

UNIVERSITI PUTRA MALAYSIA

STABILITY OF THIN LIQUID FILM UNDER EFFECT OF APOLAR AND ELECTROSTATIC FORCES ON A HORIZONTAL PLANE

MOHANAD M-A. A. EL-HARBAWI

FK 2002 54

STABILITY OF THIN LIQUID FILM UNDER EFFECT OF APOLAR AND ELECTROSTATIC FORCES ON A HORIZONTAL PLANE

By

MOHANAD M-A. A. EL-HARBAWI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for Degree of Master of Science

August 2002

DEDICATED

TO

My parents, brothers and sisters for their real help

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

STABILITY OF THIN LIQUID FILM UNDER EFFECT OF APOLAR AND ELECTROSTATIC FORCES ON A HORIZONTAL PLANE

By

MOHANAD M-A. A. EL-HARBAWI

August 2002

Chairman: Dr. Sa'ari Mustapha

Faculty: Engineering

The understanding of stability, dynamics and morphology of supported thin (<100*nm*) liquid films and nanodrops are important in phenomena like flotation, adhesion of fluid particles to surfaces, kinetics and thermodynamics of precursor films in wetting, heterogeneous nucleation, film boiling/condensation, multilayer adsorption/film pressure, instability of biological films/membranes, and mariy other areas While the wetting of surface by large drops is relatively well understood, wetting characteristics of nanodrops and films have not been extensively studied. In some applications like trickle bed reactors, thick coating, contact equipment for heat and mass transfer, and the like

Factors that would affect the total free excess energy (per unit area) of a thin film on a substrate include the film thickness, as well as the apolar and electrostatic spreading coefficients for the system The dynamics of the liquid film is formulated using the Navier-Stokes equations augmented by a body forces describing the apolar

and electrostatic interactions. The liquid film is assumed to be charge neutralized, nondraining, and laterally unbounded. A modified Navier-Stokes equation with associated boundary conditions is solved using a long wave approximation method to obtain a nonlinear equation of evolution of the film interface.

A nonlinear theory based upon the condition of infinitesimal perturbation on the film surface is derived to obtain the growth coefficient, dominant wavelength (i.e., wavelength corresponding to maximum growth coefficient of the surface instability) and the film rupture time.

Solution of the nonlinear partial differential equation for a wide range of the initial amplitude and wavelength is solved by using finite difference methods. The calculation domain is fixed on the interval $0 < X < 2\pi/\lambda$. The mesh size is taken sufficiently small so that space and time errors are negligible. The nonlinear algebraic equations obtained as a result of finite difference discretization are solved using efficient-numerical technique employing IMSL subroutine DNEQNJ.

The electrostatic force part is bigger in value than apolar, therefore it found that it plays the dominant role in characteristics of thin films and the main effect on the behavior of the excess free energy, growth rate, maximum growth rate, neutral wave, dominant wavenumber, dominant wavelength and rupture time. The linear theory may overestimate or underestimate the time of rupture by several orders of magnitude depending upon thin film parameters. Hence linear theory is inadequate to describe the stability characteristics of films and therefore, the need of a nonlinear

approach to the study of thin film dynamics. The calculations indicated that the apolar and electrostatic forces can be solely responsible for the formation of flat film of $h_0 \cong 30 \, nm$ in thickness. In this respect the proposed theory is consistent with the effect of apolar and electrostatic forces on thin liquid films on a horizontal plane.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESTABILAN SAPUT CECAIR NIPIS DI BAWAH KESAN DAYA APOLAR DAN ELETROSTATIK PADA SATU PERMUKAAN RATA

Oleh

MOHANAD M-A. A. EL-HARBAWI

Ogos 2002

Pengerusi: Dr. Sa'ari Mustapha

Fakulti: Kejuruteraan

Kefahaman berkenaan kestabilan. Dinamik dan morfologi bagi cecair filem nipis (<100*nm*) dan titisan nano adalah mustahak dalam fenomena seperti perapungan, pelekatan cecair bendalir ke permukaan, kinetik dan termodinamik penanda filem dalam pembasahan, penukleusan heterogen, pendidihan/pemelewapan, pelbagai lapisan penjeraban/tekanan filem, ketidakstabilan filem biologi/membran, dan banyak bidang lain. Sementara pembasahan permukaan oleh titsan besar adalah mudah di fahami, pencirian pembasahan titsan nano dan filem belum dikaji secara intensif. Dalam beberapa penggunaan seperti reaktor lapisan cucur, bersalut tebal, peralatan sentuh bagi haba dan pemindahan jisim, dan sepertinya.

Filem berkenaan adalah dimodelkan sebagai dua dimensi cecair Newtonian ketumpatan tetap ρ dan kelikatan μ mengalir pada satah mendatar. Cecair filem ketebalan min h_{μ} adalah dianggap nipis cukup untuk mengabai kesan garaviti dan

terhad diatas oleh satu gas dan terlanjut secara sisi ke infinit (model dua-dimensi). Kemudian aliran seperti berikut boleh diwakili oleh satu persamaan dua-dimensi Navier-stokes dipasangkan dengan persamaan selanjar dan keadaan sempadan bersekutu. Sebutan daya badan dalam persamaan Navier-stokes adalah diubahsuai dengan memasukkan saling tindak antara molekul berlebihan (apolar dan daya elektrostatik) antara filem bendalir dan permukaan pepejal dipunyai daya apolar dan daya elektrostatik. Persamaan Navier-Stokes terkait dengan keadaan sempadan bersekutu adalah telah diselesaikan di bawah kaedah anggaran gelombang panjang untuk mendapat satu persamaan tidak linear bagi filem antara muka.

Satu teori tidak linear berdasarkan atas keadaan usikan sangat kecil ke atas permukaan filem adalah diterbitkan untuk mendapat pekali pertumbuhan, panjang gelombang berkaitan kepada pekali pertumbuhan maksimum bagi ketidakstabilan permukaan dan masa filem pecah.

Persamaan tidak linear bagi eolusi adalah diselesaikan secara berangka dalam bentuk konservatif sebagai sebahagian satu masalah nilai awal bagi keadaan sempadan berkata sempadan pada banjaran tertetap $0 < X < 2\pi/\lambda$, dimana λ adalah satu gelombang angka. Perbezaan tertengah dalam ruang dan peraturan takat tengah (crank-Nicholson) dalam masa digunakan. Saiz jejaring adalah diambil cukup kecil dengan itu ralat ruang dan ralat masa diabaikan. Persamaan algebra tidak linear diperolehi sebagai satu hasil pengdiskretan perbezaan terhingga adalah diselesaikan menggunakan teknik berangka cekap menggunakan IMSL subroutin DNEQNJ.

Bahagian daya elektrostatik adalah lebih besar dalam nilai, apolar, dengan itu kita dapati iaitu ia memainkan peranan penting dalam pencirian filem nipis dan kesan utama ke atas tingkahlaku tenaga bebas berlebihan, kadar tumbuh maksimum, gelombang neutral, gelombang nombor dominan, panjang gelombang. dominan dan masa pecah. Teori linear mungkin terlebih anggaran atau terkurang anggaran masa pecah oleh beberapa tertib magnitud bergantung atas parameter filem nipis. Dengan itu teori linear adalah tidak cukup untuk menghurai ciri kestabilan filem dan dengan itu, keperluan satu pendekatan tidak linear kepada kajian bagi dinamik filem nipis. Pengiraan menunjukkan daya apolar dan daya elektrostatik mungkin hanya bertanggungjawab bagi pembentukan filem flat no $h_0 \cong 30 \, nm$ ketebalan. Dalam hal ini teori cadangan adalah konsisten dengan kesan daya apolar dan daya elektrostatik ke atas filem cecair nipis pada satu satah mendatar.

ACKNOWLEDGEMENTS

Every praises is due to Allah alone, the Merciful and peace be upon his prophet who is forever a torch of guidance and knowledge for humanity as a whole.

I express my sincere gratitude to Dr. Sa'ari Mustapha for his scholarly guidance, valuable criticism and fruitful suggestions throughout this work. His critical review of the manuscript at several long sittings and assistance during thesis writing are gratefully acknowledged.

I am also indebted to Dr. Azni Idris and Dr. Chuah Teong Guan for their generous help and guidance during the early stages of this investigation.

