopadhyay, R. (2021). Absorbency of synthetic urine by cotton nonwoven fabric. *Journal of the Textile Institute*, *112*(6), 996–1003.
- Dillen, J. R., Dillén, S., & Hamza, M. F. (2016). Pulp and paper: wood sources. Reference Module in Materials Science and Materials Engineering, 1–6.
- Diop, C. I. K., Tajvidi, M., Bilodeau, M. A., Bousfield, D. W., & Hunt, J. F. (2017). Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. *Cellulose*, 24(7), 3037–3050.
- Djafari Petroudy, S. R., Syverud, K., Chinga-Carrasco, G., Ghasemain, A., & Resalati, H. (2013). Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. *Carbohydrate Polymers*, 99, 311–318.
- Eco-Business. (2011). Eco Palm to go green in making packaging paper. Retreived from https://www.eco-business.com/news/eco-palm-to-go-green-in-making-packaging-paper/
- Ehman, N. V., Felissia, F. E., Tarrés, Q., Vallejos, M. E., Delgado-Aguilar, M., Mutjé, P., & Area, M. C. (2020). Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. *Cellulose*, *27*(18), 10811–10823.
- Espinosa, E., Tarrés, Q., Delgado-Aguilar, M., González, I., Mutjé, P., & Rodríguez, A. (2016). Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. *Cellulose*, *23*(1), 837–852.
- Espinosa, E., Arrebola, R. I., Bascón-Villegas, I., Sánchez-Gutiérrez, M., Domínguez-Robles, J., & Rodríguez, A. (2020). Industrial application of orange tree nanocellulose as papermaking reinforcement agent. *Cellulose*, *27*(18), 10781–10797.
- Espinosa, E., Domínguez-Robles, J., Sánchez, R., Tarrés, Q., & Rodríguez, A. (2017). The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. *Cellulose*, *24*(6), 2605–2618.

- Espinosa, E., Sánchez, R., Otero, R., Domínguez-Robles, J., & Rodríguez, A. (2017). A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. *International Journal of Biological Macromolecules*, 103, 990–999.
- Espinosa, E., Tarrés, Q., Domínguez-Robles, J., Delgado-Aguilar, M., Mutjé, P., & Rodríguez, A. (2017). Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves. *Journal of Cleaner Production*, 172, 233–238.
- Ewulonu, C. M., Liu, X., Wu, M., & Yong, H. (2019). Lignin-containing cellulose nanomaterials: A promising new nanomaterial for numerous applications. *Journal of Bioresources and Bioproducts*, *4*(1), 3–10.
- Fahmy, Y., Fahmy, T. Y. A., Mobarak, F., El-Sakhawy, M., & Fadl, M. H. (2017). Agricultural residues (wastes) for manufacture of paper, board, and miscellaneous Products: background overview and future prospects. *International Journal of ChemTech Research*, 10(2), 424–448.
- Fisher International. (2023). The P&P industry kicks off 2023 with major sustainability developments, initiatives and goals. Retrieved from https://emagazine.paperasia.com.my/2023/02/27/the-pp-industry-kicks-off-2023-with-major-sustainability-developments-initiatives-and-goals/
- Ghaderi, M., Mousavi, M., Yousefi, H., & Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. *Carbohydrate Polymers*, *104*(1), 59–65.
- González, I., Alcala, M., Arbat, G., Vilaseca, F., & Mutjè, P. (2013). Suitability of rapeseed chemithermomechanical pulp as raw material in papermaking. *BioResources*, 8(2), 1697–1708.
- González, I., Boufi, S., Pèlach, M. A., Alcalà, M., Vilaseca, F., & Mutjé, P. (2012). Nanofibrillated cellulose as paper additive in eucalyptus pulps. *BioResources*, 7(4), 5167–5180.
- Gu, L., Jiang, B., Song, J., Jin, Y., & Xiao, H. (2019). Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. *Cellulose*, *26*(2), 933–944.
- Guan, M., An, X., & Liu, H. (2018). Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper handsheets. *Cellulose*, 26(4), 2613–2624.
- Hassan, A., Salema, A. A., Ani, F. N., & Bakar, A. A. (2010). A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. *Polymer Composites*. 2709-2101.

- Hassan, E. A., Hassan, M. L., & Oksman, K. (2011). Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. *Wood and Fiber Science*, *43*(1), 76–82.
