

DEVELOPMENT OF A TREE RISK INVENTORY FRAMEWORK FOR URBAN TREES IN MALAYSIA

WAN ADHWA EZZDIHAR SHARFA BINTI WAN AZULKEFELI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2023

FRSB 2023 11

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT OF A TREE RISK INVENTORY FRAMEWORK FOR URBAN TREES IN MALAYSIA

Ву

WAN ADHWA EZZDIHAR SHARFA BINTI WAN AZULKEFELI

December 2023

Chairman : Emran@Zahrin bin Mohamad Taram

Faculty: Design and Architecture

In Malaysia, planting urban trees often receives attention as they provide city dwellers with beauty and many other advantages. However, studies show that many trees have deterioted and died early in urban cities due to the urban stress ecosystem. Hence, it is crucial to accompany planting initiatives with clear guidance and specifications for tree provision and protection. The current Tree Risk Assessment (TRA) methods were designed to determine the danger of the tree to direct practitioners through the tree inspection process. Some methods from the international organization have been modified for the Malaysian context to help arborists, and tree workers assess tree risk, yet limited to mature and senescent trees that carry high risk. Although it enables to perceive the symptoms of hazardous trees, the risk of trees should be controlled since trees' early living. The aim of this study is to develop a framework for tree risk inventory for urban trees in Malaysia. This study applied a qualitative method which is the focus group discussion (FGD) and Semi-Structured Interview (SSI). Twelve experts were involved during the focus group discussion, and ten more experts

have been interviewed during the expert interview sessions. A conceptual

framework of Tree Risk Inventory for Urban Trees in Malaysia was exposed to the

informants and their feedbacks is examined, categorized, tabulated, and

recombined. After the presented conceptual framework was accepted, the

conceptual framework is improved as suggested by all the experts and the detailed

framework of tree risk inventory is served as the findings. Data collected through

the literature review, focus group discussion, and expert interviews, reveal that

proper planning, as well as management by the local government system, can

enhance and increase the management and maintenance of urban trees in

Malaysia. In conclusion, this tree risk inventory framework will be beneficial for

encouraging the future studies in developing systems and methods that can

accommodate urban tree maintenance and management issues in Malaysia.

Keywords: hazardous trees; tree assessment, tree monitoring; urban forestry

SDG: GOAL 15: Life on Land

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PEMBANGUNAN KERANGKA INVENTORI RISIKO POKOK UNTUK POKOK BANDARAN DI MALAYSIA

Oleh

WAN ADHWA EZZDIHAR SHARFA BINTI WAN AZULKEFELI

Disember 2023

Pengerusi: Emran@Zahrin bin Mohamad Taram

Fakulti : Rekabentuk dan Senibina

Di Malaysia, penanaman pokok di bandar sering mendapat perhatian kerana ia menyediakan keindahan dan pelbagai kelebihan lain kepada penduduk bandar. Namun begitu, kajian menunjukkan bahawa banyak pokok yang telah merosot dan mati awal di bandar-bandar akibat ekosistem tekanan bandar. Oleh itu, adalah penting untuk inisiatif penanaman pokok diiringi dengan panduan dan spesifikasi yang jelas untuk penyediaan dan perlindungan pokok. Kaedah Penilaian Risiko Pokok (TRA) yang sedia ada wujud direka untuk menentukan bahaya pokok bagi membantu pengamal melalui proses pemeriksaan pokok. Beberapa kaedah daripada organisasi antarabangsa telah diubah suai untuk konteks Malaysia bagi membantu arboris dan pekerja pokok menilai risiko pokok, namun ia hanyalah terhad kepada pokok matang dan pokok tua yang membawa risiko tinggi sahaja. Walaupun ia membolehkan pengenalpastian gejala pokok berbahaya, namun risiko pokok perlu dikawal sejak awal kehidupan pokok. Matlamat kajian ini adalah untuk membangunkan rangka kerja bagi inventori risiko pokok di kawasan bandar di Malaysia. Kajian ini

menggunakan kaedah kualitatif iaitu perbincangan kumpulan fokus (FGD) dan

Temu Bual Separuh Berstruktur (SSI). Dua belas pakar terlibat dalam

perbincangan kumpulan fokus, dan sepuluh lagi pakar telah ditemu bual dalam

sesi temu bual pakar. Rangka kerja konseptual Inventori Risiko Pokok untuk Pokok

Bandar di Malaysia telah didedahkan kepada informan dan maklum balas mereka

dikaji, dikategorikan, ditabulasikan, dan digabungkan semula. Selepas rangka

kerja konseptual yang dikemukakan diterima, rangka kerja konseptual itu

diperbaiki mengikut cadangan semua pakar dan rangka kerja terperinci inventori

risiko pokok dijadika<mark>n sebagai penemuan akhir kajian ini. Data yang dikumpulkan</mark>

melalui kajian literatur, perbincangan kumpulan fokus, dan temu bual pakar,

menunjukkan bahawa perancangan yang betul serta pengurusan oleh sistem

kerajaan tempatan boleh meningkatkan pengurusan dan penyelenggaraan pokok

bandar di Malaysia. Kesimpulannya, rangka kerja inventori risiko pokok ini akan

memberi manfaat dalam kajian menggalakkan masa depan dalam

membangunkan sistem dan kaedah yang dapat menangani isu penyelenggaraan

dan pengurusan pokok bandar di Malaysia.

Kata Kunci: pemantauan pokok; penilaian pokok; perhutanan bandar; pokok

berbahaya

SDG: MATLAMAT 15: Kehidupan di Darat

iν

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my main supervisor En. Emran@Zahrin bin Mohamad Taram and to co-supervisor LAr. Dr. Osman Bin Mohd Tahir for making it possible the completion this thesis. Without their support, patience, and guidance, this thesis would not have been successfully completed.

I would like to acknowledge and extend my heartfelt gratitude to my family specially my parents, Wan Azulkefeli bin Wan Mohamad and Sabariah binti Mashaer, and also to my husband Mohamad Fadzli bin Ibrahim for their encouragement and support in my life. This thesis is again impossible to be completed without their continuous support and understanding.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Emran@Zahrin bin Mohamad Taram

Senior Lecturer Faculty of Design and Architecture Universiti Putra Malaysia (Chairman)

LAr. Osman bin Mohd Tahir, PhD

Senior Lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

Hashim bin Gombri

Certified Arborist,
Landscape Architect
Hashim Design and Associates Sdn. Bhd.
(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 August 2024

TABLE OF CONTENTS

					Pages
ABSTRACT ABSTRAK ACKNOWLEDGEMENTS				i iii V	
APPRO	_				Vii
	ARATIC				vii
	F TAB				ix
	F FIGU				xi
LISTO	FABB	REVIATION	JNS		xii
CHAP	ΓER				
1	INTRO	DUCTIO	N		1
	1.1	Introdu	ction		1
	1.2	Backgr	ound o	f Study	1
	1.3	Resear	ch Pro	blem	3
	1.4	Resear	ch Que	estions	7
	1.5	Resear	ch Aim	and Objectives	8
	1.6	Signific	ance o	f Study	8
	1.7	Scope	of Rese	earch	9
	1.8	Re <mark>sear</mark>	ch Lim	itation	9
	1.9	Definition	on of T	erms	10
	1.10	Thesis	Structu	ire	10
2	LITER	ATURE I	REVIE	N	12
	2.1	Introdu	ction		12
	2.2	Definition	on of U	rban Trees	12
	2.3	History	of Tree	e Man <mark>agement in Malaysia</mark>	16
		2.3.1	Orga	inization	18
		2.3.2	Act a	and Policy	26
	2.4	Develo	pment	of Urban Trees Management	30
	2.5	Signific	ance o	f Urban Trees	31
		2.5.1		onmental Benefits	31
		2.5.2		al Benefits	34
		2.5.3		nomic Benefits	37
	2.6	Urban ⁻			38
		2.6.1	Haza	ard Issues of Fallen Urban Trees	38
		2.6.2	•	ct of Rapid Urbanization	40
		2.6.3		n Heat Island and Global Warming	41
		2.6.4		n Tree Growth Stressed	43
	2.7			essment	45
		2.7.1		ory of Tree Risk Assessment	45
		2.7.2	Leve	l of Tree Risk Assessment	45