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Sa'ari Mustapha, Ph.D. Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Azni Idris, Ph.D. Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Chuah Teong Guan, Ph.D. Faculty of Engineering Universiti Putra Malaysia (Member)

> AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

TABLE OF CONTENTS

DEDICATION ABSTRACT ABSTRAK ACKNOWLED APPROVAL DECLARATIO LIST OF TABL LIST OF FIGU	OGEMENTS ON JE RES BOLS	ii iii ix x xii xiii xvii xxii
CHAPTER		
I	INTRODUCTION	1
•	Scope of the Study	4
	Object of the Study	4
П	LITERATURE REVIEW	6
	Applications of Thin Liquid Films In Biomedical Science	16
	Intermolecular Forces in Thin Liquid Films	19
	Lifshitz-Van der Waals (Apolar) Forces	21
	Electrostatic Double Laver Interaction (Electrostatic	25
	Forces)	
Ш	INSTABILITY AND MORPHOLOGY OF APOLAR AND ELECTROSTATIC FORCE	32
	The Nonlinear Equation for Dynamics of Thin Film	32
	Hydrodynamic Model and Governing Equation	32
	Scaling of the Hydrodynamic Equations	35
	Long Wave Approximation	37
	Component of The Surface Free Energy and Forces Due to	44
	Intermolecular Interactions	
	Intermolecular Forces in Thin Films	44
	Excess Free Energy for the Film	49
	Linear Stability Theory	52
IV	NUMERICAL SOLUTION OF THE NONLINEAR EVOLUTION EQUATION	53
V	RESULTS AND DISCCUSTION	56
	Comparison between Apolar and Electrostatic Forces	56
	Results from Linear Theory	57
	Results from Nonlinear Simulation	59
	Comparison of Prediction from Nonlinear and Linear	61
	I neories Effect of the Amplitude of Disturbance on the Rupture	70
	Depiction of the Growth of Instability (Film Profile) Time	74
VI	CONCLUSION	77
V 4		

VII	RECOMMENDATIONS	81
	REFERENCES	82

KEFERENCES	82
APPENDIX A	93
APPENDIX B	103
APPENDIX C	117
BIODATA OF THE AUTHOR	125

LIST OF TABLES

Table		Page
A1.	Growth rate as function of h_0 at $\lambda = (0.01 - 0.1)$ from linear theory.	93
A2.	Growth rate as function of h_0 at $\lambda = (0.1 - 1.0)$ from linear theory.	93
A3.	Growth rate as function of wavelength at $h_0 = (2-30)nm$ from linear theory.	94
A4.	Rupture time as a function of wavenumber at $h_0 = 2$ from linear and nonlinear theories and $\varepsilon = 0.5$.	95
A5.	Rupture time as a function of wavenumber at $h_0 = 4$ from linear and nonlinear theories and $\varepsilon = 0.5$.	95
A6.	Rupture time as a function of wavenumber at $h_0 = 6$ from linear and nonlinear theories and $\varepsilon = 0.5$.	95
A7.	Rupture time as a function of wavenumber at $h_0 = 8$ from linear and nonlinear theories and $\varepsilon = 0.5$.	96
A8.	Rupture time as a function of wavenumber at $h_0 = 10$ from linear and nonlinear theory and $\varepsilon = 0.5$.	96
A9.	Rupture time as a function of wavenumber at $h_0 = 20$ from linear and nonlinear theories and $\varepsilon = 0.5$.	96
A10.	Rupture time as a function of wavenumber at $h_0 = 30$ from linear and nonlinear theories and $\varepsilon = 0.5$.	97
A11.	Rupture time as a function of wavenumber at $h_0 = 2$ from linear and nonlinear theories and $\varepsilon = 0.9$.	97
A12.	Rupture time as a function of wavenumber at $h_0 = 4$ from linear and nonlinear theories and $\varepsilon = 0.9$	97
A13.	Rupture time as a function of wavenumber at $h_0 = 6$ from linear and nonlinear theories and $\varepsilon = 0.9$.	98
A14.	Rupture time as a function of wavenumber at $h_0 = 8$ from linear and nonlinear theories and $\varepsilon = 0.9$	98

