

IMPROVING INDOOR COMFORT THROUGH FAÇADE IMPROVEMENT FOR RESIDENTS IN BASRA, IRAQ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2023

FRSB 2023 16

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

IMPROVING INDOOR COMFORT THROUGH FAÇADE IMPROVEMENT FOR RESIDENTS IN BASRA, IRAQ

Ву

ZIADOON AHMED MAZYED AL-HAMBOSH

August 2023

Chairman : Ts Maszura binti Abdul Ghafar, PhD

Faculty : Design and Architecture

Indoor thermal comfort is key to residents' comfort in the dry and hot regions. In Iraq, the climate has changed due to several factors such as wars and economic crises. This led to extremely high temperatures. This phenomenon has resulted in significant energy use and discomfort for the residents 'of Basra. In a hot, arid country like Iraq, the residents' thermal comfort is still the main problem, especially during summertime resulting a high energy usage. Therefore, this research aimed to determine the optimum façade improvement that Basra people can use to attain indoor thermal comfort. This study employed an experimental design based on Fanger's model to analyse variables that may impact indoor comfort and determine a balance between air quality and indoor comfort. Vi suit and 3D blender software were used in the simulation to examine the impact of thermal on the residents' façade. The experiment result indicated that double-glazing typologies and double-skin façade materials could increase inhabitants' indoor thermal comfort by 50 % and enhance air quality by 40%. Using these façade materials and typology could potentially improve indoor comfort for the residents. This study is limited to understanding the effect of double glazing and double skin materials on residents in arid and hot climates particularly in the Basra City, Iraq. The development of façade improvement could formulate future guidelines and policies for façade treatment in hot and arid countries.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

MENINGKATKAN KESELESAAN DALAMAN MELALUI PENAMBAHBAIKAN FASAD BANGUNAN KEDIAMAN DI BASRA, IRAQ

Oleh

ZIADOON AHMED MAZYED AL-HAMBOSH

Ogos 2023

Pengerusi : Ts Maszura binti Abdul Ghafar, PhD

Fakulti : Rekabentuk dan Senibina

Keselesaan terma dalaman adalah kunci kepada keselesaan penduduk di kawasan kering dan panas. Iklim di Iraq telah berubah disebabkan oleh beberapa faktor seperti peperangan dan krisis ekonomi sehingga menjurus kepada suhu yang sa<mark>ngat tinggi. Fenomena ini telah menye</mark>babkan peningkatan penggunaan tenaga yang ketara dan ketidakselesaan kepada penduduk Basra. Di negara yang panas dan gersang seperti Iraq, keselesaan haba penduduk masih menjadi masalah utama, terutamanya semasa musim panas hingga mengakibatkan penggunaan tenaga yang tinggi. Oleh itu, penyelidikan ini bertujuan untuk menentukan penambahbaikan muka bangunan yang optimum yang boleh digunakan oleh penduduk Bandar Basra untuk mencapai haba dalaman yang selesa. Kajian ini menggunakan reka bentuk eksperimen berdasarkan model Fanger untuk menganalisis pembolehubah yang akan memberi kesan kepada keselesaan dalaman dan untuk menentukan keseimbangan antara kualiti udara dan keselesaan dalaman. Perisian VI-suite dan pengadun 3D digunakan dalam simulasi untuk mengkaji kesan haba kepada muka bangunan yang dihuni penduduk. Hasil kajian menunjukkan bahawa tipologi kaca dua lapis dan bahan muka bangunan dua kulit boleh meningkatkan keselesaan haba dalaman penghuni sebanyak 50% dan meningkatkan kualiti udara sebanyak 40%. Penggunaan bahan muka bangunan dan tipologi ini dapat meningkatkan keselesaan dalaman penduduk. Kajian ini terhad kepada usaha memahami kesan kaca dua lapis dan bahan dua kulit untuk bangunan kepada penduduk di kawasan beriklim gersang dan panas terutamanya di bandar Basra, Iraq. Perkembangan penambahbaikan muka bangunan dapat merumuskan garis panduan dan dasar masa depan untuk penambahbaikan muka bangunan di negara-negara yang gersang dan panas.

ACKNOWLEDGEMENTS

I am grateful to my wife Noor and my family for their ever-ending love and support during my Master's journey. I am grateful to my supervisor Ts Dr Maszura Abdul Ghafar for her time and support for me to finish my Master. I also would like to say thank you to Associate Professor Dr. Mohd Fakri Zaki Ja'afar for his contributions to this study.

I would also like to thank the editors and reviewers for their constructive comments.

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Maszura binti Abdul Ghafar, PhD

Senior Lecturer Ts.
Faculty of Design and Architecture
Universiti Putra Malaysia
(Chairman)

Mohamad Fakri Zaky bin Ja'afar, PhD

Associate Professor
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 March 2024

TABLE OF CONTENTS

		Page
APPROVA DECLARA LIST OF T LIST OF F	T LEDGEMENTS IL ITION ABLES	i ii iii iv vi x xi xiii
CHAPTER		
1	INTRODUCTION 1.1 Background 1.2 Problem Statement 1.3 Research Questions 1.4 Research Objectives 1.5 Research Framework 1.6 Limitation of Study 1.7 Thesis Outlines	1 1 3 6 6 8 9
2	LITERATURE REVIEW 2.1 Background 2.2 The Climate of the Republic of Iraq 2.3 Challenges and Barriers to Iraq's Residential Housing Comfort 2.4 Current Façade Improvement Techniques in Hot Climate of Basra 2.5 Façade Improvement Technique for Improving Thermal Comfort 2.6 Summary	11 11 11 14 17 21 24
3	RESEARCH METHODOLOGY 3.1 Introduction 3.2 Research Flow Chart 3.3 Simulation and Modelling Accuracy 3.4 Validation of Methodology Process 3.5 Simulation Settings and Boundaries	29 29 34 36 38 41
4	RESULT AND ANALYSIS 4.1 Introduction 4.2 Shanasheel House Thermal Analysis	44 44 45 45 47 48 50