- He, M., Yang, G., Cho, B. U., Lee, Y. K., & Won, J. M. (2017). Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties. *Cellulose*, 24(12), 5657–5669.
- Hiziroglu, S. (2016). Basics of paper manufacturing. Retrieved from https://extension.okstate.edu/fact-sheets/basics-of-paper manufacturing.html
- Horseman, T., Tajvidi, M., Diop, C. I. K., & Gardner, D. J. (2017). Preparation and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. *Cellulose*, 24(6), 2455–2468.
- Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. *American Journal of Analytical Chemistry*, 09(06), 303–310.
- Hu, F., Zeng, J., Cheng, Z., Wang, X., Wang, B., Zeng, Z., & Chen, K. (2020). Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. *Carbohydrate Polymers*. 254, 117-474.
- Huang, L., Chen, K., Lin, C., Yang, R., & Gerhardt, R. A. (2011). Fabrication and characterization of superhydrophobic high opacity paper with titanium dioxide nanoparticles. *Journal of Materials Science*, 46(8), 2600–2605.
- Hubbe, M. A. (1999). Difficult furnishes. Tappi Journal, 1353-1367.
- Hubbe, M. A. (2004). Chemical additives. *Handbook of Paper and Board*, 62–149.
- Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y., & Pelton, R. (2012). Dissolved and colloidal substances (dcs) and the charge demand of papermaking process waters and suspensions: A review. *BioResources*, 7(4), 6109–6193.
- Hubbe, M. A., Venditti, R. A., & Rojas, O. J. (2007). What happens to cellulosic fibers during papermaking and recycling? A review. *BioResources*, 2(4), 739–788.
- Hubbe, M. A., & Wang, F. (2001). Where to add retention aid: issues of time and shear. *TAPPI Papermakers Conference*, 379–389.
- Hurter, R. W. (2001). Nonwood plant fiber characteristics. Retrieved from www.HurterConsult.com

- Hygiene World. (2020). What virgin pulp & mixed pulp tissue? Retrieved from https://hygieneworld.my/virgin-pulp-mixed-pulp-tissue
- Ibrahim, R. (2002). Chemical Composition of Alkaline Pulps from Oil Palm Empty Fruit Bunches. *Oil Palm Bulletin*, *44*(5), 19–24.
- Iglesias, M. C., Shivyari, N., Norris, A., Martin-Sampedro, R., Eugenio, M. E., Lahtinen, P., Peresin, M. S. (2020). The effect of residual lignin on the rheological properties of cellulose nanofibril suspensions. *Journal of Wood Chemistry and Technology*, 40(6), 370–381.
- Ismail, F. S., Mohamed Asa'ari, A. Z., Mohd Yussof, N. A., Chin Hao, L., Mohammad Padzil, F. N., Hua, L. S., Jawaid, M. (2020). Physical and mechanical properties of paper made from beaten empty fruit bunch fiber incorporated with microcrystalline cellulose. *Journal of Natural Fibers*, 1–13.
- ISO 526. (1993). Folding endurance. International Organization for Standardization. 1-5.
- Jamaluddin, N. A. N., Mohd Salleh, N. A., Jalil, R., & Jasmani, L. (2023). Bleaching of nonwood pulp. *In Pulping and Papermaking of Nonwood Plant Fibers*. 33-49.
- Jeetah, P., & Jaffur, N. (2021). Coconut husk, a lignocellulosic biomass, as a promising engineering material for non-wood paper Production. *Journal of Natural Fibers*, 1–15.
- Jiang, Y., Liu, X., Yang, Q., Song, X., Qin, C., Wang, S., & Li, K. (2018). Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. *Cellulose*, 25(11), 6479–6494.
- Jonoobi, M., Harun, J., Shakeri, A., Misra, M., & Oksmand, K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. *BioResources*, 4(2), 626–639.
- Jordan, J. H., Easson, M. W., Cheng, H. N., & Condon, B. D. (2022).
 Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. *Polymers*, *14*(11). 2154.
- Juárez, M., Sánchez, R., Espinosa, E., Domínguez-Robles, J., Bascón-Villegas, I., & Rodríguez, A. (2018). Environmentally friendly lignocellulose nanofibres from barley straw. Cellulose Chemistry and Technology, 52(7–8), 589–595.
