

UNIVERSITI PUTRA MALAYSIA

STANDARDISATION OF PRECAST CONCRETE MEMBERS FOR LOW-RISE RESIDENTIAL FRAMED BUILDING

HENG CHIANG CHEW

FK 2002 42

STANDARDISATION OF PRECAST CONCRETE MEMBERS FOR LOW – RISE RESIDENTIAL FRAMED BUILDING

By

...

HENG CHIANG CHEW

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfillment of Requirement for the Degree of Master of Science

October 2002

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science.

STANDARDISATION OF PRECAST CONCRETE MEMBERS FOR LOW-RISE RESIDENTIAL FRAMED BUILDING

By

HENG CHIANG CHEW

October 2002

Chairman: Professor Dr. D.N. Trikha

Faculty: Faculty of Engineering

Procast concrete technology has become an emerging trend in Malaysian Construction Industry. Hence, there is a niche in developing a set of standardised and optimised precast concrete elements as well as connections for a speedy, affordably and better quality residential building.

By studying the preferred sizes of the structural members in the existing and combined with the standards of Modular Coordination System; the standardization of precast concrete elements for skeletal framing type of structure can be achieved.

This thesis had also covered the economy part of the elements by comparing the costs of producing these elements for different sets of dimension and

reinforcement combinations until deriving to a most cost effective section with the respective span.

Nearly 300 types of precast concrete elements and connections that have been standardised and optimised through the above mentioned process for skeletal framing residential structures. This is to streamline the precast concrete industry towards proper metrication and cost efficiency in planning, design, construction, assembly and manufacturing of these elements and joints.

Case study on application of standardised precast elements and connections of a residential building – Putra Apartment has proven the practicability of these elements and connections in the building.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains.

KESERAGAMAN ELEMEN-ELEMEN KONKRIT PASANG SIAP UNTUK BANGUNAN KEDIAMAN BERTINGKAT RENDAH

Oleh

HENG CHIANG CHEW

Oktober 2002

Pengerusi: Profesor Dr. D.N. Trikha

Fakulti: Fakulti Kejuruteraan

Teknologi pembinaan jenis pasang siap telahpun menimbul sebagai satu trend pembinaan baru di Malaysia. Oleh itu, adalah perlunya untuk membangunkan satu set elemen dan sambungan konkrit pasang siap yang berseragam dan beroptimum demi menwujudkan bangunan residensial yang cepat dibina, bersanggupan dan berkualiti.

Dengan menyelidik segala size-size elemen yang biasa digunakan dalam pasaran bangunan kediaman bersama Standard Sistem Kordinate Modular Malaysia; penyeragaman elemen konkrit jenis pembinaan pasang siap untuk struktur berangka skeletal boleh dicapai.

Selain daripada itu, tesis ini juga meliputi pengajian kos pembuatan elemenelemen jenis pasang siap demi memperolehi size yang paling ekonomi dalam siri eleman yang ditetapkan.

Hampir 300 jenis elemen dan sambungan telahpun diseragamkan dalam tesis ini dengan cara yang disebut dan merupakan satu cara untuk menyalurkan cara pembinaan konkrit pasang siap ke arah metrikasi dan kos efektif dalam peringkat perancangan, pembinaan, pemasangan dan pembuatan.

Kes pembelajaran juga dikemukakan untuk menguji kesesuaian elemen dan sambungan konkrit berseragam dalam pembinaan sebuah rumah kediaman – Putra Housing. Dan ia telahpun menujukkan tahap kesesuaian yang tinggi elemenelemen dan sambunagan ini dalam bangunan tersebut.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and gratitude to my supervisors, Prof D.N Trikha for his guidance and dedication from the beginning till the completion of the thesis. He has been continuous source of encouragement and showed me the right path whenever I faced any problem in this study. I heartily acknowledge his invaluable review and support. My special thanks also to the supervisory committee members; Assoc. Prof. Dr. Salleh Jaafar and Assoc. Prof. Dr. Abdul Aziz Abdul Samad for their precious time and golden advises to help me improve my thesis.

To the members of the Civil Engineering Department, thank you for the advice and cooperation that they have given to me. My sincere appreciation also goes to Mr. Wong Chee Wheong from my working company, for his concern and efforts to assist me.

Furthermore, I would like to thank all the organizations, which have contributed in this thesis, especially Pn. Zawidatul Asma bt. Ghazali from Department of Work, Malaysia, who had spared her time to provide the necessary information for the success of the study.

Last but not least, sincere appreciation and gratitude to my family members and Ms Adeline Cheong who have provided me faith and moral in their own way.