		4.3.2 Window Glazing Optimisation	52
	4.4	Combination of Best Façade Design Solutions	54
	4.5	Findings	56
	4.6	The Model Performance	57
5	CON	CLUSION AND RECOMMENDATION	58
	5.1	Recommendation	58
	5.2	Conclusion	58
REF	EREN	CES	61
BIO	DATA	OF STUDENT	68
PUE	BLICAT	TION	69

LIST OF TABLES

Table		Page
1.1	Description the Annual Temperature Collect from IMOS Iraq Meteorological Organisation and Seismology for Iraq States	4
1.2	The flow between Research Questions, Research Objectives, Methods, and Problem Statement	7
2.1	Shown the Layers of the Building Envelope and Their Thermal Characteristics	14
2.2	Description the Monthly Temperature Collect from IMOS Iraq Meteorological Organisation and Seismology for Basra	15
2.3	Traditional and Modern Building Comparison at Basra	20
2.4	Physical and Thermal Characteristics of the Proposed Wall Materials	23
2.5	Summary of Current Challenges towards Indoor Comfort Found from the Previous Literature in Order to Identify Clearer Variables	25
3.1	Data Collection and Variables	33
3.2	Measurement of Temperature and Humidity Data in City of Basra in Different Locations by Data Logger	36
3.3	Show the Characteristics of Traditional House "Shanasheel"	37
3.4	Comparison of Simulated and Measured Temperature with Standard Error	41
4.1	Thermal Priorities of Residential Building Wall	44
4.2	Physical and Thermal Characteristics of the Proposed Wall Materials from Literature Review	50

LIST OF FIGURES

Figure		Page
1.1	Solar Radiation for a Whole Year in Iraq and Basra	2
1.2	Shanasheel Houses Arrangement	5
1.3	Research Framework Flow Process	8
2.1	Iraq Climate Zones (World Bank, 2018)	12
2.2	Solar Radiation for a Whole Year in Iraq and Basra	13
2.3	Features of the Conventional System; (a) Features of the Typical System Walls, (b) Details of the Conventional System Exterior Ceilings for the Houses in Iraq (Homod et al., 2021).	15
2.4	Current Challenges Faced by Basra's Residents in Terms of Residential Comfort	17
2.5	Residential Houses in the City of Basra. (a) Traditional house "Shanasheel", (b) Old Building "1990's", (c) New House "2010's"	19
2.6	Current Façade Improvement Techniques in Hot Climate of Basra	20
2.7	Façade Improvement Technique for Improving Thermal Comfort	24
2.8	The Final Point of Departure	27
3.1	Participants Were Chosen Randomly Depending on the Different Periods of Basra's History	30
3.2	The Main User Interface of the Blender 3D Decision-Making Tool and the Vi-Suite Plug-In Capabilities	31
3.3	The Data Logger Employed in the Measurement Collection Process (Author)	34
3.4	The Research Flow Structure	35
3.5	The Research Procedure	35
3.6	Show the Chosen House. (By Author)	36
3.7	Residential Houses in the City of Basra. Traditional House "Shanasheel". (By Author)	37

3.8	Illustration of the House Position, Plan and 3D Blender and Sensor Location. (By Author)	38
3.9	Show the Process of Collecting Data from the Software	39
3.10	Comparison of Simulated and Measured Temperature at Shanasheel. (a) Simulated Results, (b) Measured Results	40
3.11	Thermal Performance Diagnosis Procedure Related to Building Façade Components	42
4.1	Thermal Comfort Analysis for Shanasheel House. (a) PMV values, (b) Comfort and discomfort Hours	46
4.2	PPD responses for kitchen and living room of Shanasheel House	47
4.3	PPM CO2 Concentration during Summer in Shanasheel House. (a) Kitchen and Living Room IDQ, (b) Comfort and Discomfort Hours	48
4.4	The Proposed Virt <mark>ual Wall Model for the Shanasheel Ho</mark> use	49
4.5	Thermal Comfort Results for Shanasheel House with Different Wall Materials. (a) PMV Values, (b) Comfort Hours, (c) Both PMV and Comfort Hours	51
4.6	Show the Depending on Opening Window	52
4.7	Comfort Hours for Shanasheel for Single Glazing	53
4.8	Comfort Hours for Shanasheel for Double Glazing	53
4.9	WWR Impact on CO2 PPM of Shanasheel House	54
4.10	Thermal Comfort Hours for Shanasheel House	55
4.11	CO2 Hours Comfort < 1000 ppm for Shanasheel House	55
4.12	After Optimisation, Use of Double Glazing for Window and Hollow Brick for Wall	56

LIST OF ABBREVIATIONS

PMV Predicted Mean vote

PPD Predicted Percentage of Dissatisfied

IDQ indoor air quality

°C temperature

WWR Window to wall ratio

h Hour

CO₂ Carbon dioxide

CHAPTER 1

INTRODUCTION

In this chapter, an overview of the background of the study from past studies is presented. This is followed by the study's problem statement, research hypothesis, research questions, and research objectives. Additionally provided are the study's limitations and research framework. Finally, the organisation of the thesis outline is introduced.

