

USAGE AND CONSTRAINTS OF URBAN RIVER CORRIDORS AT HUTUO RIVER, SHIJIAZHUANG, CHINA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2024

FRSB 2024 12

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of the material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

USAGE AND CONSTRAINTS OF URBAN RIVER CORRIDORS AT HUTUO RIVER, SHIJIAZHUANG, CHINA

By

SHI LIN

August 2024

Chairman: Associate Professor Sreetheran a/l Maruthaveeran, PhD

Faculty : Design and Architecture

This PhD thesis investigates the utilization and associated constraints of urban river corridors in inland Chinese cities, focusing on Shijiazhuang. Recently, local authorities have increasingly recognized the importance of the Hutuo River Corridor and have sought to balance its ecological needs with socioeconomic development, aiming for sustainable revitalization and effective urban space use. However, planning and design processes often overlook user needs and expectations, particularly the variations in usage across different social demographics. To address these gaps, this study comprises three components: systematic literature review, survey, and thematic and textual analysis using social media data. The systematic review identified 59 relevant studies from 27 journals, leading to the proposal of a social-ecological framework that emphasizes the roles of individual, social, physical, and time-related factors in shaping urban river corridor utilization. A survey of 620 respondents, using both on-site and online semi-structured questionnaires, revealed that social demographics—such as gender, age, marital status,

education level, income, and residential proximity—significantly influence river

corridor usage. Key constraints identified include accessibility issues (traffic

congestion, crowding, inadequate facilities, and unavailable toilet services)

and external factors like seasonality and weather. In the era of big data, social

networks provide diverse data that facilitate investigating dynamic aspects of

human activities and environmental factors. An analysis of 3,006 comments

from Dianping revealed positive evaluations of the natural environment,

planning, design, convenience facilities, and transportation, but also

dissatisfaction with certain charged events. This study proposes a conceptual

framework that advances the understanding of urban river corridor utilization

and constraints by integrating social-ecological perspectives and employing a

mixed-methods approach. The findings underscore the need for a people-

oriented approach in urban planning by identifying user patterns and key

constraints across diverse social demographics, offering practical insights for

enhancing river corridor environments. The study provides actionable

recommendations for urban planners and decision-makers to improve the

management and design of river corridors in Shijiazhuang and similar urban

settings.

Keywords: Urban River Corridor, Usage, Constraint, Socio-Ecological Model.

SDG: GOAL 11: Sustainable Cities and Communities

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGGUNAAN DAN KEKANGAN KORIDOR SUNGAI BANDAR DI SUNGAI HUTUO, SHIJIAZHUANG, CHINA

Oleh

SHI LIN

Ogos 2024

Pengerusi: Profesor Madya Sreetheran a/l Maruthaveeran, PhD

Fakulti : Reka Bentuk dan Senibina

Tesis PhD ini melihat dari aspek kepenggunaan dan kekangan yang berkaitan dengan denai sungai di sepanjang Sungai Hutou, Shijiazhuang di wilayah Hebei, China. Sejak kebelakangan ini, pihak berkuasa tempatan di Shijiazhuang menitikberatkan kepentingan denai Sungai Hutuo. Pelbagai usaha telah diambil untuk mengimbangi kepentingan ekologi dengan pembangunan sosio-ekonomi bagi memastikan pemulihan yang lestari dan penggunaan ruang bandar yang berkesan. Namun, proses perancangan dan reka bentuk bandar sering mengabaikan keperluan dan pendapat pengguna, terutamanya dari aspek kelas demografi sosial yang berbeza. Untuk menangani isu ini, kajian ini telah dijalankan dari tiga sudut: tinjauan literatur sistematik, kaji selidik, dan analisis tematik serta teks dengan menggunakan data media sosial di China. Tinjauan sistematik yang telah dijalankan telah mengenal pasti 59 kajian yang berkaitan dengan isu kajian ini. Di mana dari 27 jurnal yang dikenalpasti, suatu rangka konsep (conceptual framework) sosial-ekologi yang menekankan peranan faktor individu, sosial, fizikal, dan masa telah dirangka. Dalam bahagian kedua kajian ini yang melibatkan survei melalui penggunaan boring kaji selidik telah melibatkan 620 responden di tapak kajian dan juga secara dalam talian. Survei ini telah mendedahkan bahawa factor demografi sosial—seperti jantina, umur, status perkahwinan, tahap pendidikan, pendapatan, dan jarak tempat tinggal, mempengaruhi penggunaan denai sungai secara signifikan. Dari aspek kekangan pula, dikenal pasti isu seperti kesesakan lalu lintas, kesesakan orang, kemudahan yang tidak mencukupi, dan perkhidmatan tandas yang tidak tersedia dan faktor luaran seperti cuaca. Manakala dalam bahagian ketiga kajian ini yang melibatakan penggunaan data daripada media sosial di China iaitu Dianping. Dalam kajian ini, analisis terhadap 3,006 ulasan daripada responden telah mendedahkan respon positif terhadap persekitaran semula jadi, perancangan, reka bentuk, kemudahan keselesaan, dan pengangkutan, tetapi juga ketidakpuasan terhadap beberapa acara yang dikenakan bayaran. Kajian ini mencadangkan rangka kerja konsep yang memajukan pemahaman tentang penggunaan dan batasan koridor sungai bandar dengan mengintegrasikan perspektif sosial-ekologi dan menggunakan pendekatan kaedah campuran. Kajian ini telah menekankan keperluan pendekatan berorientasikan pengguna (orang awam) dari aspek perancangan bandar dengan mengenal pasti corak kepenggunaan dan kekangan utama merentasi pelbagai kelas demografi sosial dengan menawarkan cadangan praktikal untuk meningkatkan kualiti persekitaran denai Sungai Hutou. Kajian ini telah memberikan cadangan yang dapat dilaksanakan oleh arkitek landskap, perancang bandar dan pihak berkuasa tempatan untuk memperbaiki dari aspek pengurusan dan reka bentuk denai Sungai Hutou di Shijiazhuang dan denai-denai sungai di bandarbandar yang lain di China.

Kata kunci: Koridor Sungai Bandar, Penggunaan, Kekangan, Model Sosio-Ekologi.

SDG: MATLAMAT 11: Komuniti dan Bandar Yang Lestari

ACKNOWLEDGEMENTS

This thesis is for people who share a love of gardening and landscape design. We are now in an era where the environment changes greatly challenge the survival and growth of cities. Our rivers are vulnerable to the severe issues resulting from the rapid urbanization and climate change. I chose the research topic for exploring urban river corridors because of my love of water in all its natural forms and my dream and passion for creating river corridors with dynamic and exciting appeals in cities. Consequently, I aspire to delve into the latent potential of urban river corridors in terms of their utilization and the associated constraints, thus contributing to the sustainable development of urban environments.

During past three years, I had a truly great and exciting PhD journey at UPM. The amazing journey has changed my life, and I feel very grateful for all the happiness that the study has brought to me and for all the people who have made invaluable contributions to my PhD study.

Firstly, I would like to acknowledge and genuinely appreciate all of my family members. I would like to thank my mother, Wei Huicong, my elder sister, Shi Liwei, and my brother-in-law, Wu Binghu, for assisting in taking care of my son. My heartfelt appreciation goes to my second sister, Shi Weina. Thank you for your encouragement and your tough questions to me that helped me grow as a person. Your love and support have kept me focused throughout this

research; I could not have walked this journey alone. Thank you very much. I love you.

My deepest and warmest gratitude also goes to my two supervisors, Assoc. Prof. Dr. Sreetheran Maruthaveeran and Assoc. Prof. Dr. Mohd. Johari. Mohd. Yusof, for your patience and generous guidance, and so many valuable technical suggestions on my research work during the whole study. Without your encouragement and invaluable advice, I could not have achieved all I have. You are very inspirational to me.

I am indebted to the members of Faculty of design and architecture for fostering an environment of academic rigor and intellectual growth. Their lectures, seminars, and scholarly contributions have been instrumental in broadening my horizons and equipping me with the necessary tools to navigate the complexities of this research.

Finally, to the participants of the case study in the Hutuo River Corridor, Shijiazhuang, China, your willingness to share your perspectives and experiences has been pivotal in shaping the empirical aspect of this research. Your contributions have lent a real-world dimension to this study, and I am profoundly thankful for your time and insights.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Sreetheran a/I Maruthaveeran, PhD

Associate Professor, Ts. Faculty of Design and Architecture Universiti Putra Malaysia (Chairman)

Mohd Johari bin Mohd Yusof, PhD

Associate Professor, Ts. Gs. Faculty of Design and Architecture Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 October 2024

TABLE OF CONTENTS

		Page
ABSTRACT ABSTRAK ACKNOWLEDG APPROVAL DECLARATION LIST OF TABLE LIST OF FIGURE LIST OF APPEN LIST OF ABBRE	S ES IDICES	i iii vi viii x xv xvi xviii xix
CHAPTER		
1.1 Intr 1.2 Urb 1.3 Urb 1.4 Rap 1.5 Pro 1.6 Res 1.7 Res 1.8 Sig 1.9 Res 1.10 Def 1.11 The 1.12 The 1.11	roduction can River Corridor in the Global Context can River Corridor in the Chinese Context can River Corridor in the Global Context can River Corridor in the Chinese Context can River Context can River Corridor in the Chinese Context can River Co	1 1 2 8 12 13 20 21 21 23 24 26 27 28 29 29
2.1 Intr 2.2 Ove 2.2 2.2 Cor 2.2 2.2	TURE REVIEW coduction erview of Urban River Corridors .1 The Definition of River Corridors .2 The Spatial Structure Characteristics of cridors .3 The Function of Urban River Corridors .4 The Research and Practice of Urban Corridors .5 Urban River Corridor Planning and Practice China	37 40 River 45
Cor	e Usage and Associated Constraints of Urba rridors	

		2.3.2 Constraints and River Corridors	Challenges I	Faced by Urban	59
		2.3.3 Research Progres of Urban River Co			64
	2.4	Social Media Data			69
		2.4.1 Overview of Social	al Media Data		69
		2.4.2 Application of Soc			71
		2.4.3 Benefits and Cha	illenges of Us	sing Social Media	
		Data to Investigat		Corridors	78
	2.5	The Social-Ecological Fr	amework		83
3		HODOLOGY			87
		Introduction	:		87
		Convergent Parallel Des	ign		89
		Study Area			91
	3.4	Systematic Review 3.4.1 Search Strategy			94 95
		3.4.2 Inclusion and Exc	lucion Critoria		95
		3.4.3 Study Selection	idsion Chiena		96
		3.4.4 Data Extraction			98
		3.4.5 Quality Appraisal			98
	3.5	On-site Survey			99
		3.5.1 Variables Used in	This Study		100
		3.5.2 Sample			101
		3.5.3 Instrument Develo	pment		103
		3.5.4 Survey Procedure			104
		3.5.5 Questionnaire Re	liability and Va	a <mark>lidity</mark>	105
		3.5.6 Pilot Study			106
		3.5.7 Data Analysis			107
	3.6	Social Media Data			109
		3.6.1 Data Collection			112
		3.6.2 Data Cleaning			114
		3.6.3 LDA-Gibbs Text T		Construction	115
		3.6.4 Text Content Ana			120
		3.6.5 Text Sentiment A	naiysis		122
4		ULTS AND DISCUSSION	V		124
	4.1 4.2	Introduction	a Litaratura Da	oviov.	124
	4.2	Results of the Systemati		eview	124 125
		4.2.1 Synthesis of Stud4.2.2 Quality Review	y Filiuliys		130
		4.2.3 Factors of Urban	River Corridor	Lleane	132
		4.2.4 Conceptual Frame		Usaye .	149
		4.2.5 Conclusion of Sys		١٨/	154
	4.3	The Usage of the Hutuo			155
	4.0	4.3.1 The Survey Resu			100
		River Corridor	5.1. 4.10 50		155
		4.3.2 Analysis of Social	Media Data or	n the Usage of the	
		Hutuo River Corri		Ü	179
		4.3.3 Conclusion on the	Use of the Hu	utuo River Corridor	230

	4.4	Constraints Faced by Users in Utilizing the Hutuo River	
		Corridor	231
		4.4.1 Survey Results on the Constraints of the Hutuo	
		River Corridor	231
		4.4.2 Social Media Data Analysis Results on the	
		Constraints of the Hutuo River Corridor	252
		4.4.3 Conclusion on the Constraints of the Hutuo River	
		Corridor	257
		4.4.4 Conceptual Model of Factors Influencing the Use	
		and Constraints of the Hutuo River Corridor from	
		a Socio-Ecological Perspective	258
_			
5		NCLUSION & RECOMMENDATION	267
5	5.1	Introduction	267
5	5.1 5.2	Introduction Main Findings of the Study	267 267
5	5.1 5.2 5.3	Introduction Main Findings of the Study Summary of Contributions of the Present Study	267 267 269
5	5.1 5.2 5.3 5.4	Introduction Main Findings of the Study Summary of Contributions of the Present Study Optimization Strategies	267 267 269 271
5	5.1 5.2 5.3 5.4	Introduction Main Findings of the Study Summary of Contributions of the Present Study	267 267 269
	5.1 5.2 5.3 5.4 5.5	Introduction Main Findings of the Study Summary of Contributions of the Present Study Optimization Strategies Limitations and Recommendations for Future Research	267 267 269 271 274
REFER	5.1 5.2 5.3 5.4 5.5	Introduction Main Findings of the Study Summary of Contributions of the Present Study Optimization Strategies Limitations and Recommendations for Future Research	267 267 269 271 274
REFEF APPEN	5.1 5.2 5.3 5.4 5.5 RENC	Introduction Main Findings of the Study Summary of Contributions of the Present Study Optimization Strategies Limitations and Recommendations for Future Research EES ES	267 267 269 271 274 276 320
REFER APPEN BIODA	5.1 5.2 5.3 5.4 5.5 RENC IDICE	Introduction Main Findings of the Study Summary of Contributions of the Present Study Optimization Strategies Limitations and Recommendations for Future Research	267 267 269 271 274

LIST OF TABLES

Table		Page
1.1	Terms and definitions in the context of this study	25
2.1	Related concepts of river corridors proposed by different scholars	36
3.1	The independent and dependent variables impacting the usage and constraints of urban river corridors	101
4.1	Journal distribution of the 59 research papers reviewed in this study	126
4.2	The regional distribution of the 59 peer-reviewed papers reviewed in this study	127
4.3	Respondents' demographic characteristics (N=620)	156
4.4	User pattern by respondents at urban river corridors (N=620)	159
4.5	Important factors during visit to the urban river corridor (descriptive analysis)	178
4.6	High-frequency feature words in user reviews of the Hutuo River Corridor in Shijiazhuang (urban section): top 100 rankings	181
4.7	Frequency list of LDA feature words for each theme (top 30)	188
4.8	LDA theme description	191
4.9	Environmental and perceptual factors by respondents that constrain use (N = 620)	233
4.10	High-frequency feature words in user comments on constraints in the Shijiazhuang Hutuo River Corridor (urban area): Top 100 rankings	253
4.11	Factors influencing the usage and constraints of urban river corridors from a socio-ecological perspective	259

LIST OF FIGURES

Figure		Page
1.1	River, city, people framework	6
1.2	Flow chart presenting organization structure of the thesis	26
1.3	Conceptual framework of the research: personal, social and physical factors of urban river corridor usage and constraints	28
2.1	Four-dimensional structure diagram of river corridor	38
2.2	Cross-sectional structure diagram of the river channel	39
2.3	The soc <mark>ial-ecological framework</mark>	86
3.1	The research process flow chart	88
3.2	Convergent mixed method design model	90
3.3	Location of Shijiazhuang, Hebei Province, China	93
3.4	Location of Hutuo River Corridor for the public interview in Shijiazhuang, China	93
3.5	Steps involved in a systematic review	97
3.6	Social media data processing flowchart	112
3.7	Schematic diagram of the LDA model	117
4.1	Number of articles on usage and constraints of urban river corridors published from 2012 to 2023	128
4.2	A conceptual framework for analyzing the usage and constraints of urban river corridors based on social ecology approach	153
4.3	Activities of users along the Hutuo River Corridor in Shijiazhuang: (a) fishing; (b) taking photos; (c) camping; (d) walking dogs; (e) flying kite; (f) riding; (g) horse riding; (h) boating; (i) play with water; (j) walking	161
4.4	The depictions of the Hutuo River Corridor in the urban section of Shijiazhuang: (a) riverside; (b) square; (c) path area; (d) roadside; (e) open grassland; (f) flat semi-enclosed green space; (g) enclosed highland forest; (h) flower sea	166
4.5	Respondents' preferred area for visiting the Hutuo River Corridor	169

4.6	Respondents' motives for visiting the Hutuo River Corridor	171
4.7	Word cloud diagram of high-frequency feature words in Hutuo River Corridor	183
4.8	Semantic network centrality of social network texts in Hutuo River Corridor	184
4.9	Number of theme-perplexity line graph	186
4.10	Monthly number of comments on Shijiazhuang Hutuo River Corridor (2022-2023)	194
4.11	Seasonal number of comments on Shijiazhuang Hutuo River Corridor (2022-2023)	194
4.12	The scenery of four seasons along the Hutuo River Corridor in Shijiazhuang: (a) spring; (b) summer; (c) autumn; (d) winter	198
4.13	Activities of users along the Hutuo River Corridor in Shijiazhuang: (a) sketching; (b) water activities; (c) sand play; (d) skateboarding; (e) balance biking; (f) interaction with animals; (g) play in the snow; (h) lying in hammock; (i) barbecue; (j) picnic	212
4.14	The natural landscape of the Hutuo River Corridor: (a) water body; (b) butterfly; (c) bird; (d) vegetation	214
4.15	The artificial facilities of the Hutuo River Corridor: (a) "I Love Shijiazhuang" sign; (b) Jizhiguang Tower; (c) LanxiuTower; (d) Scenic Road; (e) Fitness Trail; (f) Landscape Bridge; (g) Musical Fountain; (h) Children's Play Area; (i) Sculpture; (j) Windmill; (k) Hot Air Balloon; (l) Train-themed Restaurant; (m) Rest Pavilion; (n) Signboard; (o) Benches; (p) Restrooms	217
4.16	The ratio of three emotional polarities	227
4.17	User star rating score distribution	228
4.18	Monthly distribution of user comments with different attitudes	228
4.19	The respondents' constraints in using Hutuo River Corridor	234
4.20	Word cloud diagram of high-frequency feature words on constraints in Hutuo River Corridor	254
4.21	Semantic network centrality of social network texts about the constraints in Hutuo River Corridor	255
4.22	Factors influencing urban river corridor usage and associated constraints from socio-ecological perspective	262

LIST OF APPENDICES

Appen	dix	Page
1	Questionnaire	320
2	Summary of findings from reviewed articles	333
3	Quality ratings	338
4	Studies reporting attributes investigated for usage and constraints of urban river corridors	340
5	Usage patterns by respondents in Hutuo River Corridor (chisquare measure x² and p-value)	344
6	The main purposes for visiting Hutuo River Corridor (chisquare measure x² and p-value)	349
7	Important factors during visit to the urban river corridor (ordered logistic regression model measure the odd ratio (OR) and p-value)	351
8	LDA theme description and comment examples	353
9	Constraints by respondents in Hutuo River Corridor (chisquare measure x² and p-value)	357
10	The respondents' constraints in using urban river corridor (binary logistic regression model measure the odd ratio (OR), 95% confidence intervals (CIs), and p-value)	358

LIST OF ABBREVIATIONS

AHP Analytic Hierarchy Process

Al Artificial Intelligence

APIs Application Programming Interfaces

BMEEB Beijing Municipal Ecology and Environment Bureau

CCAT The Crowe Critical Appraisal Tool

CUSRA The China Urban Science Research Association

DID The Department of Irrigation and Drainage of Malaysia

FISRWG Federal Interagency Stream Restoration Working Group

fsQCA Fuzzy set qualitative comparative analysis

GIS Geographic Information Systems

IWRM Integrated Water Resources Management

KDE Kernel Density Estimation

KMO Kaiser-Meyer-Olkin

LBS Location Based Services

LDA Latent Dirichlet Allocation

MEA The Millennium Ecosystem Assessment

MEE The Ministry of Ecology and Environment of the People's

Republic of China

MWR Ministry of Water Resources

NBS National Bureau of Statistics

NDVI Normalized Difference Vegetation Index

NLP Natural Language Processing

POI Point of Interest

PPGIS Public Participation Geographic Information System

PRISMA Preferred Reporting Items for Systematic reviews and Meta-

Analyses

SD Semantic Differential Method

SDT Self-Determination Theory

SEM Social-ecological Model

SOPARC The System for Observing Play and Recreation in Communities

SPSS Statistical Package for the Social Sciences

SSB Shijiazhuang Statistics Bureau

TOPSIS The Technique for Order of Preference by Similarity to Ideal

Solution

UGC User-Generated Content model

CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to rapid urbanization and climate change, urban river corridors have undergone significant physical and spatial transformations, resulting in various social and ecological challenges (Best, 2019; Gurnell et al., 2007; Nguyen et al., 2019; Remondi et al., 2016; Wantzen et al., 2016; Zainal Abidin & Lee, 2011). China has also recognized this phenomenon in recent years and tried restoring river corridors through ecological design approaches while enhancing their recreational and leisure value. Urban river corridors serve not only as carriers of biodiversity and habitats for flora but also as essential ecological corridors for ensuring the well-being of urban residents (Nguyen et al., 2021; Oertli & Parris, 2019). However, there remains a lack of research on community consultations regarding how to design urban river corridor landscapes better to meet the public's high expectations for riverside green spaces, which hinders the development of urban river corridors in the Chinese context. Therefore, this study aims to investigate the current usage status of urban river corridors and identify the associated constraints different cultural groups face to establish a conceptual framework. Based on these findings, design and management recommendations for urban river corridors are proposed, providing a scientific reference for future development and improvement. Given its historical, geographical, physical, and cultural

significance, the Hutuo River Corridor in Shijiazhuang, Hebei Province, China, was selected as the case study site for this research. This chapter introduces the research, beginning with a discussion of the global context and Chinese contexts of urban river corridors, followed by problem statements, research gaps, research aims, objectives and questions, significance, limitations, and term definitions, and concludes with an overview of the thesis's structure.