- Kamoga, O. L. M., Byaruhanga, J. K., & Kirabira, J. B. (2013). A Review on Pulp Manufacture from Non Wood Plant Materials. *International Journal of Chemical Engineering and Applications*, *4*(3), 144–148.

- Kangas, H., Lahtinen, P., Sneck, A., Saariaho, A.-M., Laitinen, O., & Hellén, E. (2014). Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. *Nordic Pulp & Paper Research Journal*, 29(1), 129–143.
- Kasmani, J. E., & Samariha, A. (2019). Effect of nano-cellulose on the improvement of the properties of paper newspaper produced from chemi-mechanical pulping. *BioResources*, *14*(4), 8935–8949.
- Kelly, P. V., Gardner, D. J., & Gramlich, W. M. (2021). Optimizing lignocellulosic nanofibril dimensions and morphology by mechanical refining for enhanced adhesion. *Carbohydrate Polymers*, 273(8), 118-566.
- Kerdsuwan, S., & Laohalidanond, K. (2011). Renewable energy from palm oil empty fruit bunch. *In Renewable Energy Trends and Applications*. 125-147.
- Khadraoui, M., Khiari, R., Bergaoui, L., & Mauret, E. (2022). Production of lignin-containing cellulose nanofibrils by the combination of different mechanical processes. *Industrial Crops and Products*, *183*(5), 114-991.
- Khairul Hafizuddin, A. B., Rohaizu, R., & Wan Rosli, W. D. (2017). The use of oil palm empty fruit bunches (OPEFB) fibers as partial replacement for imported recycled fibers. *Key Engineering Materials*, 737, 335–340.
- Khosravani, A., Latibari, A. J., Mirshokraei, S. A., Rahmaninia, M., & Nazhad, M. M. (2010). Studying the effect of cationic starch- anionic nanosilica system on retention and drainage. *BioResources*, *5*(2), 939–950.
- Khwaldia, K., Arab-tehrany, E., & Desobry, S. (2010). Biopolymer coatings on paper packaging materials. *Comprehensice Reviews in Food Science and Food Safety*, 9, 82-91.
- Kim, K. M., Lee, J. Y., Jo, H. M., & Kim, S. H. (2019). Cellulose nanofibril grades' effect on the strength and drainability of security paper. *BioResources*, *14*(4), 8364–8375.
- Koivunen, K., & Paulapuro, H. (2010). Papermaking potential of novel structured PCC fillers with enhanced refractive index, *Tappi Journal*, *1*(10). 4-14.
- Kumar, V., Pathak, P., & Bhardwaj, K. N. (2022). Production of advanced fibrillated cellulosic material from wheat straw by refining process to improve paper quality. *Cellulose Chemistry and Technology*, 56, 625– 635.
- Lahtinen, P., Liukkonen, S., Pere, J., Sneck, A., & Kangas, H. (2014). A comparative study of fibrillated fibers from different mechanical and chemical pulps. *BioResources*, 9(2), 2115–2127.

- Laivins, G. V., & Scallan, A. M. (1994). Removal of water from pulps by pressing, Part 1: Inter-and intra-wall water. *Tappi Journal*, 77(3), 125–131.
- Lee, T. J., & Ryu, J. Y. (2016). Applicability of non-wood fibers from empty fruit bunch and palm frond for packaging paper. *Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry*, 48(6), 98–107.
- Li, A., Xu, D., Luo, L., Zhou, Y., Yan, W., Leng, X., Fan, M. (2021). Overview of nanocellulose as additives in paper processing and paper products. *Nanotechnology Reviews*, *10*(1), 264–281.
- Linchpin Marketing Team. (2023). Pulp and paper industry trends. Retrieved from https://linchpinseo.com/trends-pulp-and-paper-industry/
- Lisý, A., Ház, A., Nadányi, R., Jablonský, M., & Šurina, I. (2022). About hydrophobicity of lignin: A review of selected chemical methods for lignin valorisation in biopolymer production. *Energies*, *15*(17). 1-27.
- Liu, X., Li, Y., Ewulonu, C. M., Ralph, J., Xu, F., Zhang, Q., Huang, Y. (2019). mild alkaline pretreatment for isolation of native-like lignin and lignin-containing cellulose nanofibers (LCNF) from crop waste. *ACS Sustainable Chemistry and Engineering*, 7(16), 14135–14142.
