


# VISUAL PREFERENCE OF AESTHETIC QUALITY FOR PERMANENT FOREST RESERVE IN URBAN KLANG VALLEY, MALAYSIA



Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2024

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

VISUAL PREFERENCE OF AESTHETIC QUALITY FOR PERMANENT FOREST RESERVE IN URBAN KLANG VALLEY, MALAYSIA

By

#### ALSAMMRRAIE RIYADH MUNDHER SAMEEN

#### March 2024

Chairman : Shamsul bin Abu Bakar, PhD

Faculty : Design and Architecture

Malaysia has experienced significant forest cover loss due to logging and urban development, particularly in urban areas. Although legislation for Permanent Forest Reserves (PFRs) exists, it lacks inclusivity, especially considering visual aesthetics as a crucial component of forest preservation. This omission has created gaps in public engagement, cultural appreciation, and emotional connections with these natural spaces, reducing the perceived value of PFRs among the public and policymakers and increasing the risk of degradation. This study addresses this gap by establishing a visual aesthetic quality assessment framework specifically tailored to PFRs in Klang Valley, Malaysia, using a converging approach that integrates public preferences and expert opinions. The framework involves two complementary approaches: the perception approach and the expert approach. The perception approach identifies suitable variables using the Participant-Generated Image (PGI) method, where participants capture images of visually appealing scenes, which are then classified by content. The expert approach determines the importance and weight of each variable through expert surveys and the Analytical Hierarchy Process

(AHP). This study provides valuable insights into assessing and enhancing urban

forests to meet local communities' aesthetic expectations by identifying key variables

and evaluating their significance and weight. The resulting framework uniquely

measures visual aesthetic quality by considering variables with different weightings

rather than assuming equal importance for all variables. As the first comprehensive

framework to assess visual aesthetics with variable weightings, it offers a practical

tool for sustainable management and planning, helping to protect areas with high

aesthetic value and suggesting improvements for those with lower appeal.

Ultimately, the study's findings support a more inclusive conservation strategy that

emphasizes aesthetics, ensuring the framework is comprehensive and adaptable to

the diverse aesthetic needs of urban populations in Malaysia.

Keywords: Visual Preference, Aesthetic Assessment, Aesthetic Quality, Urban

Forest Preservation

SDG: GOAL 11: Sustainable Cities and Communities, GOAL 15: Life on Land

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KEUTAMAAN VISUAL TERHADAP KUALITI ESTETIK UNTUK HUTAN SIMPAN KEKAL DI KAWASAN BANDAR LEMBAH KLANG, MALAYSIA

Oleh

#### ALSAMMRRAIE RIYADH MUNDHER SAMEEN

**Mac 2024** 

Pengerusi : Shamsul bin Abu Bakar, PhD Fakulti : Rekabentuk dan Senibina

Malaysia telah mengalami kehilangan litupan hutan yang ketara akibat pembalakan dan pembangunan bandar, terutamanya di kawasan bandar. Walaupun wujud perundangan bagi Hutan Simpan Kekal (HSK), ia kurang inklusif, terutamanya dalam mempertimbangkan estetik visual sebagai komponen penting dalam pemeliharaan hutan. Pengabaian ini telah mewujudkan jurang dalam penglibatan awam, penghargaan budaya, hubungan emosi dengan ruang semulajadi, seterusnya mengurangkan nilai HSK dikalangan orang awam dan pembuat dasar serta meningkatkan risiko kemerosotan. Kajian ini menangani jurang tersebut dengan membentuk rangka kerja penilaian kualiti estetik visual yang khusus untuk HSK di Lembah Klang, Malaysia, dengan menggunakan pendekatan menumpu yang mengintegrasikan keutamaan awam dan pendapat pakar. Rangka kerja ini melibatkan dua pendekatan yang saling melengkapi: pendekatan persepsi dan pendekatan pakar. Pendekatan persepsi mengenal pasti pemboleh ubah yang sesuai menggunakan kaedah Imej Janaan Peserta (PGI), di mana peserta mengambil gambar pemandangan yang menarik secara visual, yang kemudiannya

diklasifikasikan mengikut kandungan. Pendekatan pakar menentukan kepentingan dan pemberat setiap pemboleh ubah melalui kaji selidik pakar dan Proses Hierarki Analitik (AHP). Kajian ini memberikan pandangan berharga dalam menilai dan meningkatkan hutan bandar untuk memenuhi jangkaan estetik masyarakat tempatan dengan mengenal pasti pemboleh ubah utama dan menilai kepentingan serta pemberat mereka. Rangka kerja yang terhasil mengukur kualiti estetik visual secara unik dengan mempertimbangkan pemboleh ubah dengan pemberat berbeza berbanding mengandaikan kepentingan yang sama untuk semua pemboleh ubah. Sebagai rangka kerja komprehensif pertama untuk menilai estetik visual dengan pemberat pemboleh ubah, ia menawarkan alat praktikal untuk pengurusan dan perancangan mampan, membantu melindungi kawasan dengan nilai estetik tinggi dan mencadangkan penambahbaikan untuk kawasan yang kurang menarik. Akhirnya, penemuan kajian ini menyokong strategi pemuliharaan yang lebih inklusif dengan menekankan aspek estetik, memastikan rangka kerja ini komprehensif dan boleh disesuaikan dengan keperluan estetik penduduk bandar yang pelbagai di Malaysia.

**Kata Kunci**: Keutamaan Visual, Penilaian Estetik, Kualiti Estetik, Pemeliharaan Hutan Bandar

**SDG:** MATLAMAT 11: Bandar dan Komuniti Mapan, MATLAMAT 15: Kehidupan Darat

#### **ACKNOWLEDGEMENTS**

In producing this thesis, I have collaborated with a large number of individuals whose contributions in various ways to the research and creation of the thesis deserve special recognition. It is a joy to express my appreciation to each of them in my humble acknowledgment.

I would like to express my appreciation to LAr. Dr. Shamsul bin Abu Bakar for his supervision, counsel, and direction from the very beginning of this research, as well as for providing me with wonderful experiences during the process of the research. In a variety of ways, he supplied me with unwavering encouragement and support, which I required the most. In addition, I would like to thank my committee members, Assoc. Prof. LAr. Dr. Suhardi Maulan, Assoc. Prof. Ts. Gs. Dr. Mohd Johari bin Mohd Yusof, and Prof. Dr. Azlizam bin Aziz, for their advices, supervisions, and critical contributions that served as the foundation of my thesis. Their connection with their creativity sparked the intellectual growth from which I will continue to gain for a long time.

I would like to thank my family for their endless support encouragement and love. My parents deserve special mention for their inseparable support and prayers. My father, Assoc. Prof. Dr. Mundher Alsammrraie, is the person who puts the fundament of my learning character, showing me the joy of intellectual pursuit ever since I was a child. My lovely mother, Amel Ismael, is the one who sincerely raised me with her caring and gentle love. I would like to take this opportunity to express my appreciation to my dear brothers, Zaid and Ammar, and my beloved sisters,

Marwa and Morooj. I am incredibly grateful for your unwavering support, care, and love throughout my academic journey.

Lastly, I would like to express my heartfelt appreciation to everyone who has played a role in helping me complete this thesis, including friends, colleagues, and mentors. While it is impossible to mention each name individually, please know that your contributions, whether big or small, have made a significant impact on the successful completion of this work. I am truly grateful for your assistance, and I apologize for not being able to mention each of you by name.

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

## Shamsul bin Abu Bakar, PhD

Senior Lecturer, LAr Faculty of Design and Architecture Universiti Putra Malaysia (Chairman)

#### Suhardi Maulan, PhD

Associate Professor, LAr Faculty of Design and Architecture Universiti Putra Malaysia (Member)

# Mohd Johari bin Mohd Yusof, PhD

Associate Professor, Ts, Gs Faculty of Design and Architecture Universiti Putra Malaysia (Member)

#### Azlizam bin Aziz, PhD

Professor
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Member)

# ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 7 November 2024

# TABLE OF CONTENTS

| I                                                                                                     | Page |
|-------------------------------------------------------------------------------------------------------|------|
| ABSTRACT                                                                                              | i    |
| BSTRAK                                                                                                | iii  |
| CKNOWLEDGEMENTS                                                                                       | v    |
| APPROVAL                                                                                              | vii  |
| DECLARATION                                                                                           | ix   |
| JIST OF TABLES                                                                                        | xv   |
| JST OF FIGURES                                                                                        | xvii |
| LIST OF ABBREVIATIONS                                                                                 | xix  |
| CHAPTER                                                                                               |      |
|                                                                                                       |      |
| 1 INTRODUCTION                                                                                        | 1    |
| 1.1 Introduction                                                                                      | 1    |
| 1.2 Research Context and Background                                                                   | 1    |
| 1.3 Problem Statement                                                                                 | 6    |
| 1.4 Research Aim and Objectives                                                                       | 8    |
| 1.5 Research Questions                                                                                | 9    |
| 1.6 Overview of Research Methodology                                                                  | 10   |
| 1.7 Research Scope                                                                                    | 11   |
| 1.8 Research Significance                                                                             | 12   |
| 1.9 Research Keywords Definition                                                                      | 15   |
| 1.10 Thesis Organization                                                                              | 16   |
| 2 LITERATURE REVIEW                                                                                   | 19   |
| 2.1 Introduction                                                                                      | 19   |
| 2.2 The Context of Urban Forests as Permanent Forest                                                  |      |
| Reserves in Urban Areas                                                                               | 20   |
| 2.2.1 Definition of Urban Forests                                                                     | 20   |
| 2.2.2 Characteristics of Urban Forests                                                                | 22   |
| 2.2.3 Local People's Perception of the Urban Forest                                                   | 25   |
| 2.2.4 Benefits of Urban Forests                                                                       | 27   |
| 2.2.5 Permanent Forest Reserves in Malaysia                                                           | 31   |
| 2.2.6 Human Intervention in Permanent Forest                                                          | 20   |
| Reserves                                                                                              | 32   |
| 2.2.7 Legislative of Permanent Forest Reserves in                                                     | 22   |
| Malaysia 2.2.8 Classification and Assessment of Permanent                                             | 33   |
| Forest Reserves in Malaysia                                                                           | 35   |
| 2.3 Visual Aesthetics Assessment of Urban Forests                                                     | 38   |
| 2.3.1 Definition of Urban Forests Visual Aesthetics                                                   | 38   |
| 2.3.1 Definition of Orban Porests Visual Aesthetics  2.3.2 Benefits of Urban Forest Visual Aesthetics | 41   |
| 2.3.2 Philosophy of Urban Forest Visual Aesthetics                                                    | 46   |
| 2.3.4 Suitable Approaches for Visual Aesthetics                                                       | .0   |
| Assessment of Urban Forests                                                                           | 52   |
| 2.3.4.1 Expert Approach                                                                               | 55   |

|   |                 | 2.3.4.2 Perception Approach                             | 56  |
|---|-----------------|---------------------------------------------------------|-----|
|   |                 | 2.3.4.3 Converging Approach                             | 57  |
|   |                 | 2.3.5 Scenery Management System for Scenic Quality      |     |
|   |                 | Assessment in National Forests                          | 59  |
|   | 2.4             | Variables for Visual Aesthetic Quality Assessment of    |     |
|   |                 | Urban Forests                                           | 62  |
|   |                 | 2.4.1 Urban Forest Visual Character                     | 65  |
|   |                 | 2.4.1.1 Landform                                        | 66  |
|   |                 | 2.4.1.2 Land Cover                                      | 67  |
|   |                 | 2.4.2 Urban Forest Visual Quality                       | 68  |
|   |                 | 2.4.2.1 Urban Forest Visual Composition                 | 71  |
|   |                 | 2.4.2.2 Urban Forest Visual Sense                       | 77  |
|   |                 | 2.4.2.3 Urban Forest Visual Condition                   | 79  |
|   | 2.5             | Theories of Visual Aesthetic                            | 81  |
|   |                 | 2.5.1 Evolutionary Theories                             | 84  |
|   |                 | 2.5.2 Cultural Preference Theories                      | 90  |
|   | 2.6             | Summary of Chapter                                      | 95  |
| 3 | DESE            | ARCH METHODOLOGY                                        | 100 |
| 3 | 3.1             | Introduction                                            | 100 |
|   | 3.2             | Research Methodology Design                             | 100 |
|   | 3.3             | Study Area Selection                                    | 101 |
|   | 3.4             | Identifying Suitable Variables Based on Perception      | 103 |
|   | J. <del>4</del> | Approach                                                | 109 |
|   |                 | 3.4.1 Data Collection Based on Participants'            | 109 |
|   |                 | Preferences                                             | 110 |
|   |                 | 3.4.2 Data Classification Based on Photos Content       | 116 |
|   | 3.5             | Determine Importance and Weightage Variables Based on   | 110 |
|   | 3.3             | Expert Approach                                         | 118 |
|   |                 | 3.5.1 Importance Variables Based on Expert Survey       | 110 |
|   |                 | Assessment Variables Based on Expert Survey             | 119 |
|   |                 | 3.5.2 Weightage Variables Based on Analytical           | 11) |
|   |                 | Hierarchy Process                                       | 120 |
|   |                 | 3.5.2.1 Pairwise Comparisons of Variables               | 121 |
|   |                 | 3.5.2.2 Consistency Ratio and Raw Weightage             | 121 |
|   |                 | of Variables                                            | 123 |
|   |                 | 3.5.2.3 Weightage Normalization of Variables            | 124 |
|   | 3.6             | Research Validation                                     | 125 |
|   | 3.7             | Research Analysis                                       | 126 |
|   | 3.8             | Summary of Chapter                                      | 128 |
|   | 3.0             | Summary of Chapter                                      | 120 |
| 4 | RESU            | ILTS                                                    | 131 |
|   | 4.1             | Introduction                                            | 131 |
|   | 4.2             | Identify Suitable Variables of Visual Aesthetic Quality |     |
|   |                 | Assessment for PFR in Klang Valley Urban Areas          | 131 |
|   |                 | 4.2.1 Researcher Classification and Findings            | 132 |
|   |                 | 4.2.2 Expert Validation and Reclassification            | 133 |
|   |                 | 4.2.2.1 Expert Validation of Researcher                 |     |
|   |                 | Classification                                          | 134 |
|   |                 | 4.2.2.2 Expert Sub-Classification                       | 135 |

|   |            | 4.2.2.3 Expert Reclassification and Identify Suitable Variables                                    | 138   |
|---|------------|----------------------------------------------------------------------------------------------------|-------|
|   | 4.3        | Determining Importance and Weightage of Visual Aesthetic Quality Variables for PFR in Klang Valley | 130   |
|   |            | Urban Areas                                                                                        | 143   |
|   |            | 4.3.1 Expert Survey Sample Size and Demographic                                                    | 143   |
|   |            | 4.3.2 Validation of Identify Suitable Variables                                                    | 143   |
|   |            | Classification Based on Expert Survey                                                              |       |
|   |            | Description Dased on Expert Survey                                                                 | 145   |
|   |            | 4.3.3 Determine Importance of Variables Based on                                                   | 143   |
|   |            | Expert Survey Assessment                                                                           | 153   |
|   |            | 4.3.4 Determine Weightage of Variables Based on                                                    | ) -00 |
|   |            | Analytical Hierarchy Process                                                                       | 159   |
|   | 4.4        | Analysis of Visual Aesthetic Quality Variables for PFR in                                          |       |
|   |            | Klang Valley Urban Areas                                                                           | 163   |
|   |            | 4.4.1 Variable Analysis across Different Case Studies                                              | 164   |
|   |            | 4.4.2 Variable Analysis across Different public                                                    |       |
|   |            | Participants' Backgrounds                                                                          | 167   |
|   | 4.5        | Summary of Chapter                                                                                 | 169   |
|   |            |                                                                                                    |       |
| 5 |            | USSION                                                                                             | 173   |
|   | 5.1        | Introduction                                                                                       | 173   |
|   | -          | Importance and Philosophy of the Visual Aesthetic                                                  |       |
|   | <b>5</b> 0 | Quality Assessment of Urban Forest in Urban Areas                                                  | 174   |
|   | 5.3        | Variables and Theory of the Visual Aesthetic Quality                                               | 177   |
|   | 5 A        | Assessment of Urban Forest in Urban Areas                                                          | 177   |
|   | 5.4        | Suitable Variables of Visual Aesthetic Quality                                                     |       |
|   |            | Assessment for PFR in Klang Valley Urban Areas,<br>Malaysia                                        | 181   |
|   |            | 5.4.1 Differences in Responses Based on Participants'                                              | 101   |
|   |            | Backgrounds on Visual Aesthetic Quality                                                            |       |
|   |            | Variables Visual Fleshiere Quanty                                                                  | 188   |
|   |            | 5.4.2 Differences in Responses Based on Case Studies                                               |       |
|   |            | on Visual Aesthetic Quality Variables                                                              | 190   |
|   | 5.5        | Importance and Weightage of Visual Aesthetic Quality                                               |       |
|   |            | Assessment Variables for PFR in Klang Valley Urban                                                 |       |
|   |            | Areas, Malaysia                                                                                    | 192   |
|   | 5.6        | Establish a Framework of Visual Aesthetic Quality                                                  |       |
|   |            | Assessment for PFR in Klang Valley Urban Areas                                                     | 195   |
|   | 5.7        | Summary of Chapter                                                                                 | 201   |
| 6 | CONC       | CLUSION AND RECOMMENDATIONS                                                                        | 203   |
|   | 6.1        | Introduction                                                                                       | 203   |
|   | 6.2        | Summary of the Findings                                                                            | 203   |
|   |            | 6.2.1 Recognizing Importance of Visual Aesthetics for                                              |       |
|   |            | PFRs in Urban Areas                                                                                | 203   |
|   |            | 6.2.2 Exploring Potential Variables for Visual                                                     |       |
|   |            | Aesthetic Assessment of PFRs in Urban Areas                                                        | 204   |

|                | 0.2.3  | Selecting Suitable variables for the visual  |     |
|----------------|--------|----------------------------------------------|-----|
|                |        | Aesthetic Assessment of PFRs in Malaysian    |     |
|                |        | Urban Areas                                  | 206 |
|                | 6.2.4  | Summarizing Importance and Weightage of      |     |
|                |        | Variables for Visual Aesthetic Assessment of |     |
|                |        | PFRs in Malaysian Urban Areas                | 207 |
|                | 6.2.5  | Concluding Visual Aesthetic Assessment       |     |
|                |        | Framework of PFRs in Malaysian Urban Areas   | 209 |
| 6.3            | Resear | ch Contributions                             | 210 |
| 6.4            | Resear | rch Guidelines                               | 211 |
| 6.5            | Resear | ch Implications                              | 212 |
| 6.6            | Resear | rch Limitations                              | 213 |
| 6.7            | Recom  | nmendations and Future Research              | 214 |
| 6.8            | Conclu | usion                                        | 215 |
|                |        |                                              |     |
| REFEREN        | ICES   |                                              | 217 |
| <b>APPENDI</b> | CES    |                                              | 247 |
| <b>BIODATA</b> | OF ST  | UDENT                                        | 290 |
| LIST OF I      | PUBLIC | CATIONS                                      | 291 |

