

UNIVERSITI PUTRA MALAYSIA

ISOLATION, CHARACTERIZATION AND PRELIMINARY PHARMACOLOGICAL EVALUATION OF CONSTITUENTS OF *GARCINIA COWA* ROXB

> FATMA SRI WAHYUNI IB 2009 14

Kesempurnaan seseorang manusia itu dapat dilihat dari jauh dan dekatnya kepada Allah SWT. Selama ilmunya banyak dan sempurna, maka ia semakin dekat kepada Allah SWT, dan semakin menyerupai malaikat (Imam al-Ghazali)

> To my daughter and son: Meliannisa' Afader and Muhammad Rizki Afader

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION, CHARACTERIZATION AND PRELIMINARY PHARMACOLOGICAL EVALUATION OF CONSTITUENTS OF *GARCINIA COWA* ROXB

By

FATMA SRI WAHYUNI August 2009

Chairman : Professor Nordin Hj Lajis, PhD

Institute : Bioscience

Preliminary screening for *in vitro* cytotoxic and inhibition nitric oxide (NO) production acivities were carried out on fourteen extracts of different parts of eight *Garcinia* species. These extracts were evaluated for cytotoxic activity using microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay by measuring the reduction of viability of cell cultures in the presence and absence of the extracts. Four type of cancer cell lines, HL-60 (leukemia), MCF-7 (breast), DU-145 (prostate) and NCI-H460 (non-small cell lung) were used for a preliminary picture of extracts selectivity profile. NO inhibition (in lipopolysaccharide (LPS)-activated macrophages) activity was evaluated using Griess assay.

Extract of the stem bark from *G. cowa* Roxb showed selective cytotoxicity towards NCI-H460 (IC₅₀ = 11 μ g/mL). The extract also exhibited inhibition of NO production (IC₅₀=

25 μ g/mL) without being cytotoxic to RAW 264.7 cells. Based on these promising selective cytotoxicity towards NCI-H460 and NO inhibitory activities, *G. cowa* was selected for further studies on the isolation and identification its active components.

Bioassay-guided isolation of the stem extracts, yielded seven cytotoxic compounds. Utilising various spectroscopic (EI-MS, UV, IR, NMR and HRMS) analyses, three of them were identified as new compounds and characterized as [2E,6E,10E]-(+)-4 β -hydroxy-3-methyl-5 β -(3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraenyl-2-

cyclohexen-1-one (**85**), 2-(3-methyl-2-butenyl)-1,5,6-trihydroxy-3-methoxy-4-(1,1dimethyl-2-propenyl)-9*H*-xanthen-9-one (**87**) and 1,3,6-trihydroxy-7-methoxy-4-(4acetoxy-3-methyl-2-butenyl)-8-(3,7-dimethyl-2,6-octadienyl)xanthone (**88**). Four other known compounds were elucidated on the basis of their spectroscopy data and comparison with the literature. They were identified as rubraxanthone (**5**), cowanin (**52**), α -mangostin (**81**) and hydroxycalabaxanthone (**86**). Three compounds isolated from leaves of *G. cowa* including methyl 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)benzoate (**89**), garcinisidone-A (**90**) and 3-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-6methoxy-5,5-dimethyl-2-butenyl)-1,4-benzoquinone (**91**). Compounds **89** and **91** were identified as new compounds. In addition, rubraxanthone (**5**) and cowanin (**52**).

Compounds **81**, **86**, **87**, **88**, **89**, **90** and **91** exhibited moderate to strong cytotoxic activity on tested cells. However, only compound **85** showed selectivity towards NCI-H460 cell

line with IC₅₀ value of 16.3 μ M ± 3.0. The effect of compound **85** on the cell cycle progression of NCI-H460 cells was evaluated by using a flow cytometer. Compound **85** was found to significantly arrest cells growing, predominantly in the G₁ phase. Furthermore, compound **85** was subjected to *in vivo* antitumor assay on NCI-H460 xenografted nude mice. Interestingly, compound **85** slowed the tumor growth by 5 days.

Compound **85** was subjected to Griess assay along with rubraxanthone (5) and α mangostin (81). It was realised that the inhibition of NO production by compound **85** was most likely due to their cytotoxicity, with % inhibition of NO production value of 81% and 40% of cell viability. However, inhibition of NO production by α -mangostin **81** is high with 83% inhibition and 82% cell viability. Rubraxanthone **5** showed weak inhibition of NO production with 24% inhibition value and 77% of cell viability. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

PENGASINGAN, PEGENALPASTIAN DAN PENILAIAN PHARMACOLOGY AWAL SEBATIAN-SEBATIAN DARI *GARCINIA COWA* ROXB

Oleh

FATMA SRI WAHYUNI

Ogos 2009

Pengerusi : Professor Nordin Hj Lajis, PhD

Institut : Biosains

Kajian awal terhadap aktiviti sitotoksik dan perencatan penghasilan nitrik oksida (NO) telah dilakukan ke atas 14 ekstrak pelbagai bahagian dari lapan *Garcinia* spesies. Eksrak ini diuji aktiviti sitotoksiknya dengan kaedah 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Barisan sel kanser, HL-60 (leukemia), MCF-7 (kanser payudara), DU-145 (prostat) dan NCI-H460 (paru-paru) dipakai untuk kajian sitotoksik ekstrak. Kaedah Griess digunakan untuk menentukan perencatan pendhasilan NO.

Ekstrak kulit batang *G. cowa* Roxb didapati mempunyai aktiviti kesitotoksikan yang selektif terhadap NCI-H460 (IC₅₀ = 11 μ g/mL). Ekstrak ini juga didapati menunjukkan aktiviti perencatan produksi NO (IC₅₀ = 25 μ g/mL) tanpa menunjukkan kesitotoksikan

vi

terhadap sel RAW 264.7. *Garcinia cowa* Roxb telah dipilih untuk kajian lebih lanjut berdasarkan keputusan penilaian aktiviti-aktiviti biologi tersebut.

Pengasingan dan penulenan ekstrak kulit batang *G. cowa* berpandukan biocerakin telah membawa kepada tujuh penemuan sebatian. Daripada tujuh sebatian tersebut, tiga merupakan sebatian baru dan dicirikan sebagai [2E,6E,10E]-(+)-4 β -hidroksi-3-metil-5 β -(3,7,11,15-tetrametil-2,6,10,14-heksadecatetraenil-2-sikloheksen-1-on (**85**), 2-(3-metil-2-butenil)-1,5,6-trihidroksi-3-metoksi-4-(1,1-dimetil-2-propenil)-9*H*-xanten-9-on (**87**) and 1,3,6-trihidroksi-7-metoksi-4-(4-asetoksi-3-metil-2-butenil)-8-(3,7-dimetil-2,6-octa dienil)xanton (**88**). Empat sebatian lainnya dicirikan sebagai rubraxanton (**5**), cowanin (**52**), α -mangostin (**81**) and 6-hidroksikalabaxanton (**86**). Tiga sebatian telah diasingkan dari daun *G. cowa* dan dicirikan sebagai metil 2,4,6-trihidroksi-3-(3-metillbut-2-enil)benzoat (**89**), garsinisidon-A (**90**) dan 3-(1-metoksikarbonil-4,6-dihidroksipenