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The understandIng of stabIlIty, dynamIcs and morphology of supported thm 

«lOOnm) bqUld films and nanodrops are Important m phenomena hke flotatIon, 

adhesIOn of flUId partIcles to surfaces, kmetlcs and thermodynamICS of precursor 

films In wettIng, heterogeneous nucleatIOn, film boIlmg/condensatlOn, multIlayer 

adsorptIon/film pressure, mstabllIty of bIOlogIcal films/membranes, and marty other 

areas WhIle the wettIng of surface by large drops IS relatIvely well understood, 

wettIng charactenstlcs of nanodrops and films have not been extenSIvely studIed In 

some applIcatIOns lIke trIckle bed reactors, thIck coatIng, contact eqUlprtll!l1t fOl heat 

and mass transfer. and the hke 

Factors that would affect the total free excess energy (per wut area) of a thm 

film on a substrate mclude the film thIckness, as well as the apolar and electrostatIc 

spreadmg coeffiCIents for the system The dynamICS of the lIqUId film IS formulated 

usmg the Navler-Stokes equatIOns augmented by a body forces descnbmg the apolar 
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and electrostatic interactions. The liquid film is assumed to be charge neutralized, 

nondraining, and laterally unbounded. A modified Navier- Stokes equatIOn with 

associated boundary conditions is solved using a long wave approximation method to 

obtain a nonlinear equation of evolution of the film interface. 

A nonlinear theory based upon the condition of infinitesimal perturbation on 

the film surface is derived to obtain the growth coefficient, dominant wavelength 

(i.e., wavelength corresponding to ma'Ximum growth coefficient of the surface 

instability) and the film rupture time. 

Solution of the nonlinear partial differential equation for a wide range of the 

initial amplitude and wavelength is solved by using finite difference methods. The 

calculation domain is fixed on the interval 0< X < 2,,/ A. The mesh size is taken 

sufficiently small so that space and time errors are negligible. The nonlinear 

algebraic equations obtamed as a result of finite difference discretization are solved 

using efficient-numerical technique employing IM SL subroutine DNEQNJ. 

The electrostatic force part is bigger in value than apolar, therefore it found 

that it plays the dominant role in characteristics of thin films and the main effect on 

the behavior of the excess free energy, growth rate, maximum growth rate, neutral 

wave, dominant wavenumber, dominant wavelength and rupture time. The linear 

theory may overestimate or underestimate the time of rupture by several orders of 

magnitude depending upon thin film parameters. Hence linear theolY IS inadequate 

to describe the stability ch ar ac ter is tics of films and therefore, the need of a nonlinear 
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approach to the study of thin film dynamics. The calculations indicated that the 

apolar and electrostatic forces can be solely responsible for the formation of flat film 

of ho == 30nm in thickness. In this respect the proposed theory is consistent with the 

effect of apolar and electrostatic forces on thin liquid films on a horizontal plane. 
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Kefahaman berkenaan kestabilan. Dinamik dan morfologi bagi cecair filem nipis 

«lOOnm) dan titisan nano adalah mustahak dalam fenomena seperti perapungan, 

pelekatan cecair bendalir ke permukaan, kinetik dan termodinamik penanda filem 

dalam pembasahan, penukleusan heterogen, pendidihanlpemelewapan, pelbagai 

lapisan penjerabanltekanan filem, ketidakstabilan filem biologilmembran, dan 

banyak bidang lain. Sementara pembasahan permukaan oleh titsan besar adaIah 

mudah di fahami, pencinan pembasahan titsan nano dan filem belum dikaji secara 

intensif. Dalam beberapa penggunaan seperti reaktor lapisan cucur, bersalut tebal, 

peralatan sentuh bagl haba dan pemindahan jisim, dan sepertinya. 

Filem berkenaan adalah dimodelkan sebagai dua dimensi cecair Ne wtonian 

ketumpatan tetap p dan kelikatan f.J mengalir pada satah mendatar. Cecair filem 

ketebalan min ho adalah dianggap nipis cukup untuk mengabai kesan garaviti dan 
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terhad diatas oleh satu gas dan terlanjut secara sisi ke infinit (model dua-dimensi). 

Kemudian aliran seperti berikut boleh diwakili oleh satu persamaan dua-dimensi 

Navier-stokes dipasangkan dengan persamaan selanjar dan keadaan sempadan 

bersekutu. Sebutan daya badan dalam persamaan Navier-stokes adalah diubahsuai 

dengan memasukkan saling tindak antara molekul berlebihan (apolar dan daya 

elektrostatik) antara filem bendalir dan permukaan pepejal dipunyai daya apolar dan 

daya elektrostatik. Persamaan Navier-Stokes terkait dengan keadaan sempadan 

bersekutu adalah telah diselesaikan di bawah kaedah anggaran gelombang panjang 

untuk mendapat satu persamaan tidak linear bagi filem antara muka. 

Satu teori tidak linear berdasarkan atas keadaan usikan sangat kecil ke atas 

permukaan filem adalah diterbitkan untuk mendapat pekali pertumbuhan, panjang 

gelombang berkaitan kepada pekali pertumbuhan maksimum bagi ketidakstabilan 

permukaan dan masa filem pecah. 

Persamaan tidak linear bagi eolusi adalah diselesaikan secara berangka dalam 

bentuk konservatif sebagai sebahagian satu masalah nilai awal bagi keadaan 

sempadan berkata sempadan pada banjaran tertetap O<X < 27r/ It, dimana A adalah 

satu gelombang angka. Perbezaan tertengah dalam ruang dan peraturan takat tengah 

(crank-Nicholson) dalam masa digunakan. Saiz jejaring adalah diambil cukup kecil 

dengan itu ralat ruang dan ralat masa diabaikan. Persamaan algebra tidak linear 

diperolehi sebagai satu hasil pengdiskretan perbezaan terhingga adalah diselesaikan 

menggunakan teknik berangka cekap menggunakan IMSL subroutin DNEQNJ. 
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Bahagian daya elektrostatik adalah lebih besar dalam nilai, apolar, dengan itu 

kita dapati iaitu ia memainkan peranan penting dalam pencirian filem nipis dan kesan 

utama ke atas tingkahlaku tenaga bebas berlebihan, kadar tumbuh maksimum, 

gelombang neutral, gelombang nombor dominan, panjang gelombang. dominan dan 

masa pecah. Teori linear mungkin terlebih anggaran atau terkurang anggaran mas a 

pecah oleh beberapa tertib magnitud bergantung atas parameter filem nipis. Dengan 

itu teori linear adalah tidak cukup untuk menghurai ciri kestabilan filem dan dengan 

itu, keperluan satu pendekatan tidak linear kepada kajian bagi dinamik filem nipis. 

Pengiraan menunjukkan daya apolar dan daya elektrostatik mungkin hanya 

bertanggungjawab bagi pembentukan filem flat no ho == 30nm ketebalan. Dalam hal 

ini teori cadangan adalah konsisten dengan kesan daya apolar dan daya elektrostatik 

ke atas filem cecair nipis pada satu satah mendatar. 
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