	2.8		Tree Risk Assessment Method Commonly Used in Malaysia				
		2.8.1	ISA Tree Hazard Evaluation	47			
		2.8.2	Visual Tree Assessment	50			
		2.8.3	USDA Forest Service Community Tree Risk	52			
			Evaluation Method	-			
		2.8.4	Quantified Tree Risk Assessment	53			
		2.8.5	ISA Tree Risk Assessment (BMP) Method	55			
		2.8.6	Summary of TRA Commonly Used in Malaysia	57			
	2.9	A Conc	eptual Framework of Tree Risk Inventory for	61			
			Trees in Malaysia				
	3.0	Summa		63			
3	METH	IODOLOG	SY.	64			
	3.1	Introduc		64			
	3.2	Researc	ch D <mark>es</mark> ign	64			
		3.2.1	Focus Group Discussion	71			
		3.2.2	Semi Structured Interview	65			
	3.3	Research	ch Development Strategy	66			
	3.4	Research	ch Method and Technique	70			
	3.5	Analysis	Analysis of Data 7				
4	RESU	RESULTS AND FINDINGS 76					
	4.1	Introduc	ction	76			
	4.2	Analysis	s <mark>of Focus Group Discus</mark> sion Data	76			
		4.2.1	Informants Background	78			
		4.2.2	Informants Familiarity	78			
		4.2.3	Informants Experience	79			
		4.2.4	Criteria for Risk Inventory of Urban Trees	80			
		4.2.5	Informants' Agreement on Early Tree	82			
		4.2.6	Management Informants' Agreement on New Standard	83			
			Method				
		4.2.7	Informants' Agreement on the Proposed	84			
			Framework				
		4.2.8	Summary of Expert Interview Findings	85			
	4.3	•	s of Expert Interviews	87			
		4.3.1	Informants Background	88			
		4.3.2	Informants Familiarity	88			

		4.3.3	Informants Experience	89
		4.3.4	Criteria for Risk Inventory of Urban	90
			Trees	
		4.3.5	Informants' Agreement on Early Tree	92
			Management	
		4.3.6	Informants' Agreement on New	93
			Standard Method	
		4.3.7	Informants' Agreement on the	94
			Proposed Framework	
		4.3.8	Summary of Expert Interview Findings	95
	4.4	Discus	sion	96
		4.4.1	Expert Familiarity and Experience	96
		4.4.2	Criteria of Tree Risk Inventory for	97
			Urban Trees Framework	
		4.4.3	Exp <mark>erts' Views</mark> on Early Management	98
			and Standardized Methods for Urban	
			Trees	
		4.4.4	Agreement on the Framework	98
	4.5	Summa	ary	99
_				100
5			ENTORY FRAMEWORK	100
		MENDAT		100
	5.1	Introdu		100
	5.2		isk Assessment in Malaysia	100
	5.3		iteria for Risk Inventory of Urban Trees	101
	5.4		oposed Framework of Tree Risk	102
	<i>- -</i>		ory for Urban Trees in Malaysia	107
	5.5 5.6		mendation mendation for Further Research	107
	5.6 5.7			109
	5.7		edge and Other Contribution and Final	110
		Remar	KS	
FF	ERENCES			112
	ENDICES			112
			_	124
SIODATA OF STUDENT			124	

LIST OF TABLES

Table		Page
2.1	Forest Research Institute Malaysia division	22
2.2	The Comparison of Existing National Policy	28
2.3	The difference between Act 172 and Act 267	29
2.4	Criteria of Tree Risk Assessment	48
2.5	Visual Tree Assessment partial stages	50
2.6	Criteria of Tree Risk Assessment	51
2.7	Criteria of Tree Risk Assessment	53
2.8	Criteria of Tree Risk Assessment	54
2.9	Likelihood matrix and risk rating matrix table	55
2.10	Criteria of Tree Risk Assessment for ISA Tree Risk Assessment	56
2.11	Criteria of Tree Risk Assessment for ISA Tree Risk Assessment	60
4.1	Informants' information	77
4.2	Demographic profile of informants	78
4.3	Informants' prior knowledge regarding the TRA methods	78
4.4	Informants' experience with the TRA methods	79
4.5	The preliminary conceptual framework	81
4.6	Informants' agreement on early tree management	82
4.7	Informants' agreement on the new standard method	83
4.8	Informants' Viewpoint on the preliminary framework of Tree Risk Assessment Monitoring for Urban Trees in Malaysia	84
4.9	The secondary conceptual framework	85
4.10	Informants' information	87
4.11	Demographic profile of informants	88
4.12	Informants' prior knowledge regarding the TRA methods	88
4.13	Informants' experience with the TRA methods	89
4.14	The secondary conceptual framework	91
4.15	Informants' agreement on early tree management	82
4.16	Informants' agreement on the new standard method	83
4.17	Informants' Viewpoint on the secondary Framework of Tree Risk Assessment monitoring for Urban Trees in Malaysia	84

Table		Page
4.18	Criteria of tree risk inventory for urban trees framework	97
5.1	Framework of Tree Risk Inventory for Urban Trees in Malaysia	104

LIST OF FIGURES

Figure		Page
1.1	A media analysis of fallen trees cases in Malaysia since 2015-2020	4
1.2	The research problems, research gaps, and solutions	7
2.1	Percentage of Urban Population by States, Malaysia	13
2.2	Street trees in Kuala Lumpur	15
2.3	Mimusop elengi planted in Penang	16
2.4	Malaysia urban tree planting development	16
2.5	Function of Jabatan Landskap Negara	19
2.6	Collections of Landscape Management and Maintenance Manual JLN	22
2.7	Pemuliharaan Pokok dan Pengurusan Infrastruktur Hijau	23
2.8	Persatuan Arborist Malaysia (PArM)'s main objectives	25
2.9	National Landscape Policy (2011)	25
2.10	Tree risk management cycle	27
2.11	Sources of stress factors in urban condition	30
2.12	Tree risk assessment level	46
2.13	ISA Tree Hazard Evaluation numeric hazard rating formula	48
2.14	Risk Rating Formula for USDA Community Tree Risk Evaluation	52
2.15	Quantified Tree Risk Assessment Calculator	54
2.16	Comparison of all TRA method	58
2.16	Comparison of all TRA method	58
2.17	The conceptual framework of Tree Risk Inventory for Urban Trees in Malaysia	62

3.1	The Research Framework	67
3.2	Process flow of the focus group discussion	70
4.1	Informants' views regarding early tree managements	82
4.2	Informants' views regarding the new standard method	83
4.3	Informants' views regarding the proposed framework	84
4.4	Informants' views regarding early tree management	92
4.5	Informants' views regarding new standard method	94
4.6	Informants' views regarding the proposed framework	95
5.1	Tree Risk Assessment in Malaysia	101
5.2	Criteria for Tree Risk Inventory	102
5.3	Graphical Framework of Tree Risk Inventory for Urban Trees in Malaysia	106
5.4	Summary of Recommendations	109
5.5	Recommendation for Future Research	110

LIST OF ABBREVIATIONS

NASA National Aeronautics and Space Administration

UNFCCC United Nations Framework Convention on Climate Change

°C degree Celsius

MCO Movement Control Order

ISA International Society of Arboriculture

DOSM Department of Statistic Malaysia

JLN Jabatan Landskap Negara

MaPAL Manual Penyelenggaraan Aset Landskap Taman Awam

FRIM Forest Research Institute Malaysia

MFRDB Malaysian Forestry Research and Development Board

ALAM Angkatan Landskap Arkitek Malaysia

BIM Balai Ikhtisas Malaysia

IFLA International Federation of Landscape Architects

TPO Tree Preservation Order

PArM Persatuan Arboris Malaysia

DCLG Department of Communities and Local Government (UK)

TRA Tree Risk Assessment

USDA United States Department of Agriculture

VTA Visual Tree Assessment

QTRA Quantified Tree Risk Assessment

BMP Best Management Practice

DBH Diameter at breast height

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides an overview of the research, including a comprehensive explanation of the research subject, problem statements, and the research gap. It also outlines the research questions, aims, and objectives. Furthermore, the chapter summarizes the scope of the research, highlights its significance, and presents the overall structure of the study.