1.1 Background

There is an urgent need to satisfy residential demands for saving energy and thermal comfort. This has become one of the major global aims the world has today. Many countries have been working on providing sufficient energy and comfortable housing for their population (Fattah et al., 2018). In arid and hot countries like Iraq, the demands for comfortable and energy-efficient housing have increased rapidly due to climate change. Unfortunately, in the Middle East, people suffer from a shortage of housing and/or poor residential conditions (Fadhil & Burhan, 2021). This has resulted in instability and problems due to the high temperature and war crisis (Ramezani et al., 2021).

The shortage in housing in Iraq represents 25 per cent of the total residences, which is estimated to be around 1 million dwellings. Iraq's housing is dealing with a weak building construction and infrastructure services sector, inefficient housing production and finance system, lack of available materials, and spreading of slums in many parts of the country (Haraty et al., 2019). Iraqi government have taken several measures to reverse the situation such as the introduction of a National Housing Policy in 2010 which defines the current problems and suggests framework solutions (Ministry of Construction and Housing, 2010). The most important measure in the National Housing Policy is providing energy-saving features and thermal indoor comfort for Iraq's residential housing (Ministry of Construction and Housing, 2010). This is because of the summer's high temperatures and the inadequate availability of electricity.

In general, the Iraqi population prioritises having a thermally comfortable indoor condition as most of the time the residents stay inside the building. However, the main challenge with comfort and energy conservation in houses is the lack of energy in southern Iraq, particularly in Basra (Ramezani et al., 2021). Based on the World Bank (2018) (refer to Figure 1.1), the city of Basra in the west and south has the most sun radiation during the entire year, particularly during the summer months of May through September. Haraty et al. (2019) said that the insufficient supply of electricity is the reason for the excessive summer temperatures. Salman et al. (2017) and Istepanian (2020) discovered that when summer temperatures reach above 50 °C, the electricity demand increases as

well as the discomfort among the residents. According to Fadhil and Burhan (2021), the situation is comparable to the war and economic crisis faced by the Iraqis in the 1980s. Hence, Basra was chosen because it offered a typical case of an extremely hot climate zone in Iraq.

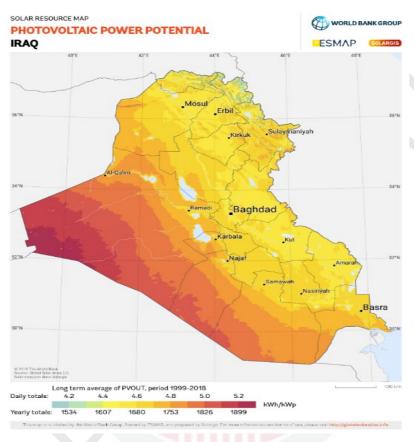


Figure 1.1: Solar Radiation for a Whole Year in Iraq and Basra (Source: World Bank, 2018)

According to a World Bank assessment from 2018, Iraq's housing shortage, particularly in Baghdad and Basra, accounts for 25 per cent of all residential stock. The shortage has been a result of inefficient building and infrastructure services, including housing production and financial system, as well as weak construction, lack of available materials, and the spread of slums around many parts of the country (Haraty et al., 2019). This research agrees with Mohammed and Jasim (2017) that in order to solve energy consumption and the comfort issues, low-cost solutions are very necessary. Additionally, this study also agrees with Al-Hafith et al. (2018) and Kamal et al. (2019) in that current residential designs and deteriorating energy supplies are significant barriers to achieving the best possible indoor comfort for Iraq's hot and dry climate. This study believed that comfort for Iraq's residential buildings is urgently needed, especially during the summer.

1.2 Problem Statement

Indoor thermal comfort for residences in Iraq is the key challenge for Iraq's housing as Iraq is located in an extremely hot climate zone. In 2010, Iraq's Ministry of Construction and Housing set the National Housing Policy to guarantee that Iraq's residents are provided with indoor thermal comfort. However, Rawaf et al. (2014) highlighted the lack of economic capacity, continuity, and independence to handle the execution of this policy. Accordingly, Al-Shaibani and Popov (2019) suggested studying and evaluating Iraq's housing typology using the existing materials and policies to improve the poor housing policies.

Studies have revealed a significant connection between health, long-term and short-term illnesses, and thermal comfort (Bueno et al., 2021). This study supported Hussein and Uzunoğlu (2020), which prioritises achieving indoor thermal comfort for the summer, as they remain inside the building most of the day during the season. Thus, thermal comfort and energy-saving solutions for residents could be provided by establishing housing policies based on the economic conditions, demographic characteristics, and normative settings of Iraq, as noted by Alkindi (2016). With this in mind, this research anticipated a need to advocate for effective façade features in residential housing through programmes and sustainable policies to provide optimal thermal comfort living environment and air quality for residents.