1.2 Urban River Corridor in the Global Context

The urban population continues to grow, with more than 50% of the global population residing in cities since 2007, and it is projected to reach 60% by 2030 (United Nations, 2022). However, the rapid development of dense cities has led to significant alterations in the natural state of rivers, resulting in a host of pressing challenges, including water pollution, flooding, habitat fragmentation, and a decline in biodiversity (Austin, 2014; Bond & Lake, 2003; Clark & Johnston, 2017; Postel & Richter, 2012). These issues severely threaten the sustainability and livability of cities. Consequently, promoting urban biodiversity and providing ecosystem services have become crucial priorities for global urban planners and policymakers (Haase et al., 2014).

In addition to these concerns, the concepts of social and ecological resilience have become increasingly important in urban river corridor planning. Social resilience refers to the ability of communities to adapt and thrive in the face of social, economic, or environmental stressors (Kirmayer et al., 2009), while ecological resilience focuses on the capacity of ecosystems to recover from

disturbances while maintaining their essential functions (Gunderson, 2000). Urban river corridors are not only ecological assets but also crucial elements in enhancing social resilience, as they provide spaces for recreation, mental well-being, and community engagement (Bodmer, 2021; Gote, 2019; Kumar et al., 2013). Integrating these resilient features into urban planning ensures that cities can better withstand and adapt to various challenges, such as climate change and rapid urbanization.

To address these challenges, carefully designed "blue-green infrastructure," also known as "nature-based solutions," such as river corridors, are increasingly gaining recognition (Asakawa et al., 2004; Bae, 2011). Additionally, the COVID-19 pandemic and associated social restrictions have underscored the importance of green spaces, especially in urban areas where residents seek solace from prolonged indoor isolation (Darcy et al., 2022; Doughty et al., 2022). Urban river corridors are considered unique community assets that provide valuable and beneficial opportunities for residents to reconnect with nature (Rafferty, 2004).

Most of the world's significant cities have been built along rivers (Baschak & Brown, 1995). For instance, throughout history, numerous ancient civilizations settled along rivers such as the Tigris and Euphrates in Mesopotamia, the Nile in Egypt, the Ganges in India, and the Yellow River in China (Macklin & Lewin, 2015). Contemporary examples of cities located along rivers include London along the Thames, Paris along the Seine, Rome along the Tiber, Prague along the Vltava, and Budapest along the Danube. Nevertheless, human activities

driven by urban development projects and restoration efforts have altered and disrupted urban rivers (Che et al., 2012; Kondolf & Pinto, 2017; Pouya & Baskaya, 2018). Since the 1970s, cities worldwide have reconsidered the degradation of their urban river environments and sought to return them to a more natural state (Vian et al., 2021). For example, countries such as the United States, Germany, France, the Netherlands, Switzerland, and Japan have primarily removed previously placed hard materials from riverbeds and adopted ecological design approaches to restore and enhance their rivers. In the UK and Europe, implementing the "Water Framework Directive" introduced a more ecological framework for river restoration, significantly improving water quality and flood control (Smith et al., 2014).

As environmental awareness among citizens continues to grow (Kibel, 2007), policymakers have developed a renewed interest in urban rivers (Vian et al., 2021). Specific riverfront locations are now considered optimal for residential, commercial, and, notably, recreational developments (Sudia, 1974; Lerner & Holt, 2012). Simultaneously, recreational uses of urban rivers are gaining popularity, resulting in the construction of various public open spaces along rivers that interact with river ecosystems in various ways (Vian et al., 2021). Integrating ecological sustainability principles into these developments is critical, as it ensures that urban river corridors continue to provide the necessary ecosystem services while supporting the ecological and social health of urban populations.

As the proliferation of urban riverfront revitalization projects in developed nations continues to surge, it is time to reflect on the relationship between cities and rivers: How do rivers influence urban development? How do cities treat their riverbanks over time? How does the spatial relationship between cities and rivers constrain and improve the connection between urban populations and rivers? Initiatives aimed at river improvement or transformation should likewise consider the confluence of biophysical processes and the intricacies of the socio-economic realm (Selman et al., 2010; Westling et al., 2014). Hence, when considering urban landscape ecological planning methods, the perspectives of residents hailing from diverse cultural backgrounds and sociodemographic characteristics become pivotal in guiding the future development of river systems. Regarding urban rivers, some researchers have proposed a three-dimensional approach that considers three main evaluative perspectives related to rivers, cities, and people (Pouya & Baskaya, 2018) (Figure 1.1). In this context, rivers can be defined as the physical and biological world, cities as the social and humanized world, and people can act as individuals with emotional and perceptual connections to these places (Lothian, 1999). To understand the implementation of river corridors, it is necessary to investigate both the physical and ecological aspects of cities and rivers at the human level.

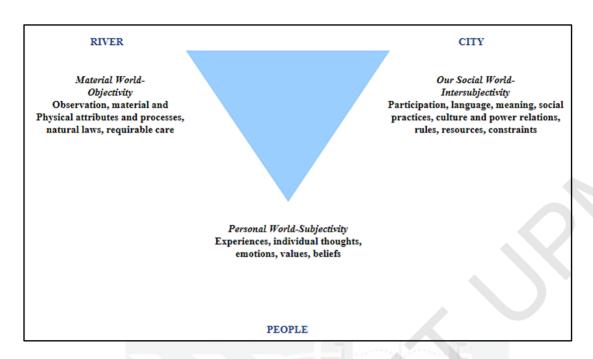


Figure 1.1: River, city, people framework (Source: Silva et al., 2005)

River corridors refer to the vegetated areas along river channels and their adjacent zones, serving as transitional zones between the river and surrounding terrestrial ecosystems (Forman, 1995). Research demonstrated that urban river corridors, as blue-green infrastructure, perform a dual role as natural and social corridors, thereby contributing significantly to urban stability, comfort, and sustainability (Janiszek & Krzysztofik, 2023; Ji et al., 2012). On one hand, urban river corridors hold the potential as green spaces, providing residents with a multitude of valuable ecosystem services, including the regulation of urban microclimates, alleviation of the urban heat island effect, soil and water retention, purification, and conferring psychological benefits through attention restoration (Guimarães et al., 2021; Hathway & Sharples, 2012; Kenwick et al., 2009; Vaeztavakoli et al., 2018). On the other hand, river corridors offer diverse social values such as cultural, recreational, and touristic aspects (Che, 2001; Garcia et al., 2017). Natural riverbanks

contribute to the city's aesthetic landscape, constituting an essential element in shaping urban scenery (Che, 2001). Urban river corridors are ideal public attractions for showcasing vegetation and optimizing the city's visual landscape. Furthermore, they provide citizens with water-related spaces, fostering a connection to nature (Zainal Abidin, 2017). These and similar studies show that urban river corridors, as vital public amenities, constitute critical determinants of individual and societal well-being and overall quality of life.

IIDM

However, relying solely on ecological methods to enhance urban river corridors may not align with residents' preferences and expectations (Pouya & Baskaya, 2018), as individuals' use and preferences for urban river corridors vary significantly (Buijs et al., 2009). It has been suggested that urban river corridors be investigated by considering residents' perspectives and exploring their experiences, cultural values, and social memories attached to the landscape (Pouya & Baskaya, 2018). There remains a debate on whether residents' preferences should be prioritized in landscape projects. Some researchers have noted how the physical characteristics of river corridors and the social-cultural and perceptual attributes of individuals and social groups influence public preferences for river restoration (Garcia et al., 2020). Physical factors refer to the configuration of biophysical elements forming the riparian landscape (e.g., banks, channels, water, vegetation), design, and functional features (Garcia et al., 2020; Kaplan & Kaplan, 1989). Social-cultural factors encompass proximity and length of residence, socio-demographics, values, beliefs, emotions, behavioral tendencies, and place attachment (Garcia et al.,

2020; Wang et al., 2019b). In river restoration literature, dimensions like naturalness, risk, and safety, as well as stewardship and cleanliness, are most frequently analyzed to explore public preferences for river landscapes (Artmann et al., 2017; Garcia et al., 2020; Millard et al., 2022; Schrader, 1995).

Several variables and their interrelationships may influence urban river corridors. Therefore, it is necessary to investigate the factors influencing the usage and constraints of river corridors and the interactions among these factors. Involving the public in decision-making processes for river restoration can enhance their sense of ownership and pride in the local river environment (Eden & Tunstall, 2006). Perceiving the meanings attached to the river landscape helps to counteract feelings of detachment by fostering a connection between people and the restored river environment (Selman et al., 2010). Understanding the various factors that impact the public's use and constraints of urban river corridors may assist decision-makers in anticipating conflicts and outlining acceptable restoration management strategies, thereby contributing to the sustainable development of these projects.

1.3 Urban River Corridor in the Chinese Context

China is an increasingly urbanized continent. From 2010 to 2020, the urbanization rate in China rose from 49.7% to 63.9% (Zhai, 2021). The rapid economic development and population expansion, coupled with intense human activities such as extensive water infrastructure construction and the growth of agriculture and animal husbandry, have disrupted the balance of

natural river ecosystems (Chen et al., 2010; Jiang, 2009). Consequently, various ecological and environmental issues in rivers have emerged, encompassing river degradation, biodiversity reduction, and water bodies' eutrophication (Yu et al., 2015; He et al., 2022). Simultaneously, this multifaceted challenge severely threatens regional water security and socioeconomic sustainability (Jiang, 2015). The decline in riverine ecosystems has consequently garnered escalating attention, prompting ecologists and scientific researchers to acknowledge the crucial significance of river corridors in this context.

Historically, rivers have been foundational to the development and sustenance of Chinese civilization (Xia et al., 2021). Early Chinese settlements were predominantly established along major rivers, such as the Yellow and Yangtze Rivers, which were critical for agriculture, transportation, and sustenance (Mostern, 2021; Wohlfart et al., 2016; Yasuda et al., 2004; Zhuang & Kidder, 2014). These rivers served as vital lifelines, supporting irrigation and acting as natural boundaries between regions, thereby shaping the socio-economic structure of early rural societies. As China transitioned from predominantly rural communities to urbanized centers, the function of rivers underwent significant transformation. During the urbanization process, rivers evolved from agricultural resources to integral components of urban planning and development (Bao & Fang, 2012). They not only dictated the spatial layout of cities but also facilitated economic and cultural exchanges, thus becoming central to the urban fabric (May, 2006; Castonguay & Evenden, 2012). However, the rapid pace of industrialization and modern urban development

has led to the degradation and alteration of many river corridors (Che et al., 2012). These changes have disrupted natural ecosystems and diminished the traditional roles that rivers once played in both rural and urban settings. As cities expanded, rivers increasingly intertwined with urban infrastructure, influencing city life's social and functional dynamics (Kondolf & Pinto, 2017). The historical evolution of these rivers from rural to urban contexts highlights their ongoing significance and the challenges they face in contemporary urban landscapes.

In response to these challenges, several national-level strategies have been implemented to restore and manage urban rivers by linking water quality improvements with ecosystem protection and urban development. Initiatives such as the "Dual Restoration" strategy and the "Technical Guidelines for the Protection and Restoration of River and Lake Ecological Buffer Zones" highlight the importance of restoring urban river corridors as critical elements of ecological sustainability (MEE, 2021; Li, 2021a). These strategies aim to enhance river water environments, protect aquatic ecosystems, and create harmonious urban spaces that balance human needs with environmental preservation.

Public perception of rivers has also evolved over the past two decades. Initially, rivers were heavily modified to improve flood control, often resulting in ecological degradation and loss of recreational value (Wantzen et al., 2016). However, there has been a growing awareness of the importance of river restoration, leading to the development of projects that seek to return rivers to

a more natural state and enhance their role as public spaces. Urban river corridors have thus become catalysts for sustainable urban development (Vollmer,2009), offering benefits such as flood control (Lerner & Holt, 2012; Miguez et al., 2016), climate change adaptation (Rojas et al., 2013), recreational opportunities (Che, 2001), and enhanced biodiversity (Vermaat et al., 2016; Guimarães et al., 2021).

The restoration and revitalization of urban river corridors in China have become focal points for urban renewal efforts. By integrating green and blue spaces into urban design, cities aim to create a more connected and resilient ecological network (Vall-Casas et al., 2019). Despite the wealth of research on river corridors, differences in the use of river landscapes among various population groups have yet to be noticed. It has been proven that establishing effective collaboration among stakeholders with interests and impacts on urban river restoration is crucial (Hamdan et al., 2021). Achieving a balance in planning and implementing urban river restoration measures is imperative. Public consultation and engagement with local communities stand out as vital steps in the planning and implementing urban river restoration measures. Environmental planners and designers believe that landscape planning should meet the needs of users (Sreetheran, 2015). However, they often lack direct communication with the public before planning or designing river corridors. In the context of an evolving trend toward human-oriented design, a growing body of literature emphasizes that the design of landscapes attuned to public aesthetics and living needs is indispensable for achieving sustainability (Guo & Wang, 2022).

1.4 Rapid Development of Big Data Technology

With the advent of the big data era, data mining, analysis, and visualization technologies have witnessed remarkable advancements, making acquiring and utilizing large datasets less challenging. The explosive growth of internet users, epitomized by social media platforms, has transformed online networks into novel spaces where users can express opinions and emotions (Pak & Paroubek, 2010). Platforms like Facebook, Twitter, Flickr, Sina Weibo, WeChat, and Dianping boast substantial user bases, enabling individuals to voice their perspectives and discuss specific topics. Consequently, these platforms are evolving into crucial sources for collecting social perception data (van Zanten et al., 2016). The diverse and comprehensive data available on these social networks capture various dimensions of human activities and the dynamic characteristics of environmental elements.

Batty (2013) emphasized the need for urban planners to catch up with the big data era, adapt their thoughts, and explore big data applications within urban studies in his work "Big Data, Smart Cities and City Planning." In China, several social media platforms, such as Sina Weibo, Dianping, Baidu, Google, and numerous internet-based corporations, have, to a certain extent, facilitated targeted access to and management of data by offering Application Programming Interfaces (APIs). These platforms have increased data sharing across society (Zhu, 2020). The emergence of these open data organizations and websites has significantly altered and expanded the data foundation for urban research, which provides researchers with exceptional convenience and

a wealth of possibilities for conducting urban studies from various scales and perspectives (Mao, 2014). The utilization of social media data for precise analysis and design in urban contexts has gradually evolved into a consensus within urban planning and design (Wu et al., 2019b).

Compared to traditional data sources, social media data presents several advantages. These include lower data collection costs, large-scale data availability, the convenience of precise geographic information for each data point, reduced subjectivity and bias introduced by direct researcher-participant interactions, and the ability to capture voices often missing in conventional public participation (Chen et al., 2018a; Cheng et al., 2022; Daniel & Meitner, 2001; Pogačar & Žižek, 2020). Researchers can harness this data's vast, intricate, and rapidly evolving nature through mining and processing, enhancing the scientific rigor of their analyses and predictive capabilities. Consequently, social media is an additional resource complementing traditional methods across various research domains. Using social media as a platform, people can understand cities in a bottom-up manner and participate in the planning and optimization of urban space. This approach is conducive to creating livable environments that meet people's needs, ultimately increasing happiness and fostering harmonious and stable societies (Dwivedi, 2009; Li, 2021a; Zhao et al., 2016).

1.5 Problem Statement and Research Gap

In modern urbanized society, river corridors have become essential support systems for the development of cities (Xue & Wang, 2008). The increasing

urban population, influenced by rapid demographic changes and urban pressures, has prompted cities to prioritize the health and well-being of their residents (Paneerchelvam et al., 2020). Urban lifestyles and a lack of interaction with nature may result in stress and mental fatigue among urban dwellers (Velarde et al., 2007). Urban river corridors, as natural systems within cities, play a vital role in improving urban environmental conditions by mitigating surface temperatures, filtering pollutants, and preventing soil erosion (Apan et al., 2002; Fabos, 1995; Gunawardena et al., 2017; Hathway & Sharples, 2012; Kantartzis et al., 2006; Singh et al., 2021). Moreover, these corridors provide wildlife habitat, significantly enhancing urban biodiversity (Guimarães et al., 2021). Furthermore, urban river corridors offer residents opportunities to connect with natural environments and green spaces, providing venues for recreational activities and relaxation (Asakawa et al., 2004; Zainal Abidin, 2017). Research on healthy environments suggests that exposure to nature and restorative natural landscapes can reduce stress. alleviate negative emotional states, and promote psychological well-being (Grahn & Stigsdotter, 2003; Vaeztavakoli et al., 2018). Some studies also indicate that frequent contact with nature fosters social interaction and cohesion among neighbors (De Vries et al., 2013; Ekkel & de Vries, 2017; 'Yotti' Kingsley & Townsend, 2006). However, large green spaces are scarce in densely populated city centers, and the distance required to access these spaces often discourages frequent use (Woolley, 2003). Therefore, urban river corridors have emerged as ideal areas with water-oriented landscapes, providing citizens with extensive green spaces and connectivity (Chen et al., 2022).

Identifying stakeholders' landscape values and preferences can help minimize potential conflicts and promote comprehensive planning and management of river corridors (Garcia et al., 2017). However, despite the favorable social and political context for increasing river landscape management and restoration to support community well-being in China, public participation remains limited, impeding major stakeholders' involvement, including owners, users, residents. visitors, and neighbors. This limited public involvement dramatically hinders the effective bridge of the "people-city-river" relationship (Garcia et al., 2017; Zainal & Lee, 2011). Research by Pouya and Baskaya (2018) shows that neglecting public participation in river restoration may lead to adverse outcomes, especially in urban river corridors. For instance, planting "wild grasses" and native plants in the riparian zone might be misconstrued as a lack of maintenance and management, whereas colorful ornamental grasses like *Miscanthus sinensis* may be more appealing to people. Additionally, involving the public in the decision-making process of river restoration plans can enhance their sense of belonging, ownership, and pride in the local river environment (Eden & Tunstall, 2006; Junker & Buchecker, 2008). Ultimately, public participation in river projects can increase the likelihood of successful implementation and support for restoration plans (Garcia et al., 2020; Nilsson et al., 2007).

Furthermore, understanding public usage and constraints is crucial in urban river corridor restoration (Garcia et al., 2020). Over the past few decades, urban river corridor projects have been ubiquitous in developed countries and increasingly promoted in developing countries. These projects propose

restoring rivers in urban environments through natural processes, ecological values, and socio-cultural functions (Bajc & Stokman, 2018; Blau & Panagopoulos, 2018; Delibas & Tezer, 2017). However, in densely populated cities, the social benefits of restoration may outweigh the potential ecological benefits. Residents are an inevitable part of urban river projects as rivers are intertwined with various economic, cultural, and social issues for the community (Chou, 2016; Pouya & Baskaya, 2018). Evidence suggests that residents interact with urban water bodies in diverse ways, and people from different cultural and racial backgrounds utilize river corridor spaces differently (Diep et al., 2022; Haeffner et al., 2017). Moreover, cultural influences significantly shape attitudes toward landscapes (Rohde & Kendle, 1994; Schaich, 2009; Zainal Abidin, 2017). Many rivers are closely linked to the identity and distinct characteristics of the cities they flow through (Bruttomesso, 2004). Thus, each river corridor requires unique planning and design approaches that suit its specific conditions as they vary in physical and ecological attributes (Zainal Abidin, 2017). Transferring restoration methods from a successfully applied city to another with different features often leads to failure when cultural diversity, public use, and constraints of the river corridor are not adequately considered. This phenomenon also presents significant challenges for Chinese urban design teams to improve the design process to cater to the needs and desires of multi-populated communities with diverse socio-economic backgrounds, especially regarding economic, health, and cultural well-being. Therefore, it is necessary to understand how different cultural groups utilize urban river corridor landscapes, providing valuable

insights to enhance the guidance of design and management strategies for these urban features (Johnston & Shimada, 2004).