1.2 Background of Study

Climate change poses a grave threat to both human livelihoods and global ecosystems. According to the National Aeronautics and Space Administration (NASA), in the 20th century, there was an increase of approximately 1 degree Fahrenheit in the average temperature of the Earth. This modest rise in temperature has various consequences, such as extended periods of drought, heat waves, and intensified hurricanes. In the early 1990s, the United Nations Framework Convention on Climate Change (UNFCCC) was formed. Subsequently, the Kyoto Protocol was ratified in 1997, and eventually, the Paris Agreement was reached in 2015. The objective of the Paris Agreement was to sustain endeavors in order to limit the global temperature increase to 1.5 °C and, at the most, 2 °C by the close of the century. Amidst the escalating threat of climate change, the integration of trees stands as a critical measure to mitigate its impacts

and uphold the objectives set forth by international agreements such as the Paris Agreement, aiming to limit global temperature rise to 1.5°C to 2°C by the end of the century.

In Malaysia's context, it is not an exception to the fact that climate change is a global threat that transcends national borders. According to Rahman (2018), the effects of climate change on Malaysia's environment include temperature, sea level, biodiversity, land cover, water availability, and agriculture. Malaysia's contribution to global carbon pollution amounts to 0.52%, placing it as the fourth highest emitter of greenhouse gases in ASEAN, following Indonesia, Vietnam, and Thailand (Rahman, 2018). In addressing Malaysia's significant contribution to global carbon pollution and its vulnerability to the effects of climate change, the strategic integration of trees into the nation's landscape emerges as a crucial aspect of sustainable mitigation and adaptation efforts.

In the past few decades, Malaysia has undergone swift economic expansion (Embi, 2000), which has resulted in a rise and discrepancy in urban energy consumption and provision due to alterations in associated manufacturing, transportation, infrastructure, and various elements of the living environment (Lunyu Xie, Haosheng Yan, Shuhan Zhang, 2019; Mahmoud & Gan, 2018). Accelerating the development of urban was reducing the green area (Razak et al., 2016), reducing impermeable surface materials (Ramakreshnan et al., 2018), and affecting CO2 emissions in a few ways, such as energy used for infrastructure, transportation (Bekhet & Othman, 2017). The rapid urbanization and associated changes in land use and infrastructure in Malaysia have led to the reduction of green areas and increased impermeable surface materials, which have adverse

effects on CO2 emissions and exacerbate the urban heat island effect. In this context, the strategic planting and preservation of trees play a crucial role in mitigating the environmental impacts of urbanization, reducing carbon emissions, and improving overall urban sustainability.

Kuala Lumpur, the urban center in Malaysia, boasts the largest population of approximately 1.31 million residents. However, this figure remains relatively small when compared to Malaysia's total population of approximately 31 million. As many land surfaces have been transformed and influenced by humans (Razak et al., 2016), this has caused an increase in air surface temperature and given rise to the Urban Heat Island (UHI) effect, which has altered the Earth's landscapes, notably soil bodies (Sanusi et al., 2017). The rapid urbanization and resultant Urban Heat Island (UHI) effect in Kuala Lumpur highlight the urgent need for strategic tree planting initiatives to mitigate rising temperatures, improve air quality, and enhance the overall livability of urban environments for its large population.

The Urban Heat Island (UHI) effect exacerbates the consequences of temperature increase and heat stress in urban areas. Through the presence of dark surfaces, heat emissions from residential and commercial buildings, limited vegetation, and air pollution, temperatures in major cities worldwide can exceed those in rural regions by an average of 0.1 to 3 degrees Celsius. In Kuala Lumpur, UHI has been measured in the 4-6°C range, often peaking at night. This phenomenon is increasingly growing because of the alterations of surface area, improper urban planning, etc. (Nuruzzaman, 2015). It intersects with the intricate issues of urbanization, climate crisis, well-being of the community, and the growing need for cooling as energy demand rises (Osborne & Alvares-sanches, 2019). Strategic

tree planting and urban greening initiatives are essential in mitigating the Urban Heat Island effect in major cities like Kuala Lumpur, as trees provide shade, reduce surface temperatures, and absorb heat, thereby helping to alleviate the heat stress experienced by urban residents and improve overall urban environmental quality.

Research has shown that the process of urbanization has had a notable influence on temperatures in local areas by altering the heat flow within the affected regions (Zhao et al., 2019). It has been found that the rapid development of urban areas since the late 1970s has contributed to over 40% of global warming (Yang et al., 2011). However, in this rapid urbanization, trees could be crucial in changing climates and improving thermal comfort. By eliminating carbon dioxide from the atmosphere during photosynthesis, trees help stabilize both the microclimate and the macroclimate.

1.3 Research Problem

By 2030, it is anticipated that over 77.6% of Malaysia's total population will live in urban areas (Ho, 2008). Consequently, the escalating needs for construction aimed at residential, business sectors, transportation, and other urban development have significantly strained public greenspace and landscape areas, as highlighted by Kanniah & Siong in 2017 and Noresah in 2010. These green spaces play a vital role in preserving a sustainable urban setting by providing recreational pursuits. However, there is still a need for further research and comparative analysis regarding the number of urban trees and green areas and their development and sustenance, as Nor Akmar et al. mentioned in 2011.

The rapid urbanization in Malaysia has also increased pressure on government resources, as highlighted by Ibrahim et al. in 2020. Therefore, Malaysia's 7th Prime Minister has launched the '100 Million Tree Planting Campaign 2020-2025' with the theme "Greening Malaysia: Our Trees, Our Life" (Bernama, 2021, January 5). As part of the Greening Malaysia Program, the campaign aims to have 100 million trees planted nationwide by 2025. Furthermore, it is considered a priority at the national level to tackle climate change and enhance the population's well-being. Although the planting programs have progressed as expected, managing trees and plants could have been more satisfactory. More maintenance still needs to be done, and public safety should be addressed more frequently. Some urban trees, however, failed because the emerging concerns have yet to be resolved in time (Sreetheran et al., 2006).

Urban trees are found within urban or populated areas, including cities, towns, and suburban environments. These trees are a vital component of urban ecosystems and contribute to the overall well-being of the environment, residents, and the urban landscape. Urban trees provide numerous benefits, including aesthetic value, shade, air purification, carbon sequestration, habitat for wildlife, and overall enhancement of the quality of life in urban areas. Proper management, including tree risk assessment, is essential to ensure urban trees' health, safety, and sustainability in the face of challenges such as urban development, pollution, and climate change. Figure 1 shows the number of fallen tree cases reported by the media from 2015 to 2020.