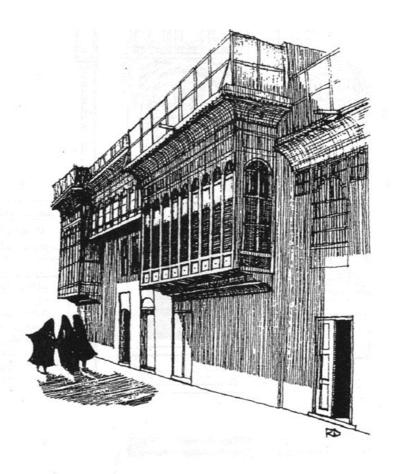

Basra, the second-largest regional state of Iraq, is located in the far south and has been suffering from uncomfortable thermal conditions for many years (Jasim et al., 2018). According to scholars (e.g., Kamal et al., 2019; Homod et al., 2021; Jasim et al., 2018), Basra has the highest temperature and solar radiation during summer compared to other regional states in Iraq based on its annual temperature collected from Iraqi meteorological organisation and seismology (IMOS), as shown on Table 1.1. In addition, the houses in Basra topologically vary from historical structures. For example, they use dried bricks and modern construction materials such as flat slabs and precast foundations for their *Shanasheel* houses (Hussien et al. 2021). *Shanasheel* houses are old houses in Basra built with brick and wood (Hussien et al. 2021). This information convinced academics (e.g., Salih, 2019; Homod et al., 2021; Al-hafith et al., 2017) that the materials, façade form, and housing topology in Iraq are the important factors in reducing the discomfort caused by heat.

Table 1.1: Description of the Annual Temperature Collected from IMOS Iraq Meteorological Organisation and Seismology for Iraq States

				Annual Avg. A	Annual Ava
Station No.	Station name	Elev. (m)	period	•	/lin Temp
1	Sinjar	583	1965-2021	35	4
2	Tallafer	373	1965-2021	40	5
3	Mosul	223	1965-2021	46	8
4	Kirkuk	331	1965-2021	44	5
5	Khankhin	202	1965-2021	44	4
6	Bagdad	32	1965-2021	47	10
7	Karbala	29	1965-2021	44	8
8	AL-hai	17	1965-2021	43	7
9	Najef	53	1965-2021	44	9
10	Diwaniyah	20	1965-2021	44	10
11	AL-Samawa	12	1965-2021	47	15
12	Nasryah	5	1965-2021	49	14
13	Amarah	9	1965-2021	50	14
14	Basra	2	1965-2021	52	15
15	Rutba	631	1965-2021	44	9

The building envelope's façade controls the building's thermal comfort and has an impact on the sustainability of the house's construction (Kalús et al., 2021). Nonetheless, a large number of Iraqi building façades do not adhere to standards, including energy and thermal comfort as well as social, economic, and environmental considerations (Krajčík & Šikula, 2020). According to Mirshojaeian Hosseini et al. (2020), conventional façade systems could benefit from improved façade performances and functionalities. This is aligned with Pastore and Andersen (2022), who have highlighted two elements that have an impact on the functionality of façades, namely: 1) technology; and 2) design.

Hosseini et al. (2019) emphasised that the façade design was misgauged due to the poor standard performance required by residents. The poor standard performance mentioned by Hosseini et al. (2019) is interpreted as lacking building components and poor thermal characteristics (Pujadas-Gispert et al., 2020) that increase thermal discomfort and energy consumption. Several studies on façade components adaptation for short- and long-term weather fluctuations have been initiated to guarantee that the best technical façade satisfies the thermal needs of the residents (Hu et al., 2017; Zhang et al., 2016).

شكل (1) بروز كتلة الشناشيل في فضاء الزقاق وتغطيتها بالاقنعة والمزخرفات^(٨)

Figure 1.2: Shanasheel House Arrangement

(Source: Historical of Basra. 2021)

Investigations need to be carried out in a moderately hot temperature, aligned with Iraq's hot and dry climate conditions. This is because, in hot and arid climates, residences may have worse thermal comfort and a weak energy supply. Selective material usage, such as dry bricks and façade shapes (Hasan, 2018; Hassan et al., 2019; Homod et al., 2021), poor material qualities (Al-Qaraghuli & Alawsey, 2016; Rashid & Voelker, 2019; Abaas, 2020), and inappropriate building materials (Al-Yasiri et al., 2019) may cause surface temperature increase as a result of solar radiation. Voelker and Rashid (2019) recommended a layered double skin façade to control thermal comfort performance. It is clear from the literature above that façade component technology and housing policy could enhance Iraq's indoor thermal comfort environment. As part of the housing policy needs, the policy might be improved by focusing on the economic conditions for thermal comfort while taking into account the topology of the façade and the climatic conditions of the residents.

Dissatisfaction is primarily caused by the poor façade designs and inappropriate façade elements. Hence, to achieve thermal comfort, it is necessary to develop a strategy and establish a set of criteria for choosing suitable façade technologies that satisfy both the needs of the occupants and the climate's problems. Therefore, the current study examined the barriers to improving thermal comfort in residential buildings in Iraq and made recommendations for the most effective façade improvement typologies for residential structures in Basra.

1.3 Research Questions

The main research question of this study was: what are the best façade improvement techniques to improve indoor comfort for Basra's Residence?

The other research questions were as follows:

- 1. What are the current challenges faced by Basra's residents in terms of residential comfort?
- 2. What are the current façade improvement techniques to be used for the hot climate of Basra?
- 3. What are the best façade improvement techniques to improve indoor comfort for Basra's Residence?

1.4 Research Objectives

This study had the following objectives:

- To identify the current challenges faced by Basra's residents in terms of residential comfort.
- 2. To document the current façade Improvement to be used for the hot climate of Basra.
- To propose the best façade improvements to improve indoor comfort for Basra's residence.