- Liu, Z., Wang, H., & Hui, L. (2018). Pulping and papermaking of non-Wood fibers. In *Pulp and Paper Processing*, 3–32.
- Luo, H., Abu-omar, M. M., Barbara, S., & States, U. (2017). Chemicals From Lignin. In *Encyclopedia of Sustainable Technologies*. 3. 573-585.
- Luo, J., Huang, K., Xu, Y., & Fan, Y. (2019). A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation. *Cellulose*, 26(9), 5237–5246.
- Main, N. M., Talib, R. A., Rahman, R. A., Mohamed, A. Z., Ibrahim, R., & Adnan, S. (2015). Effect of amphoteric and cationic polyacrylamide on the structural and strength properties of coir Paper. *Procedia Manufacturing*, *2*, 28–34.
- Malaysian Investment Development Authority. (2021). Paper and Paper-products. Retrieved from https://www.mida.gov.my/manufacturing/paper-printing-and-publishing/
- Manninen, M., Kajanto, I., Happonen, J., & Paltakari, J. (2011). The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. *Nordic Pulp and Paper Research Journal*, 26(3), 297–305.

- Mashkour, M., Afra, E., & Resalati, H. (2019). Direct esterification of reinforced papers by immersion method and evaluation of their properties. *Wood Science and Technology*, *53*(5), 1035–1050.
- Masrol, S. R., Ibrahim, M. H., & Sharmiza, A. (2018). Effects of beating on the characteristics of Malaysian durian rind chemi-mechanical pulp and paper. *Jurnal Teknologi (Sciences and Engineering)*, 2, 9–17.
- Mathew, A. K., Abraham, A., Mallapureddy, K. K., & Sukumaran, R. K. (2018). Lignocellulosic Biorefinery Wastes, or Resources?. *Waste Biorefinery*. 267-297.
- Matsakas, L., Gerber, M., Yu, L., Rova, U., & Christakopoulos, P. (2020). Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. *Industrial Crops and Products*, *147*(1), 112-243.
- Mazhari Mousavi, S. M., Afra, E., Tajvidi, M., Bousfield, D. W., & Dehghani-Firouzabadi, M. (2018). Application of cellulose nanofibril (CNF) as coating on paperboard at moderate solids content and high coating speed using blade coater. *Progress in Organic Coatings*, 122(1), 207–218.
- Megashah, L. N., Ariffin, H., Zakaria, M. R., & Ando, Y. (2018). Characteristics of cellulose from oil palm mesocarp fibres extracted by multi-step pretreatment methods. *IOP Conference Series: Materials Science and Engineering*, 368(1). 2-9.
- Megashah, Liana Noor, Ariffin, H., Zakaria, M. R., Hassan, M. A., Andou, Y., & Padzil, F. N. M. (2020). Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. *Cellulose*, 27(13), 7417–7429.
- Merayo, N., Balea, A., de la Fuente, E., Blanco, Á., & Negro, C. (2017). Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. *Cellulose*, 24(7), 2987–3000.
- Mohamad Ibrahim, M., Chuah, S., & Wan Rosli, W. D. (2017). Characterization of lignin precipitated from the soda black liquor of oil palm empty fruit bunch fibers by various mineral acids. *ASEAN Journal on Science and Technology for Development*, 21(1), 57.
- Mohammad Padzil, F. N., Lee, S. H., Ainun, Z. M. A. ari, Lee, C. H., & Abdullah, L. C. (2020). Potential of oil palm empty fruit bunch resources in nanocellulose hydrogel production for versatile applications: A review. *Materials*, *13*(5). 2-26.
- Mohd Ali, M., Muhadi, N. A., Hashim, N., Abdullah, A. F., Mahadi, M. R., Mohd, M., Razif, M. (2020). Pulp and paper production from oil palm empty fruit bunches: A current direction in Malaysia. *Journal of Agricultural and Food Engineering*, 1(2), 1–9.

- Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. *Cellulose*, *15*(1), 149–159.
- Muthuraj, R., Hajee, M., Horrocks, A. R., & Kandola, B. K. (2019). Biopolymer blends from hardwood lignin and bio-polyamides: compatibility and miscibility. *International Journal of Biological Macromolecules*, 132, 439–450.