# LIST OF TABLES

| Table |                                                                                                                 | Page |
|-------|-----------------------------------------------------------------------------------------------------------------|------|
| 1.1   | Justifications and Examples that Demonstrate the Role of Visual Aesthetics in the Preservation of Urban Forests |      |
| 2.1   | Definition of Different Terms of Green Area in the Urban Context                                                |      |
| 2.2   | Characteristics of Urban Forests                                                                                | 24   |
| 2.3   | Forest Statistics Collected by MENR Between 1990 and 2018 in Malaysia, by Region                                |      |
| 2.4   | Forest Statistics Collected by FDPM for 2011 and 2020                                                           | 35   |
| 2.5   | Definitions of Urban Forest Visual Aesthetics                                                                   | 41   |
| 2.6   | Overview Benefits of Urban Forest Visual Aesthetics                                                             | 45   |
| 2.7   | Summary of the Philosophy Paradigms Used to Assess Urban Forest Visual Aesthetics                               | 52   |
| 2.8   | Summary Approaches for Assessing Urban Forest Visual Aesthetics                                                 | 54   |
| 2.9   | Urban Forest Visual Quality Variables                                                                           | 70   |
| 2.10  | Summarized of Theories of Visual Aesthetic                                                                      | 83   |
| 2.11  | The Framework of Kaplan Information Processing Theory                                                           |      |
| 2.12  | Measurement Variables for Visual Aesthetic Quality Assessment of Urban Forests                                  |      |
| 3.1   | Bukit Gasing Forest Reserve Study Area A                                                                        | 107  |
| 3.2   | Bukit Cerakah Forest Reserve Study Area B                                                                       | 109  |
| 3.3   | Checklist of Participant Selection                                                                              | 114  |
| 3.4   | Twelve Participants of the Public were Recruited Based on Their Background for Data Collection                  | 114  |
| 3.5   | Checklist of Photos Required from Participants                                                                  | 115  |
| 3.6   | Saaty Scale for Pairwise Comparison of Variables                                                                | 122  |
| 3.7   | Example of Pairwise Comparison Matrix.                                                                          | 122  |
| 3.8   | Random Consistency Index (RI). Source: (Zarkesh et al., 2010)                                                   | 123  |

| 3.9  | Summary of the Study's Methods and Validation Technique                                                                                        |     |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| 3.10 | Summary of the Research Method Used in This Study                                                                                              |     |  |
| 4.1  | Researcher Classification of Visual Aesthetic Variables for PFR Photos                                                                         |     |  |
| 4.2  | Expert Agreement and Disagreement of Visual Aesthetic Variable Classification of the Researcher                                                |     |  |
| 4.3  | Expert Sub-Classification of Visual Aesthetic Variables for PFR Photos in Klang Valley Urban areas                                             |     |  |
| 4.4  | Expert Reclassification of Visual Aesthetic Variables for PFR Photos in Klang Valley Urban Areas                                               |     |  |
| 4.5  | A Photo and Description of Each of the 14 Variables Used to Define the Visual Aesthetic Quality Assessment for PFR in Klang Valley Urban Areas | 140 |  |
| 4.6  | Expert Survey Demographics                                                                                                                     | 145 |  |
| 4.7  | Expert Descriptions of the Photos for Validation of Identify Suitable Variables Classification                                                 | 148 |  |
| 4.8  | Individual Mean Scores for Each Photo for Assessing the Visual Aesthetics Based on the Expert Survey                                           | 154 |  |
| 4.9  | Pairwise Comparison Matrix Generated by Analytic Hierarchy<br>Process (AHP)                                                                    | 161 |  |
| 4.10 | Determine the Raw Weightage for Each Variable                                                                                                  | 162 |  |
| 4.11 | Determine Weightage Variables of Visual Aesthetic Quality<br>Assessment for PFR in Klang Valley Urban Areas                                    | 163 |  |
| 4.12 | Total Photo of the Visual Aesthetic Variables Based on Case Studies                                                                            | 166 |  |
| 4.13 | Total Photo of the Visual Aesthetic Variables Based on the Participants' Backgrounds                                                           | 168 |  |
| 4.14 | Summarizes the Most Important Findings                                                                                                         | 171 |  |

# LIST OF FIGURES

| Figure | e                                                                                                                                               | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1    | Benefits of Urban Forests                                                                                                                       | 30   |
| 2.2    | Classification and Assessments of PFR in Peninsular Malaysia                                                                                    | 37   |
| 2.3    | Aesthetic Philosophical Approach Framework                                                                                                      | 49   |
| 2.4    | Outlines of the Scenery Management System Process, Adapted from (Thomas, 1995)                                                                  | 61   |
| 2.5    | Outlines of the National Park Service Visual Resource Inventory Process, (Adapted from Sullivan and Meyer, 2016)                                | 62   |
| 2.6    | Proposed Framework of Visual Aesthetic Quality Assessment for Urban Forests                                                                     | 64   |
| 2.7    | Aesthetic Theories Framework Provides Support to Visual Aesthetic Variables                                                                     | 84   |
| 2.8    | Potential Framework for Assessing the Visual Aesthetic of Urban Forests                                                                         | 97   |
| 3.1    | Research Methodological Framework                                                                                                               | 103  |
| 3.2    | Locations of Forests in Klang Valley Urban Area (Foo, 2016)                                                                                     | 104  |
| 3.3    | Flow Diagram Describing How the Study Area was Selected                                                                                         | 105  |
| 3.4    | Strands of Photo-Elicitation, Adapted from (Balomenou and Garrod, 2015)                                                                         | 111  |
| 3.5    | Participant-Generated Image Methods to Capture Photos                                                                                           | 115  |
| 3.6    | Framework for Identifying Visual Aesthetic Quality Variables of<br>Permanent Forest Reserves in Klang Valley Urban Areas, Malaysia              | 117  |
| 3.7    | Expert Validation and Reclassification of Visual Aesthetic Quality Variables of Permanent Forest Reserves in Klang Valley Urban Areas, Malaysia | 118  |
| 3.8    | The Code of GNU Octave Tool                                                                                                                     | 124  |
| 4.1    | High and Low Preference Photos of Visual Aesthetics Based on the Expert Survey                                                                  | 157  |
| 4.2    | Linear Sequencing of the Importance and Level of Important Variables                                                                            | 160  |

| 4.3 | Heat Map Analyze of Variables with Different Participants' Backgrounds                                     | 169 |
|-----|------------------------------------------------------------------------------------------------------------|-----|
| 5.1 | Visual Aesthetic Quality Assessment Framework for Permanent Forest Reserves in Urban Areas, Malaysia       | 198 |
| 5.2 | Sample of Visual Aesthetic Quality Assessment form for Malaysian Urban Forests Based on Proposed Weightage | 201 |



# LIST OF ABBREVIATIONS

PFR Permanent Forest Reserve

FDPM Forestry Department of Peninsular Malaysia

NFP National Forest Policy

NFA National Forestry Act

MENR Ministry of Energy and Natural Resources

SMS Scenery Management System

VMS Visual Management System

UFVC Urban Forest Visual Character

UFVQ Urban Forest Visual Quality

D Dimension

LCG Locational Center of Gravity

PGI Participant Generated Image

AHP Analytical Hierarchy Process

AHP-OS AHP Online System

Dmv Difference mean value

Hmv Highest mean value

Lmv Lowest mean value

Lv Level of important value

GNU GNU Octave tool

CR Consistency Ratio

CI Consistency Index

RI Random consistency Index

λ max principal eigenvalue

W Weightage normalization

RW Raw Weightage

MaxRW Maximum Raw Weightage

v normalized integer values



#### **CHAPTER 1**

#### INTRODUCTION

#### 1.1 Introduction

This chapter offers a comprehensive overview of the research structure, encompassing the presentation of the research context and background that form the foundation of the issue being investigated, as well as the formulation of the research problem. Moreover, it addresses the research aim, which is further supported by objectives and relevant questions.

Furthermore, this chapter provides a concise description of the research methodology. It also outlines the scope of the research and delves into the significance of the study, elaborating on its potential impact and value in the relevant field. Lastly, it presents an organized outline for the thesis, serving as a guide for readers as they navigate through the subsequent chapters.

#### 1.2 Research Context and Background

In recent years, increasing urbanization and changes in land use have led to a decline in urban green spaces. Urban forests, in particular, have been the most affected, with significant losses in forest cover over time. This decline is primarily due to the conversion of forest land for non-forest uses, such as agriculture, industry, mining, road construction, urban expansion, and residential development (Feeley et al., 2012; Jusoff and Setiawan, 2003; Levy-Tacher et al., 2019; Reygadas et al., 2023). The reduction in urban forest areas has contributed to various environmental issues affecting people, turning cities into residential zones lacking visual aesthetics

(Elmahdy and Mostafa, 2013; Kanniah et al., 2016; Kanniah et al., 2014; Tayyebi et al., 2018). Therefore, without serious intervention, the cities and their long-term survival could be jeopardized (Heidarlou et al., 2019; Minaei et al., 2018; Sánchez-Cuervo et al., 2012). Despite many widespread consequences of forest loss, natural forests are still being cleared to accommodate the needs of urban expansion and other human activities (Kanniah et al., 2015; Tan et al., 2010).

In Malaysia, forested areas of Peninsular Malaysia cover 5.69 million ha, which is equivalent to 44% of the land area. From the total forested areas, 4.81 million ha are designated Permanent Forest Reserves (PFR) or Wildlife Reserves, including Taman Negara (The National Park). The forest area, however, has been cleared mainly for conversion into agricultural lands, mining activities, recreational and industrial development, and indiscriminate logging, especially in the lowlands where only patches of primary forest remain. In the state of Kelantan, the rate of deforestation was approximately 2.3% per year, with 73,236 ha of PFR converted to non-forested uses within eight years (1989-1997) (Geist and Lambin, 2002; Jusoff and Setiawan, 2003). In addition to excessive logging and extensive agricultural activities, another main reason for the loss of forest areas is due to the sprawl of urbanization (Levy-Tacher et al., 2019). In 2020, due to the fast population and economic growth, the urbanization rate of Malaysia reached 78%, leading to the loss of forests. According to World Population Prospects, Malaysia's population is projected to increase to more than 40 million by 2050, which is approximately 85 % of the population will be living in urban areas (Kanniah, 2017; Kanniah and Siong, 2017; Mon et al., 2012). Also, the Permanent Forest Reserves (PFR) in Kuala Lumpur has experienced a significant decline of approximately 50% since its establishment in the early 20th

century due to the fast population and economic growth (Kanniah, 2017). The data from government statistics on Malaysia's permanent forest reserve have shown that forest reserve areas are declining despite being protected under the existing legislation. The same pattern can also be observed for forest areas not subject to the same legal protection as permanent forest reserves. Statistics reported by the Forestry Department of Peninsular Malaysia (FDPM) indicated a shortage of 0.10 million hectares (100 thousand hectares) of permanent forest reserve area between 2011 and 2020 (FDPM, 2020). The decline in permanent forest reserves appears to be continuing for several reasons, the most important of which is the gap in forest protection laws and the difficulty of implementing these laws (Kanniah, 2017; Kanniah and Siong, 2017). All these factors have contributed to continuous land-use change, leading to the loss of permanent forest reserves, especially in urban areas; the impact of these factors has made forest preservation efforts even more difficult (Adhikari et al., 2017; Ngo Bieng et al., 2021; Pijanowski et al., 2014; Stefanidis et al., 2016).

Despite ongoing efforts to conserve Permanent Forest Reserves (PFR) in Malaysia, including the establishment of laws and comprehensive monitoring and assessment, a gap remains in their preservation strategy. The preservation assessments focus outlined by the Forestry Department of Peninsular Malaysia primarily addresses ecological, economic, recreational/social, and research/educational aspects. Still, it neglects the visual aesthetic aspect, which is a crucial motivator for PFR preservation. However, Golivets (2011) emphasized the importance of visual aesthetic assessments in the management and preservation of urban forests. By ensuring that these spaces are visually appealing, aesthetic assessments foster greater

public support and engagement, leading to active involvement in conservation efforts (Rosley et al., 2024). They also guide urban planners in integrating green spaces into city designs that balance functionality with natural beauty, contributing to the creation of harmonious urban environments (Barron et al., 2016; Zheng et al., 2019). Furthermore, visually appealing urban forests offer significant psychological benefits, such as stress reduction and mood enhancement, underscoring the importance of maintaining these spaces for the well-being of city residents (Reyes-Riveros et al., 2021). The recognition of urban forests as beautiful encourages a culture of environmental stewardship, driving the protection and preservation of these valuable areas. Additionally, the economic value of urban forests is amplified through their aesthetic appeal, attracting tourists, increasing property values, and stimulating investment (Kim et al., 2021). Thus, the loss of forests, particularly in urban areas, is closely linked to the need to focus on aesthetics because visual appeal plays a significant role in how people perceive and value natural environments. When forests lose their aesthetic qualities, they are often seen as less valuable or less worthy of preservation by the public and policymakers. This diminished perception can lead to a lack of public support for conservation efforts, making it easier for these areas to be repurposed for other uses, such as infrastructure development or urban expansion. Therefore, focusing on aesthetics is not merely about making forests look good; it is about ensuring they are perceived as valuable and irreplaceable components of the urban landscape. By incorporating visual aesthetics into conservation strategies and legislation, we can strengthen the case for preserving these critical areas, ensuring they remain integral to the urban environment both ecologically and culturally. This approach can lead to more effective conservation outcomes and prevent further loss of forested areas in urban areas, Malaysia. Finally,

in Table 1.1, the justifications and examples demonstrate the multifaceted importance of aesthetics in the sustainability and preservation of urban forests.