Table 1.2 presents the flow process used to address the study's research objectives, research questions, research method, and problem statement.

Table 1.2: The flow between Research Questions, Research Objectives, Methods, and Problem Statement

Main RQ: What a	e the best Facade Improvemen	ts to Improve Indoo	r Comfort for Basra's Reside	nce?
	a need to advocate for effective provide optimal thermal comfor			programs and sustainable
RQ constructs RQ Construct	Description of sub-RQ	Strategy of Inquiry	Expected Output	Expected Knowledge Contribution
Who Basra's residents (Basra City)	RO 1: To identify and understand the current challenges faced by Basra's residents in terms of residential comfort.	<u>LR</u>	Challenges and barriers to Basra residents' comfort Basra residents' preferences toward comfort.	Documentation of policy etc.
	Sub RQ 1:			
	What are the current challenges facing Basra resident in terms of resident comfort?	4		
What façade Improvement techniques	RO 2: To identify the current façade Improvement techniques to be used for hot climate of Basra. Sub RQ 2: What are the current façade Improvements techniques to be used for hot climate of Basra?	LR.	Basra's current facade topology façade Improvement preference/ factor for improving comfort for residents	Document the variables for simulation for the best façade improvement Document the variables for façade improvement that can improve residential comfort
How Improve Indoor comfort	RO 3: To propose the best Facade Improvements to Improve Indoor Comfort for Basra's Residence . Sub RQ 3: What are the best Facade Improvements to Improve Indoor Comfort for Basra's Residence?	Test: (Simulation) i.e. simulation and compare i.e. (thermal indoor, heat gain, heat loss, air temperature, and thermal comfort)	Propose the best façade Improvement for Basra City to improve residents' comfort	Application for the best façade Improvement for Basra City

1.5 Research Framework

This research is organised and summarised in Figure 1.3. It starts with a literature review in which the independent and dependent variables are defined. Then, the concept of the façade design components, indicators, and building thermal performance concept are presented. The study variables are transformed into measurable indicators for quantitative analysis in the form of comparable figures and tables.

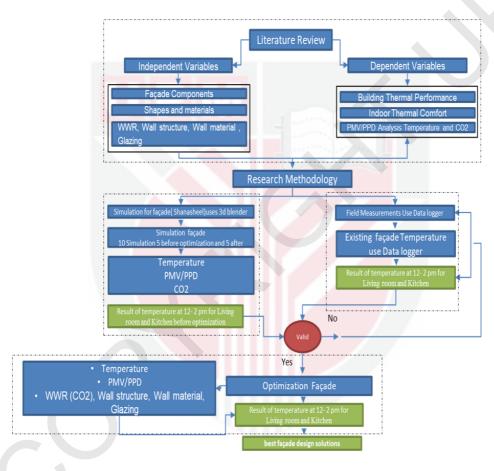


Figure 1.3: Research Framework Flow Process

1.6 Limitation of Study

This research presented various traditional architecture in Iraq. In particular, this research described the evolution of façade features and the factors influencing residents' thermal comfort in Basra, Iraq. In addition, the characteristics of residential façade as a common factor for various designs to improve air quality and thermal comfort were discussed. The study was limited to the façade characteristics, air quality, and thermal comfort of residences in Basra.

1.7 Thesis Outlines

This thesis is divided into five chapters as follows:

Chapter One: Introduction

In this chapter, an overview of the background of the study from past studies is presented. This is followed by the problem statement, research hypothesis, research questions, and research objectives. Additionally, provided are the study's limitations and research framework. Finally, the organisation of the thesis outline is introduced.

Chapter Two: Literature Review

This chapter provides an overview of a recent research-related literature review. It highlights the concept of façade in Iraq's residences and the idea towards thermal comfort for Iraq's residences. This chapter also presents the façade techniques, factors influencing thermal comfort, and the challenges and barriers to achieving thermal comfort for Iraq's residences. In this chapter, the independent and dependent variables that affect the performance of the building's thermal comfort are discussed. In summary, this chapter provides the factors affecting thermal comfort through a comprehensive literature review.

Chapter Three: Research Methodology

The methodology used to achieve the objectives required is demonstrated in this chapter. The building's thermal performance is assessed using both quantitative and experimental methods. A thermal-based simulation model is performed using free and open source VI-suit. The façade is built using 3D software named Blender 3D, and the analysis is conducted in terms of indoor thermal performance for the old and new façade structure and materials. With the use of an Excel decision-making tool, the findings are compared to determine the best façade performance in terms of thermal comfort. The case study was performed on the historical *Shanasheel* house located in the south of Basra.

Chapter Four: Results and Discussion

This chapter illustrates the findings from data analysis and model simulations. All the results obtained are displayed in the form of tables and figures. Additionally, the effect of façade techniques and materials on the thermal comfort of selected residential buildings in Basra is also presented. The results provide distinguished outlines for house façade design in the city of Basra and how it reduces the thermal effects to achieve the research objectives and lead to conclusions and recommendations.

Chapter Five: Conclusion and Recommendations

In this chapter, the conclusion and recommendations derived from the research findings are presented. The contribution and recommendations are identified based on the study's results. In the end, the study proposes several approaches for further research.

The following chapter will present a review of recent literature related to the study. It highlights the concept of façade in Iraq's residences and the idea towards thermal comfort for Iraq's residences.