Although online social media data is relatively easy to access and comes in large volumes, it has yet to receive full attention and effective utilization in urban river corridor research. A wealth of untapped information within social media data awaits further exploration and discovery. Some scholars in the field of the landscape have been experimenting with various methods to extract domain-relevant knowledge from social media data. For instance, recent studies have explored transforming information from spontaneously generated media data into structured landscape values (Chen et al., 2018b; Cheng et al., 2022). However, the reliability of these methods warrants further investigation and refinement. Compared to relatively more reliable and accurate traditional approaches such as surveys and interviews, social media data, as spontaneously generated data, contains highly subjective and personalized user comments, which may introduce additional biases (Chen et al., 2018b). Therefore, it is advisable to emphasize integrating social media data with conventional data sources in numerous landscape studies, enabling various types of data to cross-verify one another and helping to address urban challenges effectively.

In China, previous literature mainly focused on the ecological functions of river corridors, such as flood control, erosion reduction, ecological benefits of regulating microclimates in natural riparian zones, and biodiversity of riverside vegetation (Ji et al., 2012; Zhang et al., 2022a). In recent years, researchers

have started to pay attention to the interactions between the physical features of river corridors and the "human dimension." However, these studies have some limitations as they primarily concentrate on post-usage evaluations, satisfaction, and vitality of urban river corridors, with little consideration for individual differences (Chen et al., 2022; Cheng et al., 2022; Fan et al., 2021; Liu et al., 2021; Niu et al., 2021; Shi et al., 2023; Zhang et al., 2022b). For those involved in designing and managing urban river corridors, it is essential to understand diverse perspectives, preferences, and experiences to avoid perpetuating the dominance of certain groups. Furthermore, previous research has mainly employed single indicators, such as familiarity or accessibility, with limited consideration of various aspects of urban river corridor use and their determining factors (Xie et al., 2023). Thus, there is still a lack of a comprehensive approach to gaining a deeper understanding of the intricate interactions among various factors influencing the utilization of these spaces. which contributes to providing valuable guidance for urban planners and policymakers to create sustainable and people-centric urban environments.

In Shijiazhuang, the design and maintenance of the Hutuo River Corridor are the responsibility of public administrative departments, while budget constraints hinder their action capacity. Extensive use of cultivated vegetation, with intensive and long-term exemplary management and maintenance through horticultural activities like pruning, irrigation, fertilization, and weed control, often leads to a decline in plant community species diversity, imbalanced species relationships, and loss of animal habitats, resulting in high construction and maintenance costs (Bormann et al., 2001; Ignatieva et al.,

2011; Jabbar & Mohd Yusoff, 2022; Kristoffersen et al., 2008; Pickett et al., 2001; Sudha & Ravindranath, 2000; Skaller, 1981). The economic burden of traditional management practices is becoming increasingly evident. Furthermore, the landscape design process for the Hutuo River Corridor often lacks originality and fails to capture the region's distinctive historical and cultural identity. Designers frequently replicate designs from other cities, applying standardized elements without adequately considering the local context. For instance, the repeated use of windmill motifs and uninspired signage has led to monotonous landscape features and repetitive visual effects, which strip the corridor of its vibrancy and obscure its potential to showcase local cultural assets. Moreover, the Hutuo River Corridor is subject to dual management by the Water Conservancy Bureau and the Landscape Bureau, a critical issue in the landscape design and management process is the lack of coordination between the two departments, each of which has different management objectives. For example, The Water Conservancy Bureau prioritizes river flood control and water management, while the Landscape Bureau focuses on ecological and aesthetic aspects from a landscape perspective. This dual management structure often leads to conflicting priorities and objectives, with little consideration given to the perspectives of the actual users of the river corridor. Since the Hutuo River Corridor Revitalization Project was implemented in 2007, its planning has been predominantly driven by governmental authorities and designers, with limited public consultation. This top-down approach risks misaligning the design outcomes with the public's expectations and demands, revealing a critical gap in the process where user participation is insufficiently integrated. Addressing

this disconnect is crucial to realizing the corridor's potential to enhance human well-being and improve the quality of life for the residents of Shijiazhuang.

1.6 Research Aim and Specific Objectives

This study aims to explore the connection between urban river corridors and social-ecological perspectives, which are frequently overlooked in the implementation of urban river projects. Therefore, this research seeks to examine current usage patterns and constraints of urban river corridors from a regional standpoint while also delivering dependable data concerning their effectiveness. By developing a conceptual framework that merges these aspects, the study intends to enhance the existing landscape design process and offer innovative strategies for developing and improving urban river corridors, particularly in the context of well-developed river cities in China. The overall goal will be achieved through the following four specific objectives:

- (a) To systematically review the current usage status and associated constraints of urban river corridors from the perspective of existing literature.
- (b) To identify the usage patterns of the Hutuo River Corridor in Shijiazhuang.
- (c) To determine the constraints encountered in the utilization of the Hutuo River Corridor in Shijiazhuang.
- (d) To propose a conceptual framework for the use and associated constraints of the Hutuo River Corridor in Shijiazhuang.

1.7 Research Questions

The main research questions in this study are:

- RQ1. How have the usage and associated constraints of urban river corridors been studied in the literature globally?
- RQ2. What are the usage patterns of the Hutuo River Corridor in Shijiazhuang?
- RQ3. What constraints are encountered in the utilization of the Hutuo River Corridor in Shijiazhuang?
- RQ4. Which influencing factors promote and limit the usage of the Hutuo River Corridor in Shijiazhuang?

1.8 Significance of Study

Previous studies have explored the advantages and significant roles of urban river corridors within a country, providing positive social-cultural experiences for residents. In addition, numerous studies have examined how the diversity of plant life in river corridors can contribute to urban ecosystem sustainability. From the perspective of previous researchers, the ideas and strategies investigated can serve as references for enhancing landscape design and management in urban river corridors. Environmental, historical, and cultural constraints significantly influence the landscape characteristics of urban river corridors. While abundant literature exists on the use and constraints of urban landscapes or green spaces, limited research is explicitly conducted within urban river corridors. Hence, there is an urgent need for holistic design approaches strongly influenced by ecological methods and robust community participation to improve the current landscape design process and achieve

exceptional sustainable outcomes for the future development of urban river corridors in China. Therefore, this research fills the gap in the lack of design strategies for urban river corridors, which is particularly vital in China, given its diverse population and multi-ethnic environment. Consequently, the resulting conceptual framework can be implemented to design urban river corridors. The findings of this study will provide evidence for planners, designers, and policymakers to strengthen urban river corridors. They will enhance the design and management standards of urban river corridors, positively impacting the well-being of Chinese communities and the overall quality of urban life.

Furthermore, apart from traditional survey methods, this study also employed social media data to enhance the generalization and accuracy of the research results. In this way, the shortcomings of traditional research methods, such as small data sample sizes, limited content categories, and insufficient collection time, are avoided (Cheng et al., 2022). Currently, there are few studies on urban river corridors using media data, and they are still in their nascent stage, primarily focusing on utilizing check-in data to reflect people's spatiotemporal behavior patterns and satisfaction (Cheng et al., 2022; Wu et al., 2019a, b, c). By harnessing the advantages of big data information mining, this study explored the characteristics of user recreational experiences. This approach facilitates a thorough and rapid understanding of user demands and constraints associated with various factors in urban river corridors, employing a bottom-up methodology. The integration of big data information mining offers a practical way to assess the value of qualitative ecology in future research.

1.9 Research Scope and Limitation

The scope of this study is to explore the usage patterns and constraints of urban river corridors, focusing on the Hutuo River Corridor in Shijiazhuang, Hebei Province, China. This region was selected as it exemplifies urban river corridors in northern inland cities of China, providing insights that are anticipated to extend to similar socio-cultural and environmental contexts across other Chinese cities. Central to this research is the development of a conceptual framework that integrates social and ecological dimensions. This framework is designed to investigate the intricate interactions among the physical attributes, ecological functions, and human usage patterns of urban river corridors. Special attention is given to how individuals from diverse cultural and socio-economic backgrounds engage with these corridors, aiming to lay a foundation for sustainable urban landscape design and management. The study employs a mixed-methods approach, combining traditional survey techniques with social media data analysis to comprehensively understand user behavior and its constraints. The significance of this research lies in its formulation of a conceptual framework that not only provides actionable recommendations for the design and management of urban river corridors in China but also addresses specific needs and constraints identified within the Hutuo River Corridor. It offers valuable theoretical and practical insights for the development of urban river corridors in China's rapidly urbanizing areas. This research aims to support urban planners, landscape designers, and policymakers with evidence-based strategies for enhancing the functionality and sustainability of urban river corridors.

This study also has some limitations. Firstly, the study could cover up to one sample area due to time and resource constraints. This empirical study on the usage and constraints of urban river corridors specifically focused on the Hutuo River Corridor in Shijiazhuang, Hebei Province, China. Therefore, the applicability of the findings to other cities requires further validation. Secondly, we observed a construction zone within the scenic area of the Hutuo River Corridor in Shijiazhuang, which generated noise, dust, or debris that might hinder people's visits. Lastly, the investigators did not conduct surveys during unfavorable weather or periods like rainy days or flood seasons, assuming visitors rarely use the Hutuo River Corridor during adverse weather or restricted access periods. However, it cannot be ruled out that some individuals may choose to explore the corridor even during rainy conditions. For example, Li (2009) published an article about climbing Mount Tai and enjoying the fun of waterfalls in the rain.

1.10 Definition of Terms

The definition of terms below provides an overview of the research's working definitions, which helps the reader better understand (Table 1.1).

Table 1.1: Terms and definitions in the context of this study

Terms	Definition
River corridor	A river corridor is a zone of vegetation distributed along a river and differs from the surrounding substrate (Forman, 1995). It comprises the river channel, riparian zones, floodplains, and the transitional upland fringe (FISRWG, 1998). However, the width and presence of these regions can vary depending on the topography and the extent of urban development (Vian et al., 2021).
Urban waterfront	Moretti (2008) describes urban waterfront as "the urban zone in direct proximity to water." This term is analogous to different words such as riverside, riverfront, river edge, water edge, harbourfront, and city port (Timur, 2013). It serves as an "interface area" or a "transition zone" that connects urban development and water bodies from an ecological perspective (Brighenti & Mattiucci, 2012; Samant & Brears, 2017; Yassin et al., 2010).
Urban riverfront	In urban areas located near water bodies, the interface between residents and water occurs along the "waterfront" (Vian et al., 2021), with water bodies including rivers, lakes, oceans, bays, creeks, or canals (Breen et al., 1994). Therefore, in urban areas near rivers, it constitutes the urban riverfront, serving as a transition area (Vian et al., 2021).
Urban blue-green space	Urban blue-green space refers to integrated areas within urban environments that harmoniously combine blue spaces, including water bodies such as rivers, lakes, ponds, and artificial water features, with green spaces comprising natural or planted areas with vegetation such as parks, gardens, and green corridors (Kumar & Shekhar, 2021; Pan et al., 2023; Sunita et al., 2023). This concept emphasizes the seamless integration of water and vegetation in urban planning to create sustainable and resilient urban environments (Sunita et al., 2023).
User	The term "user" refers to an individual or group of individuals who interact with or utilize a particular product, service, system, or platform in a specific context (Berni & Borgianni, 2021).
Social media data	Social media data refers to the information and content users generate, share, and exchange on various social media platforms (Fang, 2019). It encompasses a wide range of digital content, including text-based posts, comments, messages, images, videos, likes, shares, and other interactions that users engage in using social networking sites (Fang, 2019; Li, 2021c).
Socio-ecological framework	The socio-ecological model, derived from Urie Bronfenbrenner's ecological system theory, is a conceptual framework that explores the intricate interactions between social, cultural, economic, and political elements, along with the natural environment. It aims to understand the influences on human behavior and decision-making, recognizing the impact of various levels of influence, from individual to societal contexts. This model emphasizes the reciprocal relationship between human activities and the environment, highlighting how environmental factors impact human well-being (Paneerchelvam, 2020).

1.11 Thesis Structure

This thesis consists of five chapters. Each chapter is described in the flow chart in Figure 1.2.

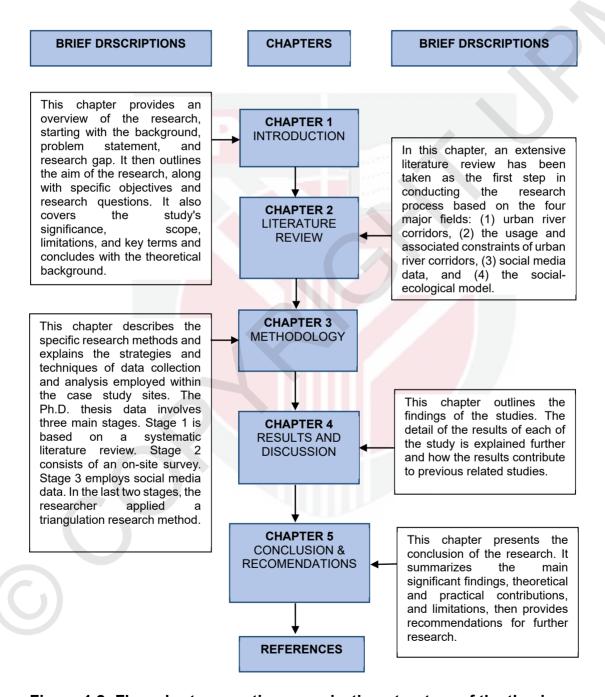


Figure 1.2: Flow chart presenting organization structure of the thesis

1.12 Theoretical Background

This study employs a social-ecological framework to explore the relationships between human behavior and the multi-level variables influencing usage patterns and constraints in urban river corridors. Drawing on social-ecological systems theory, this approach seeks to understand the interactions between human behavior and environmental factors (Bohnet & Smith, 2007; Liu, 2014). Guided by evolutionary theory, the social-ecological paradigm views social environments—such as families, institutions, groups, and communities—as forms of social ecosystems. It underscores the critical role of the ecological environment (the habitat for human existence) in analyzing and understanding human behavior, emphasizing the significant impact of the interactions between individuals and the various systems within their environment (Shi & Fan, 2005). From the perspective of environmental psychology, other assumptions are also related to this theory.

Inspired by Urie Bronfenbrenner's ecological systems theory (1977), the following socio-ecological framework was developed for this study, specifically highlighting how individual, social, and physical factors, and their interrelations, collectively shape the behaviors and constraints related to urban river corridors (Figure 1.3). This framework offers a robust theoretical foundation for analyzing the complex interactions between individuals and their social-ecological environments. Such an approach is crucial for comprehending the usage patterns and constraints within urban river corridors.

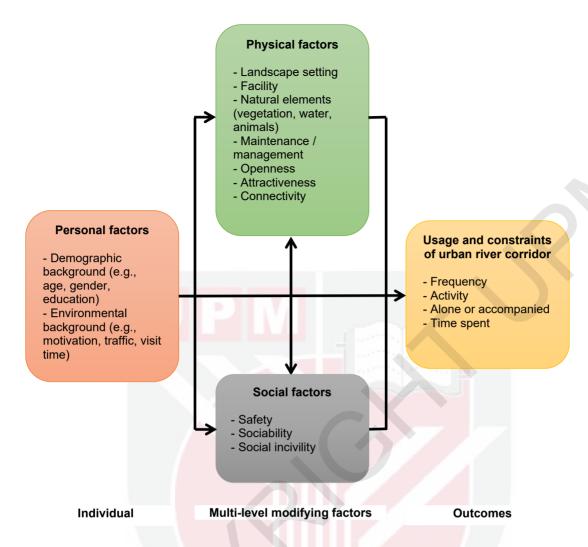


Figure 1.3: Conceptual framework of the research: personal, social and physical factors of urban river corridor usage and constraints

1.12.1 Personal Factors

Individuals are at the center of social-ecological theory. Personal attributes broadly include all the characteristics of an individual (Chenyang et al., 2022). The personal attributes include 1) Demographic background, such as age, gender, and other physiological characteristics, as well as personal attributes, such as occupation, education level, residence, marital status, ethnic/race, and living environment during childhood; 2) Environmental background factors,

which cover motivation, traffic, accessibility, frequency of visits, visit time, length of stay, and activity.

1.12.2 Social Factors

Social attributes refer to social psychological processes when people connect with others, society, and nature in social practice activities (Chenyang et al., 2022; Sreetheran & Bosch, 2014). The literature found that the social factors affecting the usage and restriction of urban river corridors include three factors: safety, sociality, and social incivility (Che et al., 2012; Eid et al., 2021; Vert et al., 2019; Vierikko & Yli-Pelkonen, 2019; Wu et al., 2019a; Xie et al., 2023). Safety is a critical concern of visitors to the urban river corridor, especially children and women. Social connections such as companionship, encouragement, and helping friends/family members influence the public's behavioral preferences (Kerishnan & Maruthaveeran, 2021). One study reported that other people's presence may increase feelings of safety (Staats & Hartig, 2004). A strong sense of neighborhood social cohesion is likely to foster increased social interactions among neighbors, ultimately promoting the utilization of urban river corridors.

1.12.3 Physical Factors

Physical factors can significantly influence individual usage, resulting in either positive or negative experiences. For instance, people may be drawn to pleasant natural settings, while chaotic environments might evoke aversion. In

a narrow sense, physical attributes primarily refer to the tangible characteristics and spatial elements of objects (Wang et al., 2019b). These include landscape settings, facilities, natural elements (such as vegetation, water, and animals), and aspects of maintenance and management. In addition to these tangible aspects, the perceived environment—the perceptual attributes of the physical environment where individuals live, work, and engage in leisure activities—also influences human behavior (Appleyard, 1979; Gärling & Golledge, 1989). Perceptions of environmental attributes, shaped by individual experiences and expectations, can encompass various aspects such as hydraulicity, comfort, openness, naturalness, attractiveness, coherence, legibility, complexity, harmony, rhythm, order, messiness, mystique, seclusion, and distinctiveness (Jorgensen et al., 2002; Hashim et al., 2016; Hoyle et al., 2017; Kaplan, 1992; Lamb & Purcell, 1990; Lis et al., 2022; Pardela et al., 2022; Sang et al., 2016; Suppakittpaisarn et al., 2020; Wojnowska-Heciak, 2019; Yılmaz et al., 2018). These perceptual elements are integral to how people experience and interact with their environments, and they play a crucial role in determining the usage and constraints associated with urban river corridors.

1.12.4 Relationship Between Factors

The social-ecological framework pays attention to the individual and the interaction between people and the environment at multiple levels (Liu, 2014). The social environment and physical environment will affect the behavior of individuals, and the behavior of individuals, groups, and organizations will also

affect the social environment and physical environment (Liu, 2014). The environment can control or limit a person's behavior, and changing the environment can induce changes in certain behaviors. Therefore, only targeted interventions based on different human-environment interaction situations can produce better results.

REFERENCES

- Ahern, J. (2013). Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. *Landscape ecology*, *28*, 1203-1212.
- Ajzen, I. (1991). The theory of planned behavior. *Organizational behavior and human decision processes*, *50*(2), 179-211.
- Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In *Action control: From cognition to behavior* (pp. 11-39). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Al-Ansari, H. A., & Al-Khafaji, A. S. (2023). Enhancing public health through sustainable urban design: an examination of transportation and green space integration. *J. Urban Dev. Manag*, 2(2), 104-114.
- Alele, F., & Malau-Aduli, B. (2023). 5.6 Triangulation of Data. *An Introduction to Research Methods for Undergraduate Health Profession Students*.
- Al-Kodmany, K. (2019). Improving understanding of city spaces for tourism applications. *Buildings*, *9*(8), 187.
- Andersen Cirera, K. (2022). Spatial Equity in River Access. Measuring the Public Space Potential of Urban Riverbanks in Valdivia, Chile. International Journal of Sustainable Development & Planning, 17(1).
- Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. *Psychometrika*, 49, 155-173.
- Apan, A. A., Raine, S. R., & Paterson, M. S. (2002). Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley catchment, Queensland, Australia. *Landscape and Urban Planning*, 59(1), 43-57.
- Appleyard, D. (1979). The environment as a social symbol: Within a theory of environmental action and perception. *Journal of the American Planning Association*, *45*(2), 143-153.
- Aram, F., Solgi, E., & Holden, G. (2019). The role of green spaces in increasing social interactions in neighborhoods with periodic markets. *Habitat International*, 84, 24-32.
- Artmann, M., Bastian, O., & Grunewald, K. (2017). Using the concepts of green infrastructure and ecosystem services to specify Leitbilder for compact and green cities—the example of the landscape plan of Dresden (Germany). Sustainability, 9(2), 198.