Table 1.1: Justifications and Examples that Demonstrate the Role of Visual Aesthetics in the Preservation of Urban Forests

| Visual          | Justifications                       | Examples                          |
|-----------------|--------------------------------------|-----------------------------------|
| Aesthetics Role |                                      |                                   |
| Enhancing       | People are more likely to support    | The High Line in New York         |
| Public          | and engage with urban forests that   | City, an elevated urban park, is  |
| Engagement      | are visually appealing. When the     | celebrated for its visual appeal, |
|                 | aesthetic quality of an urban forest | which has transformed it into a   |
|                 | is high, it attracts more visitors,  | popular public space and          |
|                 | leading to greater public interest   | strengthened community            |
|                 | and involvement in its               | support for green initiatives.    |
|                 | preservation.                        |                                   |
| Guiding Urban   | Aesthetic assessments help urban     | In Singapore, the "City in a      |
| Planning and    | planners integrate green spaces      | Garden" concept incorporates      |
| Development     | into city designs that enhance the   | aesthetically pleasing urban      |
|                 | overall visual landscape. By         | forests and parks throughout      |
|                 | prioritizing aesthetically pleasing  | the city, blending nature with    |
|                 | forested areas, planners can create  | urban infrastructure to create    |
|                 | balanced urban environments that     | an attractive and sustainable     |
|                 | combine functionality with natural   | environment.                      |
|                 | beauty.                              |                                   |
| Supporting      | Visually appealing urban forests     | Studies show that residents       |
| Mental and      | provide psychological benefits,      | living near visually attractive   |
| Emotional Well- | such as reducing stress and          | green spaces, like Vancouver's    |
| being           | improving mood. Aesthetic            | Stanley Park, experience better   |
|                 | assessments ensure that urban        | mental health and well-being,     |
|                 | forests are designed and             | emphasizing the importance of     |
|                 | maintained to maximize these         | aesthetics in urban forest        |
|                 | benefits for city residents.         | design.                           |
| Promoting       | People who perceive urban forests    | The preservation of historic      |
| Environmental   | as beautiful are more likely to      | oak trees in cities like New      |
| Stewardship     | value and protect them. Aesthetic    | Orleans is often driven by their  |
|                 | assessments highlight the            | iconic beauty, which plays a      |
|                 | importance of maintaining and        | key role in community-led         |
|                 | enhancing the visual qualities of    | conservation efforts.             |
|                 | these spaces, fostering a culture of |                                   |
|                 | environmental stewardship.           |                                   |
| Economic        | Aesthetic qualities can increase the | London's Hyde Park's aesthetic    |
| Benefits        | economic value of urban areas by     | draws millions of visitors each   |
|                 | attracting tourists, boosting        | year and contributes to the high  |
|                 | property values, and encouraging     | real estate values in             |
|                 | investment. Visual aesthetic         | surrounding areas, illustrating   |
|                 | assessments help identify and        | the economic impact of            |
|                 | enhance these economic benefits.     | aesthetically pleasing urban      |
|                 |                                      | forests.                          |

#### 1.3 Problem Statement

Urban forests are invaluable national assets, and nations worldwide are committed to finding effective ways to preserve them. As a result, many countries have enacted regulations aimed at protecting natural forests, especially in urban areas. However, the rapid increase in population, urbanization, and economic activities has put significant pressure on local governments to meet the demands for new infrastructure and economic development. This often involves converting urban forests and natural areas into buildings, roads, and other developments, leading to substantial forest loss. Despite the existence of robust policies and guidelines for forest protection and management, the rate of forest loss remains alarmingly high, particularly in highly urbanized regions like Klang Valley, Malaysia (Kanniah, 2017). Malaysia has made significant efforts to preserve its forests, including the establishment of the Permanent Forest Reserve (PFR) legislation by the Forestry Department of Peninsular Malaysia (FDPM) under the National Forestry Act of 1984. This legislation aims to protect and manage natural forests by designating them as permanent forest reserves. However, as McMorrow and Talip, (2001) highlight, the effectiveness of these preservation efforts is often undermined by political decisions that prioritize economic gains over conservation. Despite being in place for over 40 years, the Malaysian forest legislative policy is criticized for being less inclusive and failing to address the complexities of forest conservation fully (Wan Talaat et al., 2012). The absence of comprehensive and inclusive policies continues to be a significant challenge in effectively protecting forest areas (Heidarlou et al., 2019; Li et al., 2013; Robalino et al., 2015).

A critical shortcoming of the current legislation is its focus on ecological, economic, social, and educational aspects, while neglecting other important factors such as visual aesthetics. Visual aesthetics have long been recognized as a powerful motivator for the protection of natural areas (Golivets, 2011). Despite this, the aesthetic value of forests has not been fully integrated into forest management strategies. Sheppard (2001) stressed the importance of considering aesthetics alongside other environmental values, particularly in projects with significant landscape impacts. Mazurczyk et al. (2018) also emphasized that visual aesthetic value is crucial for landscape conservation planning. The influence of visual aesthetics on public attitudes towards forest sustainability is profound, underscoring the need to incorporate aesthetic considerations into forest management practices to preserve PFRs effectively. Contrarily, the absence of a structured approach to assessing and integrating visual aesthetics into forest management is a critical gap in the current preservation strategies for PFRs in Malaysia. This gap has practical implications: without recognizing and enhancing the visual appeal of these forests, conservation efforts may fail to inspire the level of public and political commitment needed for long-term preservation. Moreover, ignoring visual aesthetics can undermine people's cultural and emotional connections with these natural areas, further diminishing their perceived value.

The neglect of visual aesthetics in current preservation strategies, particularly for PFRs in Malaysia, has created a gap in fostering public engagement, cultural appreciation, and emotional connections with these spaces. Thus, the lack of emphasis on aesthetics hinders conservation efforts, as aesthetically neglected PFRs may not be seen as worth preserving by the public and policymakers. This can lead

to further degradation or even conversion of these areas for other uses. Thus, this study focuses on the importance of visual aesthetics in PFRs and strengthens preservation efforts by developing a framework for assessing the visual aesthetics of forest reserves in urban areas. However, since the physical characteristics of urban PFRs influence visual aesthetic value, a global framework assessment can be challenging. Therefore, establishing a local visual aesthetic quality assessment framework is necessary to enhance the preservation of PFRs in Malaysia. Finally, this study is essential to establish a comprehensive visual aesthetic assessment framework that ensures PFRs are not only ecologically valuable but also aesthetically valuable and culturally significant for urban areas in Malaysia.

# 1.4 Research Aim and Objectives

The continuing threats to and shortage of permanent forest reserves in Malaysia can be attributed to the lack of inclusivity in forest preservation legislation. Specifically, the absence of visual aesthetic quality as a significant aspect of preserving permanent forest reserves in urban areas is a concern. Although several studies have demonstrated the role of visual aesthetics in forest preservation, it is difficult to assess visual aesthetic quality universally due to variations in the physical characteristics of permanent forest reserves in urban areas. Therefore, the main aim of this research is to establish a visual aesthetic quality assessment framework that enhances the preservation of valuable permanent forest reserves in Klang Valley urban areas, Malaysia. Accordingly, this thesis aims to achieve four objectives, which are listed below:

# **Objectives:**

- i. **RO1**: To investigate the existing and potential variables for visual aesthetic quality assessment of urban forests as a model for permanent forest reserves in urban areas.
- ii. **RO2**: To identify suitable variables of visual aesthetic quality assessment for permanent forest reserves in Klang Valley urban areas, Malaysia.
- iii. **RO3**: To determine the level of importance and weightage of variables for visual aesthetic quality assessment of permanent forest reserves in Klang Valley urban areas, Malaysia.
- iv. **RO4**: To establish a framework of visual aesthetic quality assessment for permanent forest reserves in Klang Valley urban areas, Malaysia.

#### 1.5 Research Questions

The main question of this research is how to establish a visual aesthetic quality assessment framework that would enhance the preservation of valuable permanent forest reserves in Klang Valley urban areas, Malaysia? Consequently, this thesis has to achieve four questions, which are listed below:

#### **Questions:**

- i. **RQ1**: What are the existing and potential variables for visual aesthetic quality assessment of urban forests as a model for permanent forest reserves in urban areas?
- ii. **RQ2**: What are the suitable variables of visual aesthetic quality assessment for permanent forest reserves in Klang Valley urban areas, Malaysia?
- iii. **RQ3**: What are the level of importance and weightage of variables for visual aesthetic quality assessment of permanent forest reserves in Klang Valley urban areas, Malaysia?

iv. **RQ4**: What is the framework of visual aesthetic quality assessment for permanent forest reserves in Klang Valley urban areas, Malaysia?

## 1.6 Overview of Research Methodology

This study presents the research strategy and outputs with validation used to establish a framework for assessing the visual aesthetic quality of permanent forest reserves in Klang Valley urban areas in Malaysia. The study utilizes a converging approach that combines the perception approach and the expert approach to assess visual aesthetic quality.

In the perception approach, the participant-generated image (PGI) method determined participants' preferences by having participants capture scenes they preferred along the trail. Subsequently, the classification of photos based on their content used a combination of the researcher's classification and validation through reclassification by experts. This resulted in identifying suitable variables of visual aesthetic quality assessment for permanent forest reserves in Klang Valley urban areas in Malaysia.

In the expert approach, the expert survey assessment method determined the importance of each variable's visual aesthetic quality by assessing photos for each variable. In addition, the photo representation of variables was validated through the expert survey description. Subsequently, Analytical Hierarchy Process (AHP) was used to determine the weights of the variables through pairwise comparisons based on their importance and validation of the weightage by consistency ratio. This resulted in determining the importance and weightage variables for visual aesthetic

quality assessment of permanent forest reserves in Klang Valley urban areas in Malaysia.

Ultimately, this study clarifies how combining participants' preferences and expert opinions can result in the establishment of a visual aesthetic quality assessment framework to enhance the preservation of valuable permanent forest reserves in Klang Valley urban areas in Malaysia.

# 1.7 Research Scope

In accordance with the aim of this research, the visual aesthetic quality assessment framework enhances the preservation of valuable permanent forest reserves in Malaysia's urban areas. This assessment framework reduces the increasing urbanization of urban forest shortages by expanding forest preservation legislation's scope. Accordingly, the research was limited to natural forests within dense urban areas that are subject to PFR preservation legislation and classified as permanent forest reserves. Since the visual aesthetic value depends on the physical characteristics of permanent forest reserves in urban areas, it was challenging to create a universal visual aesthetic quality assessment framework. Therefore, the research was limited to the preferences and opinions of locals. Consequently, this framework was achieved using a mixed-methods approach known as the converging approach: it combined the results of identifying suitable variables based on the preferences of local participants with the results of determining the importance and weightage of variables based on the opinions of local experts in order to reach the establishment of a sustainable assessment framework. Additionally, to account for the subjective and challenging nature of assessing visual aesthetic quality, it was

determined that photos should be adopted as a basis for identifying suitable variables and assessing them. Thus, utilizing photos for classification and assessment provided the appropriate method for establishing a comprehensive framework. Finally, the scope of this thesis is explained as follows:

- i. Adopted natural forests within urban areas that have been classified as permanent forest reserves.
- ii. Adopted forest has man-made paved trails and is open and accessible to the public.
- iii. Adopted a mixed-methods approach based on local participants' preferences and local experts' opinions.
- iv. Adopted photos as a basis in the process of identifying and assessing variables.

### 1.8 Research Significance

This study's significance is the identification of suitable variables for assessing the visual aesthetic quality of permanent forest reserves in urban areas of Malaysia. This includes defining and understanding a description of visual aesthetic factors and variables as well as a thorough explanation of visual aesthetic theories to comprehend how to assess the visual aesthetic quality of urban forests. Defining and understanding variables and theories for visual aesthetic quality can be a foundation and valuable future step that will assist researchers, managers, and decision-makers in managing and assessing the visual aesthetics of urban forests.

Furthermore, the primary significance of this thesis is to establish an integration framework for assessing the visual aesthetic quality of permanent forest reserves in

urban areas in Malaysia that can enhance their protection. This integrated framework refers to a comprehensive approach that combines multiple variables, each with different weightage, to evaluate visual aesthetics. It justifies the need for this framework based on the existing gap in forest preservation strategies, where visual aesthetics are often overlooked. Also, by involving both public and expert input, the framework seeks to provide a more holistic and reliable assessment, which is crucial for effective forest management and decision-making. This integration of diverse perspectives ensures that PFRs are visual aesthetic assessments from multiple angles and strengthens the argument for their preservation. Additionally, the framework addresses the unique challenges posed by urbanization, aiming to expand the scope of forest preservation legislation to better protect these valuable urban green spaces.

The significance of this framework lies in its distinction from previous studies that primarily relied on general perceptions to assess landscape visual quality. For example, the Scenery Management System (SMS) used by the U.S. Forest Service effectively incorporates both public and expert evaluations to manage visual resources. While this method is robust, it tends to focus mainly on natural landscapes and does not fully address the complexities of urban forests, where aesthetic factors are significantly influenced by urbanization. Additionally, SMS assumes that all variables have equal importance and weight when evaluating visual aesthetics, which this new framework aims to refine by assigning different weightage to variables based on their relevance to urban contexts.

This study's significance can help urban forest managers determine the quality of urban forest visual aesthetics and contribute to improving their management and preservation by providing a much more rigorous assessment tool. Advanced instruments designed to measure urban forests' visual aesthetic quality with greater precision and validity. These tools are expected to go beyond simple surveys or observational studies by incorporating them with more sophisticated techniques. This tool will offer a more accurate and actionable evaluation of visual aesthetic quality by incorporating statistical methods for variable weighting and participatory approaches for integrating public and expert input. This rigor in assessment is crucial for urban forest managers, as it provides a solid foundation for making informed decisions that balance ecological preservation with cultural and aesthetic considerations.

Overall, the integrated framework and rigorous assessment tools developed in this study will serve as a valuable resource for enhancing the management and preservation of urban forests, potentially influencing forest preservation legislation and promoting more sustainable urban development practices. It also encourages wider participation in forest conservation and restoration by local communities, conservation and management organizations, and academics. Also, this study will assist designers, forest managers, and decision-makers in making decisions through a simple and efficient process using the final visual aesthetic quality assessment form. Lastly, it can serve as a reference for future research and a starting point for the development of similar frameworks in other contexts or different countries, leading to the creation of more livable and sustainable urban environments.

#### 1.9 Research Keywords Definition

Visual aesthetics covers a wide range of topics and can be understood in various ways, making it a subject of interest across multiple scientific disciplines. Additionally, the concepts of urban forests and permanent forest reserves in urban areas are fundamental to this thesis. To prevent any confusion, the definitions of the terms "urban forests," "permanent forest reserve (PFR)," "visual aesthetics," and their synonyms used in this study are provided below.

- Urban Forests are defined as natural forests, planted forests, permanent reserves, and all associated trees growing within or near densely populated urban areas. Urban forests may also be referred to by other terms, such as urban natural forests, forest patches, urban woodlands, or urban forested parks. A common element in these definitions is the association with population density, though there is no established standard for the population size required to define an urban forest. The reciprocal relationship between urban forests and city dwellers is a key characteristic. Urban forests influence the lives of city residents, who, in turn, are involved in the care, management, and advocacy of these forests. This interaction contributes to the complexity of urban forests, which often involves a mix of native, non-native, and human-cultivated species. Finally, urban forests are uniquely defined by their location in or near urban areas and the dynamic relationship between people and nature. This study focuses on natural forests within urban contexts, acknowledging the broader definitions and varied terminology.
- Permanent Forest Reserves (PFRs) are legally protected forest areas established by governments to ensure long-term conservation and sustainable use. Governed by strict regulations, PFRs are designed to remain forested indefinitely, safeguarding biodiversity, soil and water resources, and providing essential ecosystem services. In Malaysia, these reserves are designated by the Forestry Department of Peninsular Malaysia (FDPM) under the National Forestry Act of 1984, focusing on preserving natural forests and protecting them from deforestation. PFRs differ from other forest

types due to their legal status and specific management objectives, which emphasize ecological, economic, and social values. Unlike other forests that may be subject to logging or land conversion, PFRs are shielded from such activities, ensuring their continued existence. These reserves can encompass various forest types, including natural and secondary forests, based on management goals. In urban areas, PFRs play a vital role in conserving green spaces amid urbanization, offering ecological benefits and enhancing the quality of life for city dwellers.

• Visual aesthetics refers to the pleasure derived from the visually perceptible characteristics of a scene's spatial elements. Rooted in the Greek word "aisthētikos," meaning "perception by the senses," this concept captures the initial experience of aesthetic pleasure through visual stimuli. Visual aesthetics are inherently subjective, shaped by individual reactions influenced by personal, social, and cultural backgrounds. This means that what one person finds beautiful or pleasing may not evoke the same response in another. In landscapes, visual aesthetics are particularly significant as they involve the interaction between the physical characteristics of a scene—such as the arrangement of trees, water bodies, and other natural elements—and the observer's perception. The resulting aesthetic pleasure not only measures beauty but also enhances emotional well-being by fostering a sense of harmony with the environment.

#### 1.10 Thesis Organization

This research encompasses five chapters representing the introduction, literature review, materials and methods, results and discussion, and conclusion and recommendations for future research. The organization of this thesis is as follows:

i. **Chapter 1** describes the introduction that explains the research structure, including the research context and background, problem statement, and research aim and objectives/questions. In addition, brief research

- methodology, research scope, research significance, research keywords definition, and research organization.
- ii. Chapter 2 includes the literature review, shedding light on the role of urban forests as a model for permanent forest reserves in urban areas. This review includes an examination of their definition, characteristics, and the benefits they offer. Also, it covers the legislative, classification, and assessment of permanent forest reserves in Malaysia. Additionally, the chapter delves into the assessment of visual aesthetics in urban forests, exploring its definition, benefits, and philosophical aspects, as well as various assessment approaches and methods. Moreover, an overview and framework are provided regarding the existing and potential variables used to assess the visual aesthetic quality of urban forests.
- iii. Chapter 3 covers the research materials and methods used, which starts with study area selection. Subsequently, it covers the method to identify suitable variables based on the perception approach, which combines data collection strategies based on participant preferences and data classification based on photo content. Additionally, it covers the method to determine the level of importance and weightage of variables based on the expert approach achieved through an expert survey assessment and an analytical hierarchy process.
- iv. Chapter 4 provides the research results to achieve the research objectives and aims. It covers the results for identifying suitable variables based on photo content classification using variables retrieved from the literature. Also, it covers the results for determining the importance and weightage of variables based on expert survey assessment to find the importance of variables and the analytical hierarchy process to calculate the final weightage of variables.
- v. Chapter 5 This chapter explores urban forests' visual aesthetic quality assessment, focusing on the permanent forest reserves (PFR) in Klang Valley, Malaysia. It examines the importance of evaluating visual aesthetics in urban forests and how different approaches and key variables contribute to

this understanding. It also discusses how participants from different backgrounds perceive and evaluate these forest reserves. By discussing the importance and weightage of these variables, the chapter aims to provide insights into optimizing urban forest designs to meet public preferences and environmental objectives. Finally, it presents a research discussion of the findings that offer a framework for assessing the visual aesthetic quality of PFRs in Klang Valley's urban areas in Malaysia.

vi. **Chapter 6** This chapter summarizes the findings, discusses the research contributions and guidelines, implications, determines limitations, offers recommendations for future research, and concludes the study.

## REFERENCES

- Abu Bakar, S. (2007). Land suitability for rice growing in the Klang valley using Geographical Information System and Analytical Hierarchy Process for urban food security (Universiti Putra Malaysia). Retrieved from https://www.researchgate.net/publication/265283982
- Adevi, A. A., & Grahn, P. (2012). Preferences for Landscapes: A Matter of Cultural Determinants or Innate Reflexes that Point to Our Evolutionary Background? *Landscape Research*, 37(1), 27–49. https://doi.org/10.1080/01426397.2011.576884
- Adhikari, S., Fik, T., & Dwivedi, P. (2017). Proximate causes of land-use and land-cover change in Bannerghatta National Park: A spatial statistical model. *Forests*, 8(9), 1–23. https://doi.org/10.3390/f8090342
- Ak, M. (2013). Visual Quality Assessment Methods in Landscape Architecture Studies. *Advances in Landscape Architecture*, 279–290. Retrieved from http://cdn.intechopen.com/pdfs/45412/InTech-Visual\_quality\_assessment\_methods\_in\_landscape\_architecture\_studies.pdf
- Akbar, K. F., Hale, W. H. G., & Headley, A. D. (2003). Assessment of scenic beauty of the roadside vegetation in northern England. *Landscape and Urban Planning*, 63(3), 139–144. https://doi.org/10.1016/S0169-2046(02)00185-8
- AlJammal, E., Shahnov, V., & Samaha, S. P. (2021). Rating the Potential Landscape Changes through the Visual Resource Inventory in North Metn Lebanon. *International Journal of Environment, Agriculture and Biotechnology*, 6(1), 247–255. https://doi.org/10.22161/ijeab.61.31
- Andalucia, A., Ginting, N., Aulia, D. N., & Hadinugroho, D. L. (2023). Spirit of Place as an Attraction of Heritage Area In Medan City, Indonesia. *Environment-Behaviour Proceedings Journal*, 8(23), 287–293. https://doi.org/10.21834/ebpj.v8i23.4577
- Appleton, J. (1975). The Experience of Landscape. In London: Wiley.
- Asadpour, A. (2017). Re-designing Urban Stream Landscape by Investigating the Citizens' Preference Matrix. *Civil Engineering and Architecture*, 5(4), 152–160. https://doi.org/10.13189/cea.2017.050404
- Aşur, F. (2022). Determination of User Preferences on Visual Landscape at Urban Context: Van/Edremit (Turkey) Example. *Polish Journal of Environmental Studies*, 31(2), 1543–1550. https://doi.org/10.15244/pjoes/140169
- Atik, M., Işıklı, R. C., & Ortaçeşme, V. (2016). Clusters of landscape characters as a way of communication in characterisation: A study from side, Turkey. *Journal of Environmental Management*, 182, 385–396. https://doi.org/10.1016/j.jenvman.2016.07.076

- Auliandari, L., Lensari, D., & Angraini, E. (2019). Exploration of Understorey Vegetation's Beauty: Supporting Tourism Potential of Bukit Siguntang, Palembang. *Journal of Indonesian Tourism and Development Studies*, 7(2), 83–90. https://doi.org/10.21776/ub.jitode.2019.07.02.04
- Axelsson, Ö., Nilsson, M. E., Hellström, B., & Lundén, P. (2014). A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park. *Landscape and Urban Planning*, *123*, 49–60. https://doi.org/10.1016/j.landurbplan.2013.12.005
- Azmi, A. (2019). Analysis Of (Un)Invited Participation Using Environmental Justice In Permanent Reserved Forest In Peninsular Malaysia (University of East Anglia.). Retrieved from https://ueaeprints.uea.ac.uk/id/eprint/72617/
- Badrulhisham, N., & Othman, N. (2016). Knowledge in Tree Pruning for Sustainable Practices in Urban Setting: Improving Our Quality of Life. *Procedia Social and Behavioral Sciences*, 234, 210–217. https://doi.org/10.1016/j.sbspro.2016.10.236
- Balomenou, N., & Garrod, B. (2015). A Review of Participant-Generated Image Methods in the Social Sciences. *Journal of Mixed Methods Research*, 10(4), 335–351. https://doi.org/10.1177/1558689815581561
- Barron, S., Sheppard, S. R. J., & Condon, P. M. (2016). Urban forest indicators for planning and designing future forests. *Forests*, 7(9), 1–17. https://doi.org/10.3390/f7090208
- Battisti, L., Corsini, F., Gusmerotti, N. M., & Larcher, F. (2019). Management and perception of Metropolitan Natura 2000 Sites: A case study of La Mandria Park (Turin, Italy). *Sustainability (Switzerland)*, 11(21). https://doi.org/10.3390/su11216169
- Baumeister, C. F., Gerstenberg, T., Plieninger, T., & Schraml, U. (2020). Exploring cultural ecosystem service hotspots: Linking multiple urban forest features with public participation mapping data. *Urban Forestry and Urban Greening*, 48(March 2019), 126561. https://doi.org/10.1016/j.ufug.2019.126561
- Bekele, T., & Ango, T. G. (2015). Do Interventions from Participatory Action Research Improve Livelihood and Reduce Conflicts Over Forest Resources? A Case Study from South Central Ethiopia. *Small-Scale Forestry*, *14*(4), 441–458. https://doi.org/10.1007/s11842-015-9297-7
- Bell, S. (2012). Landscape: Pattern, Perception and Process. https://doi.org/10.4324/9780203120088
- Bergerot, B., Hellier, E., & Burel, F. (2020). Does the management of woody edges in urban parks match aesthetic and ecological user perception? *Journal of Urban Ecology*, 6(1). https://doi.org/10.1093/jue/juaa025

- Binti Yaakob, A. (2014). a Legal Analysis on Law and Policy on Conservation of Forest in Peninsular Malaysia (UNIVERSITY OF MALAYA). Retrieved from http://studentsrepo.um.edu.my/4589/1/ADZIDAH\_YAAKOB\_LHA050008\_PHD\_THESIS.pdf
- Birks, C., Féménias, D., & Machemehl, C. (2022). Citizen Participation in Urban Forests: Analysis of a Consultation Process in the Metropolitan Area of Rouen Normandy. *Urban Planning*, 7(2), 174–185. https://doi.org/10.17645/up.v7i2.4997
- Blankenship, S. F., & Tan, K. K. H. (2020). The Survival of Cultural Patterns in Malaysia's Contemporary Visual Landscape. In *Perspectives on Asian Tourism*: *Vol. Part F187* (pp. 147–167). https://doi.org/10.1007/978-981-15-4335-7\_7
- Blazevska, A., Miceva, K., Stojanova, B., & Stojanovska, M. (2012). Perception of the Local Population toward Urban Forests in Municipality of Aerodrom. *South-East European Forestry*, 3(2), 87–96. https://doi.org/10.15177/seefor.12-10
- Borlaf-Mena, I., Badea, O., & Tanase, M. A. (2021). Assessing the utility of sentinel-1 coherence time series for temperate and tropical forest mapping. *Remote Sensing*, 13(23). https://doi.org/10.3390/rs13234814
- Brook, I. (2019). Aesthetic appreciation of landscape. In *The Routledge Companion to Landscape Studies*. https://doi.org/10.4324/9780203096925-16
- Butler, A. (2016). Dynamics of integrating landscape values in landscape character assessment: the hidden dominance of the objective outsider. *Landscape Research*, 41(2), 239–252. https://doi.org/10.1080/01426397.2015.1135315
- Cao, Y., Li, Y., Li, X., Wang, X., Dai, Z., Duan, M., Xu, R., Zhao, S., Liu, X., Li, J., Xie, J. (2022). Relationships between the Visual Quality and Color Patterns: Study in Peri-Urban Forests Dominated by Cotinus coggygria var. cinerea Engl. in Autumn in Beijing, China. *Forests*, 13(12). https://doi.org/10.3390/f13121996
- Carlson, A. (2010). Contemporary environmental aesthetics and the requirements of environmentalism. *Environmental Values*, 19(3), 289–314. https://doi.org/10.3197/096327110X519844
- Chang, Y., Wang, Z., Zhang, D., Fu, Y., Zhai, C., Wang, T., Yang, Y., Wu, J. (2022). Analysis of Urban Woody Plant Diversity among Different Administrative Districts and the Enhancement Strategy in Changchun City, China. *Sustainability*, *14*(13), 7624. https://doi.org/10.3390/su14137624
- Chen, W. Y., & Li, X. (2021). Urban forests' recreation and habitat potentials in China: A nationwide synthesis. *Urban Forestry and Urban Greening*, 66(October), 127376. https://doi.org/10.1016/j.ufug.2021.127376

- Chen, Y., Liu, T., & Liu, W. (2016). Increasing the use of large-scale public open spaces: A case study of the North Central Axis Square in Shenzhen, China. *Habitat International*, 53, 66–77. https://doi.org/10.1016/j.habitatint.2015.10.027
- Chiang, Y. C., Nasar, J. L., & Ko, C. C. (2014). Influence of visibility and situational threats on forest trail evaluations. *Landscape and Urban Planning*, 125, 166–173. https://doi.org/10.1016/j.landurbplan.2014.02.004
- Clay, G. R., & Smidt, R. K. (2004). Assessing the validity and reliability of descriptor variables used in scenic highway analysis. *Landscape and Urban Planning*, 66(4), 239–255. https://doi.org/10.1016/S0169-2046(03)00114-2
- Coleman, T., & Kearns, R. (2015). The role of bluespaces in experiencing place, aging and wellbeing: Insights from Waiheke Island, New Zealand. *Health and Place*, 35, 206–217. https://doi.org/10.1016/j.healthplace.2014.09.016
- Collins, C., Haase, D., Heiland, S., & Kabisch, N. (2022). Urban green space interaction and wellbeing investigating the experience of international students in Berlin during the first COVID-19 lockdown. *Urban Forestry and Urban Greening*, 70(March), 127543. https://doi.org/10.1016/j.ufug.2022.127543
- Cooper, N., Brady, E., Steen, H., & Bryce, R. (2016). Aesthetic and spiritual values of ecosystems: Recognising the ontological and axiological plurality of cultural ecosystem 'services.' *Ecosystem Services*, 21(July), 218–229. https://doi.org/10.1016/j.ecoser.2016.07.014
- Creswell, J. W. (2009). Research Design: Qualitative, Quantitative and Mixed Methods Approaches. In *SAGE Publications* (3th ed.). Retrieved from http://www.asmscience.org/content/journal/microbe/10.1128/microbe.4.485.
- Dallimer, M., Irvine, K. N., Skinner, A. M. J., Davies, Z. G., Rouquette, J. R., Maltby, L. L., Warren, P. H., Armsworth, P. R., Gaston, K. J. (2012). Biodiversity and the feel-good factor: Understanding associations between self-reported human well-being and species richness. *BioScience*, 62(1), 47–55. https://doi.org/10.1525/bio.2012.62.1.9
- Daniel, T. C. (2001). Whither scenic beauty? Visual landscape quality assessment in the 21st century. *Landscape and Urban Planning*, 54(1–4), 267–281. https://doi.org/10.1016/S0169-2046(01)00141-4
- Dann, G. M. (1981). Tourist Motivatio. An Ppraisal. *Annals of Tourism Research*, *VIII*(2), 187–219.
- Daugelaite, A., Dogan, H. A., & Grazuleviciute-Vileniske, I. (2021). Characterizing sustainability aesthetics of buildings and environments: methodological frame and pilot application to the hybrid environments. *Landscape Architecture* and Art, 19(19), 61–72. https://doi.org/10.22616/j.landarchart.2021.19.06

- de la Fuente, B., Mateo-Sánchez, M. C., Rodríguez, G., Gastón, A., Pérez de Ayala, R., Colomina-Pérez, D., Melero, M., Saura, S. (2018). Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure. *Land Use Policy*, 75(April), 429–441. https://doi.org/10.1016/j.landusepol.2018.04.002
- De la Fuente de Val, G., Atauri, J. A., & de Lucio, J. V. (2006). Relationship between landscape visual attributes and spatial pattern indices: A test study in Mediterranean-climate landscapes. *Landscape and Urban Planning*, 77(4), 393–407. https://doi.org/10.1016/j.landurbplan.2005.05.003
- De La Fuente De Val, G., & Mühlhauser S., H. (2014). Visual quality: An examination of a south american mediterranean landscape, andean foothills east of santiago (chile). *Urban Forestry and Urban Greening*, *13*(2), 261–271. https://doi.org/10.1016/j.ufug.2014.01.006
- de San Eugenio Vela, J., Nogué, J., & Govers, R. (2017). Visual landscape as a key element of place branding. *Journal of Place Management and Development*, 10(1), 23–44. https://doi.org/10.1108/JPMD-09-2016-0060
- Dimitrakopoulos, P. G., Jones, N., Iosifides, T., Florokapi, I., Lasda, O., Paliouras, F., & Evangelinos, K. I. (2010). Local attitudes on protected areas: Evidence from three Natura 2000 wetland sites in Greece. *Journal of Environmental Management*, 91(9), 1847–1854. https://doi.org/10.1016/j.jenvman.2010.04.010
- Ding, D., Jiang, Y., Wu, Y., & Shi, T. (2020). Landscape character assessment of water-land ecotone in an island area for landscape environment promotion. Journal of Cleaner Production, 259, 120934. https://doi.org/10.1016/j.jclepro.2020.120934
- Djabarouti, J. (2023). Negotiating the Spirit of Place: Towards a Performative Authenticity of Historic Buildings. In *Cultures of Authenticity* (Vol. 9781801179, pp. 29–42). https://doi.org/10.1108/978-1-80117-936-220221003
- Dobbs, C., Nitschke, C., & Kendal, D. (2017). Assessing the drivers shaping global patterns of urban vegetation landscape structure. *Science of the Total Environment*, 592, 171–177. https://doi.org/10.1016/j.scitotenv.2017.03.058
- Dorwart, C. E., Moore, R. L., & Leung, Y.-F. (2009). Visitors' Perceptions of a Trail Environment and Effects on Experiences: A Model for Nature-Based Recreation Experiences. *Leisure Sciences*, 32(1), 33–54. https://doi.org/10.1080/01490400903430863
- Dosen, A. S., & Ostwald, M. J. (2016). Evidence for prospect-refuge theory: a metaanalysis of the findings of environmental preference research. *City, Territory* and Architecture, 3(1), 1–14. https://doi.org/10.1186/s40410-016-0033-1

- Dronova, I. (2017). Environmental heterogeneity as a bridge between ecosystem service and visual quality objectives in management, planning and design. *Landscape and Urban Planning*, 163, 90–106. https://doi.org/10.1016/j.landurbplan.2017.03.005
- Dronova, I. (2019). Landscape beauty: A wicked problem in sustainable ecosystem management? *Science of the Total Environment*, 688, 584–591. https://doi.org/10.1016/j.scitotenv.2019.06.248
- Dwyer, John F.; Nowakz, D. J., & Noble, M. H. (2003). Sustaining Urban Forests. *Journal of Arboriculture*, 29(January), 49–55.
- El-Metwally, Y., Khalifa, M., & Elshater, A. (2021). Quantitative study for applying prospect-refuge theory on perceived safety in Al-Azhar Park, Egypt. *Ain Shams Engineering Journal*, 12(4), 4247–4260. https://doi.org/10.1016/j.asej.2021.04.016
- Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. *Global Ecology and Biogeography*, 19(5), 589–606. https://doi.org/10.1111/j.1466-8238.2010.00540.x
- Elmahdy, S. I., & Mostafa, M. M. (2013). Natural hazards susceptibility mapping in Kuala Lumpur, Malaysia: An assessment using remote sensing and geographic information system (GIS). *Geomatics, Natural Hazards and Risk*, 4(1), 71–91. https://doi.org/10.1080/19475705.2012.690782
- Elsadek, M., Liu, B., Lian, Z., & Xie, J. (2019). The influence of urban roadside trees and their physical environment on stress relief measures: A field experiment in Shanghai. *Urban Forestry and Urban Greening*, 42(October 2018), 51–60. https://doi.org/10.1016/j.ufug.2019.05.007
- Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G., & Lafortezza, R. (2019). Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? *Urban Forestry and Urban Greening*, 37(November 2017), 3–12. https://doi.org/10.1016/j.ufug.2018.02.011
- Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. *Environmental Pollution*, 159(8–9), 2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010
- Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? *Geomorphology*, 137(1), 94–106. https://doi.org/10.1016/j.geomorph.2010.09.029
- Fahn, C. S., Pan, J. Y., & Wu, M. L. (2018). An Aesthetic Preference Prediction System for Assessing Natural Images Based on Photo Complexity and Composition Evaluation. *IEEE Region 10 Annual International Conference, Proceedings/TENCON*, 2018-Octob(October), 634–639. https://doi.org/10.1109/TENCON.2018.8650544

