

ERGONOMIC ASSESSMENT ON WORK-RELATED MUSCULOSKELETAL DISORDERS TO IMPROVE QUALITY AND PRODUCTIVITY OF WORKERS IN WOODWORKING INDUSTRY IN MALAYSIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2023

FRSB 2023 10

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ERGONOMIC ASSESSMENT ON WORK-RELATED MUSCULOSKELETAL DISORDERS TO IMPROVE QUALITY AND PRODUCTIVITY OF WORKERS IN WOODWORKING INDUSTRY IN MALAYSIA

Ву

NURHANISAH BINTI MOHD HAWARI

May 2023

Chair : Ts. Khairul Manami Kamarudin, PhD

Faculty : Design and Architecture

Over the course of the twenty-first century, work-related musculoskeletal disorders (WMSDs) have persisted among blue collar workers. The primary aim of this study was to develop an anthropometric workstation design model that could reduce WMSDs and enhance comfort perception among industrial workers while performing their tasks. This study was conducted to investigate the needs and then design, develop, fabricate, and test a prototype of an industrial ergonomic trolley for industrial male workers.

In the first phase, a self-administrated questionnaire was distributed to 232 industrial workers from Peninsular Malaysia. This was to determine the prevalence of WMSDs among industrial workers in Malaysia. The result showed that the prevalence of WMSDs among industrial workers was 93.1%. Furthermore, it showed that the most affected part of the body was the lower back, with 62.1%, caused by industrial workers' job tasks. The most significant risk factors associated with body parts were gender, age, working hours, and most difficult tasks with MSDs, especially in the lower back. A survey on musculoskeletal pain and discomfort associated with work condition, sleep health, and social life in the second sequence was carried out via a selfadministrated questionnaire. 54 industrial workers were chosen randomly from factories and rehabilitation centers to describe the MSDs pain and discomfort related to the work, life and sleep of industrial workers. The obtained results indicated that the lower back experienced the most prevalent pain caused by work conditions, sleep health, and lifestyle. Musculoskeletal discomfort of woodworkers was evaluated using Rapid Entire Body Assessment (REBA) and Quick Exposure Check (QEC) in the third phase. This was to investigate the exposure of risk factors for WMSDs in woodworkers across four main tasks of cutting, lifting, assembling, and finishing products. The study was conducted among 30 workers in three woodworking workshops in Selangor, Malaysia.

Throughout this phase, the demographic surveys, QEC, and REBA were examined. The results indicated that the most critical tasks were lifting and assembling. Hence, the recommendation for this study was to design a product to control the hazards. The design and development of the anthropometric workstation in the third phase and fourth sequence was carried out using anthropometric data obtained from woodworkers performing the lifting task. This study measured anthropometric dimensions of six industrial male workers. Four anthropometrics measurements including stature height, arm span, arm reach forward, and waist height were taken. The average height at 50th percentile was chosen to design the industrial ergonomic trolley for the wood furniture industry.

Lastly, the validation of the design of the industrial ergonomic trolley was evaluated by REBA, QEC and interview session involved with ten male workers. The results showed that the industrial ergonomic trolley appeared to be a good design for industrial workers to reduce movement of the body posture in their daily lifting activity. In a nutshell, this study achieved the goal to design and develop an anthropometric workstation model that enhances the comfort perception and improves the quality and productivity of industrial workers.

Keywords: ergonomic assessment, work-related musculoskeletal disorders (WMSDs), anthropometric, woodworking industry, product design

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENILAIAN ERGONOMIK TERHADAP GANGGUAN OTOT BERKAITAN KERJA UNTUK MENINGKATKAN KUALITI DAN PRODUKTIVITI PEKERJA DALAM INDUSTRI KERJA KAYU DI MALAYSIA

Oleh

NURHANISAH BINTI MOHD HAWARI

Mei 2023

Pengerusi: Ts. Khairul Manami Kamarudin, PhD

Fakulti : Rekabentuk dan Senibina

Sepanjang abad kedua puluh satu, gangguan muskuloskeletal yang berkaitan dengan pekerjaan telah berterusan dalam kalangan pekerja kolar biru. Matlamat utama kajian ini adalah untuk membangunkan model reka bentuk stesen kerja antropometrik yang boleh mengurangkan gangguan muskuloskeletal yang berkaitan dengan pekerjaan dan meningkatkan persepsi keselesaan di kalangan pekerja perindustrian semasa melaksanakan tugas mereka. Kajian ini dijalankan untuk menyiasat keperluan dan kemudian mereka bentuk, membangun, memfabrikasi, dan menguji prototaip iaitu troli ergonomik perindustrian untuk pekerja perindustrian.

Pada fasa pertama, soal selidik tadbir sendiri telah diedarkan kepada 232 pekerja perindustrian dari Semenanjung Malaysia. Ini adalah untuk menentukan kelaziman gangguan muskuloskeletal yang berkaitan dengan pekerjaan dalam kalangan pekerja perindustrian di Malaysia. Keputusan menunjukkan bahawa kelaziman gangguan muskuloskeletal yang berkaitan dengan pekerjaan dalam kalangan pekerja perindustrian ialah 93.1%. Tambahan pula, ia menunjukkan bahawa bahagian badan yang paling terjejas adalah bahagian bawah pinggang, dengan 62.1%, disebabkan oleh tugas pekerjaan. Faktor risiko paling ketara yang dikaitkan dengan bahagian badan ialah jantina, umur, waktu bekerja dan tugas paling sukar dengan penyakit muskuloskeletal, terutamanya di bahagian Tinjauan tentang kesakitan dan pinggang. ketidakselesaan muskuloskeletal yang berkaitan dengan keadaan pekerjaan, kesihatan tidur, dan kehidupan sosial dalam urutan kedua telah dijalankan melalui soal selidik yang dikendalikan sendiri. 54 pekerja perindustrian dipilih secara rawak daripada kilang dan pusat pemulihan untuk menerangkan kesakitan dan ketidakselesaan penyakit muskuloskeletal yang berkaitan dengan pekerjaan, kehidupan dan tidur pekerja perindustrian. Keputusan yang diperoleh menunjukkan bahawa bahagian bawah belakang mengalami kesakitan yang paling lazim disebabkan oleh keadaan kerja, kesihatan tidur, dan gaya hidup. Ketidakselesaan muskuloskeletal pekerja di dalam bidang perkayuan dinilai menggunakan Rapid Entire Body Assessment (REBA) and Quick Exposure Check (QEC) dalam fasa ketiga. Ini adalah untuk menyiasat pendedahan faktor risiko gangguan muskuloskeletal yang berkaitan dengan pekerjaan dalam bidang perkayuan, merentasi empat tugas utama iaitu memotong, mengangkat, memasang dan kemasan produk perkayuan. Kajian ini dijalankan dalam kalangan 30 pekerja di tiga bengkel kerja kayu di Selangor, Malaysia. Sepanjang fasa ini, tinjauan demografi, QEC dan REBA telah dinilai. Keputusan menunjukkan bahawa tugas yang paling kritikal ialah mengangkat dan memasang produk perkayuan. Oleh itu, cadangan untuk kajian ini adalah untuk mereka bentuk produk untuk mengawal bahaya. Reka bentuk dan pembangunan stesen kerja antropometri dalam urutan fasa ketiga dan keempat telah dijalankan menggunakan data antropometrik yang diperoleh daripada pekerja perkayuan yang menjalankan tugas mengangkat produk. Kajian ini mengukur dimensi antropometri enam pekerja lelaki perindustrian. Empat ukuran antropometrik termasuk ketinggian perawakan, rentang lengan, jangkauan tangan ke hadapan dan ketinggian pinggang telah diambil. Purata ketinggian pada persentil ke-50 telah dipilih untuk mereka bentuk troli ergonomik perindustrian untuk industri perabot kayu.

Pada akhir, validasi reka bentuk troli ergonomik perindustrian telah dinilai melalui REBA, QEC dan sesi temu duga. Sepuluh pekerja lelaki perindustrian yang menjalankan tugas yang sama telah terlibat dalam eksperimen ini. Keputusan menunjukkan bahawa troli ergonomik perindustrian sebagai reka bentuk yang baik untuk pekerja perindustrian mengurangkan pergerakan postur badan dalam aktiviti mengangkat harian mereka. Secara keseluruhannya, kajian ini mencapai matlamat untuk mereka bentuk dan membangunkan model stesen kerja antropometrik yang dapat meningkatkan persepsi keselesaan, meningkatkan kualiti dan produktiviti pekerja perindustrian.

Kata kunci: penilaian ergonomik, gangguan *muskuloskeletal* yang berkaitan dengan pekerjaan, antropometrik, industri kerja kayu, reka bentuk produk

ACKNOWLEDGEMENTS

In the name of Allah S.W.T. Most Beneficent and Most Merciful.

Peace be upon our prophet, **Muhammad S.A.W.**, His family and His companions.

I would like to express my deepest appreciation and gratitude to my highly respected advisor, Dr. Ruhaizin Sulaiman, for his guidance, advices, encouragement and contribution to this project. My appreciation also goes to member of supervisory committee, Ts. Dr. Khairul Manami Kamarudin and Ts. Dr. Rosalam Che Me for sharing their expertise and experience.

Certainly, this research would not be possible without the rehabilition centre, SME woodworking workshop and manufacturing factories, in particular the Social Security Organisation (SOCSO) Rehabilitation Centre, Iman Furniture Sdn. Bhd., 6 Block Enterprise, Commerce Asia Enterprise, Robin Resources Sdn. Bhd., Fine Grit Studio, Intercosm Industries Sdn. Bhd., Jewel Niah Enterprise, Pand Ads Enterprise and AZ Indah Bina for giving me permission to conduct this study in their center, workshop and factory. Thanks to all owner, staff and employee for helping and contribution in this study for making this study possible and successful.

My greatest and deepest gratitude to my husband, Mohd Yazid and kids, Muhammad Rakeem, Muhammad Fareel and Muhammad Mikaeel, who continuously supported during completion of this project. I am forever grateful to my parents, brothers and sister, for their continuous support. Also, I would like to express my deep gratitude and sincere thanks to all technicians and colleagues at Steel Workshop, Faculty of Design and Architecture.

Last but not least, appreciation to School of Graduate Studies, Universiti Putra Malaysia for providing the fellowship Graduate Fellowship Research (GRF).

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Khairul Manami binti Kamarudin, PhD.

Senior Lecturer, Ts.
Faculty of Design and Architecture
Universiti Putra Malaysia
(Chairman)

Rosalam bin Che Me, PhD.

Senior Lecturer, Ts.
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 March 2024

TABLE OF CONTENTS

ABSTRACT ABSTRAK ACKNOWL APPROVAL DECLARAT LIST OF TA LIST OF AB	EDGEME L FION ABLES GURES		Pagi i iii v vi viii xv xviii xx
CHAPTER			
1	INTROD	DUCTION	
	1.1	Background of study	1
	1.2	Background of problem	2
	1.3	Research need	3
	1.4	Research questions	4
	1.5	Research Aim and Objectives	4
	1.6 1.7	Research Strategy Table	5 9
	1.7	Scope of the Study Significance of the Study	9
	1.9	Flowchart of the Study	10
	1.10	Chapter Overview	11
	1.10	Chapter Svorvious	
2	LITERA	TURE REVIEW	
	2.1	Introduction	13
	2.2	Ergonomic definitions	13
		2.2.1 Ergonomic Workplace Design	14
	2.3	Musculoskeletal disorders	14
		2.3.1 Work-Related Musculoskeletal	15
		Disorders (WMSDs) Among	
	2.4	Industrial Workers	17
	2.4	Ergonomic tools for assessing WMSDs risk factors	17
		2.4.1 Rapid Entire Body Assessment (REBA)	18
		2.4.2 Quick Exposure Check (QEC)	18
	2.5	Implementation of Ergonomic on Work-	18
		Related Musculoskeletal Disorders (WMSDs)	
		in Industrial Workplace Station	
	2.6	Woodworking industry	20
		2.6.1 Work-Related Musculoskeletal	22
		Disorders (WMSDs) Towards	
	0.7	Woodworking Workplace	00
	2.7	Anthropometry and Ergonomic Approach for Workers	26
		2.7.1 Application of anthropometric in	31
		design process	٠.

	2.8		ct of Job Rotation on WMSDs among	33
	2.9 2.10	Statistica	al Package for Social Science (SPSS) overview	35 35
3		DOLOGY		
	3.1 3.2 3.3	Phase 1	esearch Framework of study	36 39 39
		3.3.1	Sequent 1 - Risk Factors of Musculoskeletal Symptoms Among Industrial Workers in Peninsular Malaysia	39
		3.3.2	Sequent 2 - A Survey on Musculoskeletal Pain and Discomfort associated with Work Condition, Sleep Health and Social-	43
			Life among Industrial Workers in Malaysia	
	3.4		of study	44
		3.4.1	Sequent 3 - Musculoskeletal Discomfort Evaluation using Rapid Entire Body Assessment (REBA) and Quick Exposure Check (QEC) among Woodworking Workers in Selangor, Malaysia	44
	3.5	Phase 3 3.5.1	of study Sequent 4 - Application of Anthropometry Approach in The Design of Working Industrial Ergonomic Trolley for Wood Furniture Industries	47 47
		3.5.2	Sequent 5 - Conceptual design, fabrication and validation of prototype	50
	3.6	Chapter	overview	52
4	RESUL	TS		
	4.1 4.2	Introduc Risk fac among Malaysia	ctors of musculoskeletal symptoms industrial workers in peninsular	53 53
		4.2.1 4.2.2 4.2.3	Participant demographic description The job-related characteristic Pain and discomfort of industrial workers' body parts	54 56 57
		4.2.4	The frequency rate and association of work-related musculoskeletal disorders among industrial workers to demographics and job-related characteristic	57

4.3	A Survey on Musculoskeletal Pain and Discomfort Associated with Work Condition, Sleep Health and Social-Life among Industrial Workers in Malaysia	64
	4.3.1 Demographic data	65
	4.3.2 The associated pain and discomfort	67
	of body parts with effected of work	0,
	condition, sleep health and lifestyle	
	among industrial workers	
4.4	Musculoskeletal Discomfort Evaluation Using	75
7.7	Rapid Entire Body Assessment (REBA) and	73
	Quick Exposure Check (QEC) Among	
	Woodworking Workers in Selangor, Malaysia	
	4.4.1 Demographic	77
	4.4.2 REBA and QEC assessments of	78
	working postures	70
4.5	Application of the Anthropometry Approach to	82
4.5		02
	Design an Industrial Ergonomic Trolley for the	
	Wood Furniture Industry	0.7
	4.5.1 Anthropometric measurement	87
	4.5.2 Recommendation of industrial table	88
	trolley design dimensions based on	
	anthropometric measurement	
4.6	Conceptual Design, Fabrication and	89
	Validation of Prototype	
	4.6.1 Conceptual design details	89
	4.6.2 Measuring the Layout of Working	92
	Space	
	4.6.3 Fabrication of an industrial	94
	ergonomic trolley for wood furniture	
	industries	
	4.6.4 The procedure of the experiment	97
	4.6.5 Demography	101
	4.6.6 Quick Exposure Checklist (QEC)	101
	4.6.7 Rapid Entire Body Assessment	103
	(REBA)	
	4.6.8 Survey on worker's preferences	104
4.7	Summary	104
	•	
DISCUS	SSION	
5.1	Introduction	106
5.2	Risk factors of musculoskeletal symptoms	106
_	among industrial workers in peninsular	
	Malaysia	
	5.2.1 Prevalence of WMSDs among	106
	industrial workers	
	5.2.2 WMSDs significant risk factors	109
	5.2.3 Conclusion	111
5.3	A Survey on Musculoskeletal Pain and	111
0.0	Discomfort Associated with Work Condition,	111
	2.000.more /10000iatoa With Work Ouridition,	

			ealth and Social-Life among Industrial s in Malaysia	
		5.3.1	The effects of WMSDs on work conditions in industrial workers	111
		5.3.2	The effects of WMSDs on sleep health in industrial workers	112
		5.3.3	The effects of WMSDs on social life in industrial workers	113
		5.3.4	WMSDs control and prevention	113
		5.3.5	Conclusion	114
	5.4		oskeletal Discomfort Evaluation Using	114
			Entire Body Assessment (REBA) and	
		Quick	Exposure Check (QEC) Among	
		Woodwo	orking Workers in Selangor, Malaysia	
		5.4.1	Conclusion	116
	5.5	Design a	ion of the Anthropometry Approach to an Industrial Ergonomic Trolley for the urniture Industry	117
		5.5.1	Conclusion	117
	5.6	Concep		118
			on of Prototype	
	5.7	Summa		119
6			ICLUSIONS AND	
			TIONS FOR FUTURE RESEARCH	
	6.1	Summa		120
		6.1.1	Risk factors of musculoskeletal	120
			symptoms among industrial workers	
		6.1.2	in peninsular Malaysia	120
		0.1.2	A Survey on Musculoskeletal Pain and Discomfort Associated with Work	120
			Condition, Sleep Health and Social-	
			Life among Industrial Workers in	
			Malaysia Workers III	
		6.1.3	Musculoskeletal discomfort	121
		0.110	evaluation using Rapid Entire Body	
			Assessment (REBA) and Quick	
			Exposure Check (QEC) among	
			woodworking workers in Selangor,	
			Malaysia	
		6.1.4	Application of the anthropometry	121
			approach to design an industrial	
			ergonomic trolley for the wood	
			furniture industry	
		6.1.5	Conceptual Design, Fabrication and	121
			Validation of Prototype	
	6.2		conclusions	122
	6.3		ch limitations	123
	6.4	Recomr	nendation for future investigation	123
REFEREN	CES			125