- A15. Rupture time as a function of wavenumber at $h_0 = 10$ from linear 98 and nonlinear theories and $\varepsilon = 0.9$.
- A16. Rupture time as a function of wavenumber at $h_0 = 20$ from linear 99 and nonlinear theories and $\varepsilon = 0.9$.
- A17. Rupture time as a function of wavenumber at $h_0 = 30$ from linear 99 and nonlinear theory and $\varepsilon = 0.9$.
- A18. Rupture time as a function of wavenumber at $h_0 = 200 nm$ from 99 linear and nonlinear theory and $\varepsilon = 0.9$.
- A19. Ratio of rupture time as a function of wavelength at 100 $h_0 = (2-30) nm$ and $\varepsilon = 0.5$.
- A20. Ratio of rupture time as a function of wavelength at $h_0 = (2-30) nm$ and $\varepsilon = 0.9$. 100
- A21. Rupture time as function of amplitude of perturbation at $h_0 = 5 nm$, 101 $\lambda = 0.1$ and $\omega = 0.0870$.
- A22. Rupture time as function of amplitude of perturbation at 101 $h_0 = 10 nm$, $\lambda = 0.1$ and $\omega = 0.0048$.
- A23. Rupture time as function of amplitude of perturbation at 101 $h_0 = 15 nm$, $\lambda = 0.1$ and $\omega = 1.0$ E-4.
- A24. Rupture time as function of amplitude of perturbation at 102 $h_0 = 20 nm$, $\lambda = 0.1$ and $\omega = 2.0$ E-6.
- A25. Rupture time as function of amplitude of perturbation at 102 $h_0 = 25 nm$, $\lambda = 0.1$ and $\omega = 2.0$ E-8.
- A26. Rupture time as function of amplitude of perturbation at 102 $h_0 = 30 nm$, $\lambda = 0.1$ and $\omega = 3.0$ E-10.
- A27. Rupture time as function of amplitude of perturbation at $h_0 = 5 nm$, 103 $\lambda = 0.9$ and $\omega = 7.0499$.
- A28. Rupture time as function of amplitude of perturbation at 103 $h_0 = 10 nm$, $\lambda = 0.9$ and $\omega = 0.3903$.
- A29. Rupture time as function of amplitude of perturbation at 103 $h_0 = 15 nm$, $\lambda = 0.9$ and $\omega = 9.0E-3$.

- A30. Rupture time as function of amplitude of perturbation at 104 $h_0 = 20 nm$, $\lambda = 0.9$ and $\omega = 1.0E-4$.
- A31. Rupture time as function of amplitude of perturbation at 104 $h_0 = 25 nm$, $\lambda = 0.9$ and $\omega = 2.0$ E-6.
- A32. Rupture time as function of amplitude of perturbation at 104 $h_0 = 30 nm$, $\lambda = 0.9$ and $\omega = 2.0E-8$.

LIST OF FIGURES

Figure		Page
1	Electrical potential distribution in an interacting double layer between two identical slabs.	26
2	A small rectangular element in a fluid is shown. The pressure forces in the z-direction act on the surface of area A. The electrical body forces are proportional to the volume $(A \Delta z)$.	27
3	Schematic presentation of interfacial instability of thin fluid, 3 bounded by a substrate, 1 and a semi-infinite fluid, 2.	34
4	The relationship between h_0 and the components of free energies, $(\Delta G^{\prime W} \& \Delta G^{\prime \prime})$.	57
5	Growth rate as function of h_0 at $\lambda = (0.01 - 0.1)$ from linear theory.	58
6	Growth rate as function of h_0 at $\lambda = (0.1 - 1.0)$ from linear theory.	59
7	Growth rate as function of wavelength at $h_0 = (2-30)nm$ from linear theory.	60
8	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 2 \& \varepsilon = 0.5$.	62
9	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 4$ & $\varepsilon = 0.5$.	63
10	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 6 \& \varepsilon = 0.5$.	63
11	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 8$ & $\varepsilon = 0.5$.	64
12	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 10 \& \varepsilon = 0.5$.	64
13	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 20$ & $\varepsilon = 0.5$.	65