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL SHEETS	vii
DECLARATION	ix
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF NOTATIONS	XX

CHAPTER

1

INTR	ODUCTION	
1.1	General	1
1.2	Types of Precast Concrete	3
	1.2.1 Skeletal Framing System	4
	1.2.2 Load Bearing Wall Panel System	5
	1.2.3 Modular Cell System	6
1.3	Advantages of Precast Concrete	7
	1.3.1 Reduction in Construction Time	7
	1.3.2 Reduction in Construction Cost	8
	1.3.3 Independence from the Climate Conditions	8
	1.3.4 Better Quality of Final Product	9
	1.3.5 Environmental Friendly	9
1.4	Disadvantages of Precast Concrete Construction	10
1.5	Objectives of the Present Thesis	11
1.6	Organisation of the Thesis	13
1.7	Concluding Remarks	14

2 LITERARURE REVIEW

2.1	Genera	al	15
2.2	Histor	ical Background of Precast Concrete Industry in	
	Malay	sia	15
2.3	Precas	st Concrete Skeletal Framing System	18
2.4	Eleme	ents of Precast Concrete Skeletal Framing System	19
	2.4.1	Beams or Spandrel	20
	2.4.2	Slabs and Floorings	21
	2.4.3	Columns	26
	2.4.4	Wall Panels	27
	2.4.5	Precast Concrete Staircase Flight	28

2.5	Joints	and Connections of Precast Concrete Skeletal	
	Frami	ng System	29
	2.5.1	Compressive Joints	30
	2.5.2	Shear Joints	33
	2.5.3	Tensile Joints	36
	2.5.4	Flexural and Torsional Joints	38
	2.5.5	Connections in Conjunction of Structural Members	40
2.6	Modu	lar Coordination – Malaysian Standards	42
2.7	Concl	uding Remarks	44

3 METHODOLOGY

3.1	Introd	uction	45
3.2	Design	n Consideration	46
	3.2.1	Modular Coordination	46
	3.2.2	Ultimate Strength and Serviceability Requirements	47
	3.2.3	Analysis, Optimisation Based on Market	
		Preferences Study and Cost Effectiveness	48
	3.2.4	Manufaturing, Handling and Hauling Possibilities	49
3.3	Standa	ardisation of Precast Concrete Elements	49
	3.3.1	Design Procedure of Standardised Precast Concrete	
		Beam (PB)	52
	3.3.2	Design Procedure of Precast Concrete Composite	
		Slab (PS)	55
	3.3.3	Design Procedure of Precast Concrete Column	
		(PCo)	58
	3.3.4	Design Procedure of Precast Staircase Flight (PStr)	60
	3.3.5	Optimisation Procedure for all Precast Concrete	
		Elements	61
	3.3.6	Standardisation and Design Procedure of	
		Connections for Skeletal Framing System	61

4 MODULAR COORDINATION – MALAYSIA STANDARDS FOR PRECAST CONCRETE SKELETAL FRAMING SYSTEM

4.1	Introduction	63
4.2	Terminology of MC in Precast Concrete Skeletal Framing	
	System	64
4.3	Coordinated Sizes for Reinforced Concrete Components	65
4.4	Market Survey of Preferred Sizes for Precast Concrete	
	Elements	66
4.5	Selection of Precast Elements Dimensions for IBS Skeletal	
	Framing System	70

5 DESIGN OF 5. ** DISED PRECAST CONCRETE ELEMENTS

5.1	Introd	luction	73
5.2	Ргеса	st Concrete Beam (PB)	74
	5.2.1	Design of Precast Concrete Beam (PB)	74
	5.2.2	Optimisation of Precast Concrete Beam (PB)	7 9
5.3	Preca	st Concrete Composite Slab (PS)	84
	5.3.1	Design of Precast Concrete Composite Slab	84
	5.3.2	Optimisation of Precast Concrete Composite Slab	87
5.4	Preca	st Concrete Column (PCo)	89
	5.4.1	Design of Precast Concrete Column	89
	5.4.2	Optimisation of Precast Concrete Column	91
5.5	Preca	st Staircase Slab (PStr)	92