APPENDICES	156
BIODATA OF STUDENT	188
LIST OF PUBLICATIONS	189

LIST OF TABLES

Table		Page
1.1	Research question methodological strategy of study	5
3.1	Table Research Framework	36
3.2	Evaluation anthropometric category	49
4.1	Demographic description of study participants	54
4.2	The job-related characteristic description of study participants	55
4.3	Frequency for pain and discomfort of industrial workers' body parts lasted seven days or more in the last year	56
4.4	Frequency and association of work-related musculoskeletal disorders among industrial worker to demographics and job-related characteristic (n: 232)	58
4.5	Regression analysis of relation of significant factors predicting MSDs among industrial worker	62
4.6	Frequency of respondent's background	64
4.7	Demographic of the study subjects	75
4.8	Exposure level (REBA) for cutting activity	76
4.9	Exposure level (QEC) for cutting activity	76
4.10	Exposure level (QEC) for other factors for cutting activity	76
4.11	Exposure level (REBA) for assembling activity	77
4.12	Exposure level (QEC) for assembling activity	77
4.13	Exposure level (QEC) for other factors for assembling activity	77
4.14	Exposure level (REBA) for lifting activity	78
4.15	Exposure level (QEC) for lifting activity	78
4.16	Exposure level (QEC) for other factors for lifting activity	79
4.17	Exposure level (REBA) for finishing activity	79

4.18	Exposure level (QEC) for finishing activity	80
4.19	Exposure level (QEC) for other factors for finishing activity	80
4.20	Statistical of body measurement	85
4.21	Evaluation anthropometric category	85
4.22	Product design specification for industrial ergonomic trolley	87
4.23	Characteristic of the conceptual designs	88
4.24	Bill of materials	94
4.25	Dem <mark>ographic of the study sub</mark> jects	99
4.26	Exposure level (QEC) based on actual working area	100
4.27	Exposure level (QEC) for other factors based on actual working area	100
4.28	Exposure level (QEC) based on prototype experiment	100
4.29	Exposure level (QEC) for other factors based on prototype experiment	101
4.30	REBA score based on actual working area	101
4.31	REBA score based on prototype experiment	101
4.32	The frequency on worker's preferences	102

LIST OF FIGURES

Figure		Page
1.1	Flowchart of the study	9
2.1	Basic human musculoskeletal system	14
2.2	Woodworking workplace environment and condition (a)	20
2.3	Woodworking workplace environment and condition (b)	21
2.4	Workers performing task on improper working table	22
2.5	The unavailable of a suitable table for sorting goods in lifting object activities	23
2.6	Worker performing awkward posture in assembling activities (a)	24
2.7	Worker performing awkward posture in assembling activities (b)	24
2.8	Worker performing awkward posture in finishing activities	25
2.9	Anthropometric measurement	26
2.10	The anthropometer	26
2.11	Skinfold calipers	27
2.12	Soft metric tape	27
2.13	Distribution of sized for standard population	28
2.14	Public bench	29
2.15	Emergency exit door	29
2.16	Office files cabinet	30
2.17	Improper anthropometry dimension on working table may lead to WMSDs in long terms condition	31
3.1	The selected location of data collection	39
3.2	The procedure of data collection using a mail questionnaire	40
3.3	Sony Handycam HDR-CX405 Video Camcorder	46

3.4	SECA217 Stable Stadiometer	47
3.5	Standard 8 Meter Measuring Tape	48
3.6	Bosch GLM 40 Professional Laser Rangefinder Measuring Tools Bosch	48
3.7	Acquired anthropometrics measurements	49
4.1	The neck pain and discomfort of industrial workers in seven situations that lasted seven days or more in the past year	66
4.2	The shoulder pain and discomfort of industrial workers in seven situations that lasted seven days or more in the past year	67
4.3	The elbow pain and discomfort of industrial workers in seven situations that lasted seven days or more in past year	68
4.4	The wrist pain and discomfort of industrial workers in seven situations that lasted seven days or more in past year	69
4.5	The hand pain and discomfort of industrial workers in seven situations that lasted seven days or more in past year	70
4.6	The upper back pain and discomfort of industrial workers in seven situations that lasted seven days or more in past year	71
4.7	The lower back pain and discomfort of industrial workers in seven situations that lasted seven days or more in past year	72
4.8	The foot pain and discomfort of industrial workers in seven situations that lasted seven days or more in past year	73
4.9	Wood board cutting by band saw	81
4.10	Installation of ABS	82
4.11	Drilling	82
4.12	Lifting activities in woodworking industry	83
<i>A</i> 13	Woodworking area	84

4.14	The proposed industrial table trolley design	86		
4.15	(a) A design concept 1 and (b) design concept 2 of proposed 3D of industrial trolley design			
4.16	(a) Side view and figure (b) upper view position of the industrial ergonomic trolley on workplace			
4.17	Isometric view (a) front view	90		
4.18	Measurement of edge of bandsaw machine to floor	91		
4.19	Layout distance of storage area between ABS installation machine and bandsaw machine	92		
4.20	CAD drawing of the industrial ergonomic trolley	93		
4.21	Exploded view of industrial trolley	94		
4.22	Prototype of the industrial ergonomic trolley	95		
4.23	Setting up the workstation for the experiment	96		
4.24	Lifting activity conducted manually by worker	97		
4.25	Lifting activity conducted by using proposed industrial ergonomic trolley by worker	98		
4.26	Function/ activity to operate the proposed industrial	99		

LIST OF ABBREVIATIONS

WMSDs Work-related musculoskeletal disorders

MSDs Musculoskeletal disorders

LBP Lower back pain

REBA Rapid entire body assessment

QEC Quick exposure check

MSS Musculoskeletal disorders symptom

IBM SPSS Statistical Package for Social Science

cm Centimeter

mm Millimeter

ft. Feet

Inch. Inches

WHO World Health Organization

OSH Occupational Safety and Health

DOHR Department of Human Resources

DOSH Occupational Safety and Health Department

NIOSH National Institute of Occupational Safety and Health

OSHA Occupational Safety and Health Association

SOCSO Social Security Organization

UNESCO United Nations Educational, Scientific and Cultural

Organization

MIDA Malaysian Investment Development Authority

MCO Movement control order COVID-19 Coronavirus disease 2019

GBD Global burden of disease

SOP Standard operation procedure

PPE Personal protective equipment

MDF Medium-density fibreboard

ABS Acrylonitrile butadiene styrene

VDT Video display terminal

OEM Original equipment manufacturer

ODM Original design manufacturer

UPM Universiti Putra Malaysia

PhD Doctor of Philosophy

3D Three dimensional

2D Two dimensional

CAD Computer-aided design

CHAPTER 1

INTRODUCTION

1.1 Background of study

The workplace is the most important environment for a worker. The World Health Organization (WHO) stated that 2.9 million workers across the world are exposed to hazard risks in the occupational sector. Work-related musculoskeletal disorders (WMSDs) are the second highest cases of occupational disease and poisoning as reported by NIOSH (2018). As mentioned by the Occupational Safety and Health Department (DOSH, 2018), 35,460 workers in Malaysia are reported to have an accident in the workplace with a risk rate of 2.40 per 1000 workers. In 2018, the national employment total of accidents indicates that the highest number of accidents is from the manufacturing sector, followed by the construction and services sector. This increase in the accident rate in manufacturing, construction, and services sectors highlights the need to conduct a significant study on ergonomic intervention to reduce the number of accidents in a particular workplace.

Most industries worldwide often adopt the use of machinery and tools in their work. The design of tools and equipment for a worker to perform their work should not disregard the physical and mental state of the workers. In various industries, it is very common for individuals working in one job field to be considered as valuable for companies. Therefore, workers are always exposed to same working condition for a long period. Industrial workers are often exposed to working situations that involves hazard. There are five main hazards which are ergonomics, biological, chemical, physical and physiological (Bridges et al., 2000). Nevertheless, ergonomic hazard was found to be the most challenging for early detection since it does not give immediate strain and harm to the body. Ergonomics are commonly known to be related to job task and human health. In short, ergonomics examines the capabilities and limitations on the behavioral, psychological and physiological state of humans (Jaffar et al., 2011). Through an effective ergonomic, workers shall not be exposed to work stresses which can affect their safety and health as well as productivity for companies. Thus, it is clear that ergonomics intervention could provide a productive and quality workplace for workers and can thus help to fulfill the companies' objectives and goals as well (Lenkeit, 2013). The implementation of ergonomics in the workplace should consider the human quality, productivity, and safety in terms of fitting products, task and environment instead of forcing them to adapt to the work. Ergonomists need to consider the worker, workplace and work task in order to create a good work environment between the person and their task (Kolgiri et al., 2016).

The woodworking industry has evolved from being a lodge-based, skill dependent industry into a highly mechanized and labor-intensive industry that

operates in high-volume production (Rampal & Mohd Nizam, 2006). In Malaysia, a study of ergonomics within the woodworking industry concluded that there is scientific proof that the woodworking and sawmill industries can expose one to many ergonomic risks (Jamaludin et al., 2022). The work environment in the woodworking industry has always been regarded as an environment that is dirty, dangerous, and degenerative. Therefore, woodworkers are often exposed to many risk factors that could affect their safety and health, such as air-borne dust, manual handling, chemical exposure, and noise emission (Ratnasingam et al., 2010). Among that, manual handling is an example of an activity that exposes one to ergonomic issues that bring discomfort, which can then lead to fatigue and back pains that could affect the productivity of workers (Shikdar & Sawaqed, 2003).

Woodworking compared to other industries involve various stages to get to the final product, where most involve manual handling. For that reason, the woodworking industry is known to be one of the industries with the highest accident rates in the manufacturing sector (International Labour Organization (ILO), 2015). Manual handling in woodworking involves the use of the human body to manage heavy loads, which can lead to difficulty in gripping, excessive use of force, repetition, twisting, and other awkward postures. Prolonged manual handling to conduct woodworking activities such as cutting, nailing, assembling, and painting may lead to work-related injuries that include work-related musculoskeletal disorders (WMSDs), which are disorders of the muscles, skeleton, and related tissues. WMSDs are among the most common occupational disorders around the world (Baek et al., 2017; Bandyopadhyay et al., 2012; Chandrasakaran et al., 2003; A. Yusof & Shahida, 2021) and is particularly evident in the woodworking industry (Akanmu et al., 2020; Lemasters et al., 1998; Nejad et al., 2013; Ooneklabh et al., 2020). According to the Global Burden of Disease (GBD) study in 2010, back pain is reported as one of the most prevalent conditions globally, with a global point prevalence of 9.4% (Hoy et al., 2014). Such exposure may be present among workers due to the nature of work that requires them to bend, crouch, and stoop for long periods.

In abovementioned situation, the study, analysis and prevention of musculoskeletal disorder among woodworking workers need to be sought in order to reduce the number of occupational accident and disease in occupational safety and health sector. Therefore, the purpose of this study is to develop an anthropometric workstation design model that could reduce the WMSDs for woodworking workers. Through this study, preventive action to maintain workers' working ability for a long period and to increase the safety, quality, and accessibility as well as productivity of company with an ergonomic input is proposed.

1.2 Background of the Problem

In every industry sector, WMSDs continue to present a major challenge to workers and their employers. Many disciplines have been involved in providing

advice and have worked on interventions to prevent or reduce their consequences. Job-related accidents and diseases that happen in the industrial sector such as in manufacturing, construction and many more are normally due to human-related issues. Manual handling, fatigue due to overload, long duration of exposure to sunlight, job dissatisfaction, and prolonged awkward postures in handling work may be among the factors that contribute to the aforementioned issues. These factors are simply addressed as human factors and ergonomics by many researchers. Although the term is widely accepted, an understanding of the two terms would be beneficial for researchers to conduct more impactful research in this field. In job handling, the most significant ergonomics risk factors are awkward posture in handling a job task, force, and repetition of specific movements including vibration. Other ergonomics risk factors include uncomfortable static position, contact stress of muscles and tendon, and extreme temperature conditions.

The woodworking industry in Malaysia has continued to develop due to the country's economic growth. According to the Manufacturing Statistics Malaysia, furniture manufacturing is among the three top industries that has the strongest year-on-year growth with export-oriented industries in Malaysia (Department of Statistics Malaysia, 2023). The WMSDs statistics on occupational health and diseases, especially in back pain, rank high among workers, proving that there is still lack of research carried out particularly in the anthropometric workstation design model that could reduce or prevent WMSDs for woodworkers. Previous studies have shown that lower back pain is one of the most common MSDs reported. In addition, it also has been proven that back pain MSDs also occur among woodworkers (Adeyemi et al., 2017; Mitchual et al., 2015).

Based on literature, one of the causes of occurring symptom of WMSDs is due to inappropriate workstations. This study was suggested that ergonomics workstation should be considered to improve occupational health (Hong et al., 2022). According to Janet I. Minshew, WMSDs and their associated high costs are a major cause for concern in any workplace (Janet I. Minshew, 2008). In addition, a safe working environment must be created, and all workers must understand, accept, and use the principles of ergonomics in order to reduce any potential occupational injuries. As a reason for that, extended research is needed concerning the safety and health of workers, ergonomic factors, significant factor on prevention of WMSDs and its best recommendation in enhancing comfort perception among woodworking worker.

1.3 Research need

The main idea for this research had been inspired by the facts that industrial workers are likely to exposed to occupational hazards and are at risk of having occupational disease or injury. Based on previous finding, WMSDs appear to be one of main health problem among workers in Malaysia in the past five years (Awaluddin et al., 2023). In addition, those who worked in a factory were exposed to MSD due to ergonomic factors such as repetitive activities (Anwar et al., 2019;

F. A. Aziz et al., 2017; Yahya & Zahid, 2018). DOSH report also stated that the highest number of workers was from manufacturing workers. Hence, there is strongly need to explore this research.

This study aims to improve the performance of industrial workers in their working environment. More research has been conducted on the problem of WMSDs, however, little attention and focus have been given to ergonomic interventions to reduce WMSDs injuries among industrial workers (Dale et al., 2012; Kramer et al., 2010; Yazuli et al., 2019). Consequently, the study would provide information in design and development of an industrial trolley which is not currently mainly use in woodworking workstation.