- Falk, J. H., & Balling, J. D. (2010). Evolutionary influence on human landscape preference. *Environment and Behavior*, 42(4), 479–493. https://doi.org/10.1177/0013916509341244
- Fathi, S., Sajadzadeh, H., Sheshkal, F. M., Aram, F., Pinter, G., Felde, I., & Mosavi, A. (2020). The role of urban morphology design on enhancing physical activity and public health. *International Journal of Environmental Research and Public Health*, *17*(7), 1–29. https://doi.org/10.3390/ijerph17072359
- Faye, L. C., Damnyag, L., Sambou, S., & Kyereh, B. (2022). Local Perception of Vegetation Dynamics and Its Drivers in Community-Managed Forest: A Case Study from Senegal. *Research and Analysis Journal*, 5(10), 01–10. https://doi.org/10.18535/raj.v5i10.351
- FDPM. (2020). Forestry department of Peninsular Malaysia. Retrieved from http://www.ketsa.gov.my/en-my/forestry/Pages/Forest-Area-by-Region.aspx
- Feeley, K. J., Malhi, Y., Zelazowski, P., & Silman, M. R. (2012). The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. *Global Change Biology*, 18(8), 2636–2647. https://doi.org/10.1111/j.1365-2486.2012.02719.x
- Feizizadeh, B., & Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. *Natural Hazards*, 65(3), 2105–2128. https://doi.org/10.1007/s11069-012-0463-3
- Feltynowski, M. (2023). Land Use Policy Urban green spaces in land-use policy types of data, sources of data and staff the case of Poland. Land Use Policy, 127, 106570. https://doi.org/10.1016/j.landusepol.2023.106570
- Fischer, M. A., & Shrout, P. E. (2006). Children's liking of landscape paintings as a function of their perceptions of prospect, refuge, and hazard. *Environment and Behavior*, 38(3), 373–393. https://doi.org/10.1177/0013916505280083
- Foo, C. H. (2016). Linking forest naturalness and human wellbeing-A study on public's experiential connection to remnant forests within a highly urbanized region in Malaysia. *Urban Forestry and Urban Greening*, *16*, 13–24. https://doi.org/10.1016/j.ufug.2016.01.005
- Fragata, I., Blanckaert, A., Dias Louro, M. A., Liberles, D. A., & Bank, C. (2019). Evolution in the light of fitness landscape theory. *Trends in Ecology and Evolution*, 34(1), 69–82. https://doi.org/10.1016/j.tree.2018.10.009
- Fröhlich, A., & Ciach, M. (2020). Dead tree branches in urban forests and private gardens are key habitat components for woodpeckers in a city matrix. *Landscape and Urban Planning*, 202(June), 103869. https://doi.org/10.1016/j.landurbplan.2020.103869

- Fry, G., Tveit, M. S., Ode, Å., & Velarde, M. D. (2009). The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. *Ecological Indicators*, *9*(5), 933–947. https://doi.org/10.1016/j.ecolind.2008.11.008
- Füger, F., Huth, F., Wagner, S., & Weber, N. (2021). Can visual aesthetic components and acceptance be traced back to forest structure? *Forests*, *12*(6), 1–21. https://doi.org/10.3390/f12060701
- Fumagalli, N., Maccarini, M., Rovelli, R., Berto, R., & Senes, G. (2020). An exploratory study of users' preference for different planting combinations along rural greenways. *Sustainability (Switzerland)*, 12(5). https://doi.org/10.3390/su12052120
- Gao, Y., Wang, Y., Zhang, W., Meng, H., Zhang, Z., Zhang, T., & Sun, X. (2023). Main Factors of Professional Experience on People's Visual Behavior and Re-Viewing Intention in Different In-Forest Landscapes. *Forests*, *14*(7), 1–19. https://doi.org/10.3390/f14071319
- García Sánchez, F., & Govindarajulu, D. (2023). Integrating blue-green infrastructure in urban planning for climate adaptation: Lessons from Chennai and Kochi, India. *Land Use Policy*, *124*(November 2022), 0–3. https://doi.org/10.1016/j.landusepol.2022.106455
- Gaston, K. J., Ávila-Jiménez, M. L., & Edmondson, J. L. (2013). Managing urban ecosystems for goods and services. *Journal of Applied Ecology*, *50*(4), 830–840. https://doi.org/10.1111/1365-2664.12087
- Geist, H. J., & Lambin, E. F. (2002). Proximate Causes and Underlying Driving Forces of Tropical Deforestation. *BioScience*, 52(2), 143. https://doi.org/10.1641/0006-3568(2002)052[0143:pcaudf]2.0.co;2
- Ghanbari, S., Sefidi, K., Kern, C. C., & Álvarez-Álvarez, P. (2021). Population structure and regeneration status ofwoody plants in relation to the human interventions, arasbaran biosphere reserve, Iran. *Forests*, *12*(2), 1–14. https://doi.org/10.3390/f12020191
- Ghofrani, Z., Sposito, V., & Faggian, R. (2017). A Comprehensive Review of Blue-Green Infrastructure Concepts. *International Journal of Environment and Sustainability*, 6(1). https://doi.org/10.24102/ijes.v6i1.728
- Gobster, P. H., Nassauer, J. I., Daniel, T. C., & Fry, G. (2007). The shared landscape: What does aesthetics have to do with ecology? *Landscape Ecology*, 22(7), 959–972. https://doi.org/10.1007/s10980-007-9110-x
- Gobster, P. H., Ribe, R. G., & Palmer, J. F. (2019). Themes and trends in visual assessment research: Introduction to the Landscape and Urban Planning special collection on the visual assessment of landscapes. *Landscape and Urban Planning*, 191(August), 103635. https://doi.org/10.1016/j.landurbplan.2019.103635

- Goepel, K. (2018). Implementation of an Online software tool for the Analytic Hierarchy Process (AHP-OS). *International Journal of the Analytic Hierarchy Process*, 10(3), 469–487. https://doi.org/10.13033/ijahp.v10i3.590
- Golivets, M. (2011). *Aesthetic Values of Forest Landscapes* (Swedish University of Agricultural Sciences). Retrieved from https://www.researchgate.net/publication/259232123
- Grigorescu, I., & Geacu, S. (2017). The dynamics and conservation of forest ecosystems in Bucharest Metropolitan Area. *Urban Forestry and Urban Greening*, 27(April), 90–99. https://doi.org/10.1016/j.ufug.2017.04.012
- Haaland, C., & van den Bosch, C. K. (2015). Challenges and strategies for urban green-space planning in cities undergoing densification: A review. *Urban Forestry and Urban Greening*, 14(4), 760–771. https://doi.org/10.1016/j.ufug.2015.07.009
- Hafizan, C., Noor, Z. Z., Abba, A. H., & Hussein, N. (2016). An alternative aggregation method for a life cycle impact assessment using an analytical hierarchy process. *Journal of Cleaner Production*, 112, 3244–3255. https://doi.org/10.1016/j.jclepro.2015.09.140
- Hägerhäll, C. M., Sang, Å. O., Englund, J. E., Ahlner, F., Rybka, K., Huber, J., & Burenhult, N. (2018). Do humans really prefer semi-open natural landscapes? A cross-cultural reappraisal. *Frontiers in Psychology*, 9(MAY). https://doi.org/10.3389/fpsyg.2018.00822
- Hauru, K., Koskinen, S., Kotze, D. J., & Lehvävirta, S. (2014). The effects of decaying logs on the aesthetic experience and acceptability of urban forests Implications for forest management. *Landscape and Urban Planning*, 123, 114–123. https://doi.org/10.1016/j.landurbplan.2013.12.014
- Hedblom, M., Gunnarsson, B., Iravani, B., Knez, I., Schaefer, M., Thorsson, P., & Lundström, J. N. (2019). Reduction of physiological stress by urban green space in a multisensory virtual experiment. *Scientific Reports*, *9*(1). https://doi.org/10.1038/s41598-019-46099-7
- Hegetschweiler, K. T., Plum, C., Fischer, C., Brändli, U. B., Ginzler, C., & Hunziker, M. (2017). Towards a comprehensive social and natural scientific forest-recreation monitoring instrument—A prototypical approach. *Landscape and Urban Planning*, 167(February), 84–97. https://doi.org/10.1016/j.landurbplan.2017.06.002
- Heidarlou, H. B., Shafiei, A. B., Erfanian, M., Tayyebi, A., & Alijanpour, A. (2019). Effects of preservation policy on land use changes in Iranian Northern Zagros forests. *Land Use Policy*, 81(October 2018), 76–90. https://doi.org/10.1016/j.landusepol.2018.10.036
- Hermes, J., Albert, C., & von Haaren, C. (2018). Assessing the aesthetic quality of landscapes in Germany. *Ecosystem Services*, *31*, 296–307. https://doi.org/10.1016/j.ecoser.2018.02.015

- Herzog, T. R., & Bryce, A. G. (2007). Mystery and Preference in Within-Forest Settings. *Environment and Behavior*, 39(6), 779–796. https://doi.org/https://doi.org/10.1177/00139165062987
- Herzog, T. R., & Kropscott, L. S. (2004). Legibility, mystery, and visual access as predictors of preference and perceived danger in forest settings without pathways. *Environment and Behavior*, 36(5), 659–677. https://doi.org/10.1177/0013916504264138
- Hilsendager, K., Harshaw, H., & Kozak, R. (2017). The effects of forest industry impacts upon tourist perceptions and overall satisfaction. *Leisure/Loisir*, 41(2), 205–230. https://doi.org/10.1080/14927713.2017.1353437
- Hirons, M., Comberti, C., & Dunford, R. (2016). Valuing Cultural Ecosystem Services. *Annual Review of Environment and Resources*, 41, 545–574. https://doi.org/10.1146/annurev-environ-110615-085831
- Huron, D. (2008). Aesthetics. In *The Oxford Handbook of Music Psychology*. https://doi.org/10.1093/oxfordhb/9780199298457.013.0014
- Hussainzad, E. A., Mohd Yusof, M. J., Gao, H., Yu Yang, K. K., Kueng Ming, N. W., Abdul Majid, M. S. Bin, & Xu, T. (2020). Assessing Hutan Simpan Ampang using GIS-based Potential Surface Analysis approach. *IOP Conference Series: Earth and Environmental Science*, 540(1). https://doi.org/10.1088/1755-1315/540/1/012030
- Hutt-Taylor, K., & Ziter, C. D. (2022). Private trees contribute uniquely to urban forest diversity, structure and service-based traits. *Urban Forestry and Urban Greening*, 78(June), 127760. https://doi.org/10.1016/j.ufug.2022.127760
- Hwang, Y. H., & Roscoe, C. J. (2017). Preference for site conservation in relation to on-site biodiversity and perceived site attributes: An on-site survey of unmanaged urban greenery in a tropical city. *Urban Forestry and Urban Greening*, 28(September), 12–20. https://doi.org/10.1016/j.ufug.2017.09.011
- Ihemezie, E. J., Nawrath, M., Strauß, L., Stringer, L. C., & Dallimer, M. (2021). The influence of human values on attitudes and behaviours towards forest conservation. *Journal of Environmental Management*, 292(March). https://doi.org/10.1016/j.jenvman.2021.112857
- Ismail, N. A., & Ariffin, N. F. M. (2015). Longing for culture and nature: The Malay rural cultural landscape "Dsesa tercinta." *Jurnal Teknologi*, 75(9), 21–24. https://doi.org/10.11113/jt.v75.5219
- Isyaku, U. (2021). What motivates communities to participate in forest conservation? A study of REDD+ pilot sites in Cross River, Nigeria. *Forest Policy and Economics*, 133(February), 102598. https://doi.org/10.1016/j.forpol.2021.102598

- Jean-Christophe, F., Jens, I., & Nicolas, B. (2020). Coupling crowd-sourced imagery and visibility modelling to identify landscape preferences at the panorama level. *Landscape and Urban Planning*, 197(October 2019), 103756. https://doi.org/10.1016/j.landurbplan.2020.103756
- Jellema, A., Stobbelaar, D. J., Groot, J. C. J., & Rossing, W. A. H. (2009). Landscape character assessment using region growing techniques in geographical information systems. *Journal of Environmental Management*, 90(SUPPL. 2), S161–S174. https://doi.org/10.1016/j.jenvman.2008.11.031
- Jim, C. Y., & Chen, W. Y. (2008). Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). *Journal of Environmental Management*, 88(4), 665–676. https://doi.org/10.1016/j.jenvman.2007.03.035
- Jim, C. Y., Zhang, H., Hui, L. C., & Parker, J. (2021). Agreement levels of London tree officers towards the benefits and costs of urban forests. *Urban Forestry and Urban Greening*, 65(September), 127356. https://doi.org/10.1016/j.ufug.2021.127356
- Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. *Ecology Letters*, 21(7), 989–1000. https://doi.org/10.1111/ele.12964
- Junge, X., Schüpbach, B., Walter, T., Schmid, B., & Lindemann-Matthies, P. (2015). Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. *Landscape and Urban Planning*, 133, 67–77. https://doi.org/10.1016/j.landurbplan.2014.09.010
- Jusoff, K., & Setiawan, I. (2003). Quantifying deforestation in a permanent forest reserve using vectorised Landsat TM. *Journal of Tropical Forest Science*, 15(4), 570–582.
- K.C., Y. B., & Sedhai, S. (2019). Residents' Attitudes towards the Residential Urban Forest in Metropolitan City: A Case Study from Bharatpur City in Nepal. *Forestry: Journal of Institute of Forestry, Nepal, 16*(16), 72–85. https://doi.org/10.3126/forestry.v16i0.28360
- Kalivoda, O., Vojar, J., Skřivanová, Z., & Zahradník, D. (2014). Consensus in landscape preference judgments: The effects of landscape visual aesthetic quality and respondents' characteristics. *Journal of Environmental Management*, 137, 36–44. https://doi.org/10.1016/j.jenvman.2014.02.009
- Kang, N., & Liu, C. (2022). Towards landscape visual quality evaluation: methodologies, technologies, and recommendations. *Ecological Indicators*, 142(July), 109174. https://doi.org/10.1016/j.ecolind.2022.109174
- Kang, Y., & Kim, E. J. (2019). Differences of Restorative Effects While Viewing Urban Landscapes and Green Landscapes. *Sustainability*, 11(7), 2129. https://doi.org/10.3390/su11072129

- Kanniah, K. D. (2017). Quantifying green cover change for sustainable urban planning: A case of Kuala Lumpur, Malaysia. *Urban Forestry and Urban Greening*, 27(September), 287–304. https://doi.org/10.1016/j.ufug.2017.08.016
- Kanniah, K. D., Kaskaoutis, D. G., San Lim, H., Latif, M. T., Kamarul Zaman, N. A. F., & Liew, J. (2016). Overview of atmospheric aerosol studies in Malaysia: Known and unknown. *Atmospheric Research*, *182*, 302–318. https://doi.org/10.1016/j.atmosres.2016.08.002
- Kanniah, K. D., Lim, H. Q., Kaskaoutis, D. G., & Cracknell, A. P. (2014). Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. *Atmospheric Research*, *138*, 223–239. https://doi.org/10.1016/j.atmosres.2013.11.018
- Kanniah, K. D., Sheikhi, A., Cracknell, A. P., Goh, H. C., Tan, K. P., Ho, C. S., & Rasli, F. N. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. *Remote Sensing*, 7(11), 14360–14385. https://doi.org/10.3390/rs71114360
- Kanniah, K. D., & Siong, H. C. (2017). Urban forest cover change and sustainability of Malaysian cities. *Chemical Engineering Transactions*, *56*, 673–678. https://doi.org/10.3303/CET1756113
- Kaplan, H. S., & Gangestad, S. W. (2015). Life History Theory and Evolutionary Psychology. In *The Handbook of Evolutionary Psychology* (pp. 68–95). https://doi.org/10.1002/9780470939376.ch2
- Kaplan, & Kaplan. (1982). Cognition and Environment: Functioning in an Uncertain World. In *Praeger*, *New York*.
- Kaplan, & Kaplan. (1989). The experience of nature: a psychological perspective. In *Cambridge university press*. https://doi.org/10.1097/00005053-199111000-00012
- Karasov, O., Vieira, A. A. B., Külvik, M., & Chervanyov, I. (2020). Landscape coherence revisited: GIS-based mapping in relation to scenic values and preferences estimated with geolocated social media data. *Ecological Indicators*, 111(November 2019), 105973. https://doi.org/10.1016/j.ecolind.2019.105973
- Karuppannan, S., Baharuddin, Z. M., Sivam, A., & Daniels, C. B. (2014). Urban green space and urban biodiversity: Kuala Lumpur, Malaysia. *Journal of Sustainable Development*, 7(1), 1–16. https://doi.org/10.5539/jsd.v7n1p1
- Kaushall, J. N. (2023). History, critique, experience: On the dialectical relationship between art and philosophy in Adorno's aesthetic theory. *Philosophy and Social Criticism*. https://doi.org/https://doi.org/10.1177/0191453723115815