REFERENCES

- Abaas, Z. R. (2020). Impact of development on Baghdad's urban microclimate and human thermal comfort. Alexandria Engineering Journal, 59(1), 275–290.
- Abrahem, S. A., Hassan, S. A., & Khamees, W. A. (2020). Impact of Façade Material of Mass Housing on Outdoor Thermal Comfort in Hot-arid Climate. IOP Conference Series: Materials Science and Engineering, 881(1), 6-12.
- Al- Yasiri, Q., Al- Furaiji, M. A., & Alshara, A. K. (2019). Comparative study of building envelope cooling loads in Al-Amarah city, Iraq. Journal of Engineering and Technological Sciences, 51(5), 632–648.
- Al-Alwan, H. A. S. (2020). Assessing the Efficiency of Sunscreens in University of Baghdad Campus. IOP Conference Series: Materials Science and Engineering, 745(1), 12-17.
- Al-Hafith, O., B. K., S., Bradbury, S., & de Wilde, P. (2017). Thermally Comfortable Housing in Iraq—Prospects of the Courtyard Pattern in Achieving Energy Efficiency. Lecture Notes in Civil Engineering, 904–917.
- Al-Hafith, O., Satish, B. K., Bradbury, S., & de Wilde, P. (2018). A systematic assessment of architectural approaches for solving the housing problem in Iraq. Frontiers of Architectural Research, 7(4), 561–572.
- Almusaed, A., & Almssad, A. (2015). Building materials in eco-energy houses from Iraq and Iran. Case Studies in Construction Materials, 2, 42–54.
- Alqalami, T. A. (2020). Dynamic transparency in design: the revival of environmental sustainability in design elements of Iraqi buildings. Heliyon, 6(11), 55-65.
- Al-Qaraghuli, A. S., & Alawsey, W. S. (2016). Intelligent Façades in Buildings Façades of local Office Buildings-Case Study. MATEC Web of Conferences, 66, 10-16.
- Al-Shaibani, A. A., & Popov, A. D. (2019). Analysis of Iraq housing policies as a relationship between design and economy. IOP Conference Series: Materials Science and Engineering, 698(3), 033002-033011.
- Ancrossed D Signelković, A. S., Mujan, I., & Dakić, S. (2016). Experimental validation of a EnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings, 118, 27–36.
- Andelković, A. S., Gvozdenac-Urošević, B., Kljajić, M., & Ignjatović, M. G. (2015). Experimental research of the thermal characteristics of a multistorey naturally ventilated double skin fac, ade. Energy and Buildings, 86, 766–781.

- ASHRAE 2010 Standard 55-92: Thermal Environmental Condition for Human Occupancy (Atlanta: American Society of Heating Refrigerating and Air-Conditioning Engineers) p 4.
- Azmi, A., Ibrahim, R., Abdul Ghafar, M., & Rashidi, A. (2022). Smarter real estate marketing using virtual reality to influence potential homebuyers' emotions and purchase intention. Smart and Sustainable Built Environment, 11(4), 870–890. https://doi.org/10.1108/SASBE-03-2021-0056
- Bakmohammadi, P., & Noorzai, E. (2020). Optimisation of the design of the primary school classrooms in terms of energy and daylight performance considering occupants' thermal and visual comfort. Energy Reports, 6, 1590–1607.
- Balali, A., & Valipour, A. (2020). Identification and selection of building façade's smart materials according to sustainable development goals. Sustainable Materials and Technologies, 26, 1-12.
- Bueno, A. M., de Paula Xavier, A. A., & Broday, E. E. (2021). Evaluating the connection between thermal comfort and productivity in buildings: A systematic literature review. Buildings, 11(6), 244-255.
- Casini, M. (2018). Active dynamic windows for buildings: A review. Renewable Energy, 119, 923–934.
- Evangelisti, L., Guattari, C., Asdrubali, F., & de Lieto Vollaro, R. (2020). An experimental investigation of the thermal performance of a building solar shading device. Journal of Building Engineering, 28, 101089-101099.
- Fadhil, G. A., & Burhan, A. M. (2021). Investigating the Effects of Economic Crisis on Construction Projects in Iraq. E3S Web of Conferences, 318, 2-5.
- Fattah, H. A., Badarulzaman, N., & Ali, K. (2018). Residential Preferences in Residential Location Choice. Household Preferences in Penang Island, Malaysia. Malaysian Journal of Sustainable Development, 5(2), 41–54.
- Fernandes, J., Pimenta, C., Mateus, R., Silva, S. M., & Bragança, L. (2015). Contribution of Portuguese vernacular building strategies to indoor thermal comfort and occupants' perception. Buildings, 5(4), 1242–1264.
- Goia, F., Perino, M., & Serra, V. (2015). Improving thermal comfort conditions by means of PCM glazing systems. Energy and Buildings, 60, 442–452.
- Golasi, I., Salata, F., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2016). Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies, 9(7), 550-560.

- Hailu, H., Gelan, E., & Girma, Y. (2021). Indoor Thermal Comfort Analysis: A Case Study of Modern and Traditional Buildings in Hot-Arid Climatic Region of Ethiopia. Urban Science, 5(3), 53-88.
- Haraty, H. J. S., Raschid, M. Y. M., & Mohd Yunos, M. Y. (2019). Space Arrangement and Accessibility Impact of The Iraqi Traditional Courtyard House: an Investigation of Two Case Studies in Iraq, Baghdad. International Journal of Engineering & Technology, 8(1.9), 348–353.
- Hasan, S. A. (2018). The impact of residential building's design on the energy consumption in hot desert climate (Baghdad city as an example). Journal of Urban and Environmental Engineering, 12(1), 88–92.
- Hassan, S. A., Abrahem, S. A., & Husian, M. S. (2019). Comparative analysis of housing cluster formation on outdoor thermal comfort in hot-arid climate.