1.4 Research questions

The main research question of the study is how to develop an anthropometric workstation design that could reduce the WMSDs in order to enhance comfort perception among woodworking workers performing their task? Therefore, below are the research questions for this study:

- 1. What is the present state of safety and health among industrial workers in Malaysia?
- 2. Which ergonomic factor affects the WMSDs of woodworking workers while performing their task?
- 3. What is the significant factor to prevent WMSDs in anthropometric workstation design which enhances comfort perception among woodworking workers when they perform their task?
- 4. What is the recommendation for ergonomic interventions that could enhance comfort perception to improve the quality and productivity of woodworking workers?

1.5 Research Aim and Objectives

The general aim of the study is to develop an anthropometric workstation design model that could reduce the WMSDs in order to enhance comfort perception among woodworking workers performing their task. Below are the research objectives for this study:

- 1. To identified the present state of safety and health among industrial workers in Malaysia.
- 2. To evaluate the WMSDs risk factor that affects the woodworking workers in performing their task.
- 3. To determine the anthropometric workstation dimensions that are significant to WMSDs risk factor.
- To design and validate the anthropometric workstation design model that could enhance comfort perception for improving the quality and productivity of woodworking workers.

1.6 Research Strategy Table

Table 1.1: Research question methodological strategy of study

Construct	Research Question Construct Description	Research Question/ Research Objective	Methodological Strategy	Analysis	Output
WHO	Industrial worker	Sub RQ1: What is the current state of safety and health among industrial workers in Malaysia? RO: To understand	Literature review Observation Interview	Analyse the task: Comparison between the critical task	Documentation of demography information on industrial workers in Malaysia. Documentation of issues and problem related to industrial workers.
		the present state of safety and health among industrial workers in Malaysia			Identification on critical working conditions to support quality working among industrial workers.

Table 1.1 : Research question methodological strategy of study (continued)

WHAT	Ergonomic	Sub RQ2: Which	Observation (Video	Analyse the MSDs on	Identification on the common
		ergonomic factor	recording)	industrial worker:	types of tasks for woodworking
		affects the WMSDs of	Rapid Entire Body	Rapid Entire Body	workers.
		woodworking workers	Assessment	Assessment (REBA)	Categories of tasks for
		while performing their	(REBA)	Quick Exposure Check	ergonomics measurements.
		task?	Quick Exposure	(QEC)	o o
			Check (QEC)		Identification of ergonomic
		RO: To evaluate the			variables affecting task
		WMSDs risk factor			performance among woodworking
		that affect the			workers.
		woodworking workers			
1		in performing their			
		task			

Table 1.1 : Research question methodological strategy of study (continued)

HOW 1	Enhance	Sub RQ3: What is the	Anthropometric	SPSS:	Categorisation of significant
	comfort	significant factor to	measurement	The dimensions of	factors enhancing comfort
		prevent WMSDs in		proposed workplace	perception among woodworking
		anthropometric		design	workers
		workplace design	24 17/		
		which enhances		10 mars of the 1	Identification of significant factors
		comfort perception		and the second second	enhancing comfort perception
		among woodworking			among woodworking workers
		workers when they			
		perform their task?			
		RO: To determine the			
		anthropometric			
		workplace			
		dimensions that			
		significant to WMSDs			
		risk factor			

Table 1.1 : Research question methodological strategy of study (continued)

HOW 2	Improve	Sub RQ4: What is the	Develop the	Analyse finding from	Recommendation of design
110 11 2	workplace	recommendation for	ergonomic	validation:	guideline and task performance
	design	ergonomic	workplace design	Rapid Entire Body	for woodworking workplace
	design	interventions that	model based on	Assessment (REBA)	Hor woodworking workplace
		could enhance	anthropometric		Draef of concent protety no of
		comfort perception for	dimensions	Quick Exposure Check	Proof of concept prototype of
		improving quality and	Ullilelisions	(QEC)	proposed design for workplace.
		productivity of		Questionnaire on	
		woodworking		worker's preferences	
		workers?			
		workers!			
		RO:			
		To validate the			
		anthropometric			
		workplace design			
		model that could			
		enhance comfort			
		perception for			
		improving quality and			
		productivity of			
		woodworking workers			

1.7 Scope of the Study

Ergonomic study is a combination of numerous disciplines that cover many areas such as psychology, sociology, biomechanics, engineering, industrial design, anthropometry, interaction design, visual design, user experience, and many more. Therefore, in order to accomplish the objective of this thesis, it is necessary to affirm the scope so that it will not go beyond of the limitation. The focus of this work is mainly on development ergonomic workstation designed for woodworking industry. In this study, the inclusion criteria include local and migrant workers aged between 20 to 50 years old who are working in factories in peninsular Malaysia. The semi-direct method was used in this study to identify ergonomic risk factors. Generally, woodworkers perform four main activities, which are cutting, lifting, assembling, and finishing products. However, only lifting was chosen for further development of product enhancement in this study. Hence, the design guidelines were based on lifting activities in a woodworking area. In addition, it focused on the response of workers while operating the developed product. Even though this research focused on the workstation design, it also gathers some information on Malaysia's industrial workers in terms of the prevalence of WMSDs, the social activities, and their issues on performing common daily working tasks and identification of major factors associated with MSD symptoms as well as development of guidelines for workstation design in order to improve quality and productivity of workers in woodworking industry.

1.8 Significance of the Study

This study intends to improve the quality and productivity of woodworkers by instigating the ergonomic aspect of their workstation design. The findings of this study can contribute to the Department of Occupational Safety and Health, Malaysia (DOSH) in minimizing the percentage of occupational incidents among workers, especially in the manufacturing field. Moreover, this study also can be beneficial to the worker to maximize efficiency, quality, and quantity of work while minimizing WMSDs, fatigue, and overexertion.

1.9 Flowchart of the Study

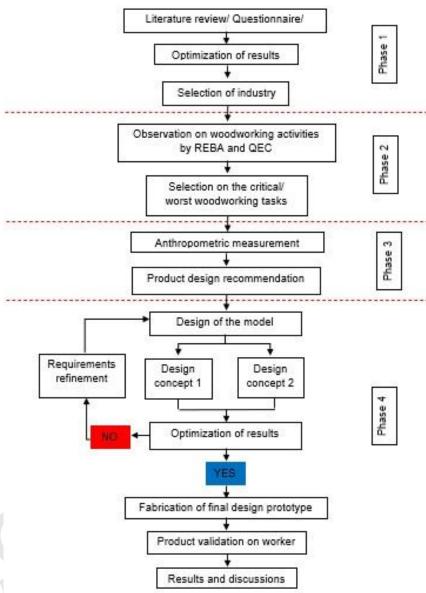


Figure 1.1: Flowchart of the study

(source: author)

1.10 Chapter Overview

Chapter 1

This chapter offers a general introduction to the purpose of the study, the problem statement, as well as the objectives, scope, and significance of the study.

Chapter 2

The second chapter will briefly explain the analysis of literature review based on current studies.

Chapter 3

The third chapter reveals the research material and methodology for this study. This includes the explanation of the selected method for developing the questionnaire, survey and the proposed table research framework. The chapter proceeds with the description on conceptual design task and selection on final concept of proposed design. Further details description was explained in development process of proposed ergonomic industrial trolley. Finally, the required evaluation to verify the developed prototype based on ergonomic risk assessments and user evaluation is presented.

Chapter 4

The fourth chapter reveals the findings for the overall study. In order to understand the current situation of industrial workers, the first part of the chapter provides an analysis of the risk factors of musculoskeletal symptoms among industrial workers, followed by a survey on musculoskeletal pain and discomfort associated with work condition, sleep health, and social-life. This research identified the necessities of the woodworkers in their workplace. This chapter also presents the developed design concept for an industrial ergonomic trolleylifter based on the problem discussed previously in the literature and analysis results from the REBA and QEC findings. This research sought to uncover the most critical tasks that can contribute to an anthropometric design criterion in order to design an industrial ergonomic trolley-lifter for woodworkers. Finally, the conceptual design, fabrication, and validation of prototype of the industrial ergonomic trolley-lifter were proposed. This chapter then covered the evaluation of the final design concept. An evaluation was also conducted to appraise the comfort, usability, and convenience performance of the developed industrial ergonomic trolley-lifter for woodworkers.

Chapter 5

The fifth chapter reveals the discussion for the overall study. This chapter presents the details finding from previous chapter.

Chapter 6

The sixth chapter, which is the final chapter, concludes the research outcome and discusses the contributions and limitations of the research. It also provides further recommendations for future works.

REFERENCES

- Aasmoe, L., Bang, B., Egeness, C., & Løchen, M. L. (2008). Musculoskeletal symptoms among seafood production workers in North Norway. *Occupational Medicine*, 58(1), 64–70. https://doi.org/10.1093/occmed/kqm136
- Abas, N. H., Zamzam, M. S. S., & Mohamad, H. (2020). Work-related Musculoskeletal Disorders (WMSDs) Survey Among Workers at Two Precast Concrete Plants in Johor, Malaysia. *International Journal of Academic Research in Business and Social Sciences*, 10(5), 843–856. https://doi.org/10.6007/ijarbss/v10-i5/7254
- Abate, M., Vanni, D., Pantalone, A., & Salini, V. (2013). Cigarette smoking and musculoskeletal disorders. *Muscles, Ligaments and Tendons Journal*, 3(2), 63–69. https://doi.org/10.11138/mltj/2013.3.2.063
- Abd Rahman, N. I., Md Dawal, S. Z., Yusoff, N., & Mohd Kamil, N. S. (2018).

 Anthropometric measurements among four Asian countries in designing sitting and standing workstations. Sadhana Academy Proceedings in Engineering Sciences, 43(1), 1–9. https://doi.org/10.1007/s12046-017-0768-8
- Abdullah, N. H., Wahab, E., Shamsuddin, A., Abdul Hamid, N. A., & Kamaruddin, N. K. (2016). Workplace ergonomics and employees' health: A case study at automotive manufacturer. *Proceedings of the International Conference on Industrial Engineering and Operations Management*, 8-10 March, 917–923.
- Abeysekera, J. D. A., & Shahnavaz, H. (1989). Body size variability between people in developed and developing countries and its impact on the use of imported goods. *International Journal of Industrial Ergonomics*, 4(2), 139–149. https://doi.org/10.1016/0169-8141(89)90040-1
- Acaröz Candan, S., Sahin, U. K., & Akoğlu, S. (2019). The investigation of work-related musculoskeletal disorders among female workers in a hazelnut factory: Prevalence, working posture, work-related and psychosocial factors. *International Journal of Industrial Ergonomics*. https://doi.org/10.1016/j.ergon.2019.102838
- Adeyemi, H. O., Olatunji, O. A., Martins, O. O., Akinyemi, O. O., Adama, O. O., & Alao, K. O. (2017). Job Safety Assessment of Woodwork Industry in The Southwestern Nigeria. *Arid Zone Journal of Engineering, Technology And Environment*, 13(6), 817–830. www.azojete.com.ng
- Adu, G., Adu, S., Effah, B., Frimpong-Mensah, K., & Darkwa, N. A. (2014). Office Furniture Design Correlation of Worker and Chair Dimensions. *International Journal of Science and Research*, *3*(3), 709–715.

- Aghilinejad, M., Choobineh, A. R., Sadeghi, Z., Nouri, M. K., & Ahmadi, A. B. (2012). Prevalence of musculoskeletal disorders among Iranian steel workers. In *Iranian Red Crescent Medical Journal* (Vol. 14, Issue 4, pp. 198–203).
- Ahmad, M. A., Shafie, F. A., Masngut, M. I., Mokhtar, M. A. M., & Abdullah, A. M. (2021). Work-related Musculoskeletal Disorders among Workers in Food Manufacturing Factories in Hulu Langat, Selangor, Malaysia. *Malaysian Journal of Medicine and Health Sciences*, *17*, 74–79.
- Aini, N., & Huda, B. (2015). Prevalence of Musculoskeletal Symptoms and Its Associated Risk Factors Among Bus Drivers. *International Journal of Public Health and Clinical Sciences*, *2*(1), 34–45.
- Akanmu, A., Olayiwola, J., & Olatunji, O. A. (2020). Musculoskeletal disorders within the carpentry trade: analysis of timber flooring subtasks. *Engineering, Construction and Architectural Management*, 27(9), 2577–2590. https://doi.org/10.1108/ECAM-08-2019-0402
- Alexopoulos, E. C., Tanagra, D., Konstantinou, E., & Burdorf, A. (2006). Musculoskeletal disorders in shipyard industry: Prevalence, health care use, and absenteeism. *BMC Musculoskeletal Disorders*, 7, 1–10. https://doi.org/10.1186/1471-2474-7-88
- Alghadir, A., & Anwer, S. (2015). Prevalence of musculoskeletal pain in construction workers in Saudi Arabia. In *Scientific World Journal* (Vol. 2015). https://doi.org/10.1155/2015/529873
- Ali, A., Qutubuddin, S. M., Hebbal, S. S., & Kumar, A. C. S. (2012). An ergonomic study of work related musculoskeletal disorders among the workers working in typical Indian saw mills. *International Journal of Engineering Research*, 3(9), 38–45. www.ijerd.com
- Alsaadi, S. M., McAuley, J. H., Hush, J. M., & Maher, C. G. (2011). Prevalence of sleep disturbance in patients with low back pain. In *European Spine Journal* (Vol. 20, Issue 5, pp. 737–743). https://doi.org/10.1007/s00586-010-1661-x
- An, J. M., Kim, J., Yoon, S., Woo, K. H., Cho, S. Y., Kim, K., & Jo, H. R. (2020). Association of Work–life Balance with Occupational Injury and Work-related Musculoskeletal Pain among Korean Workers. *Annals of Occupational and Environmental Medicine*, 32(1), 1–14. https://doi.org/10.35371/AOEM.2020.32.E20
- Anderson, J., Williams, A. E., & Nester, C. (2021). Musculoskeletal disorders, foot health and footwear choice in occupations involving prolonged standing. *International Journal of Industrial Ergonomics*, 81(December 2020), 103079. https://doi.org/10.1016/j.ergon.2020.103079
- Anghel, M., & Lungeanu, D. (2007). MUSCULOSKELETAL DISORDERS

- (MSDS)- CONSEQUENCES OF PROLONGED STATIC POSTURES. 4. 167–172.
- Anton, D., & Weeks, D. L. (2016). Prevalence of work-related musculoskeletal symptoms among grocery workers. *International Journal of Industrial Ergonomics*, *54*, 139–145. https://doi.org/10.1016/j.ergon.2016.05.006
- Anwar, J., Nurul Haznita, A. H., Mohd Johari, K., Mimi Haryani, H., Norzita, N., & Aishah, A. J. (2019). Assessment of prevalence of work-related musculoskeletal disorders among welders in the shipyard industry in Malaysia. *E3S Web of Conferences*, *90*, 1–6. https://doi.org/10.1051/e3sconf/20199003001
- Ariëns, G. A. M., Van Mechelen, W., Bongers, P. M., Bouter, L. M., & Van Der Wal, G. (2000). Physical risk factors for neck pain. *Scandinavian Journal of Work, Environment and Health*, 26(1), 7–19. https://doi.org/10.5271/sjweh.504
- Artazcoz, L., Cortès, I., Escribà-Agüir, V., Cascant, L., & Villegas, R. (2009). Understanding the relationship of long working hours with health status and health-related behaviours. *Journal of Epidemiology and Community Health*, 63(7), 521–527. https://doi.org/10.1136/jech.2008.082123
- Attaullah, Khan, S. C., Ullah, S., Darain, H., & Rahman, M. U. (2019). Prevalence of work related musculoskeletal disorders among construction workers in Hayatabad Peshawar KP, Pakistan. *RJHS Rehman Journal of Health Sciences*, *01*(01), 17–20. www.rjhs.pk
- Awaluddin, S. M., Mahjom, M., Lim, K. K., Shawaluddin, N. S., & Tuan Lah, T. M. A. (2023). Occupational Disease and Injury in Malaysia: A Thematic Review of Literature from 2016 to 2021. *Journal of Environmental and Public Health*, 2023, 1798434. https://doi.org/10.1155/2023/1798434
- Aziz, F. A., Ghazalli, Z., Mohamed, N. M. Z., & Isfar, A. (2017). Investigation on musculoskeletal discomfort and ergonomics risk factors among production team members at an automotive component assembly plant. *IOP Conference Series: Materials Science and Engineering*, 257(1). https://doi.org/10.1088/1757-899X/257/1/012040
- Aziz, R. A., Adeyemi, A. J., Kadir, A. Z. A., Rohani, J. M., & Rani, M. R. A. (2015). Effect of Working Posture on Back Pain Occurrence among Electronic Workers in Malaysia. *Procedia Manufacturing*, 2(February), 296–300. https://doi.org/10.1016/j.promfg.2015.07.052
- Babaei Pouya A, N. A., Nematollahi H, Safari S, A., Vakilabad P, N. M., & M. (2019). Prevalence of Musculoskeletal Disorders in Steel Industry Workers and its Association with RULA's Method Results. *International Journal of Musculoskeletal Pain Prevention*, *4*(1), 144–