- Kerebel, A., Gélinas, N., Déry, S., Voigt, B., & Munson, A. (2019). Landscape aesthetic modelling using Bayesian networks: Conceptual framework and participatory indicator weighting. *Landscape and Urban Planning*, 185(February), 258–271. https://doi.org/10.1016/j.landurbplan.2019.02.001
- Khachatryan, H., Rihn, A., Hansen, G., & Clem, T. (2020). Landscape Aesthetics and Maintenance Perceptions: Assessing the Relationship between Homeowners' Visual Attention and Landscape Care Knowledge. *Land Use Policy*, 95(September 2019), 104645. https://doi.org/10.1016/j.landusepol.2020.104645
- Kiley, H. M., Ainsworth, G. B., van Dongen, W. F. D., & Weston, M. A. (2017). Variation in public perceptions and attitudes towards terrestrial ecosystems. *Science of the Total Environment*, 590–591, 440–451. https://doi.org/10.1016/j.scitotenv.2016.12.179
- Killin, A. (2013). The arts and human nature: Evolutionary aesthetics and the evolutionary status of art behaviours: Stephen Davies: The artful species: Aesthetics, art, and evolution. Oxford University Press, Oxford, 2012. *Biology and Philosophy*, 28(4), 703–718. https://doi.org/10.1007/s10539-013-9371-5
- Kim, J. S., Lee, T. J., & Hyun, S. S. (2021). Estimating the economic value of urban forest parks: Focusing on restorative experiences and environmental concerns. *Journal of Destination Marketing and Management*, 20(November 2019), 100603. https://doi.org/10.1016/j.jdmm.2021.100603
- Kirillova, K., Fu, X., Lehto, X., & Cai, L. (2014). What makes a destination beautiful? Dimensions of tourist aesthetic judgment. *Tourism Management*, 42, 282–293. https://doi.org/10.1016/j.tourman.2013.12.006
- Konijnendijk, C. C., Ricard, R. M., Kenney, A., & Randrup, T. B. (2006). Defining urban forestry A comparative perspective of North America and Europe. *Urban Forestry and Urban Greening*, 4(3–4), 93–103. https://doi.org/10.1016/j.ufug.2005.11.003
- Kubalikova, L., Kirchner, K., Kuda, F., & Machar, I. (2019). The role of anthropogenic landforms in sustainable landscape management. *Sustainability* (*Switzerland*), 11(16), 1–16. https://doi.org/10.3390/su11164331
- Kubota, Y., Murata, H., & Kikuzawa, K. (2004). Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. *Journal of Ecology*, 92(2), 230–240. https://doi.org/10.1111/j.0022-0477.2004.00875.x
- Kuper, R. (2017). Evaluations of landscape preference, complexity, and coherence for designed digital landscape models. *Landscape and Urban Planning*, *157*, 407–421. https://doi.org/10.1016/j.landurbplan.2016.09.002
- Langemeyer, J., & Baró, F. (2021). Nature-based solutions as nodes of green-blue

- infrastructure networks: A cross-scale, co-creation approach. *Nature-Based Solutions*, *I*(June), 100006. https://doi.org/10.1016/j.nbsj.2021.100006
- Leal, J. E. (2020). AHP-express: A simplified version of the analytical hierarchy process method. *MethodsX*, 7. https://doi.org/10.1016/j.mex.2019.11.021
- Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., Wu"st, S., Pruessner, J.C., Rietschel, M., Deuschle, M., Meyer-Lindenberg, A. (2011). City living and urban upbringing affect neural social stress processing in humans. *Nature*, 474(7352), 498–501. https://doi.org/10.1038/nature10190
- Lee, K. Y., Seo, J. Il, Kim, K. N., Lee, Y., Kweon, H., & Kim, J. (2019). Application of viewshed and spatial aesthetic analyses to forest practices for Mountain scenery Improvement in the Republic of Korea. *Sustainability (Switzerland)*, 11(9), 1–16. https://doi.org/10.3390/su11092687
- Levy-Tacher, S. I., Ramírez-Marcial, N., Navarrete-Gutiérrez, D. A., & Rodríguez-Sánchez, P. V. (2019). Are Mayan community forest reserves effective in fulfilling people's needs and preserving tree species? *Journal of Environmental Management*, 245(June 2018), 16–27. https://doi.org/10.1016/j.jenvman.2019.04.097
- Li, G., & Zhang, B. (2017). Identification of landscape character types for transregional integration in the Wuling Mountain multi-ethnic area of southwest China. *Landscape and Urban Planning*, 162, 25–35. https://doi.org/10.1016/j.landurbplan.2017.01.008
- Li, J., & Nassauer, J. I. (2020). Cues to care: A systematic analytical review. *Landscape* and *Urban* Planning, 201(May). https://doi.org/10.1016/j.landurbplan.2020.103821
- Li, Y., Viña, A., Yang, W., Chen, X., Zhang, J., Ouyang, Z., Liang, Z., Liu, J. (2013). Effects of conservation policies on forest cover change in giant panda habitat regions, China. *Land Use Policy*, 33, 42–53. https://doi.org/10.1016/j.landusepol.2012.12.003
- Liao, H., Zhao, W., Zhang, C., Dong, W., & Huang, H. (2022). Detecting individuals' spatial familiarity with urban environments using eye movement data. *Computers, Environment and Urban Systems*, 93(August 2021), 101758. https://doi.org/10.1016/j.compenvurbsys.2022.101758
- Lim, S. S., Innes, J. L., & Meitner, M. (2015). Public awareness of aesthetic and other forest values associated with sustainable forest management: A cross-cultural comparison among the public in four countries. *Journal of Environmental Management*, 150, 243–249. https://doi.org/10.1016/j.jenvman.2014.11.026
- Lim, T. W., & Suksuwan, S. (2007). An Assessment of the Status of Permanent Reserved Forests in Peninsular Malaysia, 2001-2005. Malaysia.
- Liu, M., & Schroth, O. (2019). Assessment of Aesthetic Preferences in Relation to

- Vegetation-Created Enclosure in Chinese Urban Parks: A Case Study of Shenzhen Litchi Park. *Sustainability*, 11(6), 1809. https://doi.org/10.3390/su11061809
- Liu, Q., Zhu, Z., Zeng, X., Zhuo, Z., Ye, B., Fang, L., Huang, Q., Lai, P. (2021). The impact of landscape complexity on preference ratings and eye fixation of various urban green space settings. *Urban Forestry and Urban Greening*, 66(October), 127411. https://doi.org/10.1016/j.ufug.2021.127411
- Lokas, I., Petrović, R., & Rakonjac, I. (2023). The Essence of Place: Understanding Genius Loci Through Phenomenology. *On Architecture-Challenges in Design: Proceedings/11th International Conference, December 2023, Belgrade*, (December), 215–224.
- Lothian, A. (1999). Landscape and the philosophy of aesthetics: Is landscape quality inherent in the landscape or in the eye of the beholder? *Landscape and Urban Planning*, 44(4), 177–198. https://doi.org/10.1016/S0169-2046(99)00019-5
- LU, Y., XU, S., LIU, S., & WU, J. (2022). An approach to urban landscape character assessment: Linking urban big data and machine learning. *Sustainable Cities and Society*, 83(January), 103983. https://doi.org/10.1016/j.scs.2022.103983
- Lupp, G., Kantelberg, V., Fäth, J., Hirschbeck, T., Käsbauer, C., Ritter, A., Schisslbauer, J., Pauleit, S. (2022). Through the Eyes of Forest Visitors—Perception and Scenic Preferences of Munich's Urban Proximate Woodlands. *Forests*, 13(10). https://doi.org/10.3390/f13101584
- Ma, B., Hauer, R. J., & Xu, C. (2020). Effects of design proportion and distribution of color in urban and suburban green space planning to visual aesthetics quality. *Forests*, 11(3), 1–18. https://doi.org/10.3390/f11030278
- Mahmoudi, B., Sorouri, Z., Zenner, E. K., & Mafi-Gholami, D. (2022). Development of a new social resilience assessment model for urban forest parks. *Environmental Development*, 43(April), 100724. https://doi.org/10.1016/j.envdev.2022.100724
- Manel, S., & Holderegger, R. (2013). Ten years of landscape genetics. *Trends in Ecology and Evolution*, 28(10), 614–621. https://doi.org/10.1016/j.tree.2013.05.012
- Martín, B., Ortega, E., Martino, P., & Otero, I. (2018). Inferring landscape change from differences in landscape character between the current and a reference situation. *Ecological Indicators*, 90(April), 584–593. https://doi.org/10.1016/j.ecolind.2018.03.065
- Martín, R., & Yepes, V. (2019). The concept of landscape within marinas: Basis for consideration in the management. *Ocean and Coastal Management*, 179(August 2018), 104815. https://doi.org/10.1016/j.ocecoaman.2019.104815

- Martnez-Harms, M. J., & Balvanera, P. (2012). Methods for mapping ecosystem service supply: A review. *International Journal of Biodiversity Science, Ecosystem Services and Management*, 8(1–2), 17–25. https://doi.org/10.1080/21513732.2012.663792
- Matteucci, X. (2013). Photo elicitation: Exploring tourist experiences with researcher-found images. *Tourism Management*, *35*(October), 190–197. https://doi.org/10.1016/j.tourman.2012.07.002
- Maulana, I. A. (2023). Kajian Teori Genius Loci/Spirit of Place Melalui Dimensi Filsafat Ilmu. *Sigma Teknika*, 6(1), 239–246. https://doi.org/10.33373/sigmateknika.v6i1.5149
- Mazurczyk, T., Murtha, T., Goldberg, L., & Orland, B. (2018). Integrating Visual and Cultural Resource Evaluation and Impact Assessment for Landscape Conservation Design and Planning. Visual Resource Stewardship Conference Proceedings, 149–160. Retrieved from https://www.fs.usda.gov/research/treesearch/57539
- McCormick, A., Fisher, K., & Brierley, G. (2015). Quantitative assessment of the relationships among ecological, morphological and aesthetic values in a river rehabilitation initiative. *Journal of Environmental Management*, 153, 60–67. https://doi.org/10.1016/j.jenvman.2014.11.025
- McDonald, G. T., & Lane, M. B. (2004). Converging global indicators for sustainable forest management. *Forest Policy and Economics*, 6(1), 63–70. https://doi.org/10.1016/S1389-9341(02)00101-6
- McMillen, H., Campbell, L. K., Svendsen, E. S., & Reynolds, R. (2016). Recognizing stewardship practices as indicators of social resilience: In living memorials and in a community garden. *Sustainability (Switzerland)*, 8(8). https://doi.org/10.3390/su8080775
- McMorrow, J., & Talip, M. A. (2001). Decline of forest area in Sabah, Malaysia: Relationship to state policies, land code and land capability. *Global Environmental Change*, 11(3), 217–230. https://doi.org/10.1016/S0959-3780(00)00059-5
- Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample Size for Survey Research: Review and Recommendations. *Journal of Applied Structural Equation Modeling*, 4(2). https://doi.org/10.47263/jasem.4(2)01
- MENR. (2020). Ministry of energy and natural resources. Forest area by region. Retrieved from http://www.ketsa.gov.my/en-my/forestry/Pages/Forest-Area-by-Region.aspx
- Minaei, M., Shafizadeh-Moghadam, H., & Tayyebi, A. (2018). Spatiotemporal nexus between the pattern of land degradation and land cover dynamics in Iran. *Land Degradation and Development*, 29(9), 2854–2863. https://doi.org/10.1002/ldr.3007

- Mojiol, A. R. (2018). Public Awareness on the Importance of Urban Forest Parks in Kota Kinabalu City, Sabah. *Borneo Science | The Journal of Science and Technology*, 39(1), 39–47. https://doi.org/10.51200/bsj.v39i1.4418
- Mon, M. S., Mizoue, N., Htun, N. Z., Kajisa, T., & Yoshida, S. (2012). Factors affecting deforestation and forest degradation in selectively logged production forest: A case study in Myanmar. *Forest Ecology and Management*, 267, 190–198. https://doi.org/10.1016/j.foreco.2011.11.036
- Morgenroth, J., Östberg, J., Konijnendijk van den Bosch, C., Nielsen, A. B., Hauer, R., Sjöman, H., Chen, W., Jansson, M. (2016). Urban tree diversity-Taking stock and looking ahead. *Urban Forestry and Urban Greening*, *15*, 1–5. https://doi.org/10.1016/j.ufug.2015.11.003
- Moser, S. (2018). Forest city, Malaysia, and Chinese expansionism. *Urban Geography*, 39(6), 935–943. https://doi.org/10.1080/02723638.2017.1405691
- Mu, Y., Lin, W., Diao, X., Zhang, Z., Wang, J., Lu, Z., Guo, W., Wang, Y., Hu, C., Zhao, C. (2022). Implementation of the visual aesthetic quality of slope forest autumn color change into the configuration of tree species. *Scientific Reports*, *12*(1), 1–19. https://doi.org/10.1038/s41598-021-04317-1
- Muttaqin, M. Z., Alviya, I., Lugina, M., Hamdani, F. A. U., & Indartik. (2019). Developing community-based forest ecosystem service management to reduce emissions from deforestation and forest degradation. *Forest Policy and Economics*, 108(May), 101938. https://doi.org/10.1016/j.forpol.2019.05.024
- Nassauer, J. (1995). Culture and changing landscape structure. *Landscape Ecology*, 10(4), 229–237. https://doi.org/10.1007/BF00129257
- Nassauer, J. (1997). Placing Nature: Culture and Landscape Ecology. In *Environmental Ethics* (Vol. 22). https://doi.org/10.5840/enviroethics200022240
- Nath, B., Niu, Z., & Singh, R. P. (2018). Land Use and Land Cover changes, and environment and risk evaluation of Dujiangyan city (SW China) using remote sensing and GIS techniques. In *Sustainability (Switzerland)* (Vol. 10). https://doi.org/10.3390/su10124631
- Nghonda, D. donné N., Muteya, H. K., Kashiki, B. K. W. N., Sambiéni, K. R., Malaisse, F., Sikuzani, Y. U., Kalenga, W. M., Bogaert, J. (2023). Towards an Inclusive Approach to Forest Management: Highlight of the Perception and Participation of Local Communities in the Management of miombo Woodlands around Lubumbashi (Haut-Katanga, D.R. Congo). *Forests*, *14*(4). https://doi.org/10.3390/f14040687
- Ngo Bieng, M. A., Souza Oliveira, M., Roda, J. M., Boissière, M., Hérault, B., Guizol, P., Villalobos, R., Sist, P. (2021). Relevance of secondary tropical forest for landscape restoration. *Forest Ecology and Management*, 493(March). https://doi.org/10.1016/j.foreco.2021.119265

- Nilsson, K., Konijnendijk, C. C., & Nielsen, A. B. (2013). Urban Forest urban forest Function, Design and Management. *Sustainable Built Environments*, 701–718. https://doi.org/10.1007/978-1-4614-5828-9\_218
- Niță, M. R., Năstase, I. I., Badiu, D. L., Onose, D. A., & Gavrilidis, A. A. (2018). Evaluating Urban forests connectivity in relation to urban functions in Romanian Cities. *Carpathian Journal of Earth and Environmental Sciences*, 13(1), 291–299. https://doi.org/10.26471/cjees/2018/013/025
- Nowak, D. J. (2006). Institutionalizing urban forestry as a "biotechnology" to improve environmental quality. *Urban Forestry and Urban Greening*, 5(2), 93–100. https://doi.org/10.1016/j.ufug.2006.04.002
- Nowak, D. J., Hirabayashi, S., Doyle, M., McGovern, M., & Pasher, J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality and human health. *Urban Forestry and Urban Greening*, 29(October 2017), 40–48. https://doi.org/10.1016/j.ufug.2017.10.019
- O'Brien, L. E., Urbanek, R. E., & Gregory, J. D. (2022). Ecological functions and human benefits of urban forests. *Urban Forestry and Urban Greening*, 75(November 2021), 127707. https://doi.org/10.1016/j.ufug.2022.127707
- Ode, Å., Hagerhall, C. M., & Sang, N. (2010). Analysing visual landscape complexity: Theory and application. *Landscape Research*, *35*(1), 111–131. https://doi.org/10.1080/01426390903414935
- Ode, Å., & Miller, D. (2011). Analysing the relationship between indicators of landscape complexity and preference. *Environment and Planning B: Planning and Design*, 38(1), 24–38. https://doi.org/10.1068/b35084
- Ode, Å., Tveit, M., & Fry, G. (2008). Capturing landscape visual character using indicators: Touching base with landscape aesthetic theory. *Landscape Research*, 33(1), 89–117. https://doi.org/10.1080/01426390701773854
- Oono, A., Kamiyama, C., & Saito, O. (2020). Causes and consequences of reduced human intervention in formerly managed forests in Japan and other countries. *Sustainability Science*, 15(5), 1511–1529. https://doi.org/10.1007/s11625-020-00845-3
- Ordóñez-Barona, C., Bush, J., Hurley, J., Amati, M., Juhola, S., Frank, S., Ritchie, M., Clark, C., English, A., Hertzog, K., Caffin, M., Watt, S., Livesley, S. J. (2021). International approaches to protecting and retaining trees on private urban land. *Journal of Environmental Management*, 285(February). https://doi.org/10.1016/j.jenvman.2021.112081
- Ordóñez Barona, C., Wolf, K., Kowalski, J. M., Kendal, D., Byrne, J. A., & Conway, T. M. (2022). Diversity in public perceptions of urban forests and urban trees: A critical review. *Landscape and Urban Planning*, 226(September 2021). https://doi.org/10.1016/j.landurbplan.2022.104466
- Ordóñez, C., & Duinker, P. N. (2010). Interpreting sustainability for urban forests.