14	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 30$ & $\varepsilon = 0.5$.	65
15	A comparison of rupture times for linear and nonlinear theories as functions of wavenumber, λ , at $h_0 = 200 nm \& \varepsilon = 0.9$.	66
16	Ratio of rupture time as function of wavelength at $h_0 = 2nm \& \varepsilon = 0.5$.	67
17	Ratio of rupture time as function of wavelength at $h_0 = 4 nm \& \varepsilon = 0.5$.	68
18	Ratio of rupture time as function of wavelength at $h_0 = 6 nm \& \varepsilon = 0.5$.	68
19	Ratio of rupture time as function of wavelength at $h_0 = 8 nm \& \varepsilon = 0.5$.	69
20	Ratio of rupture time as function of wavelength at $h_0 = 10nm \& \varepsilon = 0.5$.	69
21	Ratio of rupture time as function of wavelength at $h_0 = 20 nm \& \varepsilon = 0.5$.	70
22	Ratio of rupture time as function of wavelength at $h_0 = 30 nm \& \varepsilon = 0.5$.	70
23	Rupture time as function of amplitude of perturbation at $h_0 = 5 nm$ and $\lambda = 0.1$.	71
24	Rupture time as function of amplitude of perturbation at $h_0 = 10 nm$ and $\lambda = 0.1$.	72
25	Rupture time as function of amplitude of perturbation at $h_0 = 15 nm$ and $\lambda = 0.1$.	72
26	Rupture time as function of amplitude of perturbation at $h_0 = 20 nm$ and $\lambda = 0.1$.	73
27	Rupture time as function of amplitude of perturbation at $h_0 = 25 nm$ and $\lambda = 0.1$.	73
28	Rupture time as function of amplitude of perturbation at $h_0 = 30 nm$ and $\lambda = 0.9$.	74
29	Film profile at different times for $\varepsilon = 0.5$ and $h_0 = 4 nm$. The rupture proceeds explosively at $t_n = 0.0084$.	75
30	Film profile at different times for $\varepsilon = 0.5$ and $h_0 = 8 nm$. The rupture	76

- Film profile at different times for $\varepsilon = 0.5$ and $h_0 = 10 nm$. The rupture 75 proceeds explosively at $t_n = 0.4018$.
- B1 A comparison of rupture times for linear and nonlinear theories as 104 functions of wavenumber, λ , at $h_0 = 2 nm \& \varepsilon = 0.9$.
- B2 A comparison of rupture times for linear and nonlinear theories as 104 functions of wavenumber, λ , at $h_0 = 4 nm \& \varepsilon = 0.9$.
- B3 A comparison of rupture times for linear and nonlinear theories as 105 functions of wavenumber, λ , at $h_0 = 6 nm \& \varepsilon = 0.9$.
- B4 A comparison of rupture times for linear and nonlinear theories as 105 functions of wavenumber, λ , at $h_0 = 8 nm \& \varepsilon = 0.9$.
- B5 A comparison of rupture times for linear and nonlinear theories as 106 functions of wavenumber, λ , at $h_0 = 10 nm \& \varepsilon = 0.9$.
- B6 A comparison of rupture times for linear and nonlinear theories as 106 functions of wavenumber, λ , at $h_0 = 20 nm \& \varepsilon = 0.9$.
- B7 A comparison of rupture times for linear and nonlinear theories as 107 functions of wavenumber, λ , at $h_0 = 30 nm \& \varepsilon = 0.9$.
- B8 Ratio of rupture time as function of wavelength at $h_0 = 2nm \& \varepsilon = 0.9$ 108
- B9 Ratio of rupture time as function of wavelength at $h_0 = 4nm \& \varepsilon = 0.9$ 108
- B10 Ratio of rupture time as function of wavelength at $h_0 = 6nm \& \varepsilon = 0.9$. 109
- B11 Ratio of rupture time as function of wavelength at $h_0 = 8nm \& \varepsilon = 0.9$. 109
- B12 Ratio of rupture time as function of wavelength at $h_0 = 10nm \& \varepsilon = 0.9$. 110
- B13 Ratio of rupture time as function of wavelength at $h_0 = 20nm \& \varepsilon = 0.9$. 110
- B14 Ratio of rupture time as function of wavelength at $h_0 = 30nm \& \varepsilon = 0.9$. 111
- B15 Rupture time as function of amplitude of perturbation at $h_0 = 5 nm$ 112 and $\lambda = 0.1$.
- B16 Rupture time as function of amplitude of perturbation at $h_0 = 10 nm$ 112 and $\lambda = 0.1$.