- Asakawa, S., Yoshida, K., & Yabe, K. (2004). Perceptions of urban stream corridors within the greenway system of Sapporo, Japan. *Landscape and urban planning*, *68*(2-3), 167-182.
- Austin, G. (2014). *Green infrastructure for landscape planning: integrating human and natural systems*. Routledge.
- Azzopardi, L., Girolami, M., & Van Risjbergen, K. (2003, July). Investigating the relationship between language model perplexity and IR precision-recall measures. In *Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval* (pp. 369-370).
- Bae, H. (2011). Urban stream restoration in Korea: Design considerations and residents' willingness to pay. *Urban Forestry & Urban Greening*, *10*(2), 119-126.
- Bahriny, F., & Bell, S. (2020). Patterns of urban park use and their relationship to factors of quality: A case study of Tehran, Iran. *Sustainability*, 12(4), 1560.
- Bajc, K., & Stokman, A. (2018). Design for resilience: re-connecting communities and environments. *Landscape Architecture Frontiers*, *6*(4), 14-32.
- Balode, L. (2014). The social aspect of open space in rehabilitation gardens and parks. *Mokslas–Lietuvos ateitis/Science–Future of Lithuania*, *6*(3), 310-322.
- Barnett, J., Beasley, L., Barnett, J., & Beasley, L. (2015). Designing and Managing the Public Realm. *Ecodesign for Cities and Suburbs*, 149-208.
- Bao, C., & Fang, C. L. (2012). Water resources flows related to urbanization in China: challenges and perspectives for water management and urban development. Water resources management, 26, 531-552.
- Bandhu, D., Mohan, M. M., Nittala, N. A. P., Jadhav, P., Bhadauria, A., & Saxena, K. K. (2024). Theories of motivation: A comprehensive analysis of human behavior drivers. *Acta Psychologica*, *244*, 104177.
- Barrow, C. J. (1998). River basin development planning and management: a critical review. *World development*, 26(1), 171-186.
- Baschak, L. A., & Brown, R. D. (1995). An ecological framework for the planning, design and management of urban river greenways. *Landscape and urban planning*, *33*(1-3), 211-225.
- Bateman, I. J., Harwood, A. R., Mace, G. M., Watson, R. T., Abson, D. J., Andrews, B., Binner, A., Crowe, A., Day, B. H., Dugdale, S., Fezzi, C., Foden, J., Hadley, D., Haines-Young, R., Hulme, M., Kontoleon, A., Lovett, A. A., Munday, P., Pascual, U., ... & Rayment, M. (2005). Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science, 310(5753), 1,637-1,638.

- Batty, M. (2013). Big data, smart cities and city planning. *Dialogues in human geography*, *3*(3), 274-279.
- Bauman, A. E., Reis, R. S., Sallis, J. F., Wells, J. C., Loos, R. J., & Martin, B. W. (2012). Correlates of physical activity: why are some people physically active and others not?. *The lancet, 380*(9838), 258-271.
- Bedimo-Rung, A. L., Mowen, A. J., & Cohen, D. A. (2005). The significance of parks to physical activity and public health: a conceptual model. *American journal of preventive medicine*, 28(2), 159-168.
- BMEEB (Beijing Municipal Ecology and Environment Bureau) (Ed.) (2021). Implementation Plan of Beijing Municipality's "Beautiful China, I Am an Actor" Action Plan for Improving Citizens' Awareness of Ecological Civilization (2021-2025). http://sthij.beijing.gov.cn/bjhrb/index/xxgk69/zfxxgk43/fdzdgknr2/zcfb/hb jfw/202139/11003169/index.html
- Bele, P., & Chakradeo, D. U. (2020). Exploring Attributes of Public Open Spaces Through Users' Perceptions at Lakefront Spaces of Nagpur City. *Ujwala, Exploring Attributes of Public Open Spaces Through Users' Perceptions at Lakefront Spaces of Nagpur City (July 31, 2020). Institute of Scholars (InSc)*.
- Berni, A., & Borgianni, Y. (2021). From the definition of user experience to a framework to classify its applications in design. Proceedings of the Design Society, 1, 1627-1636.
- Best, J. (2019). Anthropogenic stresses on the world's big rivers. *Nature Geoscience*, 12(1), 7-21.
- Bilgili, B. C., & Gökyer, E. (2012). Urban green space system planning. *Landscape planning*, 360.
- Binti Md. Yassin, A., Bond, S., & McDonagh, J. (2011). Developing guidelines for riverfront developments for Malaysia. *Pacific Rim Property Research Journal*, 17(4), 511-530.
- Blank, G., & Lutz, C. (2017). Representativeness of social media in great britain: investigating Facebook, Linkedin, Twitter, Pinterest, Google+, and Instagram. *American Behavioral Scientist*, *61*(7), 741-756.
- Blau, M. L., Luz, F., & Panagopoulos, T. (2018). Urban river recovery inspired by nature-based solutions and biophilic design in Albufeira, Portugal. *Land*, 7(4), 141.
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. *Journal of machine Learning research*, *3*(Jan), 993-1022.
- Bodin, Ö., & Tengö, M. (2012). Disentangling intangible social—ecological systems. *Global Environmental Change*, *22*(2), 430-439.

- Bodmer, A. (2021). Connecting blue-green infrastructure to communities in the Ōtākaro Avon River Corridor: a pathway for community resilience.
- Bond, N. R., & Lake, P. S. (2003). Local habitat restoration in streams: constraints on the effectiveness of restoration for stream biota. *Ecological Management & Restoration*, *4*(3), 193-198.
- Bonzi, R. S. (2014). Emerald Necklace–Infraestrutura urbana projetada como paisagem. *Revista LabVerde*, (9), 106-127.
- Börger, T., Campbell, D., White, M. P., Elliott, L. R., Fleming, L. E., Garrett, J. K., ... & Taylor, T. (2021). The value of blue-space recreation and perceived water quality across Europe: A contingent behaviour study. *Science of the Total Environment*, 771, 145597.
- Bormann, F. H., Balmori, D., Geballe, G. T., & Geballe, G. T. (2001). Redesigning the American lawn: a search for environmental harmony. Yale University Press.
- Bohnet, I., & Smith, D. M. (2007). Planning future landscapes in the Wet Tropics of Australia: A social–ecological framework. *Landscape and Urban Planning*, 80(1-2), 137-152.
- Breen, A., Rigby, D., Norris, D. C., & Norris, C. (1994). Waterfronts: Cities reclaim their edge. (No Title).
- Brighenti, A. M., & Mattiucci, C. (2012). Visualising the riverbank. *City*, 16(1-2), 221-234.
- Bronfenbrenner, U. (1977). Toward an experimental ecology of human development. *American psychologist*, 32(7), 513.
- Brownson, R. C., Baker, E. A., Housemann, R. A., Brennan, L. K., & Bacak, S. J. (2001). Environmental and policy determinants of physical activity in the United States. *American journal of public health*, *91*(12), 1995-2003.
- Bruttomesso, R. (2004). Complexity on the urban waterfront. In *Waterfronts in post-industrial cities* (pp. 47-58). Taylor & Francis.
- Bryman, A. (2008). Of methods and methodology. *Qualitative Research in Organizations and Management: An International Journal*, 3(2), 159-168.
- Buijs, A. E., Elands, B. H., & Langers, F. (2009). No wilderness for immigrants: Cultural differences in images of nature and landscape preferences. *Landscape and urban Planning*, *91*(3), 113-123.
- Burmil, S., Daniel, T. C., & Hetherington, J. D. (1999). Human values and perceptions of water in arid landscapes. *Landscape and urban planning*, 44(2-3), 99-109.

- Cai, H. (2004). Theory and design of urban waterfront public spaces: redesigning the Qingshan Lake waterfront, Huangshi City, China [Unpublished doctoral dissertation]. University of Guelph.
- Calais Guerra, P. H., Veloso, A., Meira Jr, W., & Almeida, V. (2011, August). From bias to opinion: a transfer-learning approach to real-time sentiment analysis. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 150-158).
- Cao, J.J., & Zhang, M.F. (2020). Evaluation of urban waterfront landscape quality based on semantic differential method: a case of Zhonghuamen section of Qinhuai River in Nanjing. *Journal of Nanjing Forestry University (Natural Sciences Edition)*, 44(6), 221-227.
- Cárdenas, S. B. Guy Peters, The Future of Governing: Four Emerging Models, University Press of Kansas, 1996, 179 p.
- Cardwell, H. E., Cole, R. A., Cartwright, L. A., & Martin, L. A. (2006). Integrated water resources management: definitions and conceptual musings. *Journal of contemporary water research & education*, 135(1), 8-18
- Cassels, D., & Guaralda, M. (2013). Environment and interaction: A study in social activation of the public realm. *In_Bo: ricerche e progetti per il territorio, la citta e l'architettura*, *4*(1), 104-113.
- Castonguay, S., & Evenden, M. (Eds.). (2012). *Urban Rivers: remaking rivers, cities, and space in Europe and North America*. University of Pittsburgh Press.
- Cattell, V., Dines, N., Gesler, W., & Curtis, S. (2008). Mingling, observing, and lingering: Everyday public spaces and their implications for well-being and social relations. *Health & place*, *14*(3), 544-561.
- Cengiz, B. (2013). Urban river landscapes. In *Advances in landscape architecture*. IntechOpen.
- Chan, K. M., Goldstein, J., Satterfield, T., Hannahs, N., Kikiloi, K., Naidoo, R., ... & Woodside, U. (2011). Cultural services and non-use values. *Natural capital: Theory and practice of mapping ecosystem services*, 206-228.
- Chang, Q., Li, H.Y., He, Y. (2005). The model of resources and environment management of urban dry-up river in northern China a case study of ecological restoration and reconstruction of Hutuo River. *Journal of Natural Resources*, 20(1): 7-13.
- Chang, T. C., Huang, S., & Savage, V. R. (2004). On the waterfront: Globalization and urbanization in Singapore. *Urban Geography*, *25*(5), 413-436.
- Che, S.Q. (2001). Study on the Green Corridors in Urbanized Areas. *Urban Ecological Study, 25*(11), 44-48.

- Che, Y., Yang, K., Chen, T., & Xu, Q. (2012). Assessing a riverfront rehabilitation project using the comprehensive index of public accessibility. *Ecological Engineering*, 40, 80-87.
- Chen, C., Wu, S., Li, X.L., Yu, L., Zhang, D. (2013). Waterfront recreation space transformation with user behavior pattern oriented—a case study of Xiang River scenic belt of Changsha (Tianxin Dirstict). *Chinese & Overseas Architecture*, (7), 2.
- Chen, L., Liu, Y., Leng, H., Xu, S., & Wang, Y. (2022). Current and Expected Value Assessment of the Waterfront Urban Design: A Case Study of the Comprehensive Urban Design of Beijing's Waterfront. *Land*, *12*(1), 85.
- Chen, L., & Ma, Y. (2023). How Do Ecological and Recreational Features of Waterfront Space Affect Its Vitality? Developing Coupling Coordination and Enhancing Waterfront Vitality. *International Journal of Environmental Research and Public Health*, 20(2), 1196.
- Chen, M. S., Ko, Y. T., & Lee, L. H. (2018a). The relation between urban riverbank reconstruction and tourism attractiveness shaping-A case study of love river in kaohsiung, taiwan. *Journal of Asian Architecture and Building Engineering*, 17(2), 353-360.
- Chen, X.L., Qi, X., Li, F., Yang, L.R. (2010). Disturbances of urbanization to river course system and related ecological restoration principles and approaches. *Chinese Journal of Ecology*, 29(4), 805-811.
- Chen, Y., Parkins, J. R., & Sherren, K. (2018b). Using geo-tagged Instagram posts to reveal landscape values around current and proposed hydroelectric dams and their reservoirs. *Landscape and Urban Planning*, 170, 283-292.
- Chenyang, D., Maruthaveeran, S., & Shahidan, M. F. (2022). The usage, constraints and preferences of green space at disadvantage neighbourhood: A review of empirical evidence. *Urban Forestry & Urban Greening*, 127696.
- Cheng, S., Zhai, Z., Sun, W., Wang, Y., Yu, R., & Ge, X. (2022). Research on the Satisfaction of Beijing Waterfront Green Space Landscape Based on Social Media Data. *Land*, *11*(10), 1849.
- Cheng, Y., Zhang, J., Wei, W., & Zhao, B. (2021). Effects of urban parks on residents' expressed happiness before and during the COVID-19 pandemic. *Landscape and Urban Planning*, *212*, 104118.
- Choi, S., Lehto, X. Y., & Morrison, A. M. (2007). Destination image representation on the web: Content analysis of Macau travel related websites. *Tourism management*, *28*(1), 118-129.
- Chollet, S., Brabant, C., Tessier, S., & Jung, V. (2018). From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. *Landscape and Urban Planning*, 180, 121-124.

- Chou, R. J. (2016). Achieving successful river restoration in dense urban areas: Lessons from Taiwan. *Sustainability*, *8*(11), 1159.
- Chowdhury, P., Paul, S. K., Kaisar, S., & Moktadir, M. A. (2021). COVID-19 pandemic related supply chain studies: A systematic review. *Transportation Research Part E: Logistics and Transportation Review*, 148, 102271.
- Clarke, J. (2011). What is a systematic review? *Evidence-based nursing*, 14(3), 64-64.
- Clark, G., & Johnston, E. L. (2017). Australia state of the environment 2016: coasts, independent report to the Australian Government Minister for Environment and Energy. *Australian Government Department of the Environment and Energy, Canberra*.
- Cocks, K., & Torgerson, D. J. (2013). Sample size calculations for pilot randomized trials: a confidence interval approach. *Journal of clinical epidemiology*, 66(2), 197-201.
- Cohen, J. (2016). Statistical power analysis for the behavioral sciences (2nd ed.). Academic press.
- Cong, L., Wu, B., Morrison, A. M., Shu, H., & Wang, M. (2014). Analysis of wildlife tourism experiences with endangered species: An exploratory study of encounters with giant pandas in Chengdu, China. *Tourism management*, 40, 300-310.
- Coombes, E., Jones, A. P., & Hillsdon, M. (2010). The relationship of physical activity and overweight to objectively measured green space accessibility and use. *Social science & medicine*, 70(6), 816-822.
- Corellano, F. P. (2002). Ordenación paisajística de espacios fluviales en las ciudades mediterráneas. In *Paisaje y ordenación del territorio* (pp. 283-295). Consejería de Obras Públicas y Transportes.
- Corsaro, W. A. (2012). Interpretive Reproduction in Children's Play. *American Journal of Play, 4*(4), 488-504.
- Crowe, M. (2013). Crowe Critical Appraisal Tool (CCAT) User Guide Version 1.4. *Creative Commons Attribution, Townsville*.
- Crowe, M., & Sheppard, L. (2011). A general critical appraisal tool: an evaluation of construct validity. *International journal of nursing studies*, 48(12), 1505-1516.
- Crowe, M., Sheppard, L., & Campbell, A. (2011). Comparison of the effects of using the Crowe Critical Appraisal Tool versus informal appraisal in assessing health research: a randomised trial. *International Journal of Evidence-Based Healthcare*, 9(4), 444-449.

- Cui, N., Malleson, N., Houlden, V., & Comber, A. (2021). Using VGI and social media data to understand urban green space: a narrative literature review. *ISPRS International Journal of Geo-Information*, 10(7), 425.
- Ćwik, A., Wójcik, T., Ziaja, M., Wójcik, M., Kluska, K., & Kasprzyk, I. (2021). Ecosystem services and disservices of vegetation in recreational urban blue-green spaces—Some recommendations for greenery shaping. *Forests, 12*(8), 1077.
- Dai, C., Maruthaveeran, S., Shahidan, M. F., & Chu, Y. (2023). Landscape Preference Evaluation of Old Residential Neighbourhoods: A Case Study in Shi Jiazhuang, Hebei Province, China. *Forests*, *14*(2), 375.
- Dai, Y., Zhu, Z., & Zhou, S. (2019). Community Disparities in the Impact of Green Spaces on Recreational Physical Activities: A Case Study of Guangzhou City. *Tropical Geography*, 39(2), 237-246.
- Daniel, T. C., & Meitner, M. M. (2001). Representational validity of landscape visualizations: the effects of graphical realism on perceived scenic beauty of forest vistas. *Journal of environmental psychology*, *21*(1), 61-72.
- Darcy, P. M., Taylor, J., Mackay, L., Ellis, N. J., & Gidlow, C. J. (2022). Understanding the role of nature engagement in supporting health and wellbeing during COVID-19. *International Journal of Environmental Research and Public Health*, 19(7), 3908.
- Dashper, K., & Brymer, E. (2019). An ecological-phenomenological perspective on multispecies leisure and the horse-human relationship in events. *Leisure Studies*, *38*(3), 394-407.
- Davison, K. K., & Lawson, C. T. (2006). Do attributes in the physical environment influence children's physical activity? A review of the literature. *International journal of behavioral nutrition and physical activity*, 3(1), 1-17.
- Day, K. (2000). The ethic of care and women's experiences of public space. *Journal of environmental psychology*, 20(2), 103-124.
- Décamps, H., Naiman, R. J., & McClain, M. E. (2009). Riparian zones.
- Delibas, M., & Tezer, A. (2017). 'Stream Daylighting'as an approach for the renaturalization of riverine systems in urban areas: Istanbul-Ayamama Stream case. *Ecohydrology & Hydrobiology*, *17*(1), 18-32.
- Delli Carpini, M. X. (2000). Gen. com: Youth, civic engagement, and the new information environment. *Political communication*, *17*(4), 341-349.
- Dempsey, D., Farquharson, K., & Waller, V. (2015). Qualitative social research: Contemporary methods for the digital age. *Qualitative Social Research*, 1-208.

- De Vries, S., Van Dillen, S. M., Groenewegen, P. P., & Spreeuwenberg, P. (2013). Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. *Social science & medicine*, *94*, 26-33.
- DiCorcia, J. A., & Tronick, E. D. (2011). Quotidian resilience: Exploring mechanisms that drive resilience from a perspective of everyday stress and coping. *Neuroscience & Biobehavioral Reviews*, 35(7), 1593-1602.
- DID (Department of Drainage and Irrigation, Malaysia) (Ed.) (1996). Konsep Pembangunan Berhadapan Sungai (The Riverfront Development Guidelines). A-Guide-to-Riverfront-Development.pdf (riverlifepgh.org)
- Diep, L., Parikh, P., dos Santos Duarte, B. P., Bourget, A. F., Dodman, D., & Martins, J. R. S. (2022). "It won't work here": Lessons for just nature-based stream restoration in the context of urban informality. *Environmental Science & Policy*, *136*, 542-554.
- Dillaha, T. A., Mostaghimi, S., & Lee, D. (1989). Stream corridor management: principles and practices for enhancing aquatic systems. CRC Press.
- Ding, J., Luo, L., Shen, X., & Xu, Y. (2023). Influence of built environment and user experience on the waterfront vitality of historical urban areas: A case study of the Qinhuai River in Nanjing, China. *Frontiers of Architectural Research*.
- Ding, S.Q., (2016). Chinese text mining based on online customer review [Unpublished doctoral dissertation]. Huazhong University of Science & Technology.
- Diriwächter, R., & Valsiner, J. (2006, January). Qualitative developmental research methods in their historical and epistemological contexts. In Forum Qualitative Sozialforschung/Forum: Qualitative Social Research (Vol. 7, No. 1).
- Djukić, A., Marić, J., Antonić, B., Kovač, V., Joković, J., & Dinkić, N. (2020). The evaluation of urban renewal waterfront development: The case of the Sava riverfront in Belgrade, Serbia. *Sustainability*, *12*(16), 6620.
- Do, Y. (2019). Valuating aesthetic benefits of cultural ecosystem services using conservation culturomics. *Ecosystem Services*, *36*, 100894.
- Dobbin, J., Marquez, T., & Rietbergen-McCracken, J. (2021). *Spatial Planning for Resilient Economic Diversification*. Washington, DC: World Bank.
- Dodman, D. R. (2003). Shooting in the city: an autophotographic exploration of the urban environment in Kingston, Jamaica. *Area, 35*(3), 293-304.
- Dong, Z.R. (2019). Eco-Hydraulic Engineering; China Water Power Press: Beijing, China.

- Dosskey, M. G., Vidon, P., Gurwick, N. P., Allan, C. J., Duval, T. P., & Lowrance, R. (2010). The role of riparian vegetation in protecting and improving chemical water quality in streams 1. *JAWRA Journal of the American Water Resources Association*, 46(2), 261-277.
- Doughty, K., Hu, H., & Smit, J. (2022). Therapeutic landscapes during the COVID-19 pandemic: increased and intensified interactions with nature. *Social & Cultural Geography*, 1-19.
- Downs, P. W., Gregory, K. J., & Brookes, A. (1991). How integrated is river basin management?. *Environmental management*, *15*, 299-309.
- Dunlap, R. E., & Catton Jr, W. R. (1983). What environmental sociologists have in common (whether concerned with "built" or "natural" environments). *Sociological inquiry*, *53*(2-3), 113-135.
- Dutta, S., & Sarkar, S. (2020). Contextualizing and analyzing the urban design parameters for a successful Canal-Oriented Development in an urban context. *High Technology Letters*, *26*(6), 122-129.
- Dwivedi, M. (2009). Online destination image of India: A consumer based perspective. *International Journal of Contemporary Hospitality Management*, 21(2), 226-232.
- Eagle, N., & Pentland, A. (2005). Social serendipity: Mobilizing social software. *IEEE Pervasive computing*, *4*(2), 28-34.
- Eden, S., & Tunstall, S. (2006). Ecological versus social restoration? How urban river restoration challenges but also fails to challenge the science—policy nexus in the United Kingdom. *Environment and Planning C: Government and Policy*, 24(5), 661-680.
- Eder, R., & Arnberger, A. (2016). How heterogeneous are adolescents' preferences for natural and semi-natural riverscapes as recreational settings?. *Landscape Research*, *41*(5), 555-568.
- Eid, S., Khalifa, M., & Abd Elrahman, A. S. (2021). Biophilic perceptions in the urban waterfront: analytical study of the Nile waterfront in central cairo. *HBRC Journal*, *17*(1), 19-39.
- Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from cases: Opportunities and challenges. *Academy of management journal*, *50*(1), 25-32.
- Ekkel, E. D., & de Vries, S. (2017). Nearby green space and human health: Evaluating accessibility metrics. *Landscape and urban planning*, *157*, 214-220.
- Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. *Journal of advanced nursing*, 62(1), 107-115.