- Sustainability, 2(6), 1510–1522. https://doi.org/10.3390/su2061510
- Othman, J. (2015). Assessing Scenic Beauty of Nature-based Landscapes of Fraser's Hill. *Procedia Environmental Sciences*, 30, 115–120. https://doi.org/10.1016/j.proenv.2015.10.020
- Othman, N., Mohamed, N., & Ariffin, M. H. (2015). Landscape Aesthetic Values and Visiting Performance in Natural Outdoor Environment. *Procedia Social and Behavioral Sciences*, 202(December 2014), 330–339. https://doi.org/10.1016/j.sbspro.2015.08.237
- Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2013). Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. *Administration and Policy in Mental Health and Mental Health Services Research*, 42(5), 533–544. https://doi.org/10.1007/s10488-013-0528-y
- Palmer, J. F. (2019). The contribution of a GIS-based landscape assessment model to a scientifically rigorous approach to visual impact assessment. *Landscape and Urban Planning*, 189(March), 80–90. https://doi.org/10.1016/j.landurbplan.2019.03.005
- Palmer, J. F., & Hoffman, R. E. (2001). Rating reliability and representation validity in scenic landscape assessments. *Landscape and Urban Planning*, *54*(1–4), 149–161. https://doi.org/10.1016/S0169-2046(01)00133-5
- Panagopoulos, T. (2009). Linking forestry, sustainability and aesthetics. *Ecological Economics*, 68(10), 2485–2489. https://doi.org/10.1016/j.ecolecon.2009.05.006
- Pant, S., Kumar, A., Ram, M., Klochkov, Y., & Sharma, H. K. (2022). Consistency Indices in Analytic Hierarchy Process: A Review. *Mathematics*, 10(8), 1–15. https://doi.org/10.3390/math10081206
- Pardela, Ł., Lis, A., Zalewska, K., & Iwankowski, P. (2022). How vegetation impacts preference, mystery and danger in fortifications and parks in urban areas. *Landscape and Urban Planning*, 228(August), 0–2. https://doi.org/10.1016/j.landurbplan.2022.104558
- Paudyal, R., Stein, T. V., Ober, H. K., Swisher, M. E., Jokela, E. J., & Adams, D. C. (2018). Recreationists' perceptions of scenic beauty and satisfaction at a public forest managed for endangered wildlife. *Forests*, *9*(5), 1–13. https://doi.org/10.3390/f9050241
- Pawełoszek, I. (2021). Customer segmentation based on activity monitoring applications for the recommendation system. *Procedia Computer Science*, 192, 4751–4761. https://doi.org/10.1016/j.procs.2021.09.253
- Pellaton, R. Lellei-Kovács, E. Báldi, A. (2022). Cultural ecosystem services in European grasslands: A systematic review of threats Cultural ecosystem services in European grasslands: A systematic review of threats. *Ambio A*

- Journal of the Human Environment, (July). https://doi.org/10.1007/s13280-022-01755-7
- Peng, S. H. (2019). Landscape assessment for stream regulation works in a watershed using the analytic network process (ANP). *Sustainability* (*Switzerland*), 11(6). https://doi.org/10.3390/su11061540
- Perfors, T. E. (2018). Expanding the Use of Visualization Technology: 3d Modeling. Visual Resource Stewardship Conference Proceedings: Landscape and Seascape Management in a Time of Change, 270–274. Retrieved from https://www.fs.usda.gov/research/treesearch/57563
- Peters, M. V., Tylor, K. A., Meyer, M. E., & Sullivan, R. G. (2019). Getting in the game: A national park service approach to visual resources inventory. *Visual Resource Stewardship Conference Proceedings GTR-NRS-P-183*, (December). Retrieved from https://www.researchgate.net/publication/336114391%0AGETTING
- Pierskalla, C. D., Deng, J., & Siniscalchi, J. M. (2016). Examining the product and process of scenic beauty evaluations using moment-to-moment data and GIS: The case of Savannah, GA. *Urban Forestry and Urban Greening*, 19, 212–222. https://doi.org/10.1016/j.ufug.2016.07.011
- Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. *Environmental Modelling and Software*, 51, 250–268. https://doi.org/10.1016/j.envsoft.2013.09.015
- Pirnat, J., & Hladnik, D. (2018). The concept of landscape structure, forest continuum and connectivity as a support in urban forest management and landscape planning. *Forests*, 9(10). https://doi.org/10.3390/f9100584
- Polat, A. (2015). Visual Quality Assessment Methods in Landscape Architecture. 19th International Academic Conference, Florence AHMET, (September). Retrieved from https://www.researchgate.net/publication/282665755\_Visual\_Quality\_Assessment\_in\_Landscape\_Architecture
- Price, C. (2003). Quantifying the aesthetic benefits of urban forestry. *Urban Forestry and Urban Greening*, 1(3), 123–133. https://doi.org/10.1078/1618-8667-00013
- Qi, J., Lin, E. S., Tan, P. Y., Zhang, X., Ho, R., Sia, A., Olszewska-Guizzo, A., Waykool, R. (2023). Representing the landscape visual quality of residential green spaces in Singapore with 3D spatial metrics. *Urban Forestry and Urban Greening*, 90(November), 128132. https://doi.org/10.1016/j.ufug.2023.128132
- Qi, J., Lin, E. S., Yok Tan, P., Chun Man Ho, R., Sia, A., Olszewska-Guizzo, A., Zhang, X., Waykool, R. (2022). Development and application of 3D spatial

- metrics using point clouds for landscape visual quality assessment. *Landscape and Urban Planning*, 228(July), 104585. https://doi.org/10.1016/j.landurbplan.2022.104585
- Rafi, Z. N., Kazemi, F., & Tehranifar, A. (2020). Public preferences toward waterwise landscape design in a summer season. *Urban Forestry and Urban Greening*, 48(December 2019), 1–10. https://doi.org/10.1016/j.ufug.2019.126563
- Raman, T. L., Aziz, N. A. A., & Yaakob, S. S. N. (2021). The effects of different natural environment influences on health and psychological well-being of people: A case study in selangor. *Sustainability*, *13*(15), 8597. https://doi.org/10.3390/su13158597
- Ratra, R., & Gulia, P. (2020). Experimental evaluation of open source data mining tools (WEKA and orange). *International Journal of Engineering Trends and Technology*, 68(8), 30–35. https://doi.org/10.14445/22315381/IJETT-V68I8P206S
- Reyes-Riveros, R., Altamirano, A., De La Barrera, F., Rozas-Vásquez, D., Vieli, L., & Meli, P. (2021). Linking public urban green spaces and human well-being: A systematic review. *Urban Forestry and Urban Greening*, 61(September 2020). https://doi.org/10.1016/j.ufug.2021.127105
- Reygadas, Y., Spera, S. A., & Salisbury, D. S. (2023). Effects of deforestation and forest degradation on ecosystem service indicators across the Southwestern Amazon. *Ecological Indicators*, 147(January), 109996. https://doi.org/10.1016/j.ecolind.2023.109996
- Ribe, R. G. (2005). Aesthetic perceptions of green-tree retention harvests in vista views: The interaction of cut level, retention pattern and harvest shape. *Landscape and Urban Planning*, 73(4), 277–293. https://doi.org/10.1016/j.landurbplan.2004.07.003
- Ribe, R. G. (2006). Perceptions of forestry alternatives in the US Pacific Northwest: Information effects and acceptability distribution analysis. *Journal of Environmental Psychology*, 26(2), 100–115. https://doi.org/10.1016/j.jenvp.2006.05.004
- Ribeiro, M. P., de Mello, K., & Valente, R. A. (2022). How can forest fragments support protected areas connectivity in an urban landscape in Brazil? *Urban Forestry and Urban Greening*, 74(February), 127683. https://doi.org/10.1016/j.ufug.2022.127683
- Robalino, J., Sandoval, C., Barton, D. N., Chacon, A., & Pfaff, A. (2015). Evaluating interactions of forest conservation policies on avoided deforestation. *PLoS ONE*, *10*(4), 1–16. https://doi.org/10.1371/journal.pone.0124910
- Rodríguez-Entrena, M., Colombo, S., & Arriaza, M. (2017). The landscape of olive groves as a driver of the rural economy. *Land Use Policy*, 65, 164–175.

- Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences (Second ed.). New York: Holt Rinehart and Winston.
- Rosley, M. S. F., Harun, N. Z., Yusof, J. N., & Abdul Rahman, S. R. (2024). Empowering public participation in assessing the indicators of aesthetic value for historical landscape: a case study on Melaka, Malaysia. *Cogent Arts and Humanities*, *11*(1). https://doi.org/10.1080/23311983.2024.2380114
- Rosley, M. S. F., Rahman, S. R. A., & Lamit, H. (2014). Biophilia Theory Revisited: Experts and Non-experts Perception on Aesthetic Quality of Ecological Landscape. *Procedia Social and Behavioral Sciences*, *153*, 349–362. https://doi.org/10.1016/j.sbspro.2014.10.068
- Ruban, D. A., Sallam, E. S., Ermolaev, V. A., & Yashalova, N. N. (2020). Aesthetic Value of Colluvial Blocks in Geosite-Based Tourist Destinations: Evidence from SW Russia. *Geosciences* (Switzerland), 10(2), 1–9. https://doi.org/10.3390/geosciences10020051
- Saaty, T. L. (1986). Axiomatization of the Analytic Hierarchy Process. *Management Science*, 32(7), 841–855. https://doi.org/https://doi.org/10.1287/mnsc.32.7.841
- Sacchelli, S., & Favaro, M. (2019). A virtual-reality and soundscape-based approach for assessment and management of cultural ecosystem services in urban forest. *Forests*, 10(9). https://doi.org/10.3390/f10090731
- Sahraoui, Y., Clauzel, C., & Foltête, J. C. (2016). Spatial modelling of landscape aesthetic potential in urban-rural fringes. *Journal of Environmental Management*, 181, 623–636. https://doi.org/10.1016/j.jenvman.2016.06.031
- Samus, A., Freeman, C., Heezik, Y. Van, Krumme, K., & Dickinson, K. J. M. (2022). How do urban green perceived wildness and nature connectedness. *Journal of Environmental Psychology*, 82(July), 101850. https://doi.org/10.1016/j.jenvp.2022.101850
- Sánchez-Cuervo, A. M., Aide, T. M., Clark, M. L., & Etter, A. (2012). Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010. *PLoS ONE*, 7(8). https://doi.org/10.1371/journal.pone.0043943
- Sander, H., Polasky, S., & Haight, R. G. (2010). The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA. *Ecological Economics*, 69(8), 1646–1656. https://doi.org/10.1016/j.ecolecon.2010.03.011
- Sanz, A. S. R., Fernandez, C., Mouillot, F., Ferrat, L., Istria, D., & Pasqualini, V. (2013). Long-term forest dynamics and land-use abandonment in the Mediterranean Mountains, Corsica, France. *Ecology and Society*, *18*(2). https://doi.org/10.5751/ES-05556-180238

- Sarasso, P., Neppi-Modona, M., Sacco, K., & Ronga, I. (2020). "Stopping for knowledge": The sense of beauty in the perception-action cycle. *Neuroscience and Biobehavioral Reviews*, 118(September), 723–738. https://doi.org/10.1016/j.neubiorev.2020.09.004
- Sari, D., & Coruh, A. (2016). Visual Landscape Assessment of the Alpine Rocky Habitats: A Case Study of Hatila Valley National. In *Environmental Sustainability and Landscape Management*. St. Kliment Ohridski University Press.
- Sato, M., Aoshima, I., & Chang, Y. (2021). Connectedness to nature and the conservation of the urban ecosystem: Perspectives from the valuation of urban forests. *Forest Policy and Economics*, 125(March 2019), 102396. https://doi.org/10.1016/j.forpol.2021.102396
- Scheuer, S., Jache, J., Kičić, M., Wellmann, T., Wolff, M., & Haase, D. (2022). A trait-based typification of urban forests as nature-based solutions. *Urban Forestry and Urban Greening*, 78(April). https://doi.org/10.1016/j.ufug.2022.127780
- Schirpke, U., Altzinger, A., Leitinger, G., & Tasser, E. (2019). Change from agricultural to touristic use: Effects on the aesthetic value of landscapes over the last 150 years. *Landscape and Urban Planning*, 187(September 2018), 23–35. https://doi.org/10.1016/j.landurbplan.2019.03.004
- Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., & Nowak, D. (2016). Air pollution removal by trees in public green spaces in Strasbourg city, France. *Urban Forestry and Urban Greening*, 17(2), 192–201. https://doi.org/10.1016/j.ufug.2016.04.010
- Shahidan, N. S., & Md Khalid, R. (2019). Forest Research Institute Malaysia (FRIM) as Heritage Forest: Existing Legal Protection and its Effectiveness. *International Journal of Asian Social Science*, 9(12), 702–708. https://doi.org/10.18488/journal.1.2019.912.702.708
- Sharafatmandrad, M., & Khosravi Mashizi, A. (2020). Visual value of rangeland landscapes: A study based on structural equation modeling. *Ecological Engineering*, 146(January), 105742. https://doi.org/10.1016/j.ecoleng.2020.105742
- Shayestefar, M., Pazhouhanfar, M., van Oel, C., & Grahn, P. (2022). Exploring the Influence of the Visual Attributes of Kaplan's Preference Matrix in the Assessment of Urban Parks: A Discrete Choice Analysis. *Sustainability*, 14(12). https://doi.org/10.3390/su14127357
- Shen, Y., Wang, Q., Liu, H., Luo, J., Liu, Q., & Lan, Y. (2023). Landscape Design Intensity and Its Associated Complexity of Forest Landscapes in Relation to Preference and Eye Movements. *Forests*, *14*(4). https://doi.org/10.3390/f14040761
- Sheppard, S. R. J. (2001). Beyond visual resource management: emerging theories of

- an ecological aesthetic and visible stewardship. In *Forests and landscapes: linking ecology, sustainability and aesthetics* (pp. 149–172). https://doi.org/10.1079/9780851995007.0149
- Shi, J., Honjo, T., Zhang, K., & Furuya, K. (2020). Using virtual reality to assess landscape: A comparative study between on-site survey and virtual reality of aesthetic preference and landscape cognition. *Sustainability (Switzerland)*, 12(7). https://doi.org/10.3390/su12072875
- Simkin, J., Ojala, A., & Tyrväinen, L. (2020). Restorative effects of mature and young commercial forests, pristine old-growth forest and urban recreation forest A field experiment. *Urban Forestry and Urban Greening*, 48(December 2019), 126567. https://doi.org/10.1016/j.ufug.2019.126567
- Singh, P., & Ellard, C. G. (2012). Functional analysis of concealment: A novel application of prospect and refuge theory. *Behavioural Processes*, 91(1), 22–25. https://doi.org/10.1016/j.beproc.2012.05.003
- Siriwardena, S. D., Boyle, K. J., Holmes, T. P., & Wiseman, P. E. (2016). The implicit value of tree cover in the U.S.: A meta-analysis of hedonic property value studies. *Ecological Economics*, 128, 68–76. https://doi.org/10.1016/j.ecolecon.2016.04.016
- SMS. (1995). Scenery Management System. Retrieved from United States Department of Agriculture, Forest Service website: https://www.fs.usda.gov/detail/mantilasal/landmanagement/planning/?cid=fs eprd547368
- Song, M., Xie, Q., Tan, K. H., & Wang, J. (2020). A fair distribution and transfer mechanism of forest tourism benefits in China. *China Economic Review*, 63(January), 101542. https://doi.org/10.1016/j.chieco.2020.101542
- Spielhofer, R., Hunziker, M., Kienast, F., Wissen Hayek, U., & Grêt-Regamey, A. (2021). Does rated visual landscape quality match visual features? An analysis for renewable energy landscapes. *Landscape and Urban Planning*, 209(January). https://doi.org/10.1016/j.landurbplan.2020.104000
- Stamps, A. E. (2004). Mystery, complexity, legibility and coherence: A metaanalysis. *Journal of Environmental Psychology*, 24(1), 1–16. https://doi.org/10.1016/S0272-4944(03)00023-9
- Stamps, A. E. (2007). Entropy and environmental mystery. *Perceptual and Motor Skills*, 104(3), 691–701. https://doi.org/10.2466/PMS.104.3.691-701
- Stedman, R., Beckley, T., Wallace, S., & Ambard, M. (2004). A picture and 1000 words: Using resident-employed photography to understand attachment to high amenity places. *Journal of Leisure Research*, *36*(4), 580–606. https://doi.org/10.1080/00222216.2004.11950037
- Stefanidis, K., Kostara, A., & Papastergiadou, E. (2016). Implications of human activities, land use changes and climate variability in mediterranean lakes of