- Baek, H., Song, S., Lee, D., Pyo, S., Shin, D., & Lee, G. (2017). Musculoskeletal diseases of heavy industrial workers. *Physical Therapy Rehabilitation Science*, *6*(2), 71–76. https://doi.org/10.14474/ptrs.2017.6.2.71
- Baidzawi, I. J., & Nur, N. M. (2021). A Work Performance Conceptual Framework For Aircraft Maintenance Workers. 12, 951–971. https://doi.org/10.17605/OSF.IO/JBM8Z
- Bandyopadhyay, A., Dev, S., & Gangopadhyay, S. (2012). A Study on the Prevalence of Musculoskeletal Disorders among the Coalminers of Eastern Coalfields of India. *International Journal of Occupational Safety and Health*, 2(2), 34–37. https://doi.org/10.3126/ijosh.v2i2.6596
- Bao, S., Howard, N., & Lin, J. H. (2020). Are work-related musculoskeletal disorders claims related to risk factors in workplaces of the manufacturing industry? *Annals of Work Exposures and Health*, *64*(2), 152–164. https://doi.org/10.1093/annweh/wxz084
- Bataller-Cervero, A. V., Cimarras-Otal, C., Sanz-López, F., Lacárcel-Tejero, B., Alcázar-Crevillén, A., & Villalba Ruete, J. A. (2016). Musculoskeletal disorders assessment using sick-leaves registers in a manufacturing plant in Spain. *International Journal of Industrial Ergonomics*, 56, 124–129. https://doi.org/10.1016/j.ergon.2016.10.002
- Battini, D., Calzavara, M., Otto, A., & Sgarbossa, F. (2017). Preventing ergonomic risks with integrated planning on assembly line balancing and parts feeding. *International Journal of Production Research*, 55(24), 7452–7472. https://doi.org/10.1080/00207543.2017.1363427
- Battini, D., Delorme, X., Dolgui, A., & Sgarbossa, F. (2015). Assembly line balancing with ergonomics paradigms: Two alternative methods. *IFAC-PapersOnLine*, 28(3), 586–591. https://doi.org/10.1016/j.ifacol.2015.06.145
- Benos, L., Tsaopoulos, D., & Bochtis, D. (2020). A review on ergonomics in agriculture. part II: Mechanized operations. *Applied Sciences* (Switzerland), 10(10). https://doi.org/10.3390/app10103484
- Bernard, B. P. (1997). Musculoskeletal Disorders and Workplace Factors. A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back, February 2015.
- Bhoopathy, K. M., & Karthikeyan, T. (2016). Ergonomically Designed and Fabricated Industrial Trolley for Crane Tong Jaw Bit Changing. *Asian Journal of Research in Social Sciences and Humanities*, *6*(8), 134. https://doi.org/10.5958/2249-7315.2016.00599.2

- Bhuanantanondh, P., Buchholz, B., Arphorn, S., Kongtip, P., & Woskie, S. (2021). The prevalence of and risk factors associated with musculoskeletal disorders in thai oil palm harvesting workers: A cross-sectional study. *International Journal of Environmental Research and Public Health*, 18(10). https://doi.org/10.3390/ijerph18105474
- Björing, G., & Hägg, G. M. (2000). Musculoskeletal exposure of manual spray painting in the woodworking industry An ergonomic study on painters. *International Journal of Industrial Ergonomics*, *26*(6), 603–614. https://doi.org/10.1016/S0169-8141(00)00026-3
- Boatca, M. E., & Cirjaliu, B. (2015). A Proposed Approach for an Efficient Ergonomics Intervention in Organizations. *Procedia Economics and Finance*, 23(October 2014), 54–62. https://doi.org/10.1016/s2212-5671(15)00411-6
- Boschman, J. S., Van Der Molen, H. F., Sluiter, J. K., & Frings-Dresen, M. H. (2012). Musculoskeletal disorders among construction workers: A one-year follow-up study. *BMC Musculoskeletal Disorders*, 13. https://doi.org/10.1186/1471-2474-13-196
- Bridges, C. B., Katz, J. M., Seto, W. H., Chan, P. K. S., Tsang, D., Ho, W., Mak, K. H., Lim, W., Tam, J. S., Clarke, M., Williams, S. G., Mounts, A. W., Bresee, J. S., Conn, L. A., Rowe, T., Hu-Primmer, J., Abernathy, R. A., Lu, X., Cox, N. J., & Fukuda, K. (2000). Expert forecast on Emerging biological risks related to OS&H. In *The Journal of Infectious Diseases* (Vol. 181, Issue 1). https://doi.org/10.1086/315213
- Brossoit, R. M., Crain, T. L., Leslie, J. J., Hammer, L. B., Truxillo, D. M., & Bodner, T. E. (2019). The effects of sleep on workplace cognitive failure and safety. In *Journal of Occupational Health Psychology* (Vol. 24, Issue 4, pp. 411–422). https://doi.org/10.1037/ocp0000139
- Buckle, P. (2005). Ergonomics and musculoskeletal disorders: Overview. In *Occupational Medicine*. https://doi.org/10.1093/occmed/kgi081
- Bulduk, E. Ö., Bulduk, S., Süren, T., & Ovali, F. (2014). Assessing exposure to risk factors for work-related musculoskeletal disorders using Quick Exposure Check (QEC) in taxi drivers. *International Journal of Industrial Ergonomics*, 44(6), 817–820. https://doi.org/10.1016/j.ergon.2014.10.002
- Burdorf, A., & Duuren, L. Van. (1993). AN EVALUATION OF ERGONOMIC IMPROVEMENTS IN THE WOODWORKING INDUSTRY. *The Annals of Occupational Hygiene*, 37(6), 615–622. https://doi.org/https://doi.org/10.1093/annhyg/37.6.615
- Caicoya, M., & Delclos, G. L. (2010). Work demands and musculoskeletal disorders from the Spanish National Survey. *Occupational Medicine*, 60(6), 447–450. https://doi.org/10.1093/occmed/kgp191

- Canadian Centre for Occupational Health and Safety. (2020). Work-related Musculoskeletal Disorders (WMSDs) Medical History Checklist: Symptoms Survey for Work-Related Musculoskeletal Disorders (WMSDs). https://www.ccohs.ca/oshanswers/diseases/wmsd/work_related_wmsd.html
- Cavallari, J. M., Ahuja, M., Dugan, A. G., Meyer, J. D., Simcox, N., Wakai, S., & Garza, J. L. (2016). Differences in the prevalence of musculoskeletal symptoms among female and male custodians. *American Journal of Industrial Medicine*, *59*(10), 841–852. https://doi.org/10.1002/ajim.22626
- Chaiklieng, S. (2019). Health risk assessment on musculoskeletal disorders among potato-chip processing workers. In *PLoS ONE* (Vol. 14, Issue 12). https://doi.org/10.1371/journal.pone.0224980
- Chandrasakaran, A., Chee, H. L., Rampal, K. G., & Tan, G. L. E. (2003). The Prevalence of Musculoskeletal Problems and Risk Factors among Women Assembly Workers in the Semiconductor Industry. *Medical Journal of Malaysia*, *58*(5), 657–666.
- Charles, L. E., Ma, C. C., Burchfiel, C. M., & Dong, R. G. (2018). Vibration and Ergonomic Exposures Associated With Musculoskeletal Disorders of the Shoulder and Neck. *Safety and Health at Work*, *9*(2), 125–132. https://doi.org/10.1016/j.shaw.2017.10.003
- Che Mansor, C. H., Zakaria, S. E., & Md Dawal, S. Z. (2013). Investigation on Working Postures and Musculoskeletal Disorders among Office Workers in Putrajaya. *Advanced Engineering Forum*, *10*, 308–312. https://doi.org/10.4028/www.scientific.net/aef.10.308
- Chiasson, M. ève, Imbeau, D., Aubry, K., & Delisle, A. (2012). Comparing the results of eight methods used to evaluate risk factors associated with musculoskeletal disorders. *International Journal of Industrial Ergonomics*, 42(5), 478–488. https://doi.org/10.1016/j.ergon.2012.07.003
- Choobineh, A., Daneshmandi, H., Fard, S. K. S. Z., & Tabatabaee, S. H. (2016). Prevalence of work.related musculoskeletal symptoms among Iranian workforce and job groups. In *International Journal of Preventive Medicine* (Vol. 7, Issue 1). https://doi.org/10.4103/2008-7802.195851
- Choobineh, A., Tabatabaei, S. H., Mokhtarzadeh, A., & Salehi, M. (2007). Musculoskeletal problems among workers of an Iranian rubber factory. *Journal of Occupational Health*, 49(5), 418–423. https://doi.org/10.1539/joh.49.418
- Chordiya, S., & Nikhade, N. (2019). Prevalence of Musculoskeletal Disorders in Workers In An Industry in Ahmednagar District,

- Maharashtra. *International Journal of Clinical and Biomedical Research*, 38–41. https://doi.org/10.31878/ijcbr.2019.52.08
- Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., & Vos, T. (2020). Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. *The Lancet*, 396(10267), 2006–2017. https://doi.org/10.1016/S0140-6736(20)32340-0
- Cirjaliu, B., & Draghici, A. (2016). Ergonomic Issues in Lean Manufacturing. *Procedia - Social and Behavioral Sciences*. https://doi.org/10.1016/j.sbspro.2016.05.095
- Comper, M. L. C., Dennerlein, J. T., Evangelista, G. D. S., Rodrigues Da Silva, P., & Padula, R. S. (2017). Effectiveness of job rotation for preventing work-related musculoskeletal diseases: A cluster randomised controlled trial. *Occupational and Environmental Medicine*, 74(8), 545–552. https://doi.org/10.1136/oemed-2016-104077
- Comper, M. L. C., & Padula, R. S. (2014). The effectiveness of job rotation to prevent work-related musculoskeletal disorders: Protocol of a cluster randomized clinical trial. *BMC Musculoskeletal Disorders*. https://doi.org/10.1186/1471-2474-15-170
- Cordella, F., Di Luzio, F. S., Lauretti, C., Draicchio, F., & Zollo, L. (2019). A biofeedback-based posture correction system for working environments. 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2019 Proceedings, June, 405–409. https://doi.org/10.1109/METROI4.2019.8792920
- Corominas, A., Pastor, R., & Rodríguez, E. (2006). Rotational allocation of tasks to multifunctional workers in a service industry. *International Journal of Production Economics*, 103(1), 3–9. https://doi.org/10.1016/j.ijpe.2005.05.015
- Cristini, A., & Pozzoli, D. (2010). Workplace practices and firm performance in manufacturing: A comparative study of Italy and Britain. *International Journal of Manpower*, 31(7), 818–842. https://doi.org/10.1108/01437721011081617
- Dale, A. M., Jaegers, L., Buchholz, B., Welch, L., & Evanoff, B. A. (2012). Using process evaluation to determine effectiveness of participatory ergonomics training interventions in construction. *Work*, *41*(SUPPL.1), 3824–3826. https://doi.org/10.3233/WOR-2012-0684-3824
- Daruis, D. D. I., & Ramli, S. (2013). Investigation on Ergonomics Awareness among Video Display Unit Users A Case Study among Office Workers in UPNM. *Advanced Engineering Forum*, *10*, 143–147. https://doi.org/10.4028/www.scientific.net/aef.10.143

- Daruis, D., Deros, B. M., & Nor, M. J. M. (2011). Malaysian sitting anthropometry for seat fit parameters. *Human Factors and Ergonomics In Manufacturing*. https://doi.org/10.1002/hfm.20237
- Dave, R., Irani, A., & Neekhra, V. (2020). Effect of musculoskeletal disorders on health-related quality of life of light engineering maintenance personnel. *International Journal of Current Research and Review*, 12(15), 110–116. https://doi.org/10.31782/IJCRR.2020.121521
- Dave, R., Neekhra, V., & Irani, A. (2020). Work Related Musculoskeletal Disorders in Defence Personnel Involved in Heavy Engineering Maintenance. In *Journal of Ecophysiology and Occupational Health* (Vol. 20, Issues 3&4, pp. 239–246). https://doi.org/10.18311/jeoh/2020/25198
- David, G., Woods, V., Li, G., & Buckle, P. (2008). The development of the Quick Exposure Check (QEC) for assessing exposure to risk factors for work-related musculoskeletal disorders. *Applied Ergonomics*, 39(1), 57–69. https://doi.org/10.1016/j.apergo.2007.03.002
- De Cássia Pereira Fernandes, R., Da Silva Pataro, S. M., De Carvalho, R. B., & Burdorf, A. (2016). The concurrence of musculoskeletal pain and associated work-related factors: A cross sectional study. *BMC Public Health*, 16(1), 1–9. https://doi.org/10.1186/s12889-016-3306-4
- Del Prado-Lu, J. L. (2007). Anthropometric measurement of Filipino manufacturing workers. *International Journal of Industrial Ergonomics*, 37(6), 497–503. https://doi.org/10.1016/j.ergon.2007.02.004
- DEPARTMENT OF STATISTICS. (2022). Big Data Analytics: National Occupational Accident and Disease Statistics 2021. https://www.dosm.gov.my/portal-main/release-content/big-data-analytics-national-occupational-accident-and-disease-statistics-2021-
- Department of Statistics Malaysia. (2023). *Manufacturing Statistics Malaysia* (Issue 7). https://newss.statistics.gov.my/newss-portalx/ep/epDownloadContentSearch.seam?cid=9865
- Deros, B. M., Daruis, D. D. I., Ismail, A. R., Sawal, N. A., & Ghani, J. A. (2010). Work-related musculoskeletal disorders among workers' performing Manual Material Handling work in an automotive manufacturing company. *American Journal of Applied Sciences*, 7(8), 1087–1092. https://doi.org/10.3844/ajassp.2010.1087.1092
- Deros, B. M., Daruis, D. D. I., Khamis, N. K., Mohamad, D., Daud, S. F. M., Amdan, S. M., Aziz, R. A., & Jamal, N. (2014). Prevalence of work related musculoskeletal disorders symptoms among construction workers: A case study in Malaysia. *Iranian Journal of Public Health*, 43(3), 53–57.
- Dewangan, K. N., Owary, C., & Datta, R. K. (2010). Anthropometry of male

- agricultural workers of north-eastern India and its use in design of agricultural tools and equipment. *International Journal of Industrial Ergonomics*. https://doi.org/10.1016/j.ergon.2010.05.006
- DOSH. (2017). Guidelines On Ergonomics Risk Assessment At Workplace (p. Appendix 5A). http://www.dosh.gov.my/index.php/en/competent-person-form/occupational-health/guidelines/ergonomic/2621-01-guidelines-on-ergonomics-risk-assessment-at-workplace-2017/file
- DOSH. (2018). STATISTIK KEMALANGAN PEKERJAAN NEGARA TAHUN 2018. http://www.dosh.gov.my/index.php/ms/
- E.Schneider, X.Irastorza. (2010). Work-related musculoskeletal disorders in the EU Facts and figures. In *Stress The International Journal on the Biology of Stress*. https://doi.org/10.2802/10952
- Eakin, J. M., Champoux, D., & MacEachen, E. (2010). Health and safety in small workplaces: refocusing upstream. *Canadian Journal of Public Health. Revue Canadienne de Santé Publique*, 101 Suppl(April), 29–33. https://doi.org/10.1007/bf03403843
- Edem, M., Akpan, E., & Pepple, N. (2017). Impact of Workplace Environment on Health Workers. *Occupational Medicine & Health Affairs*, *05*(02). https://doi.org/10.4172/2329-6879.1000261
- Eftekhar Vaghefi, S. H., Elyasi, L., Amirian, S. R., & Eftekhar Vaghefi, S. (2014). Anthropometric Survey of Worker Population in Bandar-Abbas. *Thrita*, *3*(1), 1–6. https://doi.org/10.5812/thrita.11669
- Ekpenyong, C. E., & Inyang, U. C. (2014). Associations between worker characteristics, workplace factors, and work-related musculoskeletal disorders: A cross-sectional study of male construction workers in Nigeria. *International Journal of Occupational Safety and Ergonomics*, 20(3), 447–462. https://doi.org/10.1080/10803548.2014.11077057
- Erdinc, O., & Vayvay, O. (2008). Ergonomics interventions improve quality in manufacturing: A case study. *International Journal of Industrial and Systems Engineering*, 3(6), 727–745. https://doi.org/10.1504/IJISE.2008.020683
- Erna Faryza, Mohd Suleiman Murad, & Syamsul Anwar. (2015). a Study of Work Related Complaints of Arm, Neck and Shoulder (Cans) Among Office Workers in Selangor and Kuala Lumpur. *Malaysian Journal of Public Health Medicine*, 15(2), 8–16.
- Fabiano, B., Currò, F., & Pastorino, R. (2004). A study of the relationship between occupational injuries and firm size and type in the Italian industry. *Safety Science*, *42*(7), 587–600. https://doi.org/10.1016/j.ssci.2003.09.003
- Farioli, A., Mattioli, S., Quaglieri, A., Curti, S., Violante, F. S., & Coggon, D.