- Eyler, A. A., Brownson, R. C., Donatelle, R. J., King, A. C., Brown, D., & Sallis, J. F. (1999). Physical activity social support and middle-and older-aged minority women: results from a US survey. *Social science & medicine*, 49(6), 781-789.
- Ezennia, I. S., Uwajeh, P. C., & Irouke, V. M. (2017). User perception of neighbourhood parks and open spaces: a case of Karakol, North Cyprus. *International Jour. of Sci. & Tech. Res*, 6.
- Fabos, J. G. (1995). Introduction and overview: the greenway movement, uses and potentials of greenways. *Landscape and urban planning*, *33*(1-3), 1-13.
- Fan, Y., Kuang, D., Tu, W., & Ye, Y. (2023). Which Spatial Elements Influence Waterfront Space Vitality the Most?—A Comparative Tracking Study of the Maozhou River Renewal Project in Shenzhen, China. *Land*, *12*(6), 1260.
- Fan, Z., Duan, J., Luo, M., Zhan, H., Liu, M., & Peng, W. (2021). How did built environment affect urban vitality in urban waterfronts? A case study in Nanjing Reach of Yangtze River. *ISPRS International Journal of Geo-Information*, 10(9), 611.
- Fang, M.J. (2019). Study of emotional characteristic of tourist in urban park based on big data of social media [Unpublished master dissertation]. Zhejiang Agriculture and Forestry University.
- Fang, M.J., Zheng, Y.D., Xia, Z.J., Yan, H., Shao,F. (2020). Spatial and temporal variation characteristics of tourists emotions based on big data of microblog—a case study of Xixi National Wetland Park in Hangzhou. Journal of Southwest University (National Science Edition), 42(3), 156-164.
- Feak, C.B.; Swales, J.M. Telling a Research Story: Writing a Literature Review; University of Michigan Press: Ann Arbor, MI, USA, 2009.
- Figueroa-Alfaro, R. W., & Tang, Z. (2017). Evaluating the aesthetic value of cultural ecosystem services by mapping geo-tagged photographs from social media data on Panoramio and Flickr. *Journal of environmental planning and management*, 60(2), 266-281.
- Fischer Jr, R. A., & Fischenich, J. C. (2000). Design recommendations for riparian corridors and vegetated buffer strips.
- Fisher, B. S., & Nasar, J. L. (1992). Fear of crime in relation to three exterior site features: Prospect, refuge, and escape. *Environment and Behavior*, 24(1), 35-65.
- Fishman, E., Washington, S., & Haworth, N. (2013). Bike share: a synthesis of the literature. *Transport reviews*, *33*(2), 148-165.

- FISRWG (Federal Interagency Stream Restoration Working Group) (US). (1998). Stream corridor restoration: Principles, processes, and practices. National Technical Info Svc.
- Fleishman, E., Mcdonal, N., Nally, R. M., Murphy, D. D., Walters, J., & Floyd, T. (2003). Effects of floristics, physiognomy and non-native vegetation on riparian bird communities in a Mojave Desert watershed. *Journal of Animal Ecology*, 72(3), 484-490.
- Forman, R. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge university press.
- Forman, R. T. (2014). Urban regions: ecology and planning beyond the city. Cambridge University Press.
- Forman, R.T.T. & Godron, M. (1986). *Landscape Ecology*. John Wiley and Sons Ltd., New York.
- Freeman, C., & Tranter, P. (2012). Children and their urban environment: Changing worlds. Routledge.
- Fuller, R. A., Irvine, K. N., & Gaston, K. J. (2010). Interactions between people and nature in urban environments. *Urban ecology*, 134-171.
- Gaberson, K. B. (1997). Measurement reliability and validity. *AORN journal*, 66(6), 1092-1095.
- Galloway Jr, G. E. (1995, November). Learning from the Mississippi flood of 1993: Impacts, management issues, and areas for research. In US-Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods.
- Gao, Y., Yuan, J.C., Yan, M. Study on the influencing factors of the vitality of public space in Wulihe Park in Shenyang. In Proceedings of the 2020/2021 China Urban Planning Annual Conference and 2021 China Urban Planning Academic Season, Chengdu, China,1192–1198.
- Garcia, X., Benages-Albert, M., Pavón, D., Ribas, A., Garcia-Aymerich, J., & Vall-Casas, P. (2017). Public participation GIS for assessing landscape values and improvement preferences in urban stream corridors. *Applied Geography*, 87, 184-196.
- Garcia, X., Gottwald, S., Benages-Albert, M., Pavón, D., Ribas, A., & Vall-Casas, P. (2020). Evaluating a web-based PPGIS for the rehabilitation of urban riparian corridors. *Applied geography*, *125*, 102341.
- Gargiulo, I., Benages-Albert, M., Garcia, X., & Vall-Casas, P. (2020). Perception assessment of environmental factors related to leisure-time physical activity in an urban stream corridor. *Leisure Studies*, *39*(5), 688-705.

- Gärling, T., & Golledge, R. G. (1989). Environmental perception and cognition. In *Advance in Environment, Behavior, and Design: Volume 2* (pp. 203-236). Boston, MA: Springer US.
- Garrett, J. K., White, M. P., Huang, J., Ng, S., Hui, Z., Leung, C., ... & Wong, M. C. (2019). Urban blue space and health and wellbeing in Hong Kong: Results from a survey of older adults. *Health & place*, *55*, 100-110.
- Garside, R. (2014). Should we appraise the quality of qualitative research reports for systematic reviews, and how? *Innovation: The European Journal of Social Science Research*, 27(1), 67-79.
- Gascon, M., Zijlema, W., Vert, C., White, M. P., & Nieuwenhuijsen, M. J. (2017). Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies. *International journal of hygiene and environmental health*, 220(8), 1207-1221.
- Gatti, E. T., Brownlee, M. T., & Bricker, K. S. (2022). Winter recreationists' perspectives on seasonal differences in the outdoor recreation setting. *Journal of Outdoor Recreation and Tourism*, 37, 100366.
- George, T. (2022, December). Mixed Methods Research | Definition, Guide & Examples. Scribbr. https://www.scribbr.com/methodology/mixed-methods-research/
- Gerlach-Spriggs, N., Kaufman, R. E., & Warner, S. B. (1998). *Restorative gardens: The healing landscape*. Yale University Press.
- Geurs, K. T., & Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: review and research directions. *Journal of Transport geography*, 12(2), 127-140.
- Giannakis, E., Bruggeman, A., Poulou, D., Zoumides, C., & Eliades, M. (2016). Linear parks along urban rivers: Perceptions of thermal comfort and climate change adaptation in Cyprus. *Sustainability*, 8(10), 1023.
- Giles-Corti, B., Broomhall, M. H., Knuiman, M., Collins, C., Douglas, K., Ng, K., ... & Donovan, R. J. (2005). Increasing walking: how important is distance to, attractiveness, and size of public open space?. *American journal of preventive medicine*, 28(2), 169-176.
- Glanz, K., Rimer, B. K., & Viswanath, K. (Eds.). (2008). *Health behavior and health education: theory, research, and practice*. John Wiley & Sons.
- Gobster, P. H., Nassauer, J. I., Daniel, T. C., & Fry, G. (2007). The shared landscape: What does aesthetics have to do with ecology?. Landscape Ecology, 22(7), 959-972. doi:10.1007/s10980-007-9110-x
- Gobster, P. H., & Westphal, L. M. (2004). The human dimensions of urban greenways: planning for recreation and related experiences. *Landscape and urban planning*, 68(2-3), 147-165.

- Godbey, G. C., Caldwell, L. L., Floyd, M., & Payne, L. L. (2005). Contributions of leisure studies and recreation and park management research to the active living agenda. *American journal of preventive medicine*, 28(2), 150-158.
- Godbey, G., Crawford, D. W., & Shen, X. S. (2010). Assessing hierarchical leisure constraints theory after two decades. *Journal of Leisure Research*, 42(1), 111-134.
- Godden, B. (2004). Sample size calculation. Retrieved on March, 21, 2017.
- Gold, A. J. (1974). Design with nature: a critique. *Journal of the American Institute of Planners*, 40(4), 284-286.
- Gong, M., Ren, M., Dai, Q., & Luo, X. (2019). Aging-suitability of urban waterfront open spaces in gongchen bridge section of the grand canal. *Sustainability*, *11*(21), 6095.
- Goodarzi, M., Haghtalab, N., Saeedi, I., & Moore, N. J. (2020). Structural and functional improvement of urban fringe areas: toward achieving sustainable built–natural environment interactions. *Environment, Development and Sustainability*, 22, 6727-6754.
- Gospodini, A. (2001). Urban waterfront redevelopment in Greek cities: A framework for redesigning space. *Cities*, *18*(5), 285-295.
- Gote, N. N. (2019). Governing for flood resilience in urban stream corridors: Lessons from public participation in the Ramnadi corridor [Unpublished doctoral dissertation]. Technische Universität Dresden.
- Grahn, P., & Stigsdotter, U. A. (2003). Landscape planning and stress. *Urban forestry & urban greening*, 2(1), 1-18.
- Grinde, B., & Patil, G. G. (2009). Biophilia: does visual contact with nature impact on health and well-being?. *International journal of environmental research and public health*, *6*(9), 2332-2343.
- Grossman, D. A., & Frieder, O. (2004). *Information retrieval: Algorithms and heuristics* (Vol. 15). Springer Science & Business Media.
- Grzyb, T., & Kulczyk, S. (2023). How do ephemeral factors shape recreation along the urban river? A social media perspective. *Landscape and Urban Planning*, 230, 104638.
- Grzyb, T., Kulczyk, S., Derek, M., & Woźniak, E. (2021). Using social media to assess recreation across urban green spaces in times of abrupt change. *Ecosystem Services*, *49*, 101297.
- Guan, P. & Wang, R.F. (2016). Identifying Optimal Topic Numbers from Sci-Tech Information with LDA Model. *New Technology of Library and Information Service*, *32*(9), 42-50.

- Guimarães, L. F., Teixeira, F. C., Pereira, J. N., Becker, B. R., Oliveira, A. K. B., Lima, A. F., ... & Miguez, M. G. (2021). The challenges of urban river restoration and the proposition of a framework towards river restoration goals. *Journal of Cleaner Production*, *316*, 128330.
- Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. *Science of the Total Environment*, *584*, 1040-1055.
- Gunn, C. A. (1977). Urban rivers as recreation resources. *USDA Forest Service General Technical Report NC*.
- Guo, E.H., Sun, R.H., Chen, L.D. (2011). Main ecological service functions in riparian vegetation buffer zone: Research progress and prospects. Chinese Journal of Ecology, 30(8): 1830-1837.
- Guo, F.F., & Wang, M.X. (2022). Study on plant landscape preference of riparian green spaces based on tourists' voluntary photography—A case study of Zhengzhou. *Chinese Landscape Architecture*. *38*(9), 111-116.
- Guo, Y., Fu, B., Wang, Y., Xu, P., & Liu, Q. (2022). Identifying spatial mismatches between the supply and demand of recreation services for sustainable urban river management: a case study of Jinjiang River in Chengdu, China. Sustainable Cities and Society, 77, 103547.
- Gurnell, A., Lee, M., & Souch, C. (2007). Urban rivers: hydrology, geomorphology, ecology and opportunities for change. *Geography compass*, *1*(5), 1118-1137.
- Gunderson, L. H. (2000). Ecological resilience—in theory and application. *Annual review of ecology and systematics, 31*(1), 425-439.
- Guthier, B., Alharthi, R., Abaalkhail, R., & El Saddik, A. (2014, November). Detection and visualization of emotions in an affect-aware city. In *Proceedings of the 1st international workshop on emerging multimedia applications and services for smart cities* (pp. 23-28).
- Haase, D., Haase, A., & Rink, D. (2014). Conceptualizing the nexus between urban shrinkage and ecosystem services. *Landscape and Urban Planning*, 132, 159-169.
- Haeffner, M., Jackson-Smith, D., Buchert, M., & Risley, J. (2017). Accessing blue spaces: Social and geographic factors structuring familiarity with, use of, and appreciation of urban waterways. *Landscape and Urban Planning*, 167, 136-146.
- Hagger, M. S., & Chatzisarantis, N. L. (2015). Self-determination theory. *Predicting and changing health behaviour: Research and practice with social cognition models*, 107-141.

- Halkos, G., Leonti, A., & Sardianou, E. (2021). Activities, motivations and satisfaction of urban parks visitors: A structural equation modeling analysis. *Economic analysis and policy*, 70, 502-513.
- Hamdan, H. A., Andersen, P. H., & De Boer, L. (2021). Stakeholder collaboration in sustainable neighborhood projects—A review and research agenda. *Sustainable Cities and Society*, *68*, 102776.
- Hamstead, Z. A., Fisher, D., Ilieva, R. T., Wood, S. A., McPhearson, T., & Kremer, P. (2018). Geolocated social media as a rapid indicator of park visitation and equitable park access. *Computers, Environment and Urban Systems*, 72, 38-50.
- Han, Q., Wang, X., Li, Y., & Zhang, Z. (2022). River ecological corridor: A conceptual framework and review of the spatial management scope. *International Journal of Environmental Research and Public Health*, 19(13), 7752.
- Han, Z.C. (2016). Landscape planning of Hutuo River riverside zonal greenbelt in Zhengding New Area, Shijiazhuang. [Unpublished master dissertation]. Central South University of Forestry and Technology.
- Hartig, T., & Staats, H. (2006). The need for psychological restoration as a determinant of environmental preferences. *Journal of environmental psychology*, 26(3), 215-226.
- Hathway, E. A., & Sharples, S. (2012). The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. *Building and environment*, 58, 14-22.
- Hauthal, E., & Burghardt, D. (2013). Extraction of location-based emotions from photo platforms. *Progress in location-based services*, 3-28.
- He, D., Li, P., He, C., Wang, Y., & Shi, Q. (2022). Eutrophication and watershed characteristics shape changes in dissolved organic matter chemistry along two river-estuarine transects. *Water Research*, 214, 118196.
- Heerwagen, J. H., & Orians, G. H. (1995). Humans, habitats. *Biophilia hypothesis*, *138*, 138-172.
- Helbich, M., Yao, Y., Liu, Y., Zhang, J., Liu, P., & Wang, R. (2019). Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. *Environment international*, 126, 107-117.
- Hellmund, P. C., & Smith, D. (2013). Designing greenways: sustainable landscapes for nature and people. Island Press.
- Haggarty, P., McNeill, G., Manneh, M. A., & Davidson, L. (1994). The influence of exercise on the energy requirements of adult males in the UK. *British Journal of Nutrition*, 72(6), 799-813.

- Hale, M. A. R. G. A. R. E. T., & Taylor, R. (1986). Testing Alternatives models of fear of crime'. *The Journal of Criminal Law and criminology*, 151-189.
- Hamilton, S. L., Clemes, S. A., & Griffiths, P. L. (2008). UK adults exhibit higher step counts in summer compared to winter months. *Annals of Human Biology*, *35*(2), 154-169.
- Haq, S. M. A. (2015). Urban green spaces and an integrative approach to sustainable environment. *Urban Ecology: Strategies for Green Infrastructure and Land Use*, 147.
- Hashim, N. H. M., Thani, S. K. S. O., Jamaludin, M. A., & Yatim, N. M. (2016). A perceptual study on the influence of vegetation design towards women's safety in public park. *Procedia-social and behavioral sciences*, 234, 280-288.
- He, M., Wang, Y., Wang, W. J., & Xie, Z. (2022). Therapeutic plant landscape design of urban forest parks based on the Five Senses Theory: A case study of Stanley Park in Canada. *International Journal of Geoheritage and Parks*, 10(1), 97-112.
- Herzog, T. R., Herbert, E. J., Kaplan, R., & Crooks, C. L. (2000). Cultural and developmental comparisons of landscape perceptions and preferences. *Environment and behavior*, *32*(3), 323-346.
- Herzog, T. R., & Flynn-Smith, J. A. (2001). Preference and perceived danger as a function of the perceived curvature, length, and width of urban alleys. *Environment and Behavior*, 33(5), 653-666.
- Hinch, T., Jackson, E. L., Hudson, S., & Walker, G. (2013). Leisure constraint theory and sport tourism. In *Sport Tourism* (pp. 10-31). Routledge.
- Hong, J. Y., & Jeon, J. Y. (2013). Designing sound and visual components for enhancement of urban soundscapes. *The Journal of the Acoustical Society of America*, 134(3), 2026-2036.
- Hooper, D., Coughlan, J., & Mullen, M. (2008, September). Evaluating model fit: a synthesis of the structural equation modelling literature. In 7th European Conference on research methodology for business and management studies (Vol. 2008, pp. 195-200).
- Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). *Applied logistic regression* (Vol. 398). John Wiley & Sons.
- Hoyle, H., Hitchmough, J., & Jorgensen, A. (2017). Attractive, climate-adapted and sustainable? Public perception of non-native planting in the designed urban landscape. *Landscape and Urban Planning*, *164*, 49-63.
- Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. *Qualitative health research*, *15*(9), 1277-1288.

- Huang, W.B. & Shen, H.Y. (2019). Evaluation of Waterfront Space Utilization in Ningbo City. *Urban Management and Technology.* 21(04), 52-55.
- Huang, Y., Li, J., Hao, H., Xu, L., Nicholas, S., & Wang, J. (2019). Seasonal and monthly patterns, weekly variations, and the holiday effect of outpatient visits for type 2 diabetes mellitus patients in China. *International Journal of Environmental Research and Public Health*, 16(15), 2653.
- Huang, Y. C., Backman, S. J., & Backman, K. F. (2012). Exploring the impacts of involvement and flow experiences in Second Life on people's travel intentions. *Journal of Hospitality and Tourism Technology*, *3*(1), 4-23.
- Humbert, M. L., Chad, K. E., Bruner, M. W., Spink, K. S., Muhajarine, N., Anderson, K. D., ... & Gryba, C. R. (2008). Using a naturalistic ecological approach to examine the factors influencing youth physical activity across grades 7 to 12. *Health Education & Behavior*, *35*(2), 158-173.
- Ignatieva, M., Stewart, G. H., & Meurk, C. (2011). Planning and design of ecological networks in urban areas. *Landscape and ecological engineering*, 7, 17-25.
- iMedia Research Institute. (2023, February 10). iMedia Gold List | Top 10 Monthly Active Users Ranking of Lifestyle and Leisure Apps in China for 2022. iMedia Net. https://www.iimedia.cn/c880/91716.html.
- Jabbar, M., & Mohd Yusoff, M. (2022). Assessing and Modelling the role of urban green spaces for human well-being in Lahore (Pakistan). *Geocarto International*, 1-20.
- Jackson, L. E. (2003). The relationship of urban design to human health and condition. *Landscape and urban planning*, *64*(4), 191-200.
- Jahani, A., & Saffariha, M. (2020). Aesthetic preference and mental restoration prediction in urban parks: An application of environmental modeling approach. *Urban Forestry & Urban Greening*, *54*, 126775.
- Jakstis, K., Dubovik, M., Laikari, A., Mustajärvi, K., Wendling, L., & Fischer, L. K. (2023). Informing the design of urban green and blue spaces through an understanding of Europeans' usage and preferences. *People and Nature*, *5*(1), 162-182.
- Janiszek, M., & Krzysztofik, R. (2023). Green Infrastructure as an Effective Tool for Urban Adaptation—Solutions from a Big City in a Postindustrial Region. *Sustainability*, *15*(11), 8928.
- Jansson, M., Fors, H., Lindgren, T., & Wiström, B. (2013). Perceived personal safety in relation to urban woodland vegetation—A review. *Urban forestry & urban greening*, *12*(2), 127-133.
- Jensen, O. B. (2009). Flows of meaning, cultures of movements–urban mobility as meaningful everyday life practice. *Mobilities*, *4*(1), 139-158.