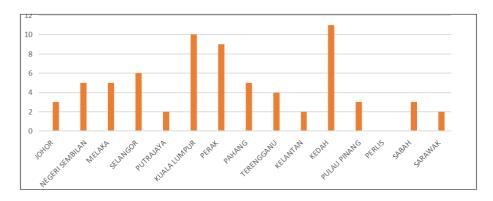


Figure 1: A media analysis of fallen tree cases in Malaysia since 2015-2020 (Source: Author, 2022)

Figure 1 shows the media analysis of fallen tree cases in Malaysia from 2015 to 2020, revealing insightful patterns in the distribution of incidents across different states. The data shows that Kedah consistently records the highest number of fallen tree cases, establishing itself as a prominent hotspot for such incidents throughout the six years. Following closely are Kuala Lumpur and Perak, which also experience notable occurrences of fallen trees. In contrast, the states with the lowest incidence of fallen trees are Putrajaya, Pulau Pinang, and Sabah, indicating a comparatively lower risk or occurrence of such incidents in these regions.

Studies show that many trees have deteriorated and died early in urban cities due to the urban stress ecosystem (Fazamimah et al., 2019). Issues regarding hazardous urban trees have been expected, and the cases related to dangerous trees have escalated over the years (Hasan et al., 2017). Urban trees are increasing their risk with age. Large urban trees also have a target zone equal to their height, and the weight may cause severe harm or damage to people or assets in the event of structural instability (Koeser & Smiley, 2017). The previous study has shown that internal decay leading to tree failure is prevalent in more extensive and older trees (Koeser et al., 2016; Luley et al., 2009). The data reveals that

Subang Jaya Municipal Council (MPSJ) received 5512 reported trees fall incidents from the public over three years (2012–2014). The unsuccessful planting and growth of trees can result from several factors, such as insufficient root development, inadequate or excessive water provision, deep planting, compacted soil, and the quality of the plant specimens. In addition to these factors, natural disasters such as tempests, deluges, and cyclones can also lead to tree failures. These events create a sense of insecurity and threaten the surrounding environment, affecting the safety and well-being of society and the public. It is essential to address these causes and implement proper tree care and management practices to mitigate the risks associated with tree failures and enhance the safety of the environment (Lazim & Misni, 2016).

To secure the enduring durability of a country's landscape and green zones, it is crucial to accompany planting initiatives with clear guidance and specifications for tree provision and protection, as stated by Sreetheran et al. in 2006. Trees within these green zones contribute to the aesthetic appeal and play a vital role in fostering biodiversity, mitigating air pollution, and providing crucial ecosystem services. The synergy between greenspace and trees underscores the need for comprehensive management strategies that not only guide the planting of trees but also ensure their sustained growth, health, and coexistence within the broader green landscape. The management of green spaces aims to enhance public safety, improve the livability of cities, and promote a healthier environment, as highlighted by Hasan et al. in 2018. Hence, adequate control measures are necessary to achieve this goal, as emphasized by Darkhani et al. in 2019.

In arboriculture and urban forestry, practitioners must employ a Tree Risk Assessment (TRA) method that is befitting for the specific tree or trees being evaluated, considering the necessary tools and management purposes. TRA is a process used to evaluate and manage three potential risks. It involves identifying and assessing the likelihood of hazards related to trees that could lead to property damage, injuries, or other negative impacts. Arborists and professionals in arboriculture typically conduct TRA to ensure trees' safety in urban areas. TRA plays a crucial role in urban tree management in Malaysia, addressing a spectrum of concerns ranging from public safety to environmental sustainability. As urban areas in Malaysia experience high human activity, identifying and mitigating potential tree hazards contribute significantly to public safety and property protection.

While more detailed and advanced levels of risk assessment are believed to provide more precise information regarding the likelihood of tree failure, the effect of this supplementary information on the efficacy of tree assessment remains to be determined. Although higher levels of risk assessment that offers more detailed and advanced information regarding the probability of tree failure are thought to enhance precision, the impact of this extra information on the efficiency of tree assessment in inspecting the risk status of trees throughout their life cycle remains unclear, as mentioned by Koeser et al. in 2017. Therefore, there is a need for a less comprehensive TRA approach to accommodate a broader range of professionals in urban forestry. Nonetheless, exploring the criteria necessary to evaluate the state of trees in their early or juvenile stages is imperative.

Much research concerning TRA has been published (Norainiratna et al., 2013), but only some TRA methods are recognized as the industry norm (Klein et al., 2019). Generally, there are a few standard methods for assessing hazardous trees in Malaysia, but this information is only essential for developing urban management guidelines. The limited adequate knowledge of urban trees in Malaysia was only obtained by Murad (2000), Sreetheran (2002), and Noor Syakila (2002) (Maruthaveeran & Yaman, 2010).

As conclusion, research problems of this study are:

- 1. Rapid urbanization in Malaysia leads to increased construction activities, putting strain on public greenspaces and landscapes. It also strains government resources, creating challenges in managing urban environments.
- 2. Despite tree planting initiatives, management and maintenance of trees remain unsatisfactory, leading to concerns about tree health and public safety.
- 3. Urban trees face risks such as deterioration, early mortality, and structural instability, posing hazards to property and public safety.
- 4. There is a lack of standardized tree risk assessment (TRA) methods in Malaysia, hindering effective management of urban trees and landscapes.
- 5. Despite the importance of urban trees, research on urban tree management and TRA methods in Malaysia is limited, impacting the development of management guidelines and strategies.

Figure 2 below summarizes the research problem, the gap, and the solution.

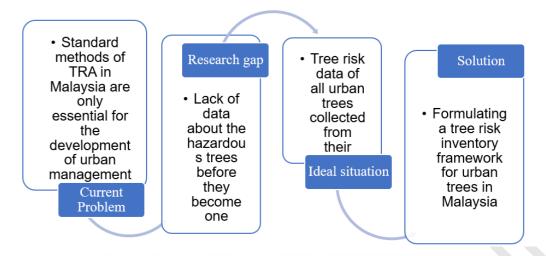


Figure 2: The research problems, research gaps, and solutions.

1.4 Research Questions

There are three main research questions for this study. The first research question concerns the method used to determine the risk of urban trees in Malaysia. This study will explore the existing tree risk assessment methods to find out what methods are used to assess the risk of urban trees in Malaysia. The second research question is, what are the corresponding criteria for monitoring the risk of urban trees in Malaysia? In this study, the researcher will also explore the suitable criteria needed to monitor the risk of urban trees in Malaysia. The last research question addresses how to develop a tree risk inventory framework for urban trees in Malaysia. During the study period, the researcher will develop a framework for tree risk inventory for urban trees in Malaysia.

1.5 Research Aim and Objectives

The aim of this study is to develop a framework for tree risk inventory for urban trees in Malaysia.

The specific objectives of this study are:

- 1. To gain experts point of views on the current tree risk assessment methods used and analyse it to suite Malaysian context.
- 2. To analyse the corresponding criteria of risk inventory for urban trees in Malaysia.
- 3. To propose a tree risk inventory framework for urban trees in Malaysia.

1.6 Significance of Study

This research significantly improves understanding and knowledge about urban trees in Malaysia. Urban trees play a crucial role in enhancing the livability of urban areas and are a fundamental element of urban environments. They contribute to a more favorable living environment, promote environmental improvement, enhance public health, and serve as a valuable and economically efficient asset for the development of our infrastructure. Despite their numerous benefits, there is a need to raise public awareness and understanding of the advantages associated with urban trees (Ruth et al., 2010).

This study will also be helpful in addressing the urban tree coordination challenges and highlighting the importance of urban trees in Malaysia. This is because the management of urban trees in Malaysia has been unsatisfactory because of common absence of upkeep, and public safety is frequently ignored.

Besides that, there is an observation that there needs to be greater focus and a clearer understanding of urban tree management in Malaysia. Hence, the

successful completion of this study holds significant importance.

This research also hopes to increase awareness of the importance of an appropriate sustainable system for managing urban trees in Malaysia's overall urban landscape development process. This is timely as there is a growing realization that urban landscapes, including green spaces and parks, are becoming more critical for urban living.