6 DESIGN AND STANDARDISATION OF IBS CONNECTIONS

6.1	Introduction	95
6.2	Design Brief and Criteria	95
6.3	General Design Methods for Connections	96
	6.3.1 Shear Friction Design Method	96
	6.3.2 Truss Analogy Design Method	99
6.4	Supporting Bearing Component Design	100
	6.4.1 Concrete Corbel	100
	6.4.2 Reinforced Concrete Nibs	102
	6.4.3 Beam Half Joints	103
	6.4.4 Reinforced Concrete Bearing	105
6.5	Structural Steel Inserts	106
	6.5.1 Steel Insert in Columns	107
	6.5.2 Steel Insert in Beams	111
6.6	Column Splice Connection	114
	6.6.1 Grouted Sleeve Splices	115
	6.6.2 Welded Plate Splices	116
	6.6.3 Couple Joint Splices	118
6.7	Column Base Connections	119
	6.7.1 Socket Connections	119
	6.7.2 Base Plate Connections	122
6.8	Standardisatiom of Connection for IBS Skeletal Framing	5
	System	127

xiii

7 **RESULTS OF STANDARDISATION AND OPTIMISATION**

7.1	Introduction	128
7.2	Standardised and Optimised Precast Concrete Beam (PB)	128
7.3	Standardised and Optimised Precast Concrete Composite	
	Slab (PS)	130
7.4	Standardised Precast Concrete Column (PCo)	130
7.5	Standardised Precast Concrete Staircase Flight (PStr)	131
7.6	Standardised IBS Connections	131
7.7	Concluding Remarks	132

CASE STUDY: DESIGN OF 5-STOREY PUTRA APARTMENT BY 8 STANDARDISED PRECAST ELEMENTS & CONNECTIONS

	8.1	Introduction	156
	8.2	Project Description	157
	8.3	Design Information	157
	8.4	Summary of Structural System	158
		8.4.1 Columns	159
		8.4.2 Beams	159
		8.4.3 Composite Planks	160
		8.4.4 Floor Diaphragm Action and Structural Integrity	161
	8.5	Loadings Calculation for Precast Concrete Elements	161
		8.5.1 Loadings Calculation for Precast Concrete Planks	161
		8.5.2 Loadings Calculation for Precast Concrete Beam	163
		8.5.3 Design of Precast Column (PCo)	167
		8.5.4 Design of Staircase Flight (PStr)	169
9	CON	CLUSION AND RECOMMENDATION	
-	9.1	Conclusion	179
	9.2	Suggestions for Future Research	181
REF	FERENC	ES	182
APF	PENDICI	ES	186

9

VITA

212

LIST OF TABLES

Table		Page
3.1	Precast Concrete Elements Standardisation	50
3.2	Basic Properties of Precast Floorings	55
4.1	Modular Coordinated Precast Concrete Member Dimensions	72
5.1	Optimised Precast Concrete Beam Sections	83
5.2	Optimised Precast Concrete Composite Slab Sections	88
6.1	Values of μ_f for Concrete Connections	97
6.2	Static Coefficient of Friction	98
6.3	Bursting Force Coefficient to BS 8110	111
6.4	Metric Tread Data	118

LIST OF FIGURES

Figur	e	Page
1.1	Skeletal Framing System	4
1.2	Load Bearing Wall System	5
1.3	Modular Cell System	6
2.1	Target of Different Categories of Housing	17
2.2	Internal Retangular Beam Erection – PPC Sdn. Bhd.	21
2.3	Typical Hollow Core Unite- Ultra Span Tech. Inc. US	22
2.4	Typical Section for Double Tee Unit	23
2.5	Typical Section for Precast Concrete Composite Planks	24
2.6	Precast Concrete Planks Erection - PPC Sdn. Bhd.	25
2.7	Casting of In-Situ Concrete Topping - PPC Sdn. Bhd.	25
2.8	Double Tiers Precast Concrete Column Being Erected – Suncon	27
2.9	Precast Concrete Staircase Being Positioned - PPC Sdn. Bhd.	28
2.10	Vertical Transfer of Compressive Forces	31
2.11	Structural Model for Shear Key	34
2.12	Dowel Action in Reinforcement Crossing Cracked Shear Plane	36
2.13	Tensile Force Transfer	38
2.14	Flexural Joints Details	39
2.15	Beam to Column Torsional Connection	40
3.1	Precast Concrete Element Sections Selection Flow Chart	51
3.2	Designing Procedure Flow Chart for Precast Concrete Beam (PE	3) 54
3.3	Design Procedure Flow Chart for Precast Concrete Composite S	lab57