- Ji, P., Zhu, C.Y., Li, S.H. (2012). Effects of the different structures of green belts on the temperature and humidity in river corridors. *Scientia Silvae Sinicae*, *48*(3), 58-65.
- Jiang, Y., Shi, T., & Gu, X. (2016). Healthy urban streams: The ecological continuity study of the Suzhou creek corridor in Shanghai. *Cities*, *59*, 80-94.
- Jiang, Y. (2009). China's water scarcity. *Journal of environmental management*, 90(11), 3185-3196.
- Jiang, Y. (2015). China's water security: current status, emerging challenges and future prospects. *Environmental Science & Policy*, *54*, 106-125.
- Jing, F.R., Sun, H., Long, D.P. (2017). Tourist experience elements structure characteristics analysis of Xixi National Wetland Park based on web text. *Journal of Zhej iang University (Science Edition)*, 44 (5), 623-630.
- Johnston, M., & Shimada, L. D. (2004). Urban forestry in a multicultural society. *Journal of arboriculture*, 185-192.
- Jorgensen, A., & Anthopoulou, A. (2007). Enjoyment and fear in urban woodlands—Does age make a difference?. *Urban Forestry & Urban Greening*, 6(4), 267-278.
- Jorgensen, A., Hitchmough, J., & Calvert, T. (2002). Woodland spaces and edges: their impact on perception of safety and preference. *Landscape and urban planning*, 60(3), 135-150.
- Jungwirth, M., Muhar, S., & Schmutz, S. (2002). Re-establishing and assessing ecological integrity in riverine landscapes. *Freshwater biology*, *47*(4), 867-887.
- Junker, B., & Buchecker, M. (2008). Aesthetic preferences versus ecological objectives in river restorations. *Landscape and urban planning*, *85*(3-4), 141-154.
- Kang, H.Q., (2009). A study on urban riverfront green space design [Unpublished doctoral dissertation]. Beijing Forest University.
- Kantartzis, A., Varras, G., Kakourp, P., Koutsikou, M., Papadopoulou, A., & Gogolou, C. (2006). Greenway planning and management of urban riparian corridors: the alternative basis for an integrated system of urban green spaces. case study: riparian corridors in the city of Igoumenitsa, Greece.. WSEAS Transactions on Environment and Development, 2(8), 1016-1021.
- Kaplan, R., & Kaplan, S. (1989). *The experience of nature: A psychological perspective*. Cambridge university press.
- Kaplan, S. (1992). Environmental preference in a knowledge-seeking, knowledge-using organism.

- Karancsi, Z., Hornyák, S., Szalma, E., Oláh, F., Korom, A., Horváth, G., & Győri, F. (2022). Evaluating waterfront landscape aesthetics as a tourist attraction: Case study of the river Tisza, Hungary. *Turizam*, *26*(2), 105-113.
- Kenwick, R. A., Shammin, M. R., & Sullivan, W. C. (2009). Preferences for riparian buffers. *Landscape and Urban Planning*, *91*(2), 88-96.
- Kerishnan, P. B., & Maruthaveeran, S. (2021). Factors contributing to the usage of pocket parks—A review of the evidence. *Urban Forestry & Urban Greening*, *58*, 126985.
- Kgantsi, B. (2018). *Cultural ecosystem services of the Diep River corridor: community perceptions* (Master's thesis, University of Cape Town).
- Khairabadi, O., Shirmohamadi, V., & Sajadzadeh, H. (2023). Understanding the mechanism of regenerating urban rivers through exploring the lived experiences of residents: A case study of Abbas Abad river in Hamadan. *Environmental Development*, 45, 100801.
- Kibel, P. S. (Ed.). (2007). Rivertown: rethinking urban rivers. MIT Press.
- Kim, B., Yoo, M., & Yang, W. (2020). Online engagement among restaurant customers: The importance of enhancing flow for social media users. *Journal of hospitality & tourism research*, *44*(2), 252-277.
- Kirmayer, L. J., Sehdev, M., Whitley, R., Dandeneau, S. F., & Isaac, C. (2009). Community resilience: Models, metaphors and measures. *International Journal of Indigenous Health*, *5*(1), 62-117.
- Kline, M., & Cahoon, B. (2010). Protecting river corridors in Vermont 1. *JAWRA Journal of the American Water Resources Association*, *46*(2), 227-236.
- Koblet, O., & Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. *Landscape and Urban Planning*, 197, 103757.
- Kondolf, G. M., & Pinto, P. J. (2017). The social connectivity of urban rivers. *Geomorphology*, 277, 182-196.
- Koontz, T. M., Gupta, D., Mudliar, P., & Ranjan, P. (2015). Adaptive institutions in social-ecological systems governance: A synthesis framework. *Environmental Science & Policy*, *53*, 139-151.
- Korpela, K., & Staats, H. (2013). The restorative qualities of being alone with nature. The handbook of solitude: Psychological perspectives on social isolation, social withdrawal, and being alone, 351-367.
- Kristoffersen, P., Rask, A. M., Grundy, A. C., Franzen, I., Kempenaar, C., Raisio, J., ... & Zarina, L. (2008). A review of pesticide policies and regulations for urban amenity areas in seven European countries. *Weed Research*, *48*(3), 201-214.

- Kumar, D., & Shekhar, S. (2021). Developing an approach for assessing urban blue-green spaces towards sustainable urban growth through retrospective cyber metrics analysis of operational estimations approaches. *Journal of Landscape Ecology*, *14*(3), 12-51.
- Kumar, V., Rouquette, J. R., & Lerner, D. N. (2013). Integrated modelling for Sustainability Appraisal of urban river corridors: Going beyond compartmentalised thinking. *water research*, *47*(20), 7221-7234.
- Kuo, F. E., Bacaicoa, M., & Sullivan, W. C. (1998). Transforming inner-city landscapes: Trees, sense of safety, and preference. *Environment and behavior*, 30(1), 28-59.
- Kuo, F. E., & Sullivan, W. C. (2001). Environment and crime in the inner city: Does vegetation reduce crime?. *Environment and behavior*, *33*(3), 343-367.
- Kuroyanagi, A., Watanabe, H., Nagakubo, T., & Kondo, T. (1993). A study on the human perception at the urban water area. *Environ. Inf. Sci*, 22(2), 128-134.
- Laddu, D., Paluch, A. E., & LaMonte, M. J. (2021). The role of the built environment in promoting movement and physical activity across the lifespan: Implications for public health. *Progress in cardiovascular diseases*, *64*, 33-40.
- Lamb, R. J., & Purcell, A. T. (1990). Perception of naturalness in landscape and its relationship to vegetation structure. *Landscape and Urban Planning*, 19(4), 333-352.
- Lee, J. Y., & Tsou, M. H. (2018). Mapping spatiotemporal tourist behaviors and hotspots through location-based photo-sharing service (Flickr) data. In *Progress in Location Based Services 2018 14* (pp. 315-334). Springer International Publishing.
- Lerner, D. N., & Holt, A. (2012). How should we manage urban river corridors?. *Procedia Environmental Sciences*, *13*, 721-729.
- Lewin, J., & Ashworth, P. J. (2014). The negative relief of large river floodplains. *Earth-Science Reviews*, 129, 1-23.
- Li, F.Y. & Li, F.Z. (2019). The Multi-Scale Application Summary on Big Data in Green Space Planning and Design. *Journal of Human Settlements in West China*, *34*(5): 63-71.
- Li, F.Z., Dong, S.S., Li,X., Lei, Y. (2016). Spatial Distribution Research on the Use of Green Space in the Central City of Beijing —Based on the Empirical Analysis of Big Data. *Chinese Landscape Architecture*, *32*(9), 7.

- Li, F.Z., Guo, X.Y., Lu, Y., Li, X. (2017). Greenways planning methods from environment justice perspective- an empirical study based on POI big data. *Chinese Landscape Architecture*, *33*(9), 6.
- Li, F.Z., Li, W.Y., Li, X. (2015). Research on Urban Greenway Planning based on Big Data of Bus Smart Card. *Urban Development Studies* (8), 6.
- Li, J. (2021a). Research on temporal-spatial evolution and ecological restoration of river landscape corridor in Zhengzhou under the background of urbanization [Unpublished doctoral dissertation]. Henan Agricultural University.
- Li, J. (2009). Climbing Mount Tai in the rain. Excellent Essays: *Middle School Edition*, *4*(1), 1.
- Li, J.Y. (2021b). Urban image research based on social media data: a case study of Wuhan main urban area [Unpublished master's dissertation]. South University.
- Li, L. (2021c). Identification research of tangible and intangible attribute value of urban heritage based on deep learning: A case study of Suzhou River. Urban Dev. *Stud*, *28*, 104-110.
- Li, Y., Li, H., & Jia, Y. (2023). Urban Cultural Excavation and Reconstruction in the Perspective of Cultural Interaction: An Example of Modern Counter-Industrial Development on the Suzhou Riverbank. Sino-US English Teaching, 20(5), 171-175.
- Liang, H., Li, C., Xue, D., Liu, J., Jin, K., Wang, Y., ... & Gao, T. (2023). Lawn or spontaneous groundcover? Residents' perceptions of and preferences for alternative lawns in Xianyang, China. *Frontiers in Psychology*, *14*.
- Liao, K. H. (2019). The socio-ecological practice of building blue-green infrastructure in high-density cities: what does the ABC Waters Program in Singapore tell us?. Socio-Ecological Practice Research, 1(1), 67-81.
- Lin, C. Y., Oveisi, S., Burri, A., & Pakpour, A. H. (2017). Theory of Planned Behavior including self-stigma and perceived barriers explain help-seeking behavior for sexual problems in Iranian women suffering from epilepsy. *Epilepsy & Behavior*, 68, 123-128.
- Lindsey, G. (1999). Use of urban greenways: insights from Indianapolis. *Landscape and urban planning*, *45*(2-3), 145-157.
- Lis, A., Zalewska, K., Pardela, Ł., Adamczak, E., Cenarska, A., Bławicka, K., ... & Matiiuk, A. (2022). How the amount of greenery in city parks impacts visitor preferences in the context of naturalness, legibility and perceived danger. *Landscape and Urban Planning*, 228, 104556.
- Little, C. E. (1995). Greenways for America. Baltimore: Johns Hopkins University Press.

- Liu, C. (2007). The Contemporary Development of Qingdao's Urban Space. *The Perspec*.
- Liu, D., Kwan, M. P., Kan, Z., & Wang, J. (2022). Toward a healthy urban living environment: Assessing 15-minute green-blue space accessibility. *Sustainability*, *14*(24), 16914.
- Liu, H., Li, F., Xu, L., & Han, B. (2017). The impact of socio-demographic, environmental, and individual factors on urban park visitation in Beijing, China. *Journal of Cleaner Production*, *163*, S181-S188.
- Liu, J., Xiong, Y., Wang, Y., & Luo, T. (2018). Soundscape effects on visiting experience in city park: A case study in Fuzhou, China. *Urban forestry & urban greening*, *31*, 38-47.
- Liu, L., Biderman, A., & Ratti, C. (2009, June). Urban mobility landscape: Real time monitoring of urban mobility patterns. In *Proceedings of the 11th international conference on computers in urban planning and urban management* (pp. 1-16). Hong Kong, China: Citeseer.
- Liu, Q. (2014). Social-Ecological Theory Model and Physical Activity Behavior Research. *Sports* (13), 2.
- Liu, Q., & Jia, H. (2006). Research and prospects of automatic word segmentation technology in Chinese information processing. Computer Engineering and Applications, 42(3), 175-177, 182-182.
- Liu, S., Lai, S. Q., Liu, C., & Jiang, L. (2021). What influenced the vitality of the waterfront open space? A case study of Huangpu River in Shanghai, China. *Cities*, *114*, 103197.
- Liu, X., Chen, X., Huang, Y., Wang, W., Zhang, M., & Jin, Y. (2023). Landscape Aesthetic Value of Waterfront Green Space Based on Space—Psychology—Behavior Dimension: A Case Study along Qiantang River (Hangzhou Section). *International Journal of Environmental Research and Public Health*, 20(4), 3115.
- Liu, X.H., Wang Y.N., Qu Z.M., Di, Z.R. (2019). Opinion formation model with co-evolution of individual behavior and social environment. *Acta Physica Sinica*, 68(11).
- Liu, Y.C. & Zhang, L., (2005). Discussion on the Pattern of Rehabilitation of the Ecological Environment of Dry Waterways--With the Study of the Ecological Comprehensive Improvement of the Hutuo River (Shijiazhuang Section) as an Example. *Planners*, *21*(7), 6.
- Logsdon, J., & Mosler, S. (2009). Re-amplification of the River as an Urban Signature. *Proceedings, International IAPS-CSBE & HOUSING Network*, 1.

- Lombardi, A. (2014). Ecosystem under restoration: a sustainable future for the cultural landscape of San Antonio River, Texas. *WIT Transactions on Ecology and the Environment*, 191, 1139-1151.
- Long, Y. (2019). (New) Urban Science: Studying "New" Cities with New Data, Methods, and Technologies. *Landscape Architecture Frontiers*, 7(2), 8-21.
- Lothian, A. (1999). Landscape and the philosophy of aesthetics: is landscape quality inherent in the landscape or in the eye of the beholder?. *Landscape and urban planning*, *44*(4), 177-198.
- Lu, W.A. (2019). Hybrid Methodology: Combination of Qualitative Research and Quantitative Research. *Knowledge-Power*, (44).
- Luo, H., Deng, L., Song, C., Jiang, S., Huang, Y., Wang, W., ... & Li, X. (2023). Which characteristics and integrations between characteristics in blue—green spaces influence the nature experience?. *Journal of Environmental Planning and Management*, 66(6), 1253-1279.
- Luo, Y., & Lin, Z. (2023). Spatial Accessibility Analysis and Optimization Simulation of Urban Riverfront Space Based on Space Syntax and POIs: A Case Study of Songxi County, China. *Sustainability*, *15*(20), 14929.
- Luttik, J. (2000). The value of trees, water and open space as reflected by house prices in the Netherlands. *Landscape and urban planning, 48*(3-4), 161-167.
- Lyu, F., & Zhang, L. (2019). Using multi-source big data to understand the factors affecting urban park use in Wuhan. *Urban Forestry & Urban Greening*, 43, 126367.
- Ma, H.J. & Chai, G.H. (2022). User Interest Model ConstructionMethod Based on BERT Modeland LDA Topic Model. *Artificial Intelligence and Robotics Research*, 11(4), 418-428.
- Ma, Y., Ling, C., & Wu, J. (2020). Exploring the spatial distribution characteristics of emotions of weibo users in wuhan waterfront based on gender differences using social media texts. *ISPRS International Journal of Geo-Information*, 9(8), 465.
- Macháč, J., Brabec, J., & Arnberger, A. (2022). Exploring public preferences and preference heterogeneity for green and blue infrastructure in urban green spaces. *Urban Forestry & Urban Greening*, *75*, 127695.
- Macklin, M. G., & Lewin, J. (2015). The rivers of civilization. *Quaternary Science Reviews*, *114*, 228-244.
- Madge, C. (1997). Public parks and the geography of fear. *Tijdschrift voor economische en sociale geografie*, *88*(3), 237-250.

- Magrinyà, F., Mercadé-Aloy, J., & Ruiz-Apilánez, B. (2023). Merging Green and Active Transportation Infrastructure towards an Equitable Accessibility to Green Areas: Barcelona Green Axes. *Land*, *12*(4), 919.
- Mann, R. B. (1988). Ten trends in the continuing renaissance of urban waterfronts. *Landscape and urban planning*, *16*(1-2), 177-199.
- Manson, J. E., Hu, F. B., Rich-Edwards, J. W., Colditz, G. A., Stampfer, M. J., Willett, W. C., ... & Hennekens, C. H. (1999). A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. *New England Journal of Medicine*, *341*(9), 650-658.
- Mansournia, S., Bahrami, B., Farahani, L. M., & Aram, F. (2021). Understanding children's perceptions and activities in urban public spaces: The case study of Zrêbar Lake Waterfront in Kurdistan. *Urban Studies*, *58*(2), 372-388.
- Mao, M.R. (2014). Big data application in urban planning: the thinking and practice from BICP. *Urban Planning International* (6), 7.
- Marselle, M. R., Irvine, K. N., Lorenzo-Arribas, A., & Warber, S. L. (2016). Does perceived restorativeness mediate the effects of perceived biodiversity and perceived naturalness on emotional well-being following group walks in nature?. *Journal of Environmental Psychology*, 46, 217-232.
- Martens, D., Gutscher, H., & Bauer, N. (2011). Walking in "wild" and "tended" urban forests: The impact on psychological well-being. *Journal of environmental psychology*, 31(1), 36-44.
- Martín, M. B. G. (2005). Weather, climate and tourism a geographical perspective. *Annals of tourism research*, 32(3), 571-591.
- Martínez, L. M., & Viegas, J. M. (2013). A new approach to modelling distance-decay functions for accessibility assessment in transport studies. *Journal of Transport Geography*, 26, 87-96.
- Maruthaveeran, S., Arnberger, A., & van den Bosch, C. K. (2018). Fear of crime in urban parks based on different levels of concealment, incivilities and human presence.
- Maruthaveeran, S., & Van den Bosh, C. K. (2015). Fear of crime in urban parks—What the residents of Kuala Lumpur have to say?. *Urban forestry & urban greening*, *14*(3), 702-713.
- May, R. (2006). "Connectivity" in urban rivers: Conflict and convergence between ecology and design. *Technology in Society*, *28*(4), 477-488.
- McCormack, G. R., Rock, M., Toohey, A. M., & Hignell, D. (2010). Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. *Health & place*, *16*(4), 712-726.

- McKergow, L. A., Matheson, F. E., & Quinn, J. M. (2016). Riparian management: a restoration tool for New Zealand streams. *Ecological Management & Restoration*, 17(3), 218-227.
- McHugh, M. L. (2013). The chi-square test of independence. *Biochemia medica*, 23(2), 143-149.
- McInnes, M. D., Moher, D., Thombs, B. D., McGrath, T. A., Bossuyt, P. M., Clifford, T., ... & Willis, B. H. (2018). Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. *Jama*, *319*(4), 388-396.
- McLeroy, K. R., Bibeau, D., Steckler, A., & Glanz, K. (1988). An ecological perspective on health promotion programs. *Health education quarterly*, *15*(4), 351-377.
- MEA (Millennium Ecosystem Assessment). (2005). Ecosystems and Human Well-being: Synthesis. Island Press.
- Mecredy, G., Pickett, W., & Janssen, I. (2011). Street connectivity is negatively associated with physical activity in Canadian youth. *International journal of environmental research and public health*, 8(8), 3333-3350.
- Meng, S., Huang, Q., Zhang, L., He, C., Inostroza, L., Bai, Y., & Yin, D. (2020). Matches and mismatches between the supply of and demand for cultural ecosystem services in rapidly urbanizing watersheds: A case study in the Guanting Reservoir basin, China. *Ecosystem Services*, *45*, 101156.
- Miguez, M.G., Ver ol, A.P., Rezende, O.M., 2016. Drenagem urbana: do projeto tradicional `a sustentabilidade, 1a ed. Elsevier, Rio de Janeiro.
- Millard, A., Hale, R. L., & Burnham, M. (2022). Diverse stakeholders navigate divergent perspectives on stream restoration success in Western rangelands. *Restoration Ecology*, e13820.
- MEE (Ministry of Ecology and Environment) (Ed.) (2021). Technical Guideline for the Protection and Restoration of Ecological Buffer Zones of Rivers and Lakes. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202112/W02021121554 1263714758.pdf
- Mostern, R. (2021). *The Yellow River: A natural and unnatural history*. Yale University Press.
- MWR (Ministry of Water Resources). (2022). Guidance on Strengthening Spatial Control of River and Lake Shorelines. Water Resources, 2022(216).
- Mitsch, W. J. (1998). Ecological engineering—the 7-year itch. *Ecological engineering*, *10*(2), 119-130.

- Mitsch, W. J. (2012). What is ecological engineering? *Ecological engineering*, *45*, 5-12.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., ... & Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). *Journal of Chinese Integrative Medicine*, 7(9), 889-896.
- Moretti, M. (2008, July). Cities on water and waterfront regeneration: a strategic challenge for the future. In *II meeting Rivers of Change-River/Cities, Warsaw (Poland), July* (Vol. 24).
- Moss, M. R. (2000). Interdisciplinarity, landscape ecology and the Transformation of Agricultural Landscapes'. *Landscape Ecology*, *15*, 303-311.
- Naidoo, P., Ramseook-Munhurrun, P., & Li, J. (2018). Scuba diving experience and sustainability: An assessment of online travel reviews. *The Gaze: Journal of Tourism and Hospitality*, 9, 43-52.
- Naiman, R. J., & Décamps, H. (1997). The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28(1), 621-658.
- Nakamura, F., Inahara, S., & Kaneko, M. (2005). A hierarchical approach to ecosystem assessment of restoration planning at regional, catchment and local scales in Japan. *Landscape and Ecological Engineering*, *1*, 43-52.
- Navarrete-Hernandez, P., Vetro, A., & Concha, P. (2021). Building safer public spaces: Exploring gender difference in the perception of safety in public space through urban design interventions. Landscape and Urban Planning, 214, 104180.
- Naveh, Z., & Lieberman, A. S. (2013). Landscape ecology: theory and application. Springer Science & Business Media.
- NBS (National Bureau of Statistics) (Ed.) (2021). The Seventh National Population Census Bulletin. http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901715.html
- Negrini, C., & Walford, N. (2022). A stroll in the park, a view of water: Quantifying older people's interaction with 'green'and 'blue'spaces in urban areas. *Applied Geography*, 149, 102808.
- Nguyen, T. T., Meurk, C., Benavidez, R., Jackson, B., & Pahlow, M. (2021). The effect of blue-green infrastructure on habitat connectivity and biodiversity: a case study in the Ōtākaro/Avon River catchment in Christchurch, New Zealand. *Sustainability*, *13*(12), 6732.
- Nguyen, T. T., Ngo, H. H., Guo, W., Wang, X. C., Ren, N., Li, G., ... & Liang, H. (2019). Implementation of a specific urban water management-Sponge City. *Science of the Total Environment*, *652*, 147-162.