1.7 Scope of Research

This study focuses on analyzing the tree risk and related issues in urban environment. The study aims to propose a new framework for tree risk inventory for urban trees in Malaysia. The literature review is based on the history of tree management in Malaysia, the organizations involved in tree management, and the methods used. The experts and professionals in related fields verify the preliminary conceptual framework before the focus group discussions. It is then reviewed by different experts and professionals in expert interview sessions. Finally, the findings will be discussed to propose the final framework.

1.8 Research Limitation

While this study was successfully completed, there were some limitations since this study was done during the Covid-19 pandemic. The first issue was the time limitation for the researcher to collect the data. The data collection could be more effective if the researcher had more time to finish the study. Besides that, the study is also limited to the TRA common in the International Society of Arboriculture (ISA)

and among experts in Malaysia. The professional practice of arboriculture under the ISA in Malaysia is still new, which may lead to some confusion regarding the knowledge about temperate trees. Thus, there is also a need for further clarification regarding the understanding of the trees. Next, this research is also limited to data collection from the local authorities in Klang Valley due to restrictions on regional border crossing during the Movement Control Order (MCO). Another limitation of this research pertains to the utilization of self-report surveys as a data collection method. This approach is susceptible to potential misinterpretation of questions and intentional deception, which may introduce inaccuracies into the obtained results (Podsakoff et al., 2003).

1.9 Definition of Terms

The following definitions are provided to enhance the understanding of key concepts addressed in this study.

a. Urban Tree

Urban tree is a tree found in urban areas, such as those in lawns, along streets and utility easements, in protected areas, and in drainage basins (Abdullah et al., 2018; Sreetheran et al., 2006).

b. Hazardous Trees

The term "hazardous tree" refers to a tree with a structural flaw that increases the likelihood that it will fail entirely or partially (Forest Service U.S. Department of Agriculture).

c. Risk of Tree

The risks posed by trees refers to the potential for a threatened trees to cause damage to property or harm to individuals. It encompasses both the probability of a tree failure event occurring and the seriousness of the potential consequences resulting from that event. (Purcell, 2015).

d. Tree Risk Assessment

Tree risk assessment is a structured procedure that involves the identification, analysis, and evaluation of potential risks associated with tree failure. The level of complexity in this process can be tailored according to the preferences of the tree manager, ranging from a simple and straightforward approach to a more intricate one (E. Smiley et al., 2016).

1.10 Thesis Structure

Chapter 1 presents the background of the research by showing a detailed explanation of its subject, problem statement and justifications, research gaps, research goal, research questions, and research objectives. The significance of studies, research scope, limitations, and some definitions of terms are also discussed in this chapter.

Chapter 2 reviews literature about the fundamental concepts of urban tree development and the importance of trees for urban dwellers. The in-depth review also includes the International and Malaysian policies toward the preservation of trees. It then explores the history and the concepts of Tree Risk Assessments used by experts worldwide. These evaluations are critical for the study's completion as

they streamline and present the conceptual framework for supervising tree assessment in Malaysia's urban areas. This chapter highlights a list of critical components and the main criteria of tree risk assessments.

Chapter 3 explores the research methodology, elucidating the formulation and progression of the research strategy. It encompasses various components such as focus group discussions, interviews, the rationale behind the chosen methodology, and the techniques employed for data collection. Additionally, the chapter delves into the initial concept and highlights the preferred methodological approaches.

Chapter 4 showcases the insights gained and discoveries made from the qualitative study conducted through focus group discussions and expert interviews. This chapter also explores the prior iterations of the research instrument using textual analysis and highlights the divergent results unveiled during the focus group discussions.

Chapter 5 directs attention to the paramount discoveries, revisits the aim and research objectives, provides a condensed overview of the outcomes, discusses the implications of the findings, puts forth recommendations, acknowledges limitations, and, finally, proposes areas for future research.

REFERENCES

- Abdullah, R., Kanniah, K. D., & Ho, C. S. (2018). Identification of suitable trees for urban parks and roadsides in Iskandar Malaysia. *Chemical Engineering Transactions*, 63, 385–390. https://doi.org/10.3303/CET1863065
- Ayoub, H. 1989. The role of city hall in improving the quality of urban green in Kuala Lumpur. Paper presented at the Seminar on Urban Green, Kuala Lumpur, Malaysia, August 7–9, 1989.
- Akbari, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution, 116. S119–S126. http://www.elsevier.com/locate/envpol.
- Badrul Hisham Ismail. (2021, September 19th). Malaysian future is urban. The Star. https://www.thestar.com.my/news/focus/2021/09/19/malaysian-future-is-urban.
- Bekhet, H. A., & Othman, N. S. (2017). Impact of urbanization growth on Malaysia CO2 emissions: Evidence from the dynamic relationship. *Journal of Cleaner Production*, *154*, 374–388. https://doi.org/10.1016/j.jclepro.2017.03.174
- Bellows, C. C. (2008). Development of inspection systems for estimating the structural integrity of trees.
- Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L. & Hopton, M. E. (2017). The role of trees in urban stormwater management. Landscape Urban Planning, 162. 167–177. https://10.1016/j.landurbplan.2017.02.017.
- Bernama (2021, January 5). *PM Launched 100 Million Tree- Planting Campaign*. New Straits Times. https://www.nst.com.my/news/nation/2021/01/654640/
- Brighenti, A. M. & Pavoni, A. (2017). City of Unpleasant Feelings. Stress, Comfort and Animosity in Urban Life. Social & Cultural Geography. 1-17.
- Browning, M. H. E. M. & Rigolon, A. (2019). School Green Space and Its Impact on Academic Performance: A Systematic Literature Review. International Journal of Environmental Research and Public Health, 16(429). 1-22. http://dx.doi.org/10.3390/ijerph16030429.
- Burkill, I.H. 1996. A dictionary of the economics products of the Malay Peninsula. 2 vols. Kuala Lumpur, Malaysia, Ministry of Agriculture and Cooperation.
- Castro, D. C., Alesso, C. A., Iaconis, A., Cerino, M. C. & Buyatti, M. (2019). Factors Influencing Street Tree Hazard Condition in Rafaela, Argentina. Revista Árvore 43(4). http://dx.doi.org/10.1590/1806-90882019000400010.
- Celano, L. (2014). 6 Methods of data collection and analysis. Monitoring, Evaluation, Accountability and Learning (MEAL).

- Clarkson, J. R., Grice, T. C., Friedel, M. H., Setterfield, S. A., & Ferdinands, K. (2012). The role of legislation and policy in dealing with contentious plants.
- Corville, R., Endreny, T. & Nowak, D. J. (2020). Chapter 19: Modeling the Impact of Urban Trees on Hydrology. 459-487
- Creswell, J. (2013). Qualitative, quantitative, and mixed
- Czaja, M., Kołton, A., & Muras, P. (2020). The complex issue of urban trees-stress factor accumulation and ecological service possibilities. *Forests*, *11*(9), 1–24. https://doi.org/10.3390/F11090932
- Darkhani, F., Tahir, O. M., & Ibrahim, R. (2019). Sustainable urban landscape management: An insight into urban green space management practices in three different countries. *Journal of Landscape Ecology(Czech Republic)*, 12(1), 37–48. https://doi.org/10.2478/jlecol-2019-0003
- Denney, A. S. (2012). Om antibiotica med saerlig henblik p?? nogle af de sidst 145fremkomne. *Criminal Justice Education*, 30(6), 225–239. https://doi.org/10.1080/10511253.2012.730617
- Ellison, M. J. (2005). Quantified tree risk assessment used in the management of amenity trees. *Journal of Arboriculture*, *31*(2), 57–65.
- Embi, A. F. (2000). URBAN HEAT ISLANDS -EFFECTS ON THE MICROCLIMATE OF MALAYSIAN CITIES. 1–8.
- Fazamimah, N., Ariffin, M., Aziz, N. A. A., & Ismail, S. (2019). Issues and Challenges of Urban Heritage Trees Conservation in Malaysia Towards a Sustainable Site. 8, 468–471.
- Feeley, K. J., & Stroud, J. T. (2018). Where on Earth are the "tropics"? Frontiers of Biogeography, 10(1–2). https://doi.org/10.21425/F5101-238649
- Forest Service United State Department of Agriculture. *Tree Hazard* https://www.fs.usda.gov/visit/know-before-you-go/hazard-trees#:~:text=A%20%22hazard%20tree%22%20is%20a,risks%20associated%20with%20defective%20trees.
- Fuzhong Chen, Aiwen Liu, Xiuli Lu, Ru Zhe, Jiachen Tong & Rabia Akram. (2022). Evaluation of the Effects of Urbanization on Carbon Emissions: The Transformative Role of Government Effectiveness. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.848800.
- Haliza Abdul Rahman. (2009). Global Climate Change and Its Effects on Human Habitat and Environment in Malaysia. Malaysian Journal of Environmental Management, 10(2). 17-32.