- (2014). Musculoskeletal pain in Europe: The role of personal, occupational, and social risk factors. *Scandinavian Journal of Work, Environment and Health*, 40(1), 36–46. https://doi.org/10.5271/sjweh.3381
- Faucett, J., Meyers, J., Miles, J., Janowitz, I., & Fathallah, F. (2007). Rest break interventions in stoop labor tasks. *Applied Ergonomics*, *38*(2), 219–226. https://doi.org/10.1016/j.apergo.2006.02.003
- Feng, B., Chen, K., Zhu, X., Ip, W. Y., Andersen, L. L., Page, P., & Wang, Y. (2021). Prevalence and risk factors of self-reported wrist and hand symptoms and clinically confirmed carpal tunnel syndrome among office workers in China: a cross-sectional study. *BMC Public Health*, 21(1), 1–10. https://doi.org/10.1186/s12889-020-10137-1
- Gadhavi, B., & Shukla, Y. (2019). Prevalence of Work Related Musculoskeletal Disorders in Farmers of Gujarat. *International Journal of Research & Review (Www.ljrrjournal.Com) Vol*, 6(November), 11. www.ijrrjournal.com
- Gallagher, S., Schall, M. C., Sesek, R. F., & Huangfu, R. (2017). Job rotation as a technique for the control of MSDs: A fatigue failure perspective. Proceedings of the Human Factors and Ergonomics Society, 2017-Octob(September), 993–994. https://doi.org/10.1177/1541931213601730
- Gallis, C. (2006). Work-related prevalence of musculoskeletal symptoms among Greek forest workers. *International Journal of Industrial Ergonomics*, 36(8), 731–736. https://doi.org/10.1016/j.ergon.2006.05.007
- Ganesan, V., Saudi, A. S. M., Balakrishnan, A., Shafii, N. Z., Kamarudin, M. K. A., Khairuddin, M. Z. F., Amin, N. A., Abu, I. F., & Ridzuan, I. S. D. (2018). An ergonomic assessment of musculoskeletal disorders among airport bag handlers: A case study in Malaysia. *International Journal of Research in Pharmaceutical Sciences*, *9*(Special Issue 2), 83–87. https://doi.org/10.26452/ijrps.v9iSPL2.1746
- Gangopadhyay, S., & Dev, S. (2014). Design and evaluation of ergonomic interventions for the prevention of musculoskeletal disorders in India. *Annals of Occupational and Environmental Medicine*, *26*(1), 1–6. https://doi.org/10.1186/2052-4374-26-18
- Ge, H., Sun, X., Liu, J., & Zhang, C. (2018). The Status of Musculoskeletal Disorders and Its Influence on the Working Ability of Oil Workers in Xinjiang, China. *Int. J. Environ. Res. Public Health*, *15*(5), 842. https://doi.org/10.3390/ijerph15050842
- Govaerts, R., Tassignon, B., Ghillebert, J., Serrien, B., De Bock, S., Ampe, T., El Makrini, I., Vanderborght, B., Meeusen, R., & De Pauw, K. (2021). Prevalence and incidence of work-related musculoskeletal

- disorders in secondary industries of 21st century Europe: a systematic review and meta-analysis. *BMC Musculoskeletal Disorders*, 22(1), 1–30. https://doi.org/10.1186/s12891-021-04615-9
- Graham, P., & Dougherty, J. P. (2012). Oh, their aching backs!: Occupational injuries in nursing assistants. *Orthopaedic Nursing*, 31(4), 218–223. https://doi.org/10.1097/NOR.0b013e31825dfd7a
- Gregory, D. E., & Callaghan, J. P. (2008). Prolonged standing as a precursor for the development of low back discomfort: An investigation of possible mechanisms. In *Gait and Posture* (Vol. 28, Issue 1, pp. 86–92). https://doi.org/10.1016/j.gaitpost.2007.10.005
- Grzywiński, W., Wandycz, A., Tomczak, A., & Jelonek, T. (2014). The prevalence of self-reported musculoskeletal symptoms among loggers in Poland. *International Journal of Industrial Ergonomics*, *52*, 12–17. https://doi.org/10.1016/j.ergon.2015.07.003
- Guo, H. R., Chang, Y. C., Yeh, W. Y., Chen, C. W., & Guo, Y. L. (2004). Prevalence of Musculoskeletal Disorder among Workers in Taiwan: A Nationwide Study. *Journal of Occupational Health*, *46*(1), 26–36. https://doi.org/10.1539/joh.46.26
- Haekal, J., Hanum, B., & Prasetio, D. E. (2020). Analysis of Operator Body Posture Packaging Using Rapid Entire Body Assessment (REBA) Method: A Case Study of Pharmaceutical Companyin Bogor, Indonesia. International Journal of Engineering Research and Advanced Technology, 06(07), 27–36. https://doi.org/10.31695/ijerat.2020.3620
- Hämmig, O., Knecht, M., Läubli, T., & Bauer, G. F. (2011). Work-life conflict and musculoskeletal disorders: A cross-sectional study of an unexplored association. *BMC Musculoskeletal Disorders*, *12*(1), 60. https://doi.org/10.1186/1471-2474-12-60
- Hashim, A. M., Dawal, S. Z. M., & Yusoff, N. (2012). Ergonomic evaluation of postural stress in school workshop. *Work*, *41*(SUPPL.1), 827–831. https://doi.org/10.3233/WOR-2012-0249-827
- Hassan, S. N., Yusuff, R. M., Zein, R. M., Hussain, M. R., & Selvan, H. K. T. (2015). Anthropometric data of Malaysian workers. New Ergonomics Perspective Selected Papers of the 10th Pan-Pacific Conference on Ergonomics, January, 353–360. https://doi.org/10.1201/b17990-61
- Hazana Abdullah, N., Aziati Abdul Hamid, N., Wahab, E., Shamsuddin, A., & Asmawi, R. (2018). Work-related Musculoskeletal Disorder (WRMD) among Production Operators: Studies of Differences in Age and Gender. *Journal of Physics: Conference Series*, 1049(1). https://doi.org/10.1088/1742-6596/1049/1/012023
- Heidari, M., Borujeni, M. G., Rezaei, P., & Abyaneh, S. K. (2019). Work-

- related musculoskeletal disorders and their associated factors in nurses: A cross-sectional study in iran. *Malaysian Journal of Medical Sciences*, 26(2), 122–130. https://doi.org/10.21315/mjms2019.26.2.13
- Heidarimoghadam, R., Saidnia, H., Joudaki, J., Mohammadi, Y., & Babamiri, M. (2019). Does mental workload can lead to musculoskeletal disorders in healthcare office workers? Suggest and investigate a path. In *Cogent Psychology* (Vol. 6, Issue 1). https://doi.org/10.1080/23311908.2019.1664205
- Hignett, S., & McAtamney, L. (2000). Rapid Entire Body Assessment (REBA). *Applied Ergonomics*, 31(2), 201–205. https://doi.org/10.1016/S0003-6870(99)00039-3
- Hitka, M., Hajduková, A., & Balážová, Ž. (2014). Impact of Economic Crisis on Changes in Motivation of Employees in Woodworking Industry. *Drvna Industrija*, 65(1), 21–26. https://doi.org/10.5552/drind.2014.1303
- Hoe, V. C. W., Urquhart, D. M., Kelsall, H. L., Zamri, E. N., & Sim, M. R. (2018). Ergonomic interventions for preventing work-related musculoskeletal disorders of the upper limb and neck among office workers. *Cochrane Database of Systematic Reviews*, 2018(10). https://doi.org/10.1002/14651858.CD008570.pub3
- Hong, X., Lee, Y.-C., & Zhou, S. (2022). Musculoskeletal symptoms and associated factors among manual porcelain workers at different workstations: a cross-sectional study. *Int Arch Occup Environ Health*, 95(9), 1845–1857. https://doi.org/10.1007/s00420-022-01879-z
- Hossain, M. D., Aftab, A., Al Imam, M. H., Mahmud, I., Chowdhury, I. A., Kabir, R. I., & Sarker, M. (2018). Prevalence of work related musculoskeletal disorders (WMSDs) and ergonomic risk assessment among readymade garment workers of Bangladesh: A cross sectional study. PLoS ONE, 13(7), 1–18. https://doi.org/10.1371/journal.pone.0200122
- Howarth, S. J., Beach, T. A. C., Pearson, A. J., & Callaghan, J. P. (2009).

 Using sitting as a component of job rotation strategies: Are lifting/lowering kinetics and kinematics altered following prolonged sitting. *Applied Ergonomics*, 40(3), 433–439. https://doi.org/10.1016/j.apergo.2008.10.006
- Hoy, D., March, L., Brooks, P., Blyth, F., Woolf, A., Bain, C., Williams, G., Smith, E., Vos, T., Barendregt, J., Murray, C., Burstein, R., & Buchbinder, R. (2014). The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. *Annals of the Rheumatic Diseases*, 73(6), 968–974. https://doi.org/10.1136/annrheumdis-2013-204428
- Huang, H. J. (1999). Job Rotation from the Employees' Point of View.

- Research and Practice in Human Resource Management, 1(7), 75–85.
- Hussain, T. (2004). Musculoskeletal symptoms among truck assembly workers. *Occupational Medicine*, 54(8), 506–512. https://doi.org/10.1093/occmed/kqh087
- Ibeneme, C. U., Oparaocha, E. T., Ukibe, S., Ameh, C. A., Nwachukwu, C. C., & Bobson, I. U. (2020). Prevalence and Associated Risk Factors of Musculoskeletal Disorders among Block Molders in Umuahia Municipal Area of Abia State, Nigeria. *Journal of Community and Preventive Medicine*, 3(1), 1–5. https://doi.org/10.33309/2638-7719.030103
- IEA. (2017). Definition and Domains of Ergonomics | IEA Website.
 International Ergonomic Association.
 https://doi.org/10.1109/TGRS.2006.872327
- International Labour Organization (ILO). (2015). Safety & Health At The Wood Workshop. www.ilo.org/labadmin-osh
- Irshad, A., Gillani, S. Z., Anwar, N., Butt, M. S., Khalid, K., Safdar, M., & Qasim, A. (2021). Prevalence of Musculoskeletal Disorders among Manual Workers in Railway Workshops Lahore. July, 1512–1516.
- Isa, M. S. M., Omar, N., Salleh, A. F., & Salim, M. S. (2021). A Literature Review on Occupational Musculoskeletal Disorder (MSD) Among Industrial Workers in Malaysia. In *Lecture Notes in Mechanical Engineering*. Springer Singapore. https://doi.org/10.1007/978-981-16-0866-7_95
- Jaffar, N., Abdul-Tharim, A. H., Mohd-Kamar, I. F., & Lop, N. S. (2011). A literature review of ergonomics risk factors in construction industry. *Procedia Engineering*, 20, 89–97. https://doi.org/10.1016/j.proeng.2011.11.142
- Jain, R., Meena, M. L., Dangayach, G. S., & Bhardwaj, A. K. (2018). Association of risk factors with musculoskeletal disorders in manual-working farmers. *Archives of Environmental and Occupational Health*, 73(1), 19–28. https://doi.org/10.1080/19338244.2017.1289890
- Jalac, P. I. D., Sison, J. P. E., Fedilo, J. M. Y., Galingan, R. L., Gutierrez, M. T. E., & Kurata, Y. B. (2018). Work-related musculoskeletal risk assessment among structural iron workers in a steel company in the Philippines. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018-March(March), 2318–2328.
- Jamaludin, B. S., Sukadarin, E. H., Widia, M., & Abdullah, N. H. (2022). Understanding the Ergonomics Issues in Sawmill Industries: Why It Becomes a Concern? In F. M. T. Amiril Sahab Abdul Sani, Muhammed

- Nafis Osman Zahid, Mohamad Rusydi Mohamad Yasin, Siti Zubaidah Ismail, Mohd Zairulnizam Mohd Zawawi, Ahmad Rosli Abdul Manaf, Siti Nadiah Mohd Saffe, Radhiyah Abd Aziz (Ed.), *Enabling Industry 4.0 through Advances in Manufacturing and Materials* (pp. 609–623). Springer, Singapore. https://doi.org/https://doi.org/10.1007/978-981-19-2890-1 57
- Janet I. Minshew. (2008). 32 Ergonomics. In J. D. Bancroft & M. Gamble (Eds.), Theory and Practice of Histological Techniques (Sixth Edition) (Sixth, pp. 661–671). https://doi.org/https://doi.org/10.1016/B978-0-443-10279-0.50039-7.
- Jennings, G. R. (2005). Business, Social Science Methods Used in. *Encyclopedia of Social Measurement*, 219–230. https://doi.org/10.1016/B0-12-369398-5/00270-X
- Jha, A., & Tiwari, K. B. (2014). ANTHROPOMETRY OF FEMALE AGRICULTURAL WORKERS JABALPUR. 2(1), 62–64.
- Jorgensen, M., Davis, K., Kotowski, S., Aedla, P., & Dunning, K. (2005). Characteristics of job rotation in the Midwest US manufacturing sector. *Ergonomics*. https://doi.org/10.1080/00140130500247545
- KALINKARA, V., SARI, İ., & İhsan, Ö. (2016). WORK-RELATED MUSCULOSKELETAL DISORDERS ANDERGONOMIC RISK FACTORS IN VDT WORKERS. [SYLWAN., 160(1)]. ISI Indexed, 160(1), 477–488. https://www.academia.edu/32723262/WORK-RELATED_MUSCULOSKELETAL_DISORDERS_AND_ERGONOMI C_RISK_FACTORS_IN_VDT_WORKERS
- Kamalinia, M., Saraji, G. N., Hosseini, M., Kee, D., & Choobineh, A. (2013). Postural loading assessment in assembly workers of an iranian telecommunication manufacturing company. *International Journal of Occupational Safety and Ergonomics*, 19(2), 311–319. https://doi.org/10.1080/10803548.2013.11076988
- Kamiluddinp, S., Soebijantop, P., Agustiningsihp, D., Majidp, R., Yuniarp, N., Budiharjop, S., Auhtor, C., & Majid, R. (2015). Smoking Habits And Stress Of Work On Musculoskeletal Disorders On Factory Workers Ferronickel Section Smelting. IJISET -International Journal of Innovative Science, Engineering & Technology, 2(11), 575–581. www.ijiset.com
- Kang., Lee, M. J., Chung, H., Shin, D. H., Youn, K. W., Im, S. H., Chae, H. S., & Lee, K. S. (2016). Musculoskeletal Disorders and Agricultural Risk Factors Among Korean Farmers. *Journal of Agromedicine*, 21(4), 353–363. https://doi.org/10.1080/1059924X.2016.1178612
- Kang, F., He, Z., Feng, B., Qu, W., Zhang, B., & Wang, Z. (2021). Prevalence and risk factors for msds in vegetable greenhouse farmers: A cross-sectional survey from shandong rural area, China. In *Medicina*