- Nicholls, S. (2001). Measuring the accessibility and equity of public parks: A case study using GIS. *Managing leisure*, *6*(4), 201-219.
- Nieuwenhuijsen, M. J. (2016). Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. *Environmental health*, *15*, 161-171.
- Nilsson, C., Jansson, R., Malmqvist, B., & Naiman, R. J. (2007). Restoring riverine landscapes: the challenge of identifying priorities, reference states, and techniques. *Ecology and Society*, *12*(1).
- Niu, Y., Mi, X., & Wang, Z. (2021). Vitality evaluation of the waterfront space in the ancient city of Suzhou. *Frontiers of Architectural Research*, *10*(4), 729-740.
- O'Dea, R. E., Lagisz, M., Jennions, M. D., Koricheva, J., Noble, D. W., Parker, T. H., ... & Nakagawa, S. (2021). Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. *Biological Reviews*, *96*(5), 1695-1722.
- Oertli, B., & Parris, K. M. (2019). Toward management of urban ponds for freshwater biodiversity. *Ecosphere*, *10*(7), e02810.
- Ohri-Vachaspati, P., DeLia, D., DeWeese, R. S., Crespo, N. C., Todd, M., & Yedidia, M. J. (2015). The relative contribution of layers of the Social Ecological Model to childhood obesity. *Public health nutrition*, *18*(11), 2055-2066.
- Oster, C., Adelson, P. L., Wilkinson, C., & Turnbull, D. (2011). Inpatient versus outpatient cervical priming for induction of labour: therapeutic landscapes and women's preferences. *Health & place*, *17*(1), 379-385.
- Oteros-Rozas, E., Martín-López, B., Fagerholm, N., Bieling, C., & Plieninger, T. (2018). Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. *Ecological Indicators*, *94*, 74-86.
- Othman, A., Al-Hagla, K., & Hasan, A. E. (2021). The impact of attributes of waterfront accessibility on human well-being: Alexandria Governorate as a case study. *Ain Shams Engineering Journal*, *12*(1), 1033-1047.
- Ouyang, P., & Wu, X. (2023). Analysis and Evaluation of the Service Capacity of a Waterfront Public Space Using Point-of-Interest Data Combined with Questionnaire Surveys. *Land*, *12*(7), 1446.
- Pak, A., & Paroubek, P. (2010, May). Twitter as a corpus for sentiment analysis and opinion mining. In *LREc* (Vol. 10, No. 2010, pp. 1320-1326).
- Palmer, J. F., & Hoffman, R. E. (2001). Rating reliability and representation validity in scenic landscape assessments. *Landscape and urban planning*, *54*(1-4), 149-161.

- Pan, Z., Xie, Z., Ding, N., Liang, Q., Li, J., Pan, Y., & Qin, F. (2023). Evolution Patterns of Cooling Island Effect in Blue–Green Space under Different Shared Socioeconomic Pathways Scenarios. *Remote Sensing*, *15*(14), 3642.
- Paneerchelvam, P. T., Maruthaveeran, S., Maulan, S., & Shukor, S. F. A. (2020). The use and associated constraints of urban greenway from a socioecological perspective: A systematic review. *Urban Forestry & Urban Greening*, 47, 126508.
- Paneerchelvam, P. T. (2020). Investigating the use and associated constraints of urban networks among Klang Valley residents [Unpublished doctoral dissertation]. University Putra Malaysia.
- Pardela, Ł., Lis, A., Zalewska, K., & Iwankowski, P. (2022). How vegetation impacts preference, mystery and danger in fortifications and parks in urban areas. *Landscape and Urban Planning*, 228, 104558.
- Pasaogullari, N., & Doratli, N. (2004). Measuring accessibility and utilization of public spaces in Famagusta. *Cities*, *21*(3), 225-232.
- Pearson, D. G., & Craig, T. (2014). The great outdoors? Exploring the mental health benefits of natural environments. *Frontiers in psychology*, 1178.
- Peng, J., Zhao, H., & Liu, Y. (2017). Urban ecological corridors construction: A review. *Acta Ecologica Sinica*, *37*(1), 23-30.
- Pickering, C., & Byrne, J. (2014). The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. *Higher Education Research & Development*, 33(3), 534-548.
- Pickett, S. T., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. *Annual review of ecology and systematics*, 32(1), 127-157.
- Plunz, R. A., Zhou, Y., Vintimilla, M. I. C., Mckeown, K., Yu, T., Uguccioni, L., & Sutto, M. P. (2019). Twitter sentiment in New York City parks as measure of well-being. *Landscape and urban planning*, *189*, 235-246.
- Pogačar, K., & Žižek, A. (2020). Tracking spatiotemporal dynamics of the culture-led public space regeneration using geolocated social media posts. *Geodetski Vestnik*, *64*(3).
- Pollach, I. (2006, January). Electronic word of mouth: A genre analysis of product reviews on consumer opinion web sites. In *Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)* (Vol. 3, pp. 51c-51c). IEEE.

- Postel, S., & Richter, B. (2012). Rivers for life: managing water for people and nature. Island press.
- Poulsen, M. N., Nordberg, C. M., Fiedler, A., DeWalle, J., Mercer, D., & Schwartz, B. S. (2022). Factors associated with visiting freshwater blue space: The role of restoration and relations with mental health and wellbeing. *Landscape and Urban Planning*, *217*, 104282.
- Pouya, S., & Baskaya, F. A. T. (2018). Residents' Perceptions of Riverine Landscape Changes; Case Study of Beykoz Stream/Istanbul. *Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering*, 19(2), 253-266.
- Pruetz, R. (2017). Lasting value: open space planning and preservation successes. Routledge.
- Pryce, S. (1991). Community control of landscape management. *Planning Outlook*, 34(2), 75-82.
- Pusey, B. J., & Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: a review. *Marine and freshwater Research*, *54*(1), 1-16.
- Qin, Y. (2023). Chinese Dianping App Users' Perceptions of Inauthentic User-Generated Information on the Platform: Exploring Attitudes and Behaviors. In Proceedings of the 2nd International Conference on Interdisciplinary Humanities and Communication Studies.
- Qiu, L., Lindberg, S., & Nielsen, A. B. (2013). Is biodiversity attractive?—Onsite perception of recreational and biodiversity values in urban green space. *Landscape and Urban Planning*, *119*, 136-146.
- Quintelier, E., & Vissers, S. (2008). The effect of Internet use on political participation: An analysis of survey results for 16-year-olds in Belgium. Social science computer review, 26(4), 411-427.
- Rafferty, L. (2004). Other Meanings of the Public Interest in the Waterfront. In Remaking the Urban Waterfront (p. 97). Washington D. C.: Urban Land Institute.
- Raimbault, M., & Dubois, D. (2005). Urban soundscapes: Experiences and knowledge. *Cities*, 22(5), 339-350.
- Rakonjac, I., Zorić, A., Rakonjac, I., Milošević, J., Marić, J., & Furundžić, D. (2022). Increasing the Livability of open public spaces during nighttime: the importance of lighting in waterfront areas. *Sustainability*, *14*(10), 6058.
- Ramachandra, T. V., Ahalya, N., & Murthy, R. (2005). Aquatic ecosystems: conservation, restoration and management. *Aquatic ecosystems-Conservation*, restoration and management, 26-50.

- Rantanen, T., Portegijs, E., Viljanen, A., Eronen, J., Saajanaho, M., Tsai, L. T., ... & Rantakokko, M. (2012). Individual and environmental factors underlying life space of older people–study protocol and design of a cohort study on life-space mobility in old age (LISPE). *BMC Public Health*, 12, 1-17.
- Rebele, F. (1994). Urban ecology and special features of urban ecosystems. *Global ecology and biogeography letters*, 173-187.
- Remondi, F., Burlando, P., & Vollmer, D. (2016). Exploring the hydrological impact of increasing urbanisation on a tropical river catchment of the metropolitan Jakarta, Indonesia. *Sustainable Cities and Society*, *20*, 210-221.
- Rice, W. L., Mateer, T. J., Reigner, N., Newman, P., Lawhon, B., & Taff, B. D. (2020). Changes in recreational behaviors of outdoor enthusiasts during the COVID-19 pandemic: analysis across urban and rural communities. *Journal of Urban Ecology*, 6(1), juaa020.
- Rice, W. L., Newman, P., Zipp, K. Y., Taff, B. D., Pipkin, A. R., Miller, Z. D., & Pan, B. (2022). Balancing quietness and freedom: Support for reducing road noise among park visitors. *Journal of Outdoor Recreation and Tourism*, *37*, 100474.
- Richardson, J. S., & Danehy, R. J. (2007). A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. *Forest Science*, *53*(2), 131-147.
- Richards, D. R., & Tunçer, B. (2018). Using image recognition to automate assessment of cultural ecosystem services from social media photographs. *Ecosystem services*, *31*, 318-325.
- Roberts, H., Sadler, J., & Chapman, L. (2017). Using Twitter to investigate seasonal variation in physical activity in urban green space. *Geo: Geography and Environment*, 4(2), e00041.
- Roberts, H., Sadler, J., & Chapman, L. (2019). The value of Twitter data for determining the emotional responses of people to urban green spaces: A case study and critical evaluation. *Urban studies*, *56*(4), 818-835.
- Rodrigues, R. C. (2018). Quiet areas and urban sustainability. *Energy Procedia*, 153, 334-341.
- Rohde, C. L. E., & Kendle, A. D. (1994). Human well-being, natural landscapes and wildlife in urban areas a review.
- Rojas, R., Feyen, L., & Watkiss, P. (2013). Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. *Global Environmental Change*, 23(6), 1737-1751.

- Rojas-Carvajal, M., Sequeira-Cordero, A., & Brenes, J. C. (2022). The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. *European Journal of Neuroscience*, *55*(9-10), 2359-2392.
- Rohde, C. L. E., & Kendle, A. D. (1994). Human well-being, natural landscapes and wildlife in urban areas: a review.
- Ross, J. G. (1985). The national children and youth fitness study: a summary of findings. Recreation Dance Special Insert. *J Phys Educ*, *56*, 43-90.
- Ruan, J.H. (2012). A discussion on Hutuo River landscape design and construction management. *Hebei Water Conservancy*, (3), 1.
- Ruan, Y. S. (2006). A casual discussion on Suzhou gardens. *Journal of Tongji University: Social Sciences Edition*, (03), 31-37.
- Ryan, R. M., Duineveld, J. J., Di Domenico, S. I., Ryan, W. S., Steward, B. A., & Bradshaw, E. L. (2022). We know this much is (meta-analytically) true: A meta-review of meta-analytic findings evaluating self-determination theory. *Psychological Bulletin*, *148*(11-12), 813.
- Sakici, C. (2015). Assessing landscape perceptions of urban waterscapes. *The Anthropologist*, *21*(1-2), 182-196.
- Sallis, J. F., Cervero, R. B., Ascher, W., Henderson, K. A., Kraft, M. K., & Kerr, J. (2006). An ecological approach to creating active living communities. *Annu. Rev. Public Health*, 27, 297-322.
- Samant, S., & Brears, R. (2017). Urban waterfront revivals of the future. In *Greening cities: forms and functions* (pp. 331-356). Singapore: Springer Singapore.
- Sang, Å. O., Knez, I., Gunnarsson, B., & Hedblom, M. (2016). The effects of naturalness, gender, and age on how urban green space is perceived and used. *Urban forestry & urban greening*, 18, 268-276.
- Schaich, H. (2009). Local residents' perceptions of floodplain restoration measures in Luxembourg's Syr Valley. *Landscape and Urban Planning*, 93(1), 20-30.
- Schlieder, C., & Matyas, C. (2009). Photographing a city: An analysis of place concepts based on spatial choices. *Spatial Cognition* & *Computation*, 9(3), 212-228.
- Schoberleitner, S. (2022). We feel unsafe: An exploration of planning opportunities with a gender perspective to encourage urban safety.
- Schrader, C. C. (1995). Rural greenway planning: the role of streamland perception in landowner acceptance of land management strategies. *Landscape and Urban Planning*, 33(1-3), 375-390.

- Scott Shafer, C., Scott, D., Baker, J., & Winemiller, K. (2013). Recreation and amenity values of urban stream corridors: Implications for green infrastructure. *Journal of Urban Design*, 18(4), 478-493.
- Selhub, E. M., & Logan, A. C. (2012). Your brain on nature: The science of nature's influence on your health, happiness and vitality. John Wiley & Sons.
- Selman, P., Carter, C., Lawrence, A., & Morgan, C. (2010). Re-connecting with a recovering river through imaginative engagement. *Ecology and Society*, *15*(3).
- Shang, W., & Yang, C.X. (2015). Research on the Urban Waterfront Open Space Design Based on Behavior-A Case of the North Bund Waterfront Park in Shanghai. *Dc Studies*,116-122.
- Shangi, Z. A. D., Tanvir, H. M., & Imtiaz, A. M. (2020). Rethinking urban water-front as a potential public open space: Interpretative framework of Surma waterfront. *Architecture Research*, *10*(3), 69-74.
- Sharkey, B. J., & Gaskill, S. E. (2013). Fitness & health. Human Kinetics.
- Shen, A. (2017). The Road Ahead for Internet-based Bicycle Rental. *People's Transportation*, 09(No.2), 12-16.
- Shen, J., & Saijo, T. (2008). Reexamining the relations between sociodemographic characteristics and individual environmental concern: Evidence from Shanghai data. *Journal of Environmental Psychology*, 28(1), 42-50.
- Shen, X., & Zhang, J.G., (2018). Web-based text analysis of tourism image perception of Shaoxing Mirror Lake National Urban Wetland Park. *Journal of Zhejiang A & F University*, 35(1), 145-152.
- Shi, H.L., & Fan, Y.N. (2005). Human behavior and social environment under the interpretation of social ecological system theory Charles Zastrow's new discussion on human behavior and social environment in 2004. *Journal of Capital Normal University (Social Sciences Edition)*. (4), 4.
- Shi, J., Dai, X., Sun, Z., Liu, M., & Tang, D. (2023). Exploring the Determinants and Consequences of Public Satisfaction with Urban Waterfronts: A Case Study of the Xuhui Waterfront in Shanghai, China. *Journal of Urban Planning and Development*, 149(2), 04023005.
- Shi, J., Fan, M., Li, W.L. (2009). Topic analysis based on LDA model. Acta Automatica Sinica, 35(12), 1586-1592.
- Shi, Z. (2017). A Study on the Social Work Intervention of "Micro-Autonomy" in Urban Old Community Based on the Practice of YZ Community in Wuhan City [Unpublished master dissertation]. Central China Normal University.

- Shrestha, N. (2021). Factor analysis as a tool for survey analysis. *American Journal of Applied Mathematics and Statistics*, *9*(1), 4-11.
- Silva, J. B., Saraiva, M. G., Ramos, I. L., & Bernardo, B. (2005, September). Methodology of aesthetic evaluation of rivers in urban context. In *Proceedings of Urban River Rehabilitation Conference, Dresden* (pp. 5-6).
- Silva, J. B., Saraiva, G., Ramos, I. L., Monteiro, F., Nunes da Silva, N., Câmara, C., ... & Westmacott, R. (2004). Classification of the aesthetic value of the selected urban rivers. Methodology. *Urban river basin enhancement methods-FP5 Project (2002-2005)*.
- Sim, J., & Miller, P. (2019). Understanding an urban park through big data. *International journal of environmental research and public health*, 16(20), 3816.
- Sims, C. B., Welch, J. G., & Rushing, B. (2022). Economic Potential of the Tennessee RiverLine Water Trail.
- Sinclair, M., Ghermandi, A., & Sheela, A. M. (2018). A crowdsourced valuation of recreational ecosystem services using social media data: An application to a tropical wetland in India. *Science of the total environment*, 642, 356-365.
- Singh, R., Tiwari, A. K., & Singh, G. S. (2021). Managing riparian zones for river health improvement: an integrated approach. *Landscape and ecological engineering*, 17, 195-223.
- Skaller, P. M. (1981). Vegetation management by minimal intervention: working with succession. *Landscape Planning*, 8(2), 149-174.
- Smith, B., Clifford, N. J., & Mant, J. (2014). The changing nature of river restoration. *Wiley Interdisciplinary Reviews: Water*, 1(3), 249-261.
- Smith, N., Georgiou, M., King, A. C., Tieges, Z., & Chastin, S. (2022). Factors influencing usage of urban blue spaces: A systems-based approach to identify leverage points. *Health & Place*, 73, 102735.
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of business research*, *104*, 333-339.
- Song, Y., Wang, R., Fernandez, J., & Li, D. (2021). Investigating sense of place of the Las Vegas Strip using online reviews and machine learning approaches. *Landscape and Urban Planning*, 205, 103956.
- Sreetheran, M. (2015). A Socio-Ecological Approach of Fear of Crime in Urban Green Spaces A Case in Kuala Lumpur, Malaysia [Unpublished doctoral dissertation]. University of Gopenhagen.

- Sreetheran, M., & Van Den Bosch, C. C. K. (2014). A socio-ecological exploration of fear of crime in urban green spaces—A systematic review. *Urban Forestry & Urban Greening*, *13*(1), 1-18.
- SSB (Shijiazhuang Statistics Bureau) (Ed.) (2021). Bulletin of the Seventh National Census of Shijiazhuang City. Shijiazhuang Statistics Bureau: Shijiazhuang, China.
- Staats, H., & Hartig, T. (2004). Alone or with a friend: A social context for psychological restoration and environmental preferences. *Journal of Environmental Psychology*, 24(2), 199-211.
- Stephens, T., Craig, C. L., & Ferris, B. F. (1986). Adult physical activity in Canada: findings from the Canada Fitness Survey I. *Canadian journal of public health= Revue canadienne de sante publique*, 77(4), 285-290.
- Stojanov, M. (2015). Reversible vending: features and world practice. *Revista de Ştiinţe Politice. Revue des Sciences Politiques*, (45), 211-220.
- Subramanian, D., & Jana, A. (2018). Assessing urban recreational open spaces for the elderly: A case of three Indian cities. *Urban Forestry & Urban Greening*, *35*, 115-128.
- Sudha, P., & Ravindranath, N. H. (2000). A study of Bangalore urban forest. Landscape and Urban Planning, 47(1-2), 47-63.
- Sudia, T. W. (1974). *The river in the city*. US Department of the Interior.
- Sugiyama, T., Cerin, E., Owen, N., Oyeyemi, A. L., Conway, T. L., Van Dyck, D., ... & Sallis, J. F. (2014). Perceived neighbourhood environmental attributes associated with adults' recreational walking: IPEN Adult study in 12 countries. *Health & place*, 28, 22-30.
- Sun, S. (2013). Post-occupancy evaluation of waterfront space along the Beijing-Hangzhou Grand Canal—Taking Suyu section of Jiangsu Province as an example. *Chinese Horticultural Abstracts*, 29(4), 2.
- Sundquist, K., Qvist, J., Johansson, S. E., & Sundquist, J. (2005). The long-term effect of physical activity on incidence of coronary heart disease: a 12-year follow-up study. *Preventive medicine*, *41*(1), 219-225.
- Sunita, Kumar, D., Shahnawaz, & Shekhar, S. (2023). Evaluating urban green and blue spaces with space-based multi-sensor datasets for sustainable development. *Computational Urban Science*, *3*(1), 12.
- Suppakittpaisarn, P., Chang, C. Y., Deal, B., Larsen, L., & Sullivan, W. C. (2020). Does vegetation density and perceptions predict green stormwater infrastructure preference?. *Urban forestry & urban greening*, *55*, 126842.