- Hanisah, M. H. N., Hitchmough, J. D., & Muda, A. (2012). The Perception of Kuala Lumpur Publics' on Tree Retention and Urban Development. *Procedia Social and Behavioral Sciences*, 49, 215–226. https://doi.org/10.1016/j.sbspro.2012.07.020
- Hasan, R., Othman, N., & Ismail, F. (2017). Social Factors Influencing Hazardous Street Trees at Selected City Council in Malaysia. *Environment-Behaviour Proceedings Journal*, 2(5), 215. https://doi.org/10.21834/e-bpj.v2i5.696
- Hasan, R., Othman, N., & Ismail, F. (2018). Roadside Tree Management in Urban Area for Public Safety and Properties. *Asian Journal of Quality of Life*, 3(11), 163. https://doi.org/10.21834/ajqol.v3i11.132
- He, K., Wei, L. & Wang, B. (2022). How to Accurately Detect and Assess the Street Trees Risk in Mega Cities: A Tree Risk Assessment Method and Its Application. https://doi.org/10.21203/rs.3.rs-1605348/v2.
- Ho, C. (2008). Urban governance and rapid urbanization issues in Malaysia. *Jurnal Alam Bina*, 13(4), 1–24.
- Holmberg, M. (2017). Stress and the City Exploring perceptions of used stress and in among university students what the city of coping strategies Tokyo [Master's Thesis]. Uppsala University.
- Hui, K. K. W., Wong, M. S., Kwok, C. Y. T., Li, H., Abbas, S. & Nichol, J. E. (2022). Unveiling Falling Urban Trees before and during Typhoon Higos (2020): Empirical Case Study of Potential Structural Failure Using Tilt Sensor. (359). https://doi.org/10.3390/f13020359.
- Ibrahim, P.H., Pauzi, H. F. Z., & Masri, N. N. M. (2019). The implementation of tree preservation order in urban environment: Public and local authority perception. 9(1), 112–129
- Jamshed, S. (2014). Qualitative research method-interviewing and observation. *Journal of Basic and Clinical Pharmacy*, *5*(4), 87. https://doi.org/10.4103/0976- 0105.141942
- Jonathan Teng Yi Chuon, Alias Mohd. Sood, Amat Ramsa Yaman, Ismail Adnan Abdul Malek & Kasawani Ibrahim. (2011). Hazard-Rating Assessment of Roadside Trees at UPM Using Geospatial Tool. Journal of Sustainability Science and Management, 6(1). 118-
- Kadir, M. A. A., & Othman, N. (2012). Towards a Better Tomorrow: Street Trees and Their Values in Urban Areas. *Procedia Social and Behavioral Sciences*, *35*(December 2011), 267–274. https://doi.org/10.1016/j.sbspro.2012.02.088
- Kanniah, K. D., & Siong, H. C. (2017). Urban forest cover change and sustainability of Malaysian cities. *Chemical Engineering Transactions*, *56*, 673–678. https://doi.org/10.3303/CET1756113
- Khan, N., Abas, N. & Mariun, N. (2008). Impact of Global Warming on Trees. Global Conference on Global Warming, 2008.

- Kim, J. & Jo, H. (2022). Estimating Carbon Budget from Growth and Management of Urban Street Trees in South Korea. Sustainability, 14(4439). 1-13. https://doi.org/10.3390/su14084439.
- Klein, R. W., Koeser, A. K., Hauer, R. J., Hansen, G., & Escobedo, F. J. (2019). Risk Assessment and Risk Perception of Trees: A Review of Literature Relating to Arboriculture and Urban Forestry. *Arborculture & Urban Forestry*, *45*(1), 26–38.
- Ko, Y. (2018). Trees and vegetation for residential energy conservation: A critical review for evidence-based urban greening in North America. Urban Forestry & Urban Greening, 34. 318-335. https://doi.org/10.1016/j.ufug.2018.07.021.
- Koening, J.G. 1894. Journal of a voyage from India to Siam and Malacca in 1779. Journal of the Strait Branch of the Royal Asiatic Society, 26: 58–201.
- Koeser, A. K., Hasing, G., Mclean, D., & Northrop, R. (2013a). Tree Risk Assessment Methods: A Comparison of Three Common Evaluation Forms 1. 8.
- Koeser, A. K., Hasing, G., Mclean, D., & Northrop, R. (2013b). *Tree Risk Assessment Methods: A Comparison of Three Common Evaluation Forms* 1. 8. https://edis.ifas.ufl.edu/pdffiles/EP/EP48700.pdf
- Koeser, A. K., Hauer, R. J., Miesbauer, J. W., & Peterson, W. (2016). Municipal tree risk assessment in the United States: Findings from a comprehensive survey of urban forest management. *Arboricultural Journal*, *38*(4), 218–229. https://doi.org/10.1080/03071375.2016.1221178
- Koeser, A. K., & Smiley, E. T. (2017). Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. *Urban Forestry and Urban Greening*, 24(October 2016), 109–115. https://doi.org/10.1016/j.ufug.2017.03.027
- Krueger, R. A., & Casey, M. A. (2015). Focus groups: A practical guide for applied research. Sage Publications.
- Kuddus, M. A., Tynan, E. & McBryde, E. (2020). Urbanization: a problem for the rich and the poor? Public Health Reviews, 41(1). 1-4. https://doi.org/10.1186/s40985-019-0116-0.
- Kuo, M., Klein, S. E., Browning, M. H. & Zaplatosch, J. (2021). Greening for academic achievement: Prioritizing what to plant and where. Landscape and Urban Planning, 206. 1- https://www.elsevier.com/locate/landurbplan.
- Knoll, M., Neuheuser, K., Cleff, T. & Rudolph-Cleff, A. (2017). A tool to predict perceived urban stress in open public spaces. Environment and Planning B:
- Urban Analytics and City Science, 0(0). 1–17. https://doi.org/10.1177/0265813516686971.