- *del Lavoro* (Vol. 112, Issue 5, pp. 377–386). https://doi.org/10.23749/mdl.v112i5.11490
- Karhu, O., Kansi, P., & Kuorinka, I. (1977). Correcting working postures in industry: A practical method for analysis. *Applied Ergonomics*, 8(4), 199–201. https://doi.org/10.1016/0003-6870(77)90164-8
- Kee, D., & Karwowski, W. (2007). A Comparison of Three Observational Techniques for Assessing Postural Loads in Industry. *International Journal of Occupational Safety and Ergonomics*, 13(1), 3–14. https://doi.org/10.1080/10803548.2007.11076704
- Khan, M., & Pope-Ford, R. (2015). Improving and Modifying the Design of Workstations within a Manufacturing Environment. *Procedia Manufacturing*, 3(Ahfe), 4927–4934. https://doi.org/10.1016/j.promfg.2015.07.631
- Khan, M. R., & Singh, N. K. (2018). Prevalence of musculoskeletal disorders among Indian railway sahayaks. *International Journal of Occupational and Environmental Health*, 24(1–2), 27–37. https://doi.org/10.1080/10773525.2018.1507187
- Kim, Y. M., & Cho, S. II. (2017). Work-life imbalance and musculoskeletal disorders among South Korean workers. *International Journal of Environmental Research and Public Health*, 14(11). https://doi.org/10.3390/ijerph14111331
- Kolgiri, S., Hiremath, R., & Bansode, S. (2016). Literature Review on Ergonomics Risk Aspects Association to the Power Loom Industry. *IOSR Journal of Mechanical and Civil Engineering Ver. III*, 13(1), 2278–1684. https://doi.org/10.9790/1684-13135664
- Korhan, O., & Memon, A. A. (2019). Introductory Chapter: Work-Related Musculoskeletal Disorders. In O. Korhan (Ed.), Work-related Musculoskeletal Disorders (Vol. 32, pp. 137–144). IntechOpen. https://doi.org/10.5772/intechopen.78458
- Koytcheva, V., Zhekov, A., Lazarou, G., & Riza, E. (2008). Musculoskeletal disorders. In *Promoting Health for Working Women*. https://doi.org/10.1007/978-0-387-73038-7_5
- Kramer, D. M., Bigelow, P. L., Carlan, N., Wells, R. P., Garritano, E., Vi, P., & Plawinski, M. (2010). Searching for needles in a haystack: Identifying innovations to prevent MSDs in the construction sector. *Applied Ergonomics*, 41(4), 577–584. https://doi.org/10.1016/j.apergo.2009.12.003
- Kuijer, P. P. F. M., Visser, B., & Kemper, H. C. G. (1999). Job rotation as a factor in reducing physical workload at a refuse collecting department. *Ergonomics*, 42(9), 1167–1178. https://doi.org/10.1080/001401399185054

- Kumar, S. (1994). Ergonomics for Beginners: A quick reference guide. In *International Journal of Industrial Ergonomics* (Vol. 13, Issue 2). https://doi.org/10.1016/0169-8141(94)90083-3
- Kurtulu, K. (2010). The Effects of Job Rotation Practices on Motivation: A Research on Managers in the Automotive Organizations. *Business and Economics Research Journal*, 1(3), 69–85.
- Kuwashima, A., Aizawa, Y., Nakamura, K., Taniguchi, S., & Watanabe, M. (1997). National survey on accidental low back pain in workplace. In *Industrial Health* (Vol. 35, Issue 2, pp. 187–193). https://doi.org/10.2486/indhealth.35.187
- Kwong, E. (2010). Views of Adults on Shopping Trolleys: Implications for the Development of a Shopping Trolley. *The Ergonomics Open Journal*, 3(1), 32–37. https://doi.org/10.2174/1875934301003010032
- Labao, H. C., Faller, E. M., & Bacayo, M. F. D. (2018). 'Aches and Pains' of filipino migrant workers in malaysia: A profile of work-related musculoskeletal disorders. In *Annals of Global Health* (Vol. 84, Issue 3, pp. 474–480). https://doi.org/10.29024/aogh.2331
- Lee, H. E., Choi, M., Kim, H. R., & Kawachi, I. (2020). Impact of decreased night work on workers' musculoskeletal symptoms: A quasi-experimental intervention study. *International Journal of Environmental Research and Public Health*, 17(23), 1–9. https://doi.org/10.3390/ijerph17239092
- Lee, H., Kim, J. M., & Han, J. W. (2017). Impact of Job Rotation Stress in Nurses on Psychological Well-being: Focusing on Mediating Effect of Challenge Assessment and Hindrance Assessment. *Journal of the Korea Academia-Industrial Cooperation Society*, *18*(10), 373–381.
- Lee, J. G., Kim, G. H., Jung, S. W., Kim, S. W., Lee, J. H., & Lee, K. J. (2018). The association between long working hours and work-related musculoskeletal symptoms of Korean wage workers: Data from the fourth Korean working conditions survey (a cross-sectional study) 11 Medical and Health Sciences 1117 Public Health and Health Servi. Annals of Occupational and Environmental Medicine, 30(1), 1–11. https://doi.org/10.1186/s40557-018-0278-0
- Lee, J. W., Lee, J. J., Mun, H. J., Lee, K.-J., & Kim, J. J. (2013). The Relationship between Musculoskeletal Symptoms and Work-related Risk Factors in Hotel Workers. *Annals of Occupational and Environmental Medicine*, *25*(1), 1. https://doi.org/10.1186/2052-4374-25-20
- Lee, K. S., Chaffin, D. B., Herrin, G. D., & Waikar, A. M. (1991). Effect of handle height on lower-back loading in cart pushing and pulling. *Applied Ergonomics*, 22(2), 117–123. https://doi.org/10.1016/0003-6870(91)90310-E

- Lemasters, G. K., Atterbury, M. R., Booth-Jones, A. D., Bhattacharya, A., Ollila-Glenn, N., Forrester, C., & Forst, L. (1998). Prevalence of work related musculoskeletal disorders in active union carpenters. *Occupational and Environmental Medicine*, *55*(6), 421–427. https://doi.org/10.1136/oem.55.6.421
- Lenkeit, M. (2013). Ergonomics in the workplace. *Textile Network*, *5*–*6*, 57. https://doi.org/10.1201/9781420033007.ch2
- Lesage, F. X., Salles, J., & Deschamps, F. (2014). Self-employment in joinery: An occupational risk facor? *International Journal of Occupational Medicine and Environmental Health*, 27(3), 355–363. https://doi.org/10.2478/s13382-014-0261-0
- Lewis, C., & Mathiassen, S. E. (2013). *Physical work, gender, and health in working life*. www.av.se/publikationer/rapporter
- Lewis, R. J., Krawiec, M., Confer, E., Agopsowicz, D., & Crandall, E. (2002). Musculoskeletal disorder worker compensation costs and injuries before and after an office ergonomics program. *International Journal of Industrial Ergonomics*, 29(2), 95–99. https://doi.org/10.1016/S0169-8141(01)00054-3
- Li, G., & Buckle, P. (1999). Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods. *Ergonomics*, 42(5), 674–695. https://doi.org/10.1080/001401399185388
- Li, Y., Zhang, S., Zhu, J., Du, X., & Huang, F. (2012). Sleep disturbances are associated with increased pain, disease activity, depression, and anxiety in ankylosing spondylitis: A case-control study. *Arthritis Research and Therapy*, *14*(5). https://doi.org/10.1186/ar4054
- Lin, R. T., & Chan, C. C. (2007). Effectiveness of workstation design on reducing musculoskeletal risk factors and symptoms among semiconductor fabrication room workers. *International Journal of Industrial Ergonomics*, 37(1), 35–42. https://doi.org/10.1016/j.ergon.2006.09.015
- Lin, Y. H., Chen, C. Y., & Cho, M. H. (2012). Influence of shoe/floor conditions on lower leg circumference and subjective discomfort during prolonged standing. *Applied Ergonomics*, *43*(5), 965–970. https://doi.org/10.1016/j.apergo.2012.01.006
- Lis, T., Nowacki, K., & Łakomy, K. (2018). Improvement of the Ergonomic Quality of the Work Process. *Multidisciplinary Aspects of Production Engineering*, 1(1), 703–710. https://doi.org/10.2478/mape-2018-0089
- Loisel, F., Bonin, S., Jeunet, L., Pauchot, J., Tropet, Y., & Obert, L. (2014). Woodworking injuries: A comparative study of work-related and hobby-related accidents. *Chirurgie de La Main*, 33(5), 325–329.

- Lop, N. S., Kamar, I. F. M., Aziz, M. N. A., Abdullah, L., & Akhir, N. M. (2017). Work-related to musculoskeletal disorder amongst Malaysian construction trade workers: Bricklayers. *AIP Conference Proceedings*, 1891(October 2017). https://doi.org/10.1063/1.5005420
- Lowe, B. D., Dempsey, P. G., & Jones, E. M. (2019). Ergonomics assessment methods used by ergonomics professionals. *Applied Ergonomics*, 81(April), 102882. https://doi.org/10.1016/j.apergo.2019.102882
- Lu, J. M., Twu, L. J., & Wang, M. J. J. (2014). Risk assessments of work-related musculoskeletal disorders among the TFT-LCD manufacturing operators. *International Journal of Industrial Ergonomics*, *52*, 40–51. https://doi.org/10.1016/j.ergon.2015.08.004
- Luger, T., Bär, M., Seibt, R., Rieger, M. A., & Steinhilber, B. (2021). Using a Back Exoskeleton During Industrial and Functional Tasks—Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial. Human Factors. https://doi.org/10.1177/00187208211007267
- Lynn, M., & Corlett, N. (1993). RULA: A survey method for the investigation of work-related upper limb disorders. *Applied Ergonomics*, 24(2), 91–99.
- M.L, M., & G.S, D. (2015). An Ergonomic Approach to Design Hand Tool For Screen Textile Printing. *International Journal of Recent Advances in Mechanical Engineering*, 4(2), 59–67. https://doi.org/10.14810/ijmech.2015.4207
- Mad Isa, N. S., Razali, M. M., & Sahani, M. (2018). Musculoskeletal discomfort and its associated risk factors among train drivers. *Malaysian Journal of Public Health Medicine*, 2018(Specialissue1), 98–106.
- Mahmud, N., Kenny, D. T., Zein, R. M., & Hassan, S. N. (2011). Ergonomic training reduces musculoskeletal disorders among office workers: results from the 6-month follow-up. In *Malaysian Journal of Medical Sciences* (Vol. 18, Issue 2, pp. 16–26).
- Mallapiang, F., Azriful, Nildawati, Syarfaini, Muis, M., & Adriansyah. (2021). The relationship of posture working with musculoskeletal disorders (MSDs) in the weaver West Sulawesi Indonesia. *Gaceta Sanitaria*, *35*, S15–S18. https://doi.org/10.1016/j.gaceta.2020.12.005
- Mandahawi, N., Imrhan, S., Al-Shobaki, S., & Sarder, B. (2008). Hand anthropometry survey for the Jordanian population. *International Journal of Industrial Ergonomics*, 38(11–12), 966–976. https://doi.org/10.1016/j.ergon.2008.01.010

- Márquez Gómez, M. (2020). Prediction of work-related musculoskeletal discomfort in the meat processing industry using statistical models. *International Journal of Industrial Ergonomics*, 75(September 2019). https://doi.org/10.1016/j.ergon.2019.102876
- Mathiassen, S. E. (2006). Diversity and variation in biomechanical exposure: What is it, and why would we like to know? *Applied Ergonomics*. https://doi.org/10.1016/j.apergo.2006.04.006
- Matsudaira, K., Konishi, H., Miyoshi, K., Isomura, T., Takeshita, K., Hara, N., Yamada, K., & MacHida, H. (2012). Potential risk factors for new onset of back pain disability in Japanese workers: Findings from the Japan epidemiological research of occupation-related back pain study. *Spine*, 37(15), 1324–1333. https://doi.org/10.1097/BRS.0b013e3182498382
- Mehrdad, R., Majlessi-Nasr, M., Aminian, O., & Malekahmadi, S. A. S. F. (2008). Acta medica Iranica. *Acta Medica Iranica*, *46*(3), 233–238. http://acta.tums.ac.ir/index.php/acta/article/view/3473/3450
- Mei Qi, L., & Ramalingam, V. (2019). Prevalence of Musculoskeletal Disorders and Associated Risk Factors among Selected Factory Workers in Penang, Malaysia. *INTI JOURNAL | EISSN*, 2019(June), 22.
- Meksawi, S., Tangtrakulwanich, B., & Chongsuvivatwong, V. (2012). Musculoskeletal problems and ergonomic risk assessment in rubber tappers: A community-based study in southern Thailand. *International Journal of Industrial Ergonomics*, 42(1), 129–135. https://doi.org/10.1016/j.ergon.2011.08.006
- Michalos, G., Makris, S., & Chryssolouris, G. (2013). The effect of job rotation during assembly on the quality of final product. *CIRP Journal of Manufacturing Science and Technology*, 6(3), 187–197. https://doi.org/10.1016/j.cirpj.2013.03.001
- MIDA. (2021, December). MIDA Newsletter Dec 2021. *Malaysian Investment Development Authority*, 3–5. https://www.mida.gov.my/media-and-events/e-newsletter/
- Min, S. N., Subramaniyam, M., Kim, D.-J., Park, S. J., Lee, H., Lee, H. S., & Kim, J. Y. (2015). Prevalence of Work-related Musculoskeletal Disorders in Auto-mission Assembly Plant Workers. *Journal of the Ergonomics Society of Korea*, 34(4), 293–302. https://doi.org/10.5143/jesk.2015.34.4.293
- Mirmohammadi, S., Yazdani, J., Etemadinejad, S., & Asgarinejad, H. (2015). A Cross-sectional Study on Work-related Musculoskeletal Disorders and Associated Risk Factors Among Hospital Health Cares. *Procedia Manufacturing*, 3(Ahfe), 4528–4534. https://doi.org/10.1016/j.promfg.2015.07.468

- Mohan, G. M., Ashok, P., & Pandi, G. N. (2019). Prevalence of Musculoskeletal Disorders (MSDs) among workers in Pump Manufacturing Industry. *International Journal of Recent Trends in Engineering & Research*, 5(Special Issue 1), 212–220. https://doi.org/10.23883/ijrter.conf.20190322.026.j0cwa
- Mohd Yusuff, R., Baba, Z., Siti, S. Z., & Tan, E. (2016). Malaysian ergonomics standards-its development, awareness and implementation- A review article. *Iranian Journal of Public Health*, 45(1), 1–8.
- Molen, H. F. van der, Sluiter, J. K., & Frings-Dresen, M. H. W. (2009). The use of ergonomic measures and musculoskeletal complaints among carpenters and pavers in a 4.5-year follow-up study. *Ergonomics*, 52(8), 954–963. https://doi.org/10.1080/00140130902763560
- Moore, J. S., & Garg, A. (1995). The Strain Index: A Proposed Method to Analyze Jobs for Risk of Distal Upper Extremity Disorders. *American Industrial Hygiene Association*, 56(5), 443–458. https://doi.org/10.1080/15428119591016863
- Moreira-Silva, I., Azevedo, J., Rodrigues, S., Seixas, A., & Jorge, M. (2021).