- Nachtergaele, W. (1989). The benefits of cationic starches for the paper Industry. *Starch Stärke*, *41*(1), 27–31.
- Nair, S. S., Chen, H., Peng, Y., Huang, Y., & Yan, N. (2018). Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier Properties. *ACS Sustainable Chemistry and Engineering*, 6(8), 10058–10068.
- Nair, S. S., & Yan, N. (2015). Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. *Cellulose*, 22(5), 3137–3150.
- Nazir, M. S., Wahjoedi, B. A., Yussof, A. W., & Abdullah, M. A. (2013). Ecofriendly extraction and characterization of cellulose from oil palm empty fruit bunches. *BioResources*, 8(2), 2161–2172.
- Neun, J. A. (1994). Performance of high vacuum dewatering elements in the forming section. *Tappi Journal*, 77, 133–138.
- Nie, S., Zhang, C., Zhang, Q., Zhang, K., Zhang, Y., Tao, P., & Wang, S. (2018). Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. *Industrial Crops and Products*, 124(8), 435–441.
- Onuorah, E. O., Nwabanne, J. T., & Nnabuife, E. L. C. (2015). Pulp and paper making potentials of elaeis guineensis (oil palm) grown in south east, Nigeria. *World Journal of Engineering*, 12(1), 1–12.
- Osong, S. H., Norgren, S., & Engstrand, P. (2016). Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. *Cellulose*, *23*(1), 93–123.
- Otieno, J. O., Okumu, T. N., Adalla, M., Ogutu, F., & Oure, B. (2021). Agricultural residues as an alternative source of fibre for the production of paper in Kenya A Review. *Asian Journal of Chemical Sciences*, 10(1), 22–37.
- Papadimoulis, F., & Lynch, J. (2023). Paper. Retrieved from https://www.iea.org/energy-system/industry/paper
- PaperTR. (2021). Virgin Pulp and Recycled Pulp. Retrieved from https://www.papertr.com/virgin-pulp-and-recycled-pulp/

- Park, T. U., Lee, J. Y., Jo, H. M., & Kim, K. M. (2018). Utilization of cellulose micro/nanofibrils as paper additive for the manufacturing of security paper. *BioResources*, *13*(4), 7780–7791.
- Pego, M. F. F., Bianchi, M. L., & Yasumura, P. K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. *Wood Science and Technology*, *54*(6), 1587–1603.
- Petit, T., Puskar, L., Dolenko, T., Choudhury, S., Ritter, E., Burikov, S., Aziz, E. F. (2017). Unusual water hydrogen bond network around hydrogenated nanodiamonds. *Journal of Physical Chemistry C*, 121(9), 5185–5194.
- Petroudy, S. R. D., Sheikhi, P., & Ghobadifar, P. (2016). Sugarcane bagasse paper reinforced by cellulose nanofiber (CNF) and bleached softwood kraft (BSWK) pulp. *Journal of Polymers and the Environment*, 25(2), 203–213.
- Pöhler, T., Lappalainen, T., Tammelin, T., Eronen, P., Hiekkataipale, P., Vehniäinen, A., & Koskinen, T. M. (2010). Influence of fibrillation method on the character of nanofibrillated cellulose (NFC). International Conference on Nanotechnology for the Forest Products Industry 2010, 437–458.
- Popescu, M. C., Popescu, C. M., Lisa, G., & Sakata, Y. (2011). Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. *Journal of Molecular Structure*, 988(1–3), 65–72.
- Rafidah, D., Ainun, Z. M. A. A., Hazwani, H. A., Rushdan, I., Luqman, C. A., Sharmiza, A., Jalaluddin. (2017). Characterisation of pulp and paper manufactured from oil palm empty fruit bunches and kenaf fibres. *Pertanika J. Trop. Agric. Sci*, 40(3), 449–458.
- Rahman, H., Engstrand, P., Sandström, P., & Sjöstrand, B. (2018). Dewatering properties of low grammage handsheets of softwood kraft pulps modified to minimize the need for refining. *Nordic Pulp and Paper Research Journal*, 33(3), 397–403.
- Razali, M. A. A., Ahmad, Z., Ahmad, M. S. B., & Ariffin, A. (2011). Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. *Chemical Engineering Journal*, 166(2), 529–535.
- Reeve, D. W. (1989). Pulp Bleaching Technology. *In Technologies for Reducing Dioxin in the Manufacture of Bleached Wood Pulp*, 39–52.