- Lazim, R. M., & Misni, A. (2016). Public Perceptions towards Tree Risk Management in Subang Jaya Municipality, Malaysia. *Procedia Social and Behavioral Sciences*, 222, 881–889. https://doi.org/10.1016/j.sbspro.2016.05.210
- LIEN, J., & Lien, J. (2015). Killer Whales Orcinus-Orca in Waters Off Newfoundland and Labrador Canada 1978-1986. *Rit Fiskideildar*, *11*, 194–201. https://doi.org/10.2307/3172595
- Ling, O. H. L., Ting, K. H., Shaharuddin A., Kadaruddin A. & Yaakob M. J. (2010). Urban Growth and Air Quality in Kuala Lumpur City, Malaysia. Environment Asia, 3(2). 123- 128.
- Lockard, C., Putnam, J. & Carpenter, R., 1963. Grade defects in hardwood timber and logs. U.S. Dept. of Agriculture, Forest Service
- Luley, C. J., Nowak, D. J., & Greenfield, E. J. (2009). Frequency and severity of trunk decay in street tree maples in four New York cities. *Arboriculture and Urban Forestry*, *35*(2), 94–99.
- Lunyu Xie, Haosheng Yan, Shuhan Zhang, C. W. (2019). Does Urbanization Increase Residential Energy Use. *Complementary Therapies in Medicine*, 102211. https://doi.org/10.1016/j.ctim.2019.102211
- Luttge, U. & Buckridge, M. (2020). Trees: structure and function and the challenges of urbanization. https://doi.org/10.1007/s00468-020-01964-1.
- Mahmoud, S. H., & Gan, T. Y. (2018). Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. *Science of the Total Environment*, 636, 152–167. https://doi.org/10.1016/j.scitotenv.2018.04.282
- Manzoor Hussain & Iram Imitiyaz. (2018). Urbanization Concepts, Dimensions and Factors. International Journal of Recent Scientific Research, 9, 1(I). 23513-23523. http://dx.doi.org/10.24327/ijrsr.2018.0901.1483.
- Maruthaveeran, S., & Yaman, A. R. (2010). The identification of criteria and indicators to evaluate hazardous street trees of Kuala Lumpur, Malaysia: A Delphi study. *Journal of Forestry*, 108(7), 360–364. https://doi.org/10.1093/jof/108.7.360
- Matheny, N., & Clark, J. (2009a). TREE RISK ASSESSMENT What We Know (and What We Don't Know). *Arborist News*, *January 2009*, 28–33.
- Matheny, N., & Clark, J. (2009b). TREE RISK ASSESSMENT What We Know (and What We Don't Know). *Arborist News*, *May*, 28–33.
- Mohajerani, A. Bakaric, J. & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete, Journal of Environmental Management, 197. 522-538.

- https://researchbank.rmit.edu.au/view/rmit:43518.
- Morgan, D. L. (1996). Focus groups. Annual Review of Sociology, 22(1), 129-152.
- Morgan, D. L. (1997). Focus groups as qualitative research. Sage Publications.
- Muhammad Jabbar, Mariney Mohd Yusoff & Aziz Shafie. (2021). Assessing the role of urban green spaces for human wellbeing: a systematic review. GeoJournal, 1-19. https://doi.org/10.1007/s10708-021-10474-7.
- Narumi, D., Levinson, R. & Shimoda, Y. (2021). Effect of Urban Heat Island and Global Warming Countermeasures on Heat Release and Carbon Dioxide Emissions from a Detached House. Atmosphere, 12(572). https://doi.org/10.3390/atmos12050572.
- Narumi, D., Levinson, R. & Shimoda, Y. (2021). Effect of Urban Heat Island and Global Warming Countermeasures on Heat Release and Carbon Dioxide Emissions from a Detached House. Atmosphere, 12(572). https://doi.org/10.3390/atmos12050572.
- New Straits Times. (2018, March 22nd). 'Govt prepares for rapid urbanization'. https://www.nst.com.my/news/government-public-policy/2018/03/347940/govt-prepares-rapid-urbanisation.
- Ngulube, P., Mathipa, E. R., & Gumbo, M. T. (2015). Theoretical and Conceptual Frameworks in the Social and Management Sciences. *Addressing Research Challenges: Making Headway in Developing Researchers*, (June), 43–66. https://doi.org/10.13140/RG.2.1.3210.7680
- Nor Akmar, A. A., Konijnendijk, C. C., Sreetheran, M., & Nilsson, K. (2011). Greenspace planning and management in Klang valley, Peninsular Malaysia. *Arboriculture and Urban Forestry*, 37(3), 99–107.
- Norainiratna, B., Manohar, M., & Roslan, M. (2013). Health of trees in titiwangsa recreational park, Kuala Lumpur, Malaysia. *Journal of Sustainability Science and Management*, 8(2), 191–196.
- Noresah, M. S. (2010). Emerging trend of urban green space research and the implications for safeguarding biodiversity: a viewpoint. 8(7), 43–49.
- Nor Suhaida Yusof, Nur Huzeima Mohd Hussain & Noradila Rusli. (2017). The Relationship of Heritage Trees in Urban Heat Island Mitigation Effect at Taiping, Perak, Malaysia. Malaysian]'[Journal of Sustainable Environment (MySE), 3(2). 157-176.
- Nowak, D. J., Greenfield, E. J., Hoehn, R. E. & Lapoint, E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178. 229-236. http://dx.doi.org/10.1016/j.envpol.2013.03.019.

- Nowak, D. J., Appleton, N., Ellis, A. & Greenfield, E. (2017). Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States. Urban Forestry & Urban Planning, 21. 158-165. http://dx.doi.org/10.1016/j.ufug.2016.12.004.
- Nuruzzaman, M. (2015). Urban Heat Island: Causes, Effects and Mitigation Measures A Review. *International Journal of Environmental Monitoring and Analysis*, 3(2), 67. https://doi.org/10.11648/j.ijema.20150302.15
- Osborne, P. E., & Alvares-sanches, T. (2019). Computers, Environment and Urban Systems Quantifying how landscape composition and con fi guration a ff ect urban land surface temperatures using machine learning and neutral landscapes. *Computers, Environment and Urban Systems*, 76(August 2018), 80–90. https://doi.org/10.1016/j.compenvurbsys.2019.04.003
- Paine, L. 1971. Accident hazard: Evaluation and control decisions on forested recreation sites. Res. Pap. PSW-68. Berkeley, CA: U. S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. 10 p.
- Pandey, R. K. (2017). Urban Heat Island Effect and Climate Change: An Assessment of Interacting and Attainable Variations in Indian Cities: Study of Gorakhpur. International Journal of Science and Research (IJSR), 7(8). 985-991. https://10.21275/ART2019665.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. *Journal of Applied Psychology*, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
- Pokorny, J., O'Brien, J., Hauer, R., Johnson, G., Albers, J., Bedker, P., & Mielke, M. (2003). *Urban Tree Risk Management: A Community Guide to Program Design and Implementation | Treesearch*. https://www.fs.usda.gov/treesearch/pubs/11070
- Pretzsch, H., Biber, P., Uhl, E., Dahlhausen, J., Schütze, G., Perkins, D., Rötzer, T., Caldentey, J., Koike, T., van Con, T., Chavanne, A., du Toit, B., Foster, K. & Lefer, B. (2017). Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports, 7(15403). 1-10. https://10.1038/s41598-017-14831-w.
- Purcell, L. (2015). Tree Risk Management. *Urban Tree Risk Management: A Community Guide to Program Design and Implementation*, 5–10. https://www.extension.purdue.edu/extmedia/FNR/FNR-475-W.pdf
- Quarmby, S., Santos, G. & Mathias, M. (2019). Air Quality Strategies and Technologies: A Rapid Review of the International Evidence. Sustainability 2019, 11(2757).1-18. https://10.3390/su11102757.