- B17 Rupture time as function of amplitude of perturbation at $h_0 = 15 nm$ 113 and $\lambda = 0.1$.
- B18 Rupture time as function of amplitude of perturbation at $h_0 = 20 nm$ 113 and $\lambda = 0.1$.
- B19 Rupture time as function of amplitude of perturbation at $h_0 = 25 nm$ 114 and $\lambda = 0.1$.
- B20 Rupture time as function of amplitude of perturbation at $h_0 = 30 nm$ 114 and $\lambda = 0.1$.
- B21 Film profile at different times for $\varepsilon = 0.9$ and $h_0 = 4 nm$. The rupture 115 proceeds explosively at $t_n = 0.001$ and n = 21.
- B22 Film profile at different times for $\varepsilon = 0.9$ and $h_0 = 10 nm$. The rupture 115 proceeds explosively at $t_n = 0.0316$ and n = 21.
- B23 Film profile at different times for $\varepsilon = 0.9$ and $h_0 = 20 nm$. The rupture 116 proceeds explosively at $t_n = 50.8125$ and n = 21.
- B24 Film profile at different times for $\varepsilon = 0.9$ and $h_0 = 4 nm$. The rupture 116 proceeds explosively at $t_n = 0.0099$ and n = 41.
- B25 Film profile at different times for $\varepsilon = 0.9$ and $h_0 = 10 nm$. The rupture 117 proceeds explosively at $t_n = 0.0312$ and n = 41.
- B26 Film profile at different times for $\varepsilon = 0.9$ and $h_0 = 4 nm$. The rupture 117 proceeds explosively at $t_n = 50.8110$ and n = 41.

LIST OF SYMBOLS

A	Area	m^2
A [']	Hamakar constant	-
$\dot{A_y}$	Hamakar constant for various binary interactions	-
Ca	Capillary number	-
d_0	Equilibrium separation distance between two bulks phase at	nm
	contact	
H(h)	Thickness of thin film	nm
h_0	Mean thickness of thin film	nm
k	Debye length	nm
L	Distance from the surface	nm
L_{0}	Equilibrium distance	nm
P(p)	Hydrodynamic pressure inside the film	Кра
P_0	Pressure in the film	Кра
q	Nondimensional wavenumber (a small parameter) used for	-
	rescaling space and time coordinates	
S ^{LW}	apolar component of spreading coefficient of the film liquid	mJ/m^2
R	Radius of a sphere	ст
T(t)	Time coordinate	-
t_l	Rupture time from linear theory	sec
t _n	Rupture time from nonlinear theory	-
U(u)	x -Component of the velocity vector	-(m/s)

W(w)	z -Component of the velocity vector	- (m/s)
X(x)	Spatial coordinate in the longitude direction	- (m)
Z(z)	Spatial coordinate in the longitude direction	- (m)
Greek S	Symbols	
σ	Surface tension	mJ/m^2
Е	Amplitude of perturbation	-
Ψ	Electrical potential	mJ/m²
φ	Dielectric constant	-
ξ,τ	Rescaled spatial and time coordinate for long wave	-
	approximation	
λ	Wavenumber of perturbation	-
λ_m	Dominant wavenumber of perturbation	-
λ_{ml}	Nondimensional dominate wavenumber of perturbation	-
λ_n	Neutral wavenumber of perturbation	-
μ	Dynamic viscosity of film fluid	g/cm.s
V	Kinematics viscosity of film fluid	g/cm.s
ρ	Density of the film fluid	g/cm³
γ	Interfacial tension	mJ/m^2
γ^{LW}	The apolar surface tension component	mJ/m^2
γ_{y}^{LW}	The apolar surface tension component between phases i and j	mJ/m^2
Ω	Magnitude of ion valence	-

 ΔG Excess free energy per unit area due to intermolecular mJ/m^2 interactions

ΔG^{EL} The electrostatic component of free energy mJ/m^2

- ΔG^{LW} The apolar component of free energy mJ/m^2
- ΔG_{132C}^{LW} Free energy change in bringing two bluk material 1 and 2 from mJ/m^2 infinity to equilibrium separation distance, d_0 thickness of the thin film
- ΔG_T Total excess free energy per unit area due to intermolecular mJ/m^2 interactions

ΔP	Pressure difference causing the film to thin	kpa
П	Disjoining pressure	kpa
Γ_m	Dominate wavelength from linear theory	-
Γ"	Neutral wavelength from linear theory	-
ω	Disturbance growth coefficient	m^3/s
ω _m	Maximum disturbance the growth coefficient	m^3/s
φ	First derivative of the excess free energy, ΔG	mJ/m^2
ϕ_{h}	Second derivative of the excess free energy, ΔG	mJ/m^2