 Predicting musculoskeletal symptoms in workers of a manufacturing company. *International Journal of Occupational Safety and Ergonomics*, 27(4), 1136–1144. https://doi.org/10.1080/10803548.2019.1693112
- Moreira, M. C. O., & Costa, A. M. (2013). Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers. *International Journal of Production Economics*, *141*(2), 552–560. https://doi.org/10.1016/j.ijpe.2012.09.011
- Mörl, F., & Bradl, I. (2013). Lumbar posture and muscular activity while sitting during office work. In *Journal of Electromyography and Kinesiology* (Vol. 23, Issue 2, pp. 362–368). https://doi.org/10.1016/j.jelekin.2012.10.002
- Motamedzade, M., Ashuri, M. R., Golmohammadi, R., & Mahjuba, H. (2011). Comparison of ergonomic risk assessment outputs from rapid entire body assessment and quick exposure check in an engine oil company. *Journal of Research in Health Sciences*, 1(1), 26–32.
- Mulugeta, H., Tefera, Y., & Gezu, M. (2020). Nonfatal Occupational Injuries among Workers in Microscale and Small-Scale Woodworking Enterprise in Addis Ababa, Ethiopia. *Journal of Environmental and Public Health*, 2020. https://doi.org/10.1155/2020/6407236
- Nawi, N. S. M., Md Deros, B., & Norani, N. (2013). Assessment of Oil Palm Fresh Fruit Bunches Harvesters Working Postures Using Reba. *Advanced Engineering Forum*, 10, 122–127. https://doi.org/10.4028/www.scientific.net/aef.10.122

- Nejad, N. H., Choobineh, A., Rahimifard, H., Haidari, H. R., & Reza Tabatabaei, S. H. (2013). Musculoskeletal risk assessment in small furniture manufacturing workshops. *International Journal of Occupational Safety and Ergonomics*, 19(2), 275–284. https://doi.org/10.1080/10803548.2013.11076985
- Neumann, W. P., Winkel, J., Medbo, L., Magneberg, R., & Mathiassen, S. E. (2006). Production system design elements influencing productivity and ergonomics: A case study of parallel and serial flow strategies. *International Journal of Operations and Production Management*, 26(8), 904–923. https://doi.org/10.1108/01443570610678666
- Ng, Y. G., Bahri, M. T. S., Irwan Syah, M. Y. I., Mori, I., & Hashim, Z. (2013). Ergonomics observation: Harvesting tasks at oil palm plantation. *Journal of Occupational Health*, 55(5), 405–414. https://doi.org/10.1539/joh.13-0017-FS
- Ng, Y. G., Tamrin, S. B. M., Yusoff, I. S. M., Hashim, Z., Deros, B. M. D., Bakar, S. A., & How, V. (2015). Risk factors of musculoskeletal disorders among oil palm fruit harvesters during early harvesting stage. *Annals of Agricultural and Environmental Medicine*, 22(2), 286–292. https://doi.org/10.5604/12321966.1152101
- Nino, L., Marchak, F., & Claudio, D. (2020). Physical and mental workload interactions in a sterile processing department. *International Journal of Industrial Ergonomics*, 76(January), 102902. https://doi.org/10.1016/j.ergon.2019.102902
- Njaka, S., Mohd Yusoff, D., Anua, S. M., Kueh, Y. C., & Edeogu, C. O. (2021). Musculoskeletal disorders (MSDs) and their associated factors among quarry workers in Nigeria: A cross-sectional study. *Heliyon*, 7(2), e06130. https://doi.org/10.1016/j.heliyon.2021.e06130
- Nordander, C., Ohlsson, K., Balogh, I., Hansson, G. Å., Axmon, A., Persson, R., & Skerfving, S. (2008). Gender differences in workers with identical repetitive industrial tasks: Exposure and musculoskeletal disorders. *International Archives of Occupational and Environmental Health*, 81(8), 939–947. https://doi.org/10.1007/s00420-007-0286-9
- Norzaimi, M., Ani, C., & Azid, I. A. (2022). An Integration of Statistical and Anthropometric Measurement Approach Towards Improving Ergonomic Design for Production Workbench. *Malaysian Journal of Medicine and Health Sciences*, 18(9), 21–26. https://doi.org/10.47836/mjmhs18.s9.3
- Nunes, I. L. (2009). FAST ERGO-X A tool for ergonomic auditing and work-related musculoskeletal disorders prevention. *Work*, *34*(2), 133–148. https://doi.org/10.3233/WOR-2009-0912
- Nur Azma, A., Quek Kia, F., Jennifer, O., Izuddin, F. A., Noah, R., & Rusli, N. (2018). Predictors of work-related musculoskeletal disorders of

- neck and shoul-ders among nurses. INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACEUTICAL SCIENCES. 9(1), 118–125.
- Nur, N. M., Dawal, S. Z., & Dahari, M. (2014). The Prevalence of Work Related Musculoskeletal Disorders Among Workers Performing Industrial Repetitive Tasks in the Automotive Manufacturing Companies. 1–8.
- Occhipinti, E. (1998). OCRA: a concise index for the assessment of exposure to repetitive movements of the upper limbs. *Ergonomics*, 41(9), 1290–1311. https://doi.org/10.1080/001401398186315
- Occupational Safety and Health Association. (2013). Prevention of Musculoskeletal Injuries in Poultry Processing. In *U. S. Department of Labor*. https://www.osha.gov/SLTC/ergonomics/
- Okello, A., Wafula, S. T., Sekimpi, D. K., & Mugambe, R. K. (2020). Prevalence and predictors of work-related musculoskeletal disorders among workers of a gold mine in south Kivu, Democratic Republic of Congo. *BMC Musculoskeletal Disorders*, 21(1), 1–10. https://doi.org/10.1186/s12891-020-03828-8
- Oliv, S., Gustafsson, E., Baloch, A. N., Hagberg, M., & Sandén, H. (2019). The Quick Exposure Check (QEC) Inter-rater reliability in total score and individual items. *Applied Ergonomics*. https://doi.org/10.1016/j.apergo.2018.11.005
- Ooneklabh, K., Leelarungrayub, J., Chamnongkich, S., & Pothongsunun, P. (2020). Preliminary Study on Work-related Musculoskeletal Disorder and Ergonomic Implementation Program among Wood Carvers in Chiang Mai Province, Thailand. *Global Journal of Physiotherapy and Rehabilitation*, 2, 1–16. https://doi.org/https://doi.org/10.36811/gjpr.2020.110005
- Openshaw, S., & Taylor, E. (2006). Ergonomics and Design A Reference Guide. *Allsteel Design to Work Build to Last*, 1–2. www.allsteeloffi%5Cnce.com/ergo
- Otto, A., & Scholl, A. (2011). Incorporating ergonomic risks into assembly line balancing. *European Journal of Operational Research*, 212(2), 277–286. https://doi.org/10.1016/j.ejor.2011.01.056
- Padula, R. S., Comper, M. L. C., Sparer, E. H., & Dennerlein, J. T. (2017). Job rotation designed to prevent musculoskeletal disorders and control risk in manufacturing industries: A systematic review. In *Applied Ergonomics* (Vol. 58, pp. 386–397). https://doi.org/10.1016/j.apergo.2016.07.018
- Palmer, K. T., Syddall, H., Cooper, C., & Coggon, D. (2003). Smoking and musculoskeletal disorders: Findings from a British national survey. *Annals of the Rheumatic Diseases*, 62(1), 33–36.

- Pandve, H. T. (2017). Historical Milestones of Ergonomics: From Ancient Human to Modern Human. *Journal of Ergonomics*, *07*(04), 7556. https://doi.org/10.4172/2165-7556.1000e169
- Pao, T., & Kleiner, B. H. (2001). New developments concerning the occupational safety and health act. *Managerial Law*. https://doi.org/10.1108/03090550110770462
- Paris, M., & Kothiyal, K. (2005). A comparative study of physiological cost in manual handling tasks between trained and untrained workers: research article. *Ergonomics SA: Journal of the Ergonomics Society of South Africa*, 17(2), 23–30.
- Park, S., Lee, J., & Lee, J. H. (2021). Insufficient Rest Breaks at Workplace and Musculoskeletal Disorders Among Korean Kitchen Workers. Safety and Health at Work, 12(2), 225–229. https://doi.org/10.1016/J.SHAW.2021.01.012
- Parkinson, M. B., & Reed, M. P. (2010). Creating virtual user populations by analysis of anthropometric data. *International Journal of Industrial Ergonomics*, 40(1), 106–111. https://doi.org/10.1016/j.ergon.2009.07.003
- Pugh, S. (1991). *Total Design: Integrated Methods for Successful Product Engineering* (S. Pugh (ed.); Illustrate). Addison-Wesley Pub. Co. https://prism.librarymanagementcloud.co.uk/bolton-ac/items/9391
- Punnett, L., & Wegman, D. H. (2004). Work-related musculoskeletal disorders: The epidemiologic evidence and the debate. *Journal of Electromyography and Kinesiology*, 14(1), 13–23. https://doi.org/10.1016/j.jelekin.2003.09.015
- Purani, R., Vyas, N., & Sheth, M. (2016). Prevalence of low back pain in salespersons and its association with ergonomic risk factors in Ahmedabad, Gujarat: A cross-sectional survey. *Medical Journal of Dr. D.Y. Patil University*, *9*(3), 331. https://doi.org/10.4103/0975-2870.182503
- Raeisi, S., Osqueizadeh, R., Maghsoudipour, M., & Jafarpisheh, A. S. (2016). Ergonomic redesign of an industrial control panel. *International Journal of Occupational and Environmental Medicine*, *7*(3), 186–192. https://doi.org/10.15171/ijoem.2016.756
- Rampal, K. G., & Mohd Nizam, J. (2006). Developing regulations for occupational exposures to health hazards in Malaysia. *Regulatory Toxicology and Pharmacology*, 46(2), 131–135. https://doi.org/10.1016/j.yrtph.2006.01.013
- Rathore, B., Pundir, A. K., & Iqbal, R. (2020). Ergonomic risk factors in glass

- artware industries and prevalence of musculoskeletal disorder. *International Journal of Industrial Ergonomics*, *80*(June), 103043. https://doi.org/10.1016/j.ergon.2020.103043
- Ratnasingam, J., Ioras, F., & Bennet, M. (2010). Determinants of Workers Health and Safety in the Malaysian Wooden Furniture Industry. *Journal of Applied Sciences*, 10(5), 425–430. https://doi.org/10.3923/jas.2010.425.430
- Ratnasingam, J., Ramasamy, G., Ioras, F., Thanesegaran, G., & Mutthiah, N. (2016). Assessment of dust emission and working conditions in the bamboo and wooden furniture industries in Malaysia. *BioResources*, 11(1), 1189–1201. https://doi.org/10.15376/biores.11.1.1189-1201
- Razak, S., Karuppiah, K., & Tamrin, S. B. M. (2014). Musculoskeletal disorder: The prevalence among workers in selected palm oil mills in Malaysia. *Advances in Environmental Biology*, *8*(15), 277–284.
- Reis, P. F., Peres, L. S., Tirloni, A. S., Reis, D. C. Dos, Estrázulas, J. A., Rossato, M., & Moro, A. R. P. (2012). Influence of anthropometry on meat-packing plant workers: An approach to the shoulder joint. *Work*, *41*(SUPPL.1), 4612–4617. https://doi.org/10.3233/WOR-2012-0077-4612
- Riihim, H., Journal, S., Health, O., National, D., Environment, W., Url, S., & Source, A. B. (2013). Systematic evaluation of observational methods assessing biomechanical exposures at work. May, 34–36.
- Rimba, J. T., Naiem, F., & Rahim, M. R. (2019). Relationship between Work Posture and Musculoskeletal Disorders (Msds) at Processing Workers in PtToarco Jaya, Rantepao City year 2017. *Indian Journal of Public Health Research* & Development, 10(7), 1025. https://doi.org/10.5958/0976-5506.2019.01714.5
- Rivilis, I., Van Eerd, D., Cullen, K., Cole, D. C., Irvin, E., Tyson, J., & Mahood, Q. (2008). Effectiveness of participatory ergonomic interventions on health outcomes: A systematic review. *Applied Ergonomics*. https://doi.org/10.1016/j.apergo.2007.08.006
- Roli D, &, Ali I, N. V. (2020). Telecommunication and Instrument Mechanics of Armed forces. *International Journal of Occupational Safety and Health*, 10(1), 18–27.
- Roodbandi, A. S. J., Ekhlaspour, F., Takaloo, M. N., & Farokhipour, S. (2019). Prevalence of Musculoskeletal Disorders and Posture Assessment by QEC and Inter-rater Agreement in This Method in an Automobile Assembly Factory: Iran-2016. In *Advances in Intelligent Systems and Computing* (Vol. 825, Issue January). Springer International Publishing. https://doi.org/10.1007/978-3-319-96068-5_37

- Roya Latifi Naeini, S. B. H. M. T. (2014). The Association between Noise Exposure Level and Occupational Stress Level as a Non-Auditory Effects of Noise among Palm oil Mill Workers. *Asian Journal of Medical and Pharmaceutical Researches*, *3*(4), 91–96.
- Rytter, S., Jensen, L. K., & Bonde, J. P. (2007). Knee complaints and consequences on work status; a 10-year follow-up survey among floor layers and graphic designers. In *BMC Musculoskeletal Disorders* (Vol. 8). https://doi.org/10.1186/1471-2474-8-93
- S.C. Mali, & R.T.Vyavahare. (2015). An Ergonomic Evaluation of an Industrial Workstation: A Review. *International Journal of Current Engineering and Technology*, *5*(3), 1820–1826.
- Sadile, F., Cigala, F., Esposito, G., Esposito, C., Settimi, A., Albanese, C. T., & Tovar, J. A. (2009). Musculoskeletal disorder. In *Pediatric Surgical Diseases: A Radiologic Surgical Case Study Approach*. https://doi.org/10.1007/978-3-540-71516-0_6
- Saleh, H. M., Fasiha, N., Yusof, M., & Hussain, M. N. (2018). Prevalence of Wrist MSD Risk amongst Silk Screen Printing Workers in Johor Bahru: A Preliminary Result. 13, 3–7.
- Salleha, N. F. M., & Sukadarina, E. H. (2018). Job Hazard Analyses (JHA) for Ergonomics Risk Factors in Malaysian Pineapple Plantation. Journal of Occupational Safety and Health, 15(1), 17.
- Salminen, S., Gyekye, S. A., & Ojajarvi, A. (2013). Individual and Organizational Factors of Safe Behaviour among Ghanaian Industrial Workers. *Engineering Management Research*, 2(1), 98–110. https://doi.org/10.5539/emr.v2n1p98
- Schierhout, G. H., Meyers, J. E., & Bridger, R. S. (1995). Work related musculoskeletal disorders and ergonomic stressors in the South African workforce. *Occupational and Environmental Medicine*, *52*(1), 46–50. https://doi.org/10.1136/oem.52.1.46
- Schneider, S. P. (2001). Musculoskeletal injuries in construction: A review of the literature. *Applied Occupational and Environmental Hygiene*, *16*(11), 1056–1064. https://doi.org/10.1080/104732201753214161
- Schrimpf, M., Liegl, G., Boeckle, M., Leitner, A., Geisler, P., & Pieh, C. (2015). The effect of sleep deprivation on pain perception in healthy subjects: A meta-analysis. *Sleep Medicine*, *16*(11), 1313–1320. https://doi.org/10.1016/j.sleep.2015.07.022
- Schwartz, A., Gerberich, S. G., Kim, H., Ryan, A. D., Church, T. R., Albin, T. J., McGovern, P. M., Erdman, A. E., Green, D. R., & Arauz, R. F. (2019). Janitor ergonomics and injuries in the safe workload ergonomic exposure project (SWEEP) study. *Applied Ergonomics*, 81(September 2018), 102874.