- Rahman, H. A. (2018). Climate Change Scenarios in Malaysia: Engaging the Public. *International Journal of Malay-Nusantara Studies*, 1(2), 55–77. https://www.researchgate.net/publication/329642223_CLIMATE_CHANGE_S CENARIOS_IN_MALAYSIA_ENGAGING_THE_PUBLIC
- Ramakreshnan, L., Aghamohammadi, N., Fong, C. S., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Wong, L. P., Hassan, N., & Sulaiman, N. M. (2018). A critical review of Urban Heat Island phenomenon in the context of Greater Kuala Lumpur, Malaysia. *Sustainable Cities and Society*, *39*(January), 99–113. https://doi.org/10.1016/j.scs.2018.02.005
- Ramly Hasan, Noriah Othman & Faridah Ismail. (2016). Roadside Tree Management in Selected Local Authorities for Public Safety. Procedia Social and Behavioral Sciences, 234. 218 227.
- Ramly Hasan, Noriah Othman & Faridah Ismail. (2018). Developing Malaysian Roadside Tree Species Selection Model in Urban Areas. Journal of the Malaysian Institute of Planners, 16(3). 248 260.
- M. A. W. A., Othman, N., & Nazir, N. N. M. (2016). Connecting People with Nature: Urban Park and Human Well-being. *Procedia Social and Behavioral Sciences*, 222, 476–484. https://doi.org/10.1016/j.sbspro.2016.05.138
- Ren, G.Y., Zhou, Y.Q., Chu, Z.Y., Zhou, J.X., Zhang, A.Y., Guo, J., Liu, X.F., 2008. Urbanization effects on observed surface air temperature trend in North China. J. Clim. 21, 1333–1358. https://doi.org/10.1175/2007JCLI1348.1
- Rohayu Abdullaha, Kasturi Devi Kanniah & Chin Siong Ho. (2018). Identification of Suitable Trees for Urban Parks and Roadsides in Iskandar Malaysia. Chemical Engineering Transactions, 63. 385-390. https://10.3303/CET1863065.
- Ruggeri, K., Garcia-Garzon, E., Maguire, A., Matz, S. & Huppert, F. A. (2020). Well-being is more than happiness and life satisfaction: a multidimensional analysis of 21 countries. Health and Quality of Life Outcomes, 18(192). 1-16. https://doi.org/10.1186/s12955-020-01423-y.
- Ruth, A., Rae, G. S., & Jessie, B. (2010). Public reactions to new street tree planting. Article 10, 3(1). Nor Azah, A. A. (2015). Ringkasan keperluan latihan pelanggan. institut latihan kesejahteraan bandar, perumahan dan kerajaan tempatan (I- KPKT).
- Sailesh, K. S. & Srilatha, B. (2019). An update on physiological effects of stress. MOJ Anatomy & Physiology, 6(2). 45-47. https://doi.org/10.15406/mojap.2019.06.00243.
- Sanusi, M. S. M., Ramli, A. T., Hassan, W. M. S. W., Lee, M. H., Izham, A., Said, M. N., Wagiran, H., & Heryanshah, A. (2017). Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia. *Environment International*, 104, 91–101.

- https://doi.org/10.1016/j.envint.2017.01.009
- Sen, S. (2020). 'GREEN' -ING KOLKATA: CREATING A SUSTAINABLE CITY AN OVERVIEW. 7(2), 743–752.
- Sfeatcu, R., Cernuşcă-Miţariu, M., Ionescu, C., Roman, M., Cernuşcă-Miţariu, S., Coldea, L., Bota, G. & Burcea, C. C. (2014). The Concept of Wellbeing in Relation to Health and Quality of Life. European Journal of Science and Theology, 10(4). 123-128.
- Shahsavarani, A. M., Abadi, E. A. M. & Kalkhoran, M. H. (2015). Stress: Facts and Theories through Literature Review. International Journal of Medical Reviews, 2(2). 230-241.
- Shirazi, S. A. & Kazmi, J. H. (2016). Analysis of socio-environmental impacts of the loss of urban trees and vegetation in Lahore, Pakistan: a review of public perception. Ecological Processes, 5(5). https://10.1186/s13717-016-0050-8.
- Siti Haslina Mohd Shafe, Mastura Mahmud, Suzani Mohamad, Nor Lita Fadilah Rameli, Ramdzani Abdullah & Ahmad Fariz Mohamed. (2022). Influence of urban air pollution on the population in the Klang Valley, Malaysia: a spatial approach. Ecological Processes, 11(3). 1-16. https://doi.org/10.1186/s13717-021-00342-0.
- Smiley, E., Matheny, N., & Lilly, S. (2016). *Tree Risk Assessment: A Foundation.*January 2011, 12–13.
- Smiley, E. T., Matheny, N., & Lilly, S. (2012). *Qualitative Tree Risk Assessment*. https://www.researchgate.net/publication/302508127
- Smith, I. A., Dearborn, V. K., Hutyra, L. R. (2019). Live fast, die young: Accelerated growth, mortality, and turnover in street trees. PLoS ONE, 14(5): 1-17. https://doi.org/10.1371/journal. pone.0215846.
- Speak, A., Escobedo, F. J., Russo, A. & Zerbe, S. (2020). Total urban tree carbon storage and waste management emissions estimated using a combination of LiDAR, field measurements and an end-of-life wood approach.
- Sreetheran, M., Philip, E., Adnan, M., & Zakiah, M. S. (2006). A historical perspective of urban tree planting in Malaysia. *Unasylva*, *57*(1), 28–33.
- Shamsuddin, Mohd Suhaizan. (2020). CONCEPTUAL FRAMEWORK OF URBAN TREE GROWTH IN THE EDAPHIC ENVIRONMENT: A REVIEW.
- Stewart, D. W., & Shamdasani, P. N. (2014). Focus groups: Theory and practice (Vol. 20). Sage Publications.

- Sukri, N. A. N. M., Ismail, Z., & Ariffin, W. T. W. (2020). Conceptual framework for developing a model of effective tree preservation order (Act 172) implementation in construction projects. *International Journal of Sustainable Construction Engineering and Technology*, 11(1), 18–30. https://doi.org/10.30880/ijscet.2020.11.01.003
- Suraya Ali. (2022, April 29th). Need to manage urban tree cover. The Sun Daily. https://www.thesundaily.my/local/need-to-manage-urban-tree-cover-BD9140210.
- Tardif, Robert & Hakim, Gregory & Bumbaco, Karin & Lazzara, Matthew & Manning, Kevin & Mikolajczyk, David & Powers, Jordan. (2021). Assessing observation network design predictions for monitoring Antarctic surface temperature. Quarterly Journal of the Royal Meteorological Society. 148. 10.1002/qj.4226.
- Taylor, S. (2014). Encyclopedia of Critical Psychology. https://doi.org/10.1007/978- 1-4614-5583-7
- Trewin, B. (2014). The climates of the Tropics, and how they are changing. *Bureau of Meterology*, 39–51. file:///R:/LITERATURE/Aimee/Trewin_ChangingClimatesTropics.pdf
- Usman Yaakob, Tarmiji Masron & Fujimaki Masami. (2012). Ninety Years of Urbanization in Malaysia: A Geographical Investigation of Its Trends and Characteristics.
- Wiles, R., & Crow, G. (2013). What is Qualitative Interviewing? 'What is?' Research Methods series Edited by Graham Crow, University of Edinburgh
- Wolf, K. L., Lam, S. T., McKeen, J. K., van den Bosch, M. & Bardekjian, A. C. (2020). Urban Trees and Human Health: A Scoping Review. International Journal of Environmental Research and Public Health, 17(4371). 1-30. http://dx.doi.org/10.3390/ijerph17124371.
- Xing Quan Zhang. (2015). The Trends, Promises and Challenges of Urbanization.

 Habitat International
- Yang, X. C., Hou, Y. L., Chen, B. D., 2011. Observed surface warming induced by urbaniza- tion in East China. J. Geophys. Res.-Atmos. 116, D14113. doi:https://doi.org/10.1029/ 2010JD015452.
- Yasmin, H., Khalil, S. & Mazhar, R. (2020). COVID 19: Stress Management Among Students and Its Impact On Their Effective Learning. International Technology and Education Journal, 4(2). 65-74. http://itejournal.com/.
- Zamil, A., & Zakaria, B. (2012). Fallen Tree Problems In the Field of Landscape Architecture In Malaysia.

Zhao, N., Jiao, Y., Ma, T., Zhao, M., Fan, Z., Yin, X., Liu, Y., & Yue, T. (2019). Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. *Science of the Total Environment*, *688*, 1005–1015. https://doi.org/10.1016/j.scitotenv.2019.06.374