 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(1), 72–81.
- He, C., Tian, W., & Shao, Z. (2022). Impacts of Courtyard Envelope Design on Energy Performance in the Hot Summer–Cold Winter Region of China. Buildings, 12(2), 173-189.
- Homod, R. Z., Almusaed, A., Almssad, A., Jaafar, M. K., Goodarzi, M., & Sahari, K. S. M. (2021). Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: A case study in Basra, Iraq. Journal of Energy Storage, 34, 101975-101985.
- Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T., & Lichtenberg, J. (2019). A morphological approach for kinetic façade design process to improve visual and thermal comfort: Review. Building and Environment, 153, 186–204.
- Hu, Z., He, W., Ji, J., & Zhang, S. (2017). A review on the application of Trombe wall system in buildings. Renewable and Sustainable Energy Reviews, 70, 976–987.
- Hussein, Z. A., & Uzunoğlu, K. (2020). Evaluation of the residents' satisfaction with high rise housing in new Eskan/Erbil–Iraq as a gated community. International Journal of Advanced and Applied Sciences, 7(11), 25–36.
- Ibraheem, Y., Piroozfar, P., Farr, E. R. P., & Ravenscroft, N. (2020). Energy Production Analysis of Photovoltaic Shading Devices (PVSD) in Integrated Façade Systems (IFS). Frontiers in Built Environment, 6(May), 1–12.
- ISO 7730 Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria 2005 (Geneva: The International Organisation for Standardisation) pp 1.
- Istepanian, H. H. (2020). Towards Sustainable Energy Efficiency in Iraq. Friedrich Ebert Stiftung, 1–28.

- Kalús, D., Gašparík, J., Janík, P., Kubica, M., & Šťastný, P. (2021). Innovative building technology implemented into façades with active thermal protection. Sustainability (Switzerland), 13(8), 4438-4445.
- Kamal, A., Al-Ghamdi, S. G., & Koç, M. (2019). Role of energy efficiency policies on energy consumption and CO2 emissions for building stock in Qatar. Journal of Cleaner Production, 235, 1409–1424.
- Kántor, N., Egerhazi, L., Gulyas, A., Unger, J., 2009b. The visitors attendance on a square according to the thermal comfort conditions case study in Szeged (Hungary). The seventh International Conference on Urban Climate, ICUC-7, 29 June–3 July 2009, Yokohama, Japan, 4p.
- Karyono, T. (2015). Building Design and Indoor Temperature Performance in the Humid Tropical Climate of Indonesia. Journal of Indonesia Regional Development and Environment, 1, 3-14.
- Kassai, M. (2018). Experimental investigation on the effectiveness of sorption energy recovery wheel in ventilation system. Experimental Heat Transfer, 31(2), 106–120.
- Krajčík, M., & Šikula, O. (2020). Heat storage efficiency and effective thermal output: Indicators of thermal response and output of radiant heating and cooling systems. *Energy and Buildings*, 229, 110524-110530.
- Lai, D., & Chen, Q. (2016). A two-dimensional model for calculating heat transfer in the human body in a transient and non-uniform thermal environment. Energy and Buildings, 118, 114–122.
- Laina Hilma, L. H., Izziah, I., Meutia, E., & Zulfian, Z. (2020). The Evaluation of Thermal, Room Acoustics and Daylight Performance of Old Indrapuri Mosque in Aceh Besar, Indonesia. Malaysian Journal of Sustainable Environment, 6(1), 57-72.
- Li, L., Qu, M., & Peng, S. (2016). Performance evaluation of building integrated solar thermal shading system: Building energy consumption and daylight provision. Energy and Buildings, 113, 189–201.
- Lotfabadi, P., & Hançer, P. (2019). A comparative study of traditional and contemporary building envelope construction techniques in terms of thermal comfort and energy efficiency in hot and humid climates. Sustainability, 11(13), 3582-3592.
- Mahdi, A. A., & Abbas, S. (2018). Investigating Indoor Air Quality and Thermal Comfort Using Different Ventilation Systems under Iraqi Climate. The Iraqi Journal for Mechanical and Materials Engineering, 18(3), 422–435.
- Malewczyk, M., Taraszkiewicz, A., & Czyż, P. (2022). Preferences of the Façade Composition in the Context of Its Regularity and Irregularity. Buildings, 12(2), 169-182.