- https://doi.org/10.1016/j.apergo.2019.102874
- Sealetsa, O. J., & Thatcher, A. (2011). Ergonomics issues among sewing machine operators in the textile manufacturing industry in Botswana. *Work*, *38*(3), 279–289. https://doi.org/10.3233/WOR-2011-1131
- Senderská, K., Mareš, A., Ongyik, T. (2016). Manual Assembly Workstation Design Supported By Ergonomics Software Tools. *Jpe*, *19*(1), 1–4. http://www.jpe.ftn.uns.ac.rs/papers/2016/no1/18-Senderska_JPE_19_No1.pdf
- Shahbazi, A., Mokhtarinia, H. R., Biglarian, A., & Gabel, C. P. (2020). Research Paper: The Prevalence of Musculoskeletal Symptoms in Iranian Spinner Workers in the Textile Industry and its Association With Demographic and Lifestyle Characteristics. *Iranian Rehabilitation Journal*, 18(4), 395–404. https://doi.org/10.32598/iri.18.4.919.2
- Shamsudin, M. Z., Vijaykumar, V., & Md Daud, M. Y. (2017). Work-related Musculoskeletal Disorders (WMSDs) among Industrial Packaging Workers in Malaysia. *Malaysian Journal of Human Factors and Ergonomics*, 2(1), 17–24.
- Shanmugam, M., Gnanavel, B. K., Vijaya Rajan, V., & Santhanam, V. (2021). Prevalence of musculoskeletal disorders and occupational risk factors among building painters in South India. *Journal of Physics: Conference Series*, 1937(1), 012040. https://doi.org/10.1088/1742-6596/1937/1/012040
- Shih, B.-Y., Chen, C.-Y., & Chen, Z.-S. (2006). Malaysian Sitting Anthropometry for Seat Fit Parameters. *Human Factors and Ergonomics in Manufacturing*. https://doi.org/10.1002/hfm
- Shikdar, A. A., & Sawaqed, N. M. (2003). Worker productivity, and occupational health and safety issues in selected industries. *Computers and Industrial Engineering*, *45*(4), 563–572. https://doi.org/10.1016/S0360-8352(03)00074-3
- Silva, L. F., & Teixeira, S. L. (2017). Prevalence of musculoskeletal pain in leather products industry workers: cross-sectional study in a city of the state of Minas Gerais. *Revista Dor*, 18(2), 135–140. https://doi.org/10.5935/1806-0013.20170027
- Singh, J., Kocher, G., & Lal, H. (2013). Musculoskeletal Disorder Among Workers in Small Scale Forging Industry. *International Journal of Applied Research in Mechanical Engineering*, 199–206. https://doi.org/10.47893/ijarme.2013.1086
- Soehod, K. B., & Laxman, L. K. P. (2007). Law On Safety And Health In Malaysia. *University Of Technology Malaysia*.
- Sørensen, O. H., Hasle, P., & Bach, E. (2007). Working in small enterprises

- Is there a special risk? *Safety Science*, *45*(10), 1044–1059. https://doi.org/10.1016/j.ssci.2006.09.005
- Srinivasan, D., & Mathiassen, S. E. (2012). Motor variability in occupational health and performance. *Clinical Biomechanics*, *27*(10), 979–993. https://doi.org/10.1016/j.clinbiomech.2012.08.007
- Stankevitz, K., Schoenfisch, A., de Silva, V., Tharindra, H., Stroo, M., & Ostbye, T. (2016). Prevalence and risk factors of musculoskeletal disorders among Sri Lankan rubber tappers. In *International Journal of Occupational and Environmental Health* (Vol. 22, Issue 2, pp. 91–98). https://doi.org/10.1080/10773525.2016.1168073
- Stc, S. (1974). Occupational Safety and Health. *IEEE Engineering Management Review*. https://doi.org/10.1109/EMR.1974.4306373
- Sudiajeng, L., Adiputra, N., & Leibbrandt, R. (2012). Ergonomics work stations decreases the health impairment and saves electrical energy at the woodworking workshop in Bali, Indonesia. *Journal of Human Ergology*, 41(1–2), 41–54.
- Sukadarin, E. H., Md Deros, B., Ghani, J. A., Ismail, A. R., Mokhtar, M. M., & Mohamad, D. (2013). Investigation of Ergonomics Risk Factors for Musculoskeletal Disorders among Oil Palm Workers Using Quick Exposure Check (QEC). Advanced Engineering Forum, 10, 103–109. https://doi.org/10.4028/www.scientific.net/aef.10.103
- Sutalaksana, I. Z., & Widyanti, A. (2016). Anthropometry approach in workplace redesign in Indonesian Sundanese roof tile industries. *International Journal of Industrial Ergonomics*, *53*, 299–305. https://doi.org/10.1016/j.ergon.2016.03.002
- Svendsen, J. H., & Madeleine, P. (2010). Amount and structure of force variability during short, ramp and sustained contractions in males and females. *Human Movement Science*, 29(1), 35–47. https://doi.org/10.1016/j.humov.2009.09.001
- Syazwani, N., Nawi, M., Deros, B., Nizam, M., Rahman, A., & Sukadarin, E. H. (2015). WMSDs complaints among Palm Oil Plantation Workers: Impact of the use machines technology. August, 12–14.
- Syuaib, M. F. (2015). Anthropometric study of farm workers on Java Island, Indonesia, andits implications for the design of farm tools and equipment. *Applied Ergonomics*, 51, 222–235. https://doi.org/10.1016/j.apergo.2015.05.007
- Taanila, H., Suni, J., Pihlajamäki, H., Mattila, V. M., Ohrankämmen, O., Vuorinen, P., & Parkkari, J. (2009). Musculoskeletal disorders in physically active conscripts: A one-year follow-up study in the Finnish Defence Forces. *BMC Musculoskeletal Disorders*, 10(1), 1–11. https://doi.org/10.1186/1471-2474-10-89

- Taiwo, O. A., Cantley, L. F., Slade, M. D., Pollack, K. M., Vegso, S., Fiellin, M. G., & Cullen, M. R. (2009). Sex differences in injury patterns among workers in heavy manufacturing. In *American Journal of Epidemiology* (Vol. 169, Issue 2, pp. 161–166). https://doi.org/10.1093/aje/kwn304
- Takahashi, M., Matsudaira, K., & Shimazu, A. (2015). Disabling low back pain associated with night shift duration: Sleep problems as a potentiator. In *American Journal of Industrial Medicine* (Vol. 58, Issue 12, pp. 1300–1310). https://doi.org/10.1002/ajim.22493
- Tang, L. (2019). BRIEF and PLIBEL methods to evaluate musculoskeletal disorders of maintenance personnel. Icasit, 33–36.
- Turner, J. A., Franklin, G., Fulton-Kehoe, D., Egan, K., Wickizer, T. M., Lymp, J. F., Sheppard, L., & Kaufman, J. D. (2004). Prediction of chronic disability in work-related musculoskeletal disorders: A prospective, population-based study. *BMC Musculoskeletal Disorders*, 5, 1–7. https://doi.org/10.1186/1471-2474-5-14
- Uehli, K., Mehta, A. J., Miedinger, D., Hug, K., Schindler, C., Holsboer-Trachsler, E., Leuppi, J. D., & Künzli, N. (2014). Sleep problems and work injuries: A systematic review and meta-analysis. *Sleep Medicine Reviews*, *18*(1), 61–73. https://doi.org/10.1016/j.smrv.2013.01.004
- Valero, E., Sivanathan, A., Bosché, F., & Abdel-Wahab, M. (2016).

 Musculoskeletal disorders in construction: A review and a novel system for activity tracking with body area network. *Applied Ergonomics*, 54, 120–130. https://doi.org/10.1016/j.apergo.2015.11.020
- Velasco Garrido, M., Mette, J., Mache, S., Harth, V., & Preisser, A. M. (2020). Musculoskeletal pain among offshore wind industry workers: a cross-sectional study. *International Archives of Occupational and Environmental Health*, 93(7), 899–909. https://doi.org/10.1007/s00420-020-01544-3
- Vieira, E. R., Buckeridge Serra, M. V. G., Brentini de Almeida, L., Vieira Villela, W., Domingos Scalon, J., & Veiga Quemelo, P. R. (2015). Symptoms and risks for musculoskeletal disorders among male and female footwear industry workers. *International Journal of Industrial Ergonomics*, 48, 110–116. https://doi.org/10.1016/j.ergon.2015.05.001
- Villa-Forte, A. (2022). *Muscles*. Merck & Co., Inc., Rahway, NJ, USA. https://www.msdmanuals.com/home/bone,-joint,-and-muscledisorders/biology-of-the-musculoskeletal-system/muscles
- Vinstrup, J., Jakobsen, M. D., Calatayud, J., Jay, K., & Andersen, L. L. (2018). Association of stress and musculoskeletal pain with poor sleep: Cross-sectional study among 3,600 hospital workers. Frontiers in Neurology, 9(NOV), 1–6. https://doi.org/10.3389/fneur.2018.00968

- Vyavahare, R. T., & Kallurkar, S. P. (2016). Anthropometry of male agricultural workers of western India for the design of tools and equipments. *International Journal of Industrial Ergonomics*, *53*, 80–85. https://doi.org/10.1016/j.ergon.2015.10.008
- Wahlström, J. (2005). Ergonomics, musculoskeletal disorders and computer work. In *Occupational Medicine*. https://doi.org/10.1093/occmed/kqi083
- Wami, S. D., Abere, G., Dessie, A., & Getachew, D. (2019). Work-related risk factors and the prevalence of low back pain among low wage workers: Results from a cross-sectional study. *BMC Public Health*, 19(1), 1–9. https://doi.org/10.1186/s12889-019-7430-9
- Wang, T., Zhao, Y. L., Hao, L. X., & Jia, J. G. (2019). Prevalence of musculoskeletal symptoms among industrial employees in a modern industrial region in Beijing, China. *Chinese Medical Journal*, 132(7), 789–797. https://doi.org/10.1097/CM9.000000000000165
- Waters, T. R. (2004). National efforts to identify research issues related to prevention of work-related musculoskeletal disorders. *Journal of Electromyography and Kinesiology*, 14(1), 7–12. https://doi.org/10.1016/j.jelekin.2003.09.004
- Watson, N. F., Badr, M. S., Belenky, G., Bliwise, D. L., Buxton, O. M., Buysse, D., Dinges, D. F., Gangwisch, J., Grandner, M. A., Kushida, C., Malhotra, R. K., Martin, J. L., Patel, S. R., Quan, S. F., Tasali, E., Twery, M., Croft, J. B., Maher, E., Barrett, J. A., ... Heald, J. L. (2015). Recommended amount of sleep for a healthy adult: A joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. *Journal of Clinical Sleep Medicine*, 11(6), 591–592. https://doi.org/10.5664/jcsm.4758
- Wibowo, R. K. K., & Soni, P. (2014). Anthropometry and Agricultural Hand Tool Design for Javanese and Madurese Farmers in East Java, Indonesia. *APCBEE Procedia*. https://doi.org/10.1016/j.apcbee.2014.03.012
- Widanarko, B., Legg, S., Devereux, J., & Stevenson, M. (2014). The combined effect of physical, psychosocial/organisational and/or environmental risk factors on the presence of work-related musculoskeletal symptoms and its consequences. *Applied Ergonomics*, 45(6), 1610–1621. https://doi.org/10.1016/j.apergo.2014.05.018
- Widia, M., Md Dawal, S. Z., & Yusoff, N. (2016). The relation of risk factors and musculoskeletal discomfort among manual material handling workers in Malaysian automotive industries. *Malaysian Journal of Public Health Medicine*, 1(Specialissue1), 124–133.
- Wong, K., Chan, A. H. S., & Ngan, S. C. (2019). The effect of long working

- hours and overtime on occupational health: A meta-analysis of evidence from 1998 to 2018. In *International Journal of Environmental Research and Public Health* (Vol. 16, Issue 12). https://doi.org/10.3390/ijerph16122102
- Workineh, S. A., & Yamaura, H. (2016). Multi-position ergonomic computer workstation design to increase comfort of computer work. *International Journal of Industrial Ergonomics*, *53*, 1–9. https://doi.org/10.1016/j.ergon.2015.10.005
- Yadav, R., Budhrani, B. P., C Balani, P., & S, P. (2017). Anthropometric and Ergonomic Compatibility of Tractor Workplace Design. *Journal of Ergonomics*, 07(S6), 1–7. https://doi.org/10.4172/2165-7556.1000.s6-001
- Yahya, N. M., & Zahid, M. N. O. (2018). Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company. *IOP Conference Series: Materials Science and Engineering*, 319(1). https://doi.org/10.1088/1757-899X/319/1/012036
- Yamauchi, T., Sasaki, T., Takahashi, K., Umezaki, S., Takahashi, M., Yoshikawa, T., Suka, M., & Yanagisawa, H. (2019). Long working hours, sleep-related problems, and near-misses/injuries in industrial settings using a nationally representative sample of workers in Japan. *PLoS ONE*, *14*(7). https://doi.org/10.1371/journal.pone.0219657
- Yan, X., Li, H., Li, A. R., & Zhang, H. (2017). Wearable IMU-based real-time motion warning system for construction workers' musculoskeletal disorders prevention. *Automation in Construction*, 74, 2–11. https://doi.org/10.1016/j.autcon.2016.11.007
- Yang, S. T., Park, M. H., & Jeong, B. Y. (2020). Types of manual materials handling (MMH) and occupational incidents and musculoskeletal disorders (MSDs) in motor vehicle parts manufacturing (MVPM) industry. *International Journal of Industrial Ergonomics*, 77(March), 102954. https://doi.org/10.1016/j.ergon.2020.102954
- Yao, Y., Zhao, S., An, Z., Wang, S., Li, H., Lu, L., & Yao, S. (2019). the Associations of Work Style and Physical Exercise With the Risk of Work-Related Musculoskeletal Disorders in Nurses. *International Journal of Occupational Medicine and Environmental Health*, 32(1), 15–24. https://doi.org/10.13075/ijomeh.1896.01331
- Yazuli, Z. A., Karuppiah, K., Kumar, E., Tamrin, S. B. M., & Sambasivam, S. (2019). Discomfort, fatigue and work-related musculoskeletal disorders associated with prolonged standing among Malaysian manufacturing workers: A mini review. Songklanakarin Journal of Science and Technology, 41(2), 271–275. https://doi.org/10.14456/sjst-psu.2019.34

- Yu, W., Yu, I. T. S., Li, Z., Wang, X., Sun, T., Lin, H., Wan, S., Qiu, H., & Xie, S. (2012). Work-related injuries and musculoskeletal disorders among factory workers in a major city of China. *Accident Analysis and Prevention*, 48, 457–463. https://doi.org/10.1016/j.aap.2012.03.001
- Yusof, A., & Shahida, M. S. N. (2021). Prevalence of Musculoskeletal Discomfort Among Workers in a Medical Manufacturing Facility. *International Journal of Automotive and Mechanical Engineering*, 18(2), 8687–8694. https://doi.org/10.15282/ijame.18.2.2021.06.0662
- Yusof, A., Shahida, N., & Shalahim, M. (2020). INVESTIGATION OF ERGONOMIC RISK FACTORS AMONG MALE WORKERS IN A MEDICAL MANUFACTURING COMPANY IN NORTHERN MALAYSIA. *Malaysian Journal of Public Health Medicine*, 1, 167–175.
- Yusof, N., Yusof, R., Ahmat Basri, F. M. F., & Soin, N. (2013). Ergonomic Evaluation of Postural Assessment among "Canting" Batik Workers. *Advanced Engineering Forum*, 10, 226–230. https://doi.org/10.4028/www.scientific.net/aef.10.226