- Rimadhanti Ningtyas, K., Nugraha Agassi, T., & Gina Putri, P. (2022). Utilization of waste cellulose raw material for making paper pulp. *IOP Conference Series: Earth and Environmental Science*, 1012(1). 1-3.

- Rojo, E., Peresin, M. S., Sampson, W. W., Hoeger, I. C., Vartiainen, J., Laine, J., & Rojas, O. J. (2015). Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. *Green Chemistry*, *17*(3), 1853–1866.
- Rullifank, K. F., Roefinal, M. E., Kostanti, M., Sartika, L., & Evelyn. (2020). Pulp and paper industry: An overview on pulping technologies, factors and challenges. *Materials Science and Engineering*. 845, 1-9.
- Rushdan, I., Latifah, J., & Hoi, W. (2017). Commercial-scale Production of Soda Pulp and Medium Paper from Oil Palm Empty Fruit Bunch. *Journal of Tropical Forest Science*, *19*(3), 121–126.
- Rushdan. (2019). Personal communication.
- Sabaruddin, F. A., Tahir, P. M., Hua, L. S., & Li, L. C. (2021). The Sulphate Removal via Post Alkaline Treatment on Nanocrystalline Cellulose with Different Lignin Content Extracted from Kenaf Core. *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, 84(1), 11–19.
- Salas, C., Hubbe, M., & Rojas, O. J. (2019). Nanocellulose Applications in Papermaking. *Production of Materials from Sustainable Biomass*, 61-96.
- Samani, N. (n.d.). Paper Manufacturing Process: How Paper is Made? Retrieved from https://www.deskera.com/blog/paper-manufacturing-process-how-paper-is-made/
- Sanchez-salvador, J. L., Balea, A., Monte, M. C., Negro, C., Miller, M., Olson, J., & Blanco, A. (2020). Comparison Of mechanical and chemical nanocellulose as additives to reinforce recycled cardboard. *Scientific Reports*, *10*, 1–14.
- Sandoval-Torres, S., Jomaa, W., Marc, F., & Puiggali, J. R. (2012). Colour alteration and chemistry changes in oak wood (Quercus pedunculata Ehrh) during plain vacuum drying. *Wood Science and Technology*, 46(1–3), 177–191.
- Saxena, A., & Singh Chauhan, P. (2016). Role of various enzymes for deinking paper: a review. *Critical Reviews in Biotechnology*, 37(5), 598–612.
- Shah, T. A., Zhihe, L., Zhiyu, L., & Andong, Z. (2022). Composition and Role of Lignin in Biochemicals. *IntechOpen*. 106-527.
- Shanmugam, K. (2022). Development of cellulose nanofibre (CNF) coating on metal surface for free standing CNF Film and paper substrates for CNF barrier laminates. *Trends Journal of Sciences Research*, 1(1), 10–36.

- Sharma, N., Godiyal, R. D., & Thapliyal, B. P. (2020). A review on pulping, bleaching and papermaking processes. *Journal of Graphic Era University*, 8(2), 95–112.
- Simbana, E. A., Ordonez, P. E., Ordonez, Y. F., Guerrero, V. H., Mera, M. C., & Carvajal, E. A. (2020). Abaca: cultivation, obtaining fibre and potential uses. In *Handbook of Natural Fibres*. 198-216.
- Sjostorm, E. (1993). Wood Chemistry: fundamentals and applications. *Academic Press.* 677(1). 116-199.
- Smook, G. A. (2002). Handbook for pulp & paper technologist. *Angus Wilde Publications Inc.* 37-179.
- Solala, I., Iglesias, M. C., & Peresin, M. S. (2020). On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications. *Cellulose*, 27(4), 1853–1877.
- Solikhin, A., Hadi, Y. S., Massijaya, M. Y., & Nikmatin, S. (2017). Novel isolation of empty fruit bunch lignocellulose nanofibers using different vibration milling times-assisted multimechanical stages. *Waste and Biomass Valorization*, 8(7), 2451–2462.
- Suess, H. U. (2010). Pulp bleaching today. *De Gruyter*. Retrieved from https://doi.org/10.1515/9783110218244
- Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J., & Laine, J. (2010). Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. *Cellulose*, *17*(5), 1005–1020.