- Mangkuto, R. A., Koerniawan, M. D., Apriliyanthi, S. R., Lubis, I. H., Atthaillah, Hensen, J. L. M., & Paramita, B. (2021). Design Optimisation of Fixed and Adaptive Shading Devices on Four Façade Orientations of a High-Rise Office Building in the Tropics. Buildings, 12(1), 25-49.
- Manzano-Agugliaro, F., Montoya, F. G., Sabio-Ortega, A., & García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736–755.
- Mills, R., & Salman, M. (2020). Powering Iraq: Challenges facing the Electricity Sector in Iraq. October. https://library.fes.de/pdf-files/bueros/amman/16923.pdf.
- Ministry of Construction and Housing. (2010). Ministry of Construction and Housing IRAQ NATIONAL HOUSING POLICY Ministry of Construction and Housing. United Nations Human Settlements Programme, October, 46.
- Mirshojaeian Hosseini, I., Mehdisadeh Saradj, F., Maddahi, S. M., & Ghobadian, V. (2020). Enhancing the façade efficiency of contemporary houses of Mashhad, using the lessons from traditional buildings. International Journal of Energy and Environmental Engineering, 11(4), 417–429.
- Mohamed, H., Chang, J. D., & Alshayeb, M. (2015). Effectiveness of High Reflective Roofs in Minimizing Energy Consumption in Residential Buildings in Iraq. Procedia Engineering, 118, 879–885.
- Mohammed, S. R., & Jasim, A. J. (2017). Study and Analysis of the Delay Problems in Iraqi Construction Projects. International Journal of Science and Research, 6(5), 2331–2336.
- Mohd Ariffin, N. A., Behaz, A., & Denan, Z. (2018). Thermal Comfort Studies on Houses in Hot Arid Climates. IOP Conference Series: Materials Science and Engineering, 401(1), 12-28.
- Mohsin, M. M., Beach, T., & Kwan, A. (2020). Consensus-based urban sustainability framework for Iraqi cities: A case study in Baghdad. Heliyon, 6(12), 48-62.
- Nady, R. (2017). Dynamic Façades: Environmental Control Systems for Sustainable Design. Renewable Energy and Sustainable Development, 3(1), 118–127.
- Pastore, L., & Andersen, M. (2022). The influence of façade and space design on building occupants' indoor experience. Journal of Building Engineering, 46(November 2021), 103663-103679.
- Pujadas-Gispert, E., Alsailani, M., van Dijk , K. C. A., Rozema , A. D. K., ten Hoope , J. P., Korevaar , C. C., & Moonen , S. P. G. (2020). Design, construction, and thermal performance evaluation of an innovative bio-

- based ventilated façade. Frontiers of Architectural Research, 9(3), 681–696
- Radhi, H., Sharples, S., & Fikiry, F. (2014). Will multi-façade systems reduce cooling energy in fully glazed buildings? A scoping study of UAE buildings. Energy and Buildings, 56, 179–188.
- Rais, M., Elhadad, S., Boumerzoug, A., & Baranyai, B. (2020). Optimum window position in the building façade for high day-light performance: Empirical study in hot and dry climate. Pollack Periodica, 15(2), 211–220.
- Ramezani, B., Silva, M. G. da, & Simões, N. (2021). Application of smart readiness indicator for Mediterranean buildings in retrofitting actions. Energy and Buildings, 249, 111173-111185.
- Rashid, S., & Voelker, C. (2019). Energy retrofit for buildings in Iraq: Insulation Parametric Study Energy retrofit for buildings in Iraq: Insulation Parametric Study. July.
- Rizi, R. A., & Eltaweel, A. (2021). A user detective adaptive façade towards improving visual and thermal comfort. Journal of Building Engineering, 33, 101554-101594.
- Salih, A. B. M. (2019). The Characters of the Form in the Vernacular Architecture A comparative study of the form's characters of façades of individual houses and commercial buildings in the City of Baghdad after 2003–Zayoona district as a case study. Journal of Engineering, 25(7), 145–164.
- Salman, S. A., Shahid, S., Ismail, T., Chung, E. S., & Al-Abadi, A. M. (2017). Long-term trends in daily temperature extremes in Iraq. Atmospheric Research, 198, 97–107.
- Sharma, R. (2014). Energy efficient façades for Hot and Dry climate in India . International Journal of Innovative Science, Engineering & Technology, 1(6), 536–542.
- Song, C., Liu, Y., & Liu, J. (2018). The sleeping thermal comfort model based on local thermal requirements in winter. Energy and Buildings, 173, 163–175.
- Sung, U. J., & Kim, S. H. (2019). A study on the improvement of double-skin façade operation for reducing heating load in winter. Sustainability (Switzerland), 11(22), 6238-6248.
- World Bank. 2018. World Bank Annual Report 2018. Washington, DC: World Bank. doi: 10.1596/978- 1-4648-1296-5. License: Creative Commons Attribution–NonCommercial–NoDerivatives 3.0 IGO (CC BY-NC-ND 3.0 IGO).

- Yousefi, F., Gholipour, Y., & Yan, W. (2017). A study of the impact of occupant behaviours on energy performance of building envelopes using occupants' data. Energy and Buildings, 148, 182–198.
- Zhang, T., Tan, Y., Yang, H., & Zhang, X. (2016). The application of air layers in building envelopes: A review. Applied Energy, 165, 707–734.
- Zhang, Y., Zhang, Y., & Li, Z. (2022). A novel productive double skin façades for residential buildings: Concept, design and daylighting performance investigation. Building and Environment, 212, 108817-108836.
- Zhao, Q., Lian, Z., & Lai, D. (2020). Thermal Comfort models and their developments: A review. Energy and Built Environment, 2(1), 21-33.
- Zinzi, M. (2016). Exploring the potentialities of cool façades to improve the thermal response of Mediterranean residential buildings. Solar Energy, 135, 386–397.
- Zulkarnain, A. Z., Mohd Salleh, M. N., & Abdul Aziz, Z. (2021). Thermal-Daylighting Balance through Building Shading Devices: a Review on Factors and Methods. Malaysian Journal of Sustainable Environment, 8(3), 157-178