- Stigsdotter, U. K., Corazon, S. S., Sidenius, U., Refshauge, A. D., & Grahn, P. (2017). Forest design for mental health promotion—Using perceived sensory dimensions to elicit restorative responses. *Landscape and Urban Planning*, 160, 1–15. https://doi.org/10.1016/j.landurbplan.2016.11.012
- Subiza-Pérez, M., Hauru, K., Korpela, K., Haapala, A., & Lehvävirta, S. (2019). Perceived Environmental Aesthetic Qualities Scale (PEAQS) A self-report tool for the evaluation of green-blue spaces. *Urban Forestry and Urban Greening*, 43(February), 126383. https://doi.org/10.1016/j.ufug.2019.126383
- Sugimoto, K. (2013). Quantitative measurement of visitors' reactions to the settings in urban parks: Spatial and temporal analysis of photographs. *Landscape and Urban Planning*, 110(1), 59–63. https://doi.org/10.1016/j.landurbplan.2012.10.004
- Sullivan, R. G., & Meyer, M. (2016). Documenting America 's Scenic Treasures: The National Park Service Visual Resource Inventory. *National Association of Environmental Professionals Annual Conference*, (April). Retrieved from https://www.researchgate.net/publication/301698961
- Swanwick, C. (2002). Landscape character assessment. Guidance for England and Scotland. In *Countryside Agency*, *Scottish Natural Heritage*, *Edinburgh*. https://doi.org/10.1016/j.jenvman.2008.11.031
- Swetnam, R. D., Harrison-Curran, S. K., & Smith, G. R. (2017). Quantifying visual landscape quality in rural Wales: A GIS-enabled method for extensive monitoring of a valued cultural ecosystem service. *Ecosystem Services*, 26(November 2016), 451–464. https://doi.org/10.1016/j.ecoser.2016.11.004
- Swetnam, Ruth D., & Tweed, F. S. (2018). A tale of two landscapes: Transferring landscape quality metrics from Wales to Iceland. *Land Use Policy*, 76(February), 565–576. https://doi.org/10.1016/j.landusepol.2018.02.037
- Szell, A. B. (2012). Attitudes and perceptions of local residents and tourists toward the Protected Area of Retezat National Park, Romania (Vol. 3). Western Michigan University.
- Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. *Environmental Earth Sciences*, 60(7), 1509–1521. https://doi.org/10.1007/s12665-009-0286-z
- Tavárez, H., & Elbakidze, L. (2021). Urban forests valuation and environmental disposition: The case of Puerto Rico. *Forest Policy and Economics*, 131. https://doi.org/10.1016/j.forpol.2021.102572
- Tayyebi, A., Shafizadeh-Moghadam, H., & Tayyebi, A. H. (2018). Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. *Land Use Policy*, 71(July 2017),

- Thomas, J. W. (1995). Landscape Aesthetics: A Handbook for Scenery Management. In *Forest Service, U.S. Department of Agriculture*. Retrieved from https://www.nrc.gov/docs/ML1224/ML12241A377.pdf
- Threlfall, C. G., Mata, L., Mackie, J. A., Hahs, A. K., Stork, N. E., Williams, N. S. G., & Livesley, S. J. (2017). Increasing biodiversity in urban green spaces through simple vegetation interventions. *Journal of Applied Ecology*, *54*(6), 1874–1883. https://doi.org/10.1111/1365-2664.12876
- Todorova, A., Asakawa, S., & Aikoh, T. (2004). Preferences for and attitudes towards street flowers and trees in Sapporo, Japan. *Landscape and Urban Planning*, 69(4), 403–416. https://doi.org/10.1016/j.landurbplan.2003.11.001
- Tudor, C., & England, N. (2014). *An Approach to Landscape Character Assessment*. Retrieved from www.gov.uk/natural-england
- Tudoran, G.-M.; Cics, a, A.; Cics, a, M.; Dobre, A.-C. (2022). Management of Recreational Forests in the Romanian Carpathians. *Forests*, 13(9), 1369. https://doi.org/https://doi.org/10.3390/f13091369
- Tveit, M., Ode, Å., & Fry, G. (2006). Key concepts in a framework for analysing visual landscape character. *Landscape Research*, *31*(3), 229–255. https://doi.org/10.1080/01426390600783269
- Tveit, M. S. (2009). Indicators of visual scale as predictors of landscape preference; a comparison between groups. *Journal of Environmental Management*, 90(9), 2882–2888. https://doi.org/10.1016/j.jenvman.2007.12.021
- Tyrväinen, L., Pauleit, S., Seeland, K., & De Vries, S. (2005). Benefits and uses of urban forests and trees. In *Urban Forests and Trees: A Reference Book* (pp. 81–114). https://doi.org/10.1007/3-540-27684-X\_5
- Tyrväinen, L., Silvennoinen, H., & Kolehmainen, O. (2003). Ecological and aesthetic values in urban forest management. *Urban Forestry and Urban Greening*, 1(3), 135–149. https://doi.org/10.1078/1618-8667-00014
- UNFCCC. (1992). *United Nations Framework Convention on Climate Change* (Vol. 62220). Retrieved from https://unfccc.int/resource/docs/convkp/conveng.pdf
- UNFF. (2017). Forest Monitoring, Assessment, and Reporting (FMAR). Retrieved from United Nations Forum on Forests website: https://www.un.org/esa/forests/
- Upreti, R., Wang, Z. H., & Yang, J. (2017). Radiative shading effect of urban trees on cooling the regional built environment. *Urban Forestry and Urban Greening*, 26(May), 18–24. https://doi.org/10.1016/j.ufug.2017.05.008
- USFS. (2019). GMUG SIO Preliminary Draft Plan. Retrieved from United States Department of Agriculture, Forest Service website:

- https://www.arcgis.com/home/item.html?id=835616fc97944b9b95337b680cfd29ef%0AUnited
- Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2018). Data normalisation techniques in decision making: case study with TOPSIS method. *Int. J. Information and Decision Sciences*, 10(1), 27–29. Retrieved from http://www.ca3-uninova.org
- Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. *European Journal of Operational Research*, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
- Valdés-tejera, E. (2019). The aesthetics of water in current landscape architecture projects. *Water, Landscape and Citizenship in the Face of Global Change*. Retrieved from https://www.researchgate.net/publication/348448145
- Van Herzele, A., & Wiedemann, T. (2003). A monitoring tool for the provision of accessible and attractive urban green spaces. *Landscape and Urban Planning*, 63(2), 109–126. https://doi.org/10.1016/S0169-2046(02)00192-5
- Velarde, M. D., Fry, G., & Tveit, M. (2007). Health effects of viewing landscapes Landscape types in environmental psychology. *Urban Forestry and Urban Greening*, 6(4), 199–212. https://doi.org/10.1016/j.ufug.2007.07.001
- Vodouhê, F. G., Coulibaly, O., Adégbidi, A., & Sinsin, B. (2010). Community perception of biodiversity conservation within protected areas in Benin. *Forest Policy and Economics*, 12(7), 505–512. https://doi.org/10.1016/j.forpol.2010.06.008
- Vogl, E., Pekrun, R., & Loderer, K. (2021). Epistemic Emotions and Metacognitive Feelings. *Trends and Prospects in Metacognition Research across the Life Span*, 41–58. https://doi.org/10.1007/978-3-030-51673-4\_3
- Vogt, J. (2020). Urban Forests: Biophysical Features and Benefits. In *Encyclopedia* of the World's Biomes (Vol. 5, pp. 48–57). https://doi.org/10.1016/b978-0-12-409548-9.12404-2
- Vukomanovic, J., & Orr, B. J. (2014). Landscape aesthetics and the scenic drivers of amenity migration in the new West: Naturalness, visual scale, and complexity. *Land*, 3(2), 390–413. https://doi.org/10.3390/land3020390
- Wade, C. M., Austin, K. G., Cajka, J., Lapidus, D., Everett, K. H., Galperin, D., Maynard, R., Sobel, A. (2020). What is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001-2018. *Forests*, 11(5). https://doi.org/10.3390/F11050539
- Wan Talaat, W. I. A., Mohd Tahir, N., & Lokman Husain, M. (2012). Sustainable Management of Forest Biodiversity and the Present Malaysian Policy and Legal Framework. *Journal of Sustainable Development*, 5(3). https://doi.org/10.5539/jsd.v5n3p76

- Wang, H. F., Qureshi, S., Qureshi, B. A., Qiu, J. X., Friedman, C. R., Breuste, J., & Wang, X. K. (2016). A multivariate analysis integrating ecological, socioeconomic and physical characteristics to investigate urban forest cover and plant diversity in Beijing, China. *Ecological Indicators*, 60, 921–929. https://doi.org/10.1016/j.ecolind.2015.08.015
- Wang, H., Ye, J., Tarin, M. W. K., Liu, Y., & Zheng, Y. (2022). Tourists' Safety Perception Clues in the Urban Forest Environment: Visual Quality, Facility Completeness, Accessibility—A Case Study of Urban Forests in Fuzhou, China. *International Journal of Environmental Research and Public Health*, 19(3). https://doi.org/10.3390/ijerph19031293
- Wang, Q., Wang, X., Zhou, Y., Liu, D., & Wang, H. (2022). The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. *Sustainable Cities and Society*, 79(September 2021), 103722. https://doi.org/10.1016/j.scs.2022.103722
- Wang, R., Zhao, J., & Liu, Z. (2016). Consensus in visual preferences: The effects of aesthetic quality and landscape types. *Urban Forestry and Urban Greening*, 20, 210–217. https://doi.org/10.1016/j.ufug.2016.09.005
- Wang, R., Zhao, J., & Meitner, M. J. (2017). Urban woodland understory characteristics in relation to aesthetic and recreational preference. *Urban Forestry and Urban Greening*, 24(March), 55–61. https://doi.org/10.1016/j.ufug.2017.03.019
- Wang, R., Zhao, J., Meitner, M. J., Hu, Y., & Xu, X. (2019). Characteristics of urban green spaces in relation to aesthetic preference and stress recovery. *Urban Forestry and Urban Greening*, 41(101), 6–13. https://doi.org/10.1016/j.ufug.2019.03.005
- Wang, Zi, Li, M., Zhang, X., & Song, L. (2020). Modeling the scenic beauty of autumnal tree color at the landscape scale: A case study of Purple Mountain, Nanjing, China. *Urban Forestry and Urban Greening*, 47(159), 126526. https://doi.org/10.1016/j.ufug.2019.126526
- Wang, Zijin, & Yang, J. (2022). Urbanization strengthens the edge effects on species diversity and composition of woody plants in remnant forests. *Forest Ecosystems*, 9(January), 100063. https://doi.org/10.1016/j.fecs.2022.100063
- Ward, K., & Snoberger, N. (2009). Assessment of landscape scenic quality in the Angelina national forest, Texas using GIS and high-resolution digital imagery. *ASPRS/MAPP Conference*. Retrieved from https://www.asprs.org/a/publications/proceedings/sanantonio09/Ward.pdf
- Wartmann, F. M., Frick, J., Kienast, F., & Hunziker, M. (2021). Factors influencing visual landscape quality perceived by the public. Results from a national survey. *Landscape and Urban Planning*, 208, 104024. https://doi.org/10.1016/j.landurbplan.2020.104024
- Wolf, I. D., & Wohlfart, T. (2014). Walking, hiking and running in parks: A

- multidisciplinary assessment of health and well-being benefits. *Landscape and Urban Planning*, 130(1), 89–103. https://doi.org/10.1016/j.landurbplan.2014.06.006
- Wu, Liangping, Wei, G., Wu, J., & Wei, C. (2020). Some interval-valued intuitionistic fuzzy dombi heronian mean operators and their application for evaluating the ecological value of forest ecological tourism demonstration areas. *International Journal of Environmental Research and Public Health*, 17(3). https://doi.org/10.3390/ijerph17030829
- Wu, Linjia, Dong, Q., Luo, S., Jiang, W., Hao, M., & Chen, Q. (2021). Effects of spatial elements of urban landscape forests on the restoration potential and preference of adolescents. *Land*, *10*(12), 1–16. https://doi.org/10.3390/land10121349
- Xian-jun, Z. (2016). The Great Semblance Is Invisible—Lao tzu and Chuang tzu's Cognitive Aesthetics. *Journal of Literature and Art Studies*, 6(8), 882–894. https://doi.org/10.17265/2159-5836/2016.08.002
- Xudong, Z., Lige, Q., Yanli, G., Zeyang, W., & Xiang, G. (2023). Research on Landscape Remodeling Design of Yangmei Ancient Town Based On Place Spirit Theory. *Journal of Engineering System*, 1(3), 47–50. https://doi.org/10.62517/jes.202302309
- Yang, D., Gao, C., Li, L., & Van Eetvelde, V. (2020). Multi-scaled identification of landscape character types and areas in Lushan National Park and its fringes, China. *Landscape and Urban Planning*, 201(May), 103844. https://doi.org/10.1016/j.landurbplan.2020.103844
- Yang, Jingyi, Yang, J., Xing, D., Luo, X., Lu, S., Huang, C., & Hahs, A. K. (2021). Impacts of the remnant sizes, forest types, and landscape patterns of surrounding areas on woody plant diversity of urban remnant forest patches. *Urban Ecosystems*, 24(2), 345–354. https://doi.org/10.1007/s11252-020-01040-z
- Yang, Jun, McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. *Urban Forestry and Urban Greening*, 3(2), 65–78. https://doi.org/10.1016/j.ufug.2004.09.001
- Yazdani, N. (2019). The effects of cultural background and past usage on Iranian-Australians' appreciation of urban parks and aesthetic preferences. *Landscape Online*, 70, 1–17. https://doi.org/10.3097/LO.201970
- Yuan, S., Browning, M. H. E. M., McAnirlin, O., Sindelar, K., Shin, S., Drong, G., Hoptman, D., Heller, W. (2023). A virtual reality investigation of factors influencing landscape preferences: Natural elements, emotions, and media creation. *Landscape and Urban Planning*, 230(September 2022), 104616. https://doi.org/10.1016/j.landurbplan.2022.104616
- Zaleskienė, E., & Gražulevičiūtė-Vileniškė, I. (2014). Landscape Aesthetics Theories in Modeling the Image of the Rurban Landscape. *Journal of*

- Sustainable Architecture and Civil Engineering, 7(2). https://doi.org/10.5755/j01.sace.7.2.6731
- Zarkesh, M. M. K., Ghoddusi, J., Zaredar, N., Soltani, M. J., Jafari, S., & Ghadirpour, A. (2010). Application of spatial analytical hierarchy process model in land use planning. *Journal of Food, Agriculture and Environment*, 8(2), 970–975.
- Zawawi, A. A., Shiba, M., & Jemali, N. J. N. (2014). Landform classification for site evaluation and forest planning: Integration between scientific approach and traditional concept. *Sains Malaysiana*, 43(3), 349–358.
- Zhang, G., Yang, J., Wu, G., & Hu, X. (2021). Exploring the interactive influence on landscape preference from multiple visual attributes: Openness, richness, order, and depth. *Urban Forestry and Urban Greening*, 65(June), 127363. https://doi.org/10.1016/j.ufug.2021.127363
- Zhang, Q., & Xu, H. (2020). Understanding aesthetic experiences in nature-based tourism: The important role of tourists' literary associations. *Journal of Destination Marketing and Management*, 16(April), 100429. https://doi.org/10.1016/j.jdmm.2020.100429
- Zheng, Y., Lan, S., Chen, W. Y., Chen, X., Xu, X., Chen, Y., & Dong, J. (2019). Visual sensitivity versus ecological sensitivity: An application of GIS in urban forest park planning. *Urban Forestry and Urban Greening*, 41(November 2018), 139–149. https://doi.org/10.1016/j.ufug.2019.03.010
- Zhou, W., Huang, G., Pickett, S. T. A., Wang, J., Cadenasso, M. L., McPhearson, T., Grove, J. M., Wang, J. (2021). Urban tree canopy has greater cooling effects in socially vulnerable communities in the US. *One Earth*, *4*(12), 1764–1775. https://doi.org/10.1016/j.oneear.2021.11.010
- Zhu, Z. X., Escobedo, F. J., Revell, L. J., Brandeis, T., Xie, J., & Wang, H. F. (2021). Using phylogenetic diversity to explore the socioeconomic and ecological drivers of a tropical, coastal urban forest. *Urban Forestry and Urban Greening*, 61(September 2019), 127111. https://doi.org/10.1016/j.ufug.2021.127111
- Zijlema, W. L., Triguero-Mas, M., Cirach, M., Gidlow, C., Kruize, H., Grazuleviciene, R., Nieuwenhuijsen, M. J., Litt, J. S. (2020). Understanding correlates of neighborhood aesthetic ratings: A European-based Four City comparison. *Urban Forestry and Urban Greening*, 47(October 2019), 126523. https://doi.org/10.1016/j.ufug.2019.126523