- Tajik, M., Jalali, H., Resalati, H., & Hamzeh, Y. (2021). Effects of cellulose nanofibrils and starch compared with polyacrylamide on fundamental properties of pulp and paper. *International Journal of Biological Macromolecules*, 192(10), 618–626.
- Tajik, M., Resalati, H., Hamzeh, Y., Jalali Torshizi, H., Kermanian, H., & Kord, B. (2016). Improving the properties of soda bagasse pulp by using cellulose nanofibers in the presence of cationic polyacrylamide. *BioResources*, *11*(4). 9126-9141.
- Tajik, M., Torshizi, H. J., Resalati, H., & Hamzeh, Y. (2018). Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp. *Carbohydrate Polymers*, 194(4), 1–8.
- TAPPI. (1997a). Bursting strength of paper. TAPPI T403 Om-97, 1–6.
- TAPPI. (1997b). Solvent extractives of wood and pulp. *TAPPI T204 Cm-97*, 12.
- TAPPI. (1998a). Internal tearing resistance of paper (Elmendorf-type method). *TAPPI T414 Om-98*, 1–7.

- TAPPI. (1998b). Water absorptiveness of sized (non-bibulous) paper, paperboard, and corrugated fiberboard (Cobb test). *Tappi T441 Om-98*, 1–6.
- TAPPI. (1999a). Alpha-, beta- and gamma-cellulose in pulp. *TAPPI T203 Cm-99*, 5–9.
- TAPPI. (1999b). Drainage time of pulp. *TAPPI T221 Cm-99*, 8–11.
- TAPPI. (2001a). Physical testing of pulp handsheets. *TAPPI T220 Sp-01*, 1–6.
- TAPPI. (2001b). Tensile properties of paper and paperboard (using constant rate of elongation apparatus). *TAPPI T494 Om-01*, 1–28.
- TAPPI. (2002a). Forming handsheets for physical tests of pulp. *TAPPI T205* Sp-02, 1–9.
- TAPPI. (2002b). Lignin in wood and pulp. T222 Om-02, 1-7.
- TAPPI. (2008a). Grammage of paper and paperboard. *TAPPI T410 Om-08*. 1-7.
- TAPPI. (2008b). Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products. *TAPPI T402 Sp-08*. 1-6.
- TAPPI. (2010). Thickness (caliper) of paper, paperboard, and combined board. *TAPPI T411 Om-97*, 1–4.
- TAPPI. (2016). Opacity of paper (15/d geometry, illuminant A/2°, 89 % reflectance backing and paper backing). *TAPPI T425 Om-16*, 1–6.
- TAPPI. (2018). Brightness of pulp, paper, and paperboard. *Tappi T452 Om-18*, 1–10.
- Tarrés, Q., Delgado-Aguilar, M., Pèlach, M. A., González, I., Boufi, S., & Mutjé, P. (2016). Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and TEMPO-oxidized nanofibers as coating. *Cellulose*, *23*(6), 3939–3950.
- Tarrés, Q., Area, M. C., Vallejos, M. E., Ehman, N. V., Delgado-Aguilar, M., & Mutjé, P. (2020). Lignocellulosic nanofibers for the reinforcement of brown line paper in industrial water systems. *Cellulose*, 27(18), 10799–10809.
- Tarrés, Q., Ehman, N. V., Vallejos, M. E., Area, M. C., Delgado-Aguilar, M., & Mutjé, P. (2017). Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. *Carbohydrate Polymers*, 163, 20–27.

- Tarrés, Q., Oliver-Ortega, H., Boufi, S., Àngels Pèlach, M., Delgado-Aguilar, M., & Mutjé, P. (2020). Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. *International Journal of Biological Macromolecules*, 145, 1199–1207.
- Tarrés, Q., Pellicer, N., Balea, A., Merayo, N., Negro, C., Blanco, A., Mutjé, P. (2017). Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. *International Journal of Biological Macromolecules*, 105, 664–670.
- Tayeb, A. H., Tajvidi, M., & Bousfield, D. (2020). Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils. *Molecules*, 25(6). 1-15.
- Tozluoglu, A., & Poyraz, B. (2016). Effects of cellulose micro/nanofibers as paper additives in kraft and kraft-NaBH₄ pulps. *Nordic Pulp and Paper Research Journal*, 31(4), 561–572.
- Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. *Frontiers in Chemistry*. 8(392). 1-33.
- Travalini, A. P., Lamsal, B., Magalhães, W. L. E., & Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. *International Journal of Biological Macromolecules*, 139, 1151–1161.
- Tyree, M., & Zimmermann, M. H. (2002). Wood structure and environment. Springer Series in Wood Science. 267-399.
- Vallejos, M. E., Felissia, F. E., Area, M. C., Ehman, N. V., Tarrés, Q., & Mutjé, P. (2016). Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydrate Polymers, 139, 99-105.
- Wågberg, L., & Andreasson, B. (2009). On the mechanisms behind the action of dry strength and dry strength agents. *Paper Products Physics and Technology*, *4*, 169-183.
- Wågberg, L., & Odberg, L. (1991). The action of cationic polyelectrolytes used for the fixation of dissolved and colloidal substances. *Nordic Pulp & Paper Research Journal*, 6(3), 127–135.
- Wan Daud, W. R., Shafie, R., & Nasrullah, R. (2017). Oil palm lignocellulosics: a potential papermaking material for Malaysia. *Proceedings of International Workshop on Non Wood Pulping and Papermaking Technology*. 33-40.

- Yi, K., Fu, S., Zhang, H., Zhang, H., Wang, Y., & Huang, Y. (2022). Cellulose nanofibrils/polydimethylsiloxane double-layer coating for fabrication of high barrier and excellent water- and oil-resistance paper. *Progress in Organic Coatings*, *172*(8), 107-123.
- Yook, S., Park, H., Park, H., Lee, S. Y., Kwon, J., & Youn, H. J. (2020). Barrier coatings with various types of cellulose nanofibrils and their barrier properties. *Cellulose*, 27(8), 4509–4523.
- Yu, X., Bian, P., Xue, Y., Qian, X., Yu, H., Chen, W., Ni, Y. (2017). Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into "sticky" superhydrophobic paper. *Carbohydrate Polymers*, 174, 95–102.
- Yuling, Z., & Alias, H. (2020). A review: the effect of lignin on the properties and preparation of lignin containing cellulose nanofibrils. *Journal of Critical Reviews*, 7(13), 1176–1182.
- Yusoff, S. (2004). Renewable energy from palm oil e innovation on effective utilization of waste, *Journal of Cleaner Production*. 14(6), 87-93.
- Zakrajšek, N. (2014). Influence of inorganic salts on the adsorption of cationically modified starch to fibers. Food and Nutrition Sciences, 5(3), 245–249.
- Zambrano, F., Starkey, H., Wang, Y., de Assis, C. A., Venditti, R., Pal, L., Gonzalez, R. (2020). Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A Review. *BioResources*, 15(2), 4553–
- Zeng, J., Zeng, Z., Cheng, Z., Wang, Y., Wang, X., Wang, B., & Gao, W. (2021). Cellulose nanofibrils manufactured by various methods with application as paper strength additives. *Scientific Reports*, *11*(1), 1–16.
- Zhang, H., Hu, H., He, Z., & Ni, Y. (2009). Highly substituted cationic starch as an anionic trash catcher for high-yield pulp. *Tappi Journal*, 8(7), 31–36.
- Zhang, N., Tao, P., Lu, Y., & Nie, S. (2019). Effect of lignin on the thermal stability of cellulose nanofibrils produced from bagasse pulp. *Cellulose*, 26(13–14), 7823–7835.
- Zhang, Q., Ma, R., Ma, L., Zhang, L., Fan, Y., & Wang, Z. (2021). Contribution of lignin in esterified lignocellulose nanofibers (LCNFs) prepared by deep eutectic solvent treatment to the interface compatibility of LCNF/PLA composites. *Industrial Crops and Products*, 166(11), 113-460.

- Zhang, Xiao, Tanguy, N. R., Chen, H., Zhao, Y., Gnanasekar, P., Le Lagadec, R., & Yan, N. (2022). Lignocellulosic nanofibrils as multifunctional component for high-performance packaging applications. *Materials Today Communications*, *31*(2), 103-630.
- Zhang, Xiaofeng, Huang, H., Qing, Y., Wang, H., & Li, X. (2020). A comparison study on the characteristics of nanofibrils isolated from fibers and parenchyma cells in bamboo. *Materials*, *13*(1). 1-13.