- Talen, E. (2000). Measuring the public realm: A preliminary assessment of the link between public space and sense of community. *Journal of Architectural and Planning Research*, 344-360.
- Tashakkori, A., & Teddlie, C. (2003). Issues and dilemmas in teaching research methods courses in social and behavioural sciences: US perspective. *International journal of social research methodology*, 6(1), 61-77.
- Taylor, M., Wells, G., Howell, G., & Raphael, B. (2012). The role of social media as psychological first aid as a support to community resilience building. *Australian Journal of Emergency Management, The*, *27*(1), 20-26.
- Tenkanen, H., Di Minin, E., Heikinheimo, V., Hausmann, A., Herbst, M., Kajala, L., & Toivonen, T. (2017). Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. *Scientific reports*, 7(1), 17615.
- Tenny, S., Brannan, J. M., & Brannan, G. D. (2017). Qualitative study.
- The Outdoor Foundation. (2017). Outdoor recreation participation 2017 Washington DC.
- Tieskens, K. F., Van Zanten, B. T., Schulp, C. J., & Verburg, P. H. (2018). Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. *Landscape and urban planning*, 177, 128-137.
- Tight, M., Timms, P., Banister, D., Bowmaker, J., Copas, J., Day, A., ... & Watling, D. (2011). Visions for a walking and cycling focussed urban transport system. *Journal of Transport Geography*, 19(6), 1580-1589.
- Timur, U. P. (2013). Urban waterfront regenerations. In *Advances in landscape architecture*. IntechOpen.
- Tomer, R., Lovett-Barron, M., Kauvar, I., Andalman, A., Burns, V. M., Sankaran, S., ... & Deisseroth, K. (2015). SPED light sheet microscopy: fast mapping of biological system structure and function. *Cell*, 163(7), 1796-1806.
- Tucker, P., & Gilliland, J. (2007). The effect of season and weather on physical activity: a systematic review. *Public health*, *121*(12), 909-922.
- Ugolini, F., Massetti, L., Calaza-Martínez, P., Cariñanos, P., Dobbs, C., Ostoić, S. K., ... & Sanesi, G. (2020). Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. *Urban forestry & urban greening*, *56*, 126888.

- Ullah, H., Wan, W., Ali Haidery, S., Khan, N. U., Ebrahimpour, Z., & Luo, T. (2019). Analyzing the spatiotemporal patterns in green spaces for urban studies using location-based social media data. *ISPRS International Journal of Geo-Information*, 8(11), 506.
- United Nations (Ed.) (2022). Sustainable Development Goals Goal 11 Make cities and human settlements inclusive, safe, resilient and sustainable. Retrieved from https://www.un.org/sustainabledevelopment/zh/cities/.
- V Janowsky, D., & Becker, G. (2003). Characteristics and needs of different user groups in the urban forest of Stuttgart. *Journal for Nature Conservation*, *11*(4), 251-259.
- Vaeztavakoli, A., Lak, A., & Yigitcanlar, T. (2018). Blue and green spaces as therapeutic landscapes: health effects of urban water canal areas of Isfahan. *Sustainability*, *10*(11), 4010.
- Vall-Casas, P., Benages-Albert, M., Elinbaum, P., Garcia, X., Mendoza-Arroyo, C., & Rodrigo Cuéllar Jaramillo, Á. (2019). From metropolitan rivers to civic corridors: assessing the evolution of the suburban landscape. *Landscape Research*, *44*(8), 1014-1030.
- Van den Bosch, M., & Bird, W. (Eds.). (2018). Oxford textbook of nature and public health: The role of nature in improving the health of a population. Oxford University Press.
- Van Hecke, L., Deforche, B., Van Dyck, D., De Bourdeaudhuij, I., Veitch, J., & Van Cauwenberg, J. (2016). Social and physical environmental factors influencing adolescents' physical activity in urban public open spaces: A qualitative study using walk-along interviews. *PloS one*, *11*(5), e0155686.
- Van Heezik, Y., Freeman, C., Falloon, A., Buttery, Y., & Heyzer, A. (2021). Relationships between childhood experience of nature and green/blue space use, landscape preferences, connection with nature and proenvironmental behavior. *Landscape and Urban Planning*, 213, 104135.
- Van Winsum-Westra, M., & De Boer, T. A. (2004). (On) veilig in bos en natuur? Een verkenning van subjectieve en objectieve aspecten van sociale en fysieke veiligheid in bos-en natuurgebieden (No. 12). Alterra.
- Van Zanten, B. T., Van Berkel, D. B., Meentemeyer, R. K., Smith, J. W., Tieskens, K. F., & Verburg, P. H. (2016). Continental-scale quantification of landscape values using social media data. *Proceedings of the National Academy of Sciences*, *113*(46), 12974-12979.
- Vasiljević, Đ. A., Vujičić, M. D., Stankov, U., & Dragović, N. (2023). Visitor motivation and perceived value of periurban parks-Case study of Kamenica park, Serbia. *Journal of Outdoor Recreation and Tourism*, 42, 100625.

- Veal, A.J. (2011). Research Methods for Leisure and Tourism: A Practical Guide. Fourth Edition, Pearson Education Limited, Harlow.
- Velarde, M. D., Fry, G., & Tveit, M. (2007). Health effects of viewing landscapes—Landscape types in environmental psychology. *Urban forestry & urban greening*, 6(4), 199-212.
- Vert, C., Carrasco-Turigas, G., Zijlema, W., Espinosa, A., Cano-Riu, L., Elliott, L. R., ... & Gascon, M. (2019). Impact of a riverside accessibility intervention on use, physical activity, and wellbeing: A mixed methods pre-post evaluation. *Landscape and Urban Planning*, 190, 103611.
- Vermaat, J. E., Wagtendonk, A. J., Brouwer, R., Sheremet, O., Ansink, E., Brockhoff, T., ... & Hering, D. (2016). Assessing the societal benefits of river restoration using the ecosystem services approach. *Hydrobiologia*, 769, 121-135.
- Vian, F. D., Izquierdo, J. J. P., & Martínez, M. S. (2021). River-city recreational interaction: A classification of urban riverfront parks and walks. *Urban Forestry & Urban Greening*, *59*, 127042.
- Vierikko, K., & Yli-Pelkonen, V. (2019). Seasonality in recreation supply and demand in an urban lake ecosystem in Finland. *Urban Ecosystems*, 22, 769-783.
- Völker, S., & Kistemann, T. (2011). The impact of blue space on human health and well-being–Salutogenetic health effects of inland surface waters: A review. *International journal of hygiene and environmental health*, 214(6), 449-460.
- Völker, S., & Kistemann, T. (2013). Reprint of: "I'm always entirely happy when I'm here!" Urban blue enhancing human health and well-being in Cologne and Düsseldorf, Germany. Social science & medicine, 91, 141-152.
- Völker, S., & Kistemann, T. (2015). Developing the urban blue: Comparative health responses to blue and green urban open spaces in Germany. *Health & place*, *35*, 196-205.
- Völker, S., Heiler, A., Pollmann, T., Claßen, T., Hornberg, C., & Kistemann, T. (2018). Do perceived walking distance to and use of urban blue spaces affect self-reported physical and mental health?. *Urban forestry & urban greening*, 29, 1-9.
- Vollmer, D. (2009). Urban waterfront rehabilitation: can it contribute to environmental improvements in the developing world?. *Environmental Research Letters*, *4*(2), 024003.
- Vujcic, M., Tomicevic-Dubljevic, J., Grbic, M., Lecic-Tosevski, D., Vukovic, O., & Toskovic, O. (2017). Nature based solution for improving mental health and well-being in urban areas. *Environmental research*, *158*, 385-392.

- Wade, M. T., Julian, J. P., Jeffery, K. S., & Davidson, S. M. (2023). A Participatory Approach to Assess Social Demand and Value of Urban Waterscapes: A Case Study in San Marcos, Texas, USA. *Land*, *12*(6), 1137.
- Walmsley, D. J., & Lewis, G. J. (2014). *People and environment: Behavioural approaches in human geography*. Routledge.
- Wang, G.X. (2022). The impact of urban park landscape pattern on cultural service perception in Jinan based on social media data [Unpublished doctoral dissertation]. Shandong Jianzhu University.
- Wang, J.F., & Xu, W.B. (2021, April 11). Shijiazhuang's "Mother River" Hutuo River Ecological Management Documentary. Tencent. Retrieved April 11, 2021, from https://new.gq.com/rain/a/20210411A01RSH00
- Wang, H.X. (2016). Research on the integration of waterfront tourism resources on both sides of the Huangpu River [Unpublished master's dissertation]. Shanghai Normal University.
- Wang, L., Zeng, Y., Lü, X., & Wang, X. (2019a). A method for analyzing the connectivity of urban river greenways based on network theory: A case study in Wuhan, China. Science of the Total Environment, 657, 1,297-1,309.
- Wang, M., Hou, X., Wang, F., & Wang, J. (2019b). Influencing Mechanism of Ecological Aesthetic Preference on Urban River Ecological Restoration: A Case Study of Kunshan, Jiangsu Province. *Landscape Architecture Frontiers*, 10(1).
- Wang, P., Gao, C., Chen, X.M. (2015). Research on LDA model based on text clustering. Information Science, 33(1), 6.
- Wang, X. & Li, X. (2017). Research on the Analysis of Social Services Value of Forest Park in Beijing Based on Network Big Data. *Chinese Landscape Architecture*, 33(10), 5.
- Wang, Y., Dewancker, B. J., & Qi, Q. (2020). Citizens' preferences and attitudes towards urban waterfront spaces: A case study of Qiantang riverside development. *Environmental Science and Pollution Research*, 27(36), 45787-45801.
- Wang, Z.L., Yang, J.N., Zou, C., Deng, S.J., Lin, R.Z., Li, X.H. (2022). Tourists' recreation behavior and environmental preference using behavior observation method: a case of Ruyi Lake Wetland Park in Sanming City. *Hubei Forestry Science and Technology*, (051-001).
- Wantzen, K. M., Ballouche, A., Longuet, I., Bao, I., Bocoum, H., Cisse, L., ... & Zalewski, M. (2016). River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. *Ecohydrology & Hydrobiology*, *16*(1), 7-18.

- Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2006). Health benefits of physical activity: the evidence. *Cmaj*, *174*(6), 801-809.
- Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. *Journal* of the North American Benthological Society, 8(1), 2-8.
- Wartmann, F. M., Acheson, E., & Purves, R. S. (2018). Describing and comparing landscapes using tags, texts, and free lists: an interdisciplinary approach. *International Journal of Geographical Information Science*, 32(8), 1572-1592.
- Watts, G. (2017). The effects of "greening" urban areas on the perceptions of tranquillity. *Urban Forestry & Urban Greening*, 26, 11-17.
- Wendel, H. E. W., Zarger, R. K., & Mihelcic, J. R. (2012). Accessibility and usability: Green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. *Landscape and urban planning*, 107(3), 272-282.
- Westling, E. L., Surridge, B. W., Sharp, L., & Lerner, D. N. (2014). Making sense of landscape change: Long-term perceptions among local residents following river restoration. *Journal of hydrology*, *519*, 2613-2623.
- White, C. J. (2010). The impact of emotions on service quality, satisfaction, and positive word-of-mouth intentions over time. *Journal of marketing management*, 26(5-6), 381-394.
- Williams, D. E. (2007). Sustainable design: ecology, architecture, and planning. John Wiley & Sons.
- Wilson, E. O. (1986). Biophilia. Harvard university press.
- Wisdom, J., & Creswell, J. W. (2013). Mixed methods: integrating quantitative and qualitative data collection and analysis while studying patient-centered medical home models. *Rockville: Agency for Healthcare Research and Quality*, 13, 1-5.
- Wohlfart, C., Kuenzer, C., Chen, C., & Liu, G. (2016). Social–ecological challenges in the Yellow River basin (China): a review. *Environmental Earth Sciences*, 75, 1-20.
- Wojnowska-Heciak, M. (2019). The naturalness of the Vistula riverbank's landscape: Warsaw inhabitants' perceptions. *Sustainability*, *11*(21), 5957.
- Woolley, H. (2003). *Urban open spaces*. Taylor & Francis.
- Wu, D., Liu, L., & Li, L. (2023). Study on Camping Behavior Patterns for Thermal Comfort at Riverside Parks. *Buildings*, *13*(5), 1295.

- Wu, H., Liu, L., Yu, Y., & Peng, Z. (2018). Evaluation and planning of urban green space distribution based on mobile phone data and two-step floating catchment area method. *Sustainability*, *10*(1), 214.
- Wu, J., Chen, X., & Chen, S. (2019a). Temporal characteristics of waterfronts in Wuhan City and people's behavioral preferences based on social media data. *Sustainability*, *11*(22), 6308.
- Wu, J., Li, J., & Ma, Y. (2019b). A comparative study of spatial and temporal preferences for waterfronts in Wuhan based on gender differences in check-in behavior. *ISPRS International Journal of Geo-Information*, 8(9), 413.
- Wu, J., Li, J., & Ma, Y. (2019c). Exploring the relationship between potential and actual of urban waterfront spaces in Wuhan based on social networks. *Sustainability*, *11*(12), 3298.
- Wu, Z.W. & Han, Y.T. (2015). Using situation investigation and analysis on Beijing Menchenghu waterfront greenway. *Huazhong Architecture*, *33*(9), 5.
- Wüstemann, H., Kalisch, D., & Kolbe, J. (2017). Accessibility of urban blue in German major cities. *Ecological indicators*, 78, 125-130.
- Xia, J., Li, Z., Zeng, S., Zou, L., She, D., & Cheng, D. (2021). Perspectives on eco-water security and sustainable development in the Yangtze River Basin. *Geoscience Letters*, 8(1), 18.
- Xie, B., Pang, Z., He, D., Lu, Y., & Chen, Y. (2023). Effects of neighborhood environment on different aspects of greenway use: Evidence from East Lake Greenway, China. *Journal of Transport Geography*, *106*, 103488.
- Xue, W., & Wang, J., (2008). The research of urban river way development. Shandong Forestry Science and Technology, 38(5), 4.
- Yamashita, S. (2002). Perception and evaluation of water in landscape: use of Photo-Projective Method to compare child and adult residents' perceptions of a Japanese river environment. *Landscape and Urban Planning*, 62(1), 3-17.
- Yang, C.X. & Shao, B. (2018). Influence of waterfront public space elements on lingering vitality and strategies: taking two typical waterfronts along Huangpu River, Shanghai as examples. *Urban and architecture*. (5), 8.
- Yang, R.Q. (2021). Social media data-based post occupancy evaluation on the High Line Park [Unpublished master dissertation]. Huazhong University of Science&Technology.
- Yang, W., Zhang, T., & Liu, R. (2015). SPSS statistical analysis and detailed industry application cases (3rd ed.). Tsinghua University Press.

- Yang, Y., Zhang, K., & Fan, Y. (2023). sdtm: A supervised bayesian deep topic model for text analytics. *Information Systems Research*, *34*(1), 137-156.
- Yassin, A. B., Eves, A. C., & McDonagh, J. (2010). An evolution of waterfront development in Malaysia.
- Yasuda, Y., Fujiki, T., Nasu, H., Kato, M., Morita, Y., Mori, Y., ... & Naruse, T. (2004). Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze River civilization. *Quaternary International*, 123, 149-158.
- Yılmaz, S., Özgüner, H., & Mumcu, S. (2018). An aesthetic approach to planting design in urban parks and greenspaces. *Landscape Research*, *43*(7), 965-983.
- 'Yotti'Kingsley, J., & Townsend, M. (2006). 'Dig in'to social capital: Community gardens as mechanisms for growing urban social connectedness. *Urban policy and research*, *24*(4), 525-537.
- Yu, K.J., Li, D.H., Yuan, H. (2015). "Sponge city" theory and practice. *City Planning Review, 39*(6), 26-36.
- Yuan, Q., Li, H.R., Leng, H. (2023). Research in the influence of winter waterfront environment perception on the mental health of the elderly: a case study of Harbin. *South Architecture*, (6).
- Yue, W., Zhang, Q., & Shen, Y. (2005). The analysis of urban river corridor landscape ecological patterns. *Acta Ecologica Sinica*, *25*(6), 1381-1390.
- Yung, E. H., Conejos, S., & Chan, E. H. (2016). Social needs of the elderly and active aging in public open spaces in urban renewal. *Cities*, *52*, 114-122.
- Zainal Abidin, N. A. (2017). Assessing the landscape character of Malaysia's heritage urban river corridors [Unpublished doctoral dissertation]. Queensland University of Technology.
- Zainal Abidin, N. A., & Lee, G. (2011). Methodology for evaluating the landscape character of Malaysian heritage urban river corridors. *EddBE2011*, 27-29.
- Zedler, J. B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. *Annu. Rev. Environ. Resour.*, 30, 39-74.
- Zelinka, A., & Brennan, D. (2001). SafeScape. Creating safer, more livable Communities through planning and design.
- Zeng, H., Hu, Y.Q., Li, J.Z., Dai, Z.M., Long, M.S. (2018). Research on Opinion Mining of Internet Comments. *Technology Wind* (29), 1.

- Zeng, Y.Z., & Zhao, S.Z. (2008). A review of the social-ecology theory on physical activity promotion. Fujian Sports Science and Technology, 27(1), 3.
- Zhai, Z.W. (2021). Population Opportunities and Challenges for High-quality Development in the New Era: Interpretation of the Seventh National Census Bulletin. *Xinhua Monthly*, 000(011), P.25-27.
- Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring human perceptions of a large-scale urban region using machine learning. *Landscape and Urban Planning*, *180*, 148-160.
- Zhang P Y, Ding Y R, Cai Y J, Zhang G M, Wu Y, Fu C, Wang H J. (2022a). Research progress on methods of river ecological corridor extraction and their application. *Acta Ecologica Sinica*, *42*(5): 2010-2021
- Zhang, Q., Lee, J., Jiang, B., & Kim, G. (2022b). Revitalization of the Waterfront Park Based on Industrial Heritage Using Post-Occupancy Evaluation—A Case Study of Shanghai (China). *International Journal of Environmental Research and Public Health*, 19(15), 9107.
- Zhang, T.J., Zhang, J.J., Shi, Y.H. (2016). Studies on Female Park-goers' Perceptions of Historical Landscape Based on Internet Reviews—Taking Historical Parks in Tianjin's Central Area as Cases. *Chinese Landscape Architecture*, 32(3), 7.
- Zhang, X. P. (2011). Research on topic models and their application in clinical diagnosis and treatment of traditional Chinese medicine [Unpublished doctoral dissertation]. Beijing Jiaotong University.
- Zhang, X., Wang, K., Hao, Y., Fan, J. L., & Wei, Y. M. (2013). The impact of government policy on preference for NEVs: The evidence from China. *Energy Policy*, *61*, 382-393.
- Zhao, J., Liu, X., Dong, R., & Shao, G. (2016). Landsenses ecology and ecological planning toward sustainable development. *International Journal of Sustainable Development & World Ecology*, 23(4), 293-297.
- Zhao, R.Y., Dai, Y.P., & Wang, X. (2019). Scholarly influence assessment based on LDA model and ATM model: A case study of nuclear physics discipline in China. *Journal of Information Science*, *37*(6), 3-9.
- Zhao, Y.X., Fan, Z., Zhu, Q.H. (2012). Conceptualization and research progress on user-generated content. *Journal of Library Science in China* (5), 14.
- Zhao, Z., Gan, H., Qian, X., Leng, J., Wang, Y., & Wu, P. (2021). Riverside greenway in urban environment: Residents' perception and use of greenways along the Huangpu River in Shanghai, China. *International journal of environmental research and public health*, 18(3), 1120.

- Zheng, L.Y., Pu, H.X., & Jiang, Z.P. (2020). A Study on the Satisfaction of Urban Park Space Based on Green View Rate. *Journal of Nanjing Forestry University (Natural Sciences Edition)*, 44(4), 199-204.
- Zhou, J. (2019). Questionnaire Data Analysis: Six Analytical Approaches to Deciphering SPSS Software (2nd ed.). *Electronic Industry Press*.
- Zhou, S., Chen, F., & Xu, Z. (2022). Evaluating the accessibility of urban parks and waterfronts through online map services: A case study of Shaoxing, China. *Urban Forestry & Urban Greening*, 77, 127731.
- Zhou, X.L., & Xu, S.J. (2012). Study on Scenic Space in Urban Waterfronts based on Hommization Analysis. *Journal of Beijing City University*, (5), 6.
- Zhou, Y. B., Sha, R., Lu, X. X., Hou, B., & Ding, Z. S. (2012). Spatial diffusion research on cultural heritage tourism destination images: A case study of Suzhou gardens. Geographical Science.
- Zhou, Y.L. & Yang, Y. (2021). Post-occupancy evaluation of urban waterfront park: taking Haigeng Park as an example. *Architecture & Culture* (8), 2.
- Zhou, Y.Y. (2017). Study on the Post-use Evaluation of Urban Waterfront Space. *Housing Science*, *37*(5), 4.
- Zhou, L.X., & Han, Y.J. (2021). Research on personal information governance in bia data environment. *Information Science*, 39(03): 11–18.
- Zhu, Q., Yu, K.J., Li, D.H. (2005). The width of ecological corridor in landscape planning. *Acta Ecologica Sinica*, *25*(9): 2406-2412.
- Zhu, Z.W. (2020). An assessment framework of green space satisfaction using social media data: content analysis with machine learning [Unpublished doctoral dissertation]. Peking University.
- Zhuang, Y., & Kidder, T. R. (2014). Archaeology of the Anthropocene in the Yellow River region, China, 8000–2000 cal. BP. *The Holocene*, 24(11), 1602-1623.
- Zingraff-Hamed, A., George, F. N., Lupp, G., & Pauleit, S. (2022). Effects of recreational use on restored urban floodplain vegetation in urban areas. *Urban Forestry & Urban Greening*, 67, 127444.