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The behaviour of beams with corrugated web has been investigated throughout this 

study. They are commonly used in structural steel works to enhance the moment-

carrying capability and weight reduction. Experimental tests and finite element 

analysis were conducted on beams with plane web (PW), horizontally corrugated 

(HC) and vertically corrugated (VC) webs. 

Throughout the experimental tests, semicircular shape corrugation of 22.5 mm mean 

radius and 4.0 mm thickness was used. Two cases were considered for the HC 

beams, one arc (HC 1) and two arcs (HC2) corrugation, while semicircular wholly 

corrugated was used for the VC type beams. All specimens were fabricated using 

tubes and flat plates of mild steel material (AlSI 1020). The 1nstron testing machine 

was used for the three-point bending tests where three tests for each case have been 

carried out to obtain the load-displacement relations. The plane web I-section beams 
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with the mass per unit length value of 19.3 (kgm-l) was also tested to act as the 

benchmark result. 

In the analytical work, finite element models were generated and analysed by using 

LUSAS software. The material datasets were defined based on the actual stress

strain data obtained from the tensile tests. A series of elastic-plastic nonlinear 

analysis were carried out with the boundary settings similar to the experiment setup. 

Three corrugation radii of 22.50 mm, 33.75 mm and 67.50 mm were considered for 

the HC beams while five radii, in the range of 1 1 .25 mm to 33.75 mm for the VC 

beams. 

From the results obtained, the VC beams has yield loads of 60.62 1 kN to 73.308 kN 

or 13.3% to 32.8% higher than the welded plane web beams and 1 .32-1.89 times and 

1 .56-3.26 times higher compared to the HCl and HC2 beams respectively. The yield 

load increases as the larger size of radius was used, which is true for the sizes taken 

in this study. Moreover, as much as 13.6% of reduction in weight was achieved for 

the VC beams at the largest value of corrugation radius. A good agreement was 

found between the experimental and finite element analysis results where the 

percentage difference obtained was 7.28% to 28.37%. 
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Kajian ke atas kelakuan alang beralun telah dijalankan. Ia biasanya digunakan untuk 

kerja-kerja melibatkan struktur besi dalam mempertingkatkan keupayaan 

menanggung beban momen dan mengurangkan berat struktur. Alang dengan bentuk 

rim tengah yang berbeza iaitu datar (PW), beralun melintang (HC) dan beralun 

menegak telah dikaj i  secara ujikaji  dan analisis unsur terhingga. 

Alunan berbentuk separuh bulatan dengan jejari min 22.5 mm dan tebal 4.0 mm 

digunakan dalam ujikaji. Bagi alang jenis HC, dua bentuk alunan dikaji iaitu satu 

lengkungan (HCl) dan dua lengkungan (HC2) dan alunan berbentuk: separuh bulatan 

beralun menyeluruh bagi alang jenis ve. Semua spesimen dibikin dengan 

menggunakan bahan besi lembut (AISI 1 020). Tiga ujian lenturan tiga-pin dijalankan 

ke atas setiap jenis alang dengan menggunakan mesin Instron untuk mendapatkan 

perkaitan di antara beban-sesaran. Alang biasa yang berbentuk I dengan rim tengah 
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yang rata juga diuji sebagai ujian kawalan. Berat semeter alang yang diuji ialah 19.3 

k -I gm . 

Dalam kajian secara analitikal, model unsur terhingga dihasilkan dan diuji di bawah 

kesan lenturan tiga-pin dengan menggunakan perisian LUSAS. Sifat mekanikal 

bahan ditakritkan daripada tegasan-terikan sebenar yang diperolehi dalam ujian 

ketegangan. Analisis-analisis tidak linear yang diprogramkan menyerupai keadaan 

dan susunan eksperimen telah dijalankan. Sebanyak tiga saiz jejari alunan digunakan 

bagi alang jenis HC iaitu 22.50 mm, 33.75 mm dan 67.50 mm, manakala lima saiz 

dalam lingkungan 11.25 mm hingga 33.75 mm bagi alangjenis Vc. 

Daripada keputusan yang diperolehi, alang jenis VC mempunyai nilai beban alah 

sebanyak 60.621kN hingga 73.308 kN atau 13.3% hingga 32.8% melebihi alang 

jenis PW yang dikimpal serta 1.32-1.89 dan 1.56-3.26 kali ganda nilai beban alah 

alang jenis HC} dan HC2 masing-masing. Dengan menggunakan saiz jejari alunan 

yang besar, peningkatan dalam beban alah yang Iebih ketara akan diperolehi. 

Tambahan pula, penurunan berat sebanyak 13.6% bagi alang jenis VC akan dicapai 

jika maksimum saiz jejari alunan digunakan. Perbandingan di antara keputusan 

eksperimen dan analisis unsur terhingga adalah memuaskan dengan peratus 

perbezaan yang diperolehi sebanyak 7.28% hingga 28.37%. 
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CHAPTER 1 

INTRODUCTION 

1.1 Types of Structural Beams 

Structural beams are common building materials and normally made of steel. In 

order to simplify the design and construction process, all characteristics or 

geometries of the beams are specified in accordance to the approved standards such 

as the American Iron and Steel Institute (AISI), American Society for Testing and 

Materials (ASTM) and British Standards (BS). The common commercial structural 

shapes available are hot-rolled cross sections (such as wide-flange, channels and 

angles), pipe and hollow structural sections (HSS). 

1.2 Ordinary I-Section Beams 

The I-section beam or H-pile plays an important role in the construction industry for 

building of structures such as bridges, water tank supports and towers. Its 

uniqueness in shape, which consists of two parallel flanges and a slender' web, 

creates more versatility to suit most working environments. It is commonly made 

from steel materials through hot or cold form-rolling process of steel bloom. 

In line with the development of construction and manufacturing industries, higher 

requirement and quality standard sets for these beams is essential. Designers and 

manufacturers have used numerous ways in producing an ideal beam that is safer, 

reliable and economical in materials and production cost. These include modifying 



2 

the ordinary shape of the beam and optimising the sizes to suit the demand. For 

instance, the hollow flange beam (HFB) was introduced in replacing the 

conventional beam type in certain application and usage of external or internal 

stiffeners to produce stronger structures. 

However, these alternatives seem to be more expensive and added extra weight to 

the structure, making it impractical when delivery of materials is concerned. Some 

even appear to have contributed insignificant improvement to the beam's 

performance in comparison to the ordinary one. 

1.3 Corrugated Web Beams 

The beams with wholly corrugated web (WCW) has been introduced and used in 

building and construction industries. It could economise on materials and yet 

stronger in strength than the conventional beams. However, the information relevant 

to its mechanical behaviour and limitation in practice is inadequate. The effects of 

the corrugation parameters and beams' dimensions to the bending performance are 

still scarce. 

Recently, as its application grew in many industries, especially construction, these 

parameters have been the main research subjects. The preliminary studies being 

carried out on such beams were mainly concentrated on the trapezoidal corrugation 

in the vertical direction. With reference to the available data from both experimental 

and analytical works, the corrugation has contributed equal stability to the web 
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regardless of the materials thickness. This applies for the major loading modes like 

bending, shearing and buckling. 

However, manufacturing of these beams is difficult and bounded by the limitation 

and tolerances of the process, which would limit its usage in practice. This is 

especially true when standardization of sizes is concerned. 

1.4 Manufacturing Process of the Corrugated Web Beams 

The general shape-rolling process adopted for the ordinary beams with flat web can 

not be implemented for the trapezoidal corrugated web type. At present, the web is 

welded continuously at the joints on the two flanges that produce an I-cross section. 

Nevertheless, strong joints could hardly be produced for beams with thinner web, 

even by the use of state of art welding technology that could possibly do the job. 

Higher cost will certainly be incurred that make it impractical especially for a longer 

span. 

Thus, the curve wave-like corrugation was introduced to substitute the trapezoidal 

corrugation, as it seems more suitable to be manufactured. However, to date, the 

same welding method is being used in producing this corrugation shape where the 

hot rolled beam of the similar type has yet been produced by any manufacturer. 

Although, few successful in laboratory trials have been seen in some research works, 

but the design of the roll process and tools are not fully addressed. The design 

requirements of the roll tool for corrugated web beams are outlined as follow. 