3.4	Design Procedure Flow Chart for Precast Concrete Column	59
3.5	Design Procedure Flow Chart for Precast Concrete Staircase Fligh	at 60
4.1	Beam Span vs. Beam Width Graph	67
4.2	Beam Span vs. Beam Depth Graph	68
4.3	Beam Depth vs. Beam Width Graph	68
4.4	Slab Depth vs. Slab Span Graph	69
5.1	Section, Strain and Stress Diagram	74
5.2	Horizontal Shear Force in Composite Concrete Section	77
5.4	Cost Effective Zone for PB 200 and PB 250 of 2400mm	
	Slab Width	81
5.5	Cost Effective Zone for PB 200 and PB 250 of 3600mm	
	Slab Width	82
5.6	Effective Contact Length in Composite Action	86
5.7	Ultimate Axial Load N and Ultimate Moment	90
6.1	Corbel and Half Beam Truss Analogy	99
6.2	Potential Cracks and Reinforcement in Corbel	100
6.3	Potential Cracks and Reinforcement in Half Beam Joint	103
6.4	Potential Cracks and Reinforcement for RC Bearing	105
6.5	Distribution of Force in Column Inserts	108
6.6	Variations of γ vs. L_1/L_4	109
6.7	Types of Inserts in Beams	111
6.8	Types of Splices	115
6.9	Forces Diagram and Typical Reinforcement for Socket Connection	on 119

6 .10	Column Base Plate Connections	123
6.11	Force Diagram for Column Base Plate	125
7.1	Standardised Precast Concrete Beam (PB) Not Exceeding 3000mm	n
	Nominal Length	133
7.2	Standardised Precast Concrete Beam (PB) with 3000mm Nominal	
	Length	134
7.3	Standardised Precast Concrete Beam (PB) with 3300mm Nominal	l
	Length	135
7.4	Standardised Precast Concrete Beam (PB) with 3600mm Nominal	l
	Length	136
7.5	Standardised Precast Concrete Beam (PB) with 3900mm Nominal	l
	Length	137
7.6	Standardised Precast Concrete Beam (PB) with 4200mm Nominal	I
	Length	138
7.7	Standardised Precast Concrete Beam (PB) with 4500mm Nomina	1
	Length	139
7.8	Standardised Precast Concrete Beam (PB) with 4800mm Nomina	1
	Length	140
7.9	Standardised Precast Concrete Beam (PB) with 5400mm Nomina	1
	Length	141
7.10	Standardised Precast Concrete Beam (PB) with 6000mm Nomina	1
	Length	142

7.11	Standardised Precast Concrete Beam (PB) with 6600mm Nominal	
	Length	143
7.12	Standardised Precast Concrete Beam (PB) with 7200mm Nominal	
	Length	144
7.13	Standardised Precast Concrete Beam (PB) with 7800mm Nominal	
	Length	145
7.14	Standardised Precast Concrete Beam (PB) with 8400mm Nominal	
-	Length	146
7.15	Optimised Precast Concrete Beam (PB) with 3000mm to 4200mm	
	Nominal Length	147
7.16	Optimised Precast Concrete Beam (PB) with 4500mm to 6000mm	
	Nominal Length	148
7.17	Optimised Precast Concrete Beam (PB) with 6600mm to 8400mm	
	Nominal Length	149
7.18	Standardised and Optimised Precast Concrete Composite Planks	
	(PS)	150
7.19	Standardised Precast Concrete Columns (PCo)	151
7.20	Standardised Precast Concrete Staircase Flight (PStr)	152
7.21	Standardised Beam Half Joint Connections	153
7.22	Standardised Structural Steel Insert Connections	154
7.23	Standardised Concrete Corbel Connections	155

8.1	Layout Plan for Precast Concrete Beam (PB)-Putra Housing	
	Model	170
8.2	Layout Plan for Precast Concrete Composite Plank (PS) –	
	Putra Housing Model	171

Drawing

8.1	Reinforcement and Curtailment Detail for PB1	172
8.2	Reinforcement and Curtailment Detail for PB3	173
8.3	Reinforcement and Curtailment Detail for PB5 and PB12	174
8.4	Reinforcement and Curtailment Detail for PS130-75	175
8.5	Reinforcement and Curtailment Detail for PCo 200 x 450 (2-tier)	176
8.6	Reinforcement and Curtailment Detail for PStr	177
8.7	Standardised Connections Detail – Putra Housing Model	178

LIST OF NOTATIONS

- - Diameter of the steel bar
- ζ Bursting force coefficient
- ϵ Strain at the end of the parabolic part of stress diagram
- ae Modulus Ratio
- ae Modulus Ratio
- μ_f Effective shear friction coefficient at the crack surface
- γ_m Partial safety factor for strength of material
- Σp Total perimeter of the steel section
- μ_s Static friction coefficient
- δ Ratio of joint width to joint thickness, t/v
- $\eta_o~$ Reduction factor reflecting the trapped air content
- σ_c Compressive stress of mortar
- τ_{max} Maximum shear stress.
- ad Center to center distance between bars perpendicular to the steel
- Abarst Confinement reinforcement to prevent bursting
- As Flexural Reinforcement for Beating Conenctions
- Asn Axial Tension reinforcement
- A_{sv} Area of shear reinforcement
- b_v Breath of the section
- c Distance between the centers of bolts and column
- $C_{\rm c}\,$ Compression force in concrete

- C_s Compression force in steel
- d Effective depth of the section
- E_c Modulus of elasticity of the concrete
- E_s Modulus of elasticity of the steel
- F_b Design perimeter bond stress per unit length of steel
- F_{bt} Tensile force due to ultimate loads in the bar
- F_{burst} Outward bursting force
- f_{cu} Weaker concrete compressive strength of either the joint mortar or the concrete
- $f_{cw}\$ Compressive strength of mortar
- f_{cw}/f_{cu} Concrete compressive strength of mortar and precast
- f_y Characteristics strength of steel reinforcement
- f_{yb} Ultimate strength for the bolts
- H_a Horizontal reaction force at the bottom wall in base connection
- $L_b \ \ Base$ plate overhang beyond the column face

precast concrete components adjacent to the joint.

- p_y yield strength of steel plate (table 6, Part I, BS5950)
- r Radius of steel bar bend
- T Tension force in steel
- V Designed shear force due to the ultimate load
- V_h Horizontal shear force
- x Neutral axis of section

CHAPTER 1

INTRODUCTION

1.1 General

Providing Malaysians with affordable, durable and energy efficient housing probably has become an important issue presently. Affordability means being affordable to groups of different income levels by optimizing the structural design and/or consuming the local raw material, durability and energy efficiency can be achieved by using proper design of building elements. In the Seven Malaysian Plan (RM7)(1996-2000), out of the 800,000 units of targeted housing demand, 235,000 units are needed to meet the demand of low-cost houses, 350,000 for medium-cost houses and the remaining 85,000 units for high cost houses. Although the figures are not yet available, a severe shortfall in construction is expected. Since the demand for low and medium cost housing has further increased tremendously, precast concrete technology in construction is needed to meet the targets within the scheduled period of time.

It is well recognized that economy can also be achieved through the use of precast concrete elements in buildings, with added advantage of overcoming shortage of skilled labour as well as providing quality in the final product from the user group. Prefabricated structures actually have been used in much simpler forms far back during the ancient Romania Empire, but prefabrication has become more popular and being widely used in engineered building construction in European countries for the past fifty years especially after the unparalleled destruction of the second world war, the sudden increase

of population had fuelled the demand of accommodation in those European countries. For them the industrialization techniques were their only solution and hope and the prefabrication for concrete products became very essential in this precast system of construction.

Nowadays the precast concrete structural members are excellent for its high quality with regard to strength, stiffness and durability. Also architectural precast concrete has found its place as one of the best technologies for high quality facades with unlimited variety of shapes, colours, surface textures and finishes, fast erection time and competitive price.

Precast concrete technology can be found today in almost every part of the building. But it has been more commonly adopted for the sub-structure member such as precast concrete piles as compare to the superstructure members such as columns, stability cores, floors, stair flights and parapets in Malaysian residential buildings. This is mainly due to the comparatively high manufacturing, transporting and erecting cost for these members as compared to cast the elements on site by using conventional ways. However, the speedy erection of the precast concrete structural members and high repetitive in design can actually reduce the cost and increase the feasibility of using precast concrete technology. Also the new trend of changing organisation of the building process has impacted on the increasing-use of the precast concrete. This explains why more and more general contractors are shifting their activities from general contracting such as masoury, carpentry, and steel

fabricating to construction management, with only a minimum manpower on the payroll while having the same amount of profit margin. Manpower needed only for good organization of the construction process, while the other necessary trades is subcontracted elsewhere. This seems to be a paradigm swift for the global construction industry in giving a new generation of general contractors more flexibility necessary in the competitive market and create at the same time bigger demand for the precast building members that are made somewhere else and which do not require extensive input of labour from the general contractor.

In Malaysia context, the niche of having precast concrete has became more appearing after the labour crisis in August 2002, when Malaysian government has enforcing the Immigration Act to overcome serious social problems created by the illegal foreign workers. This has created a sudden "vacuum" of labour force in the market and incurred extra time as well as cost in resuming the work force.

1.2 Types of Precast Concrete

There are many ways of grouping precast concrete system in the market, but in this dissertation, the author standardises the systems into three major category; namely the skeletal framing system, load bearing wall system and modular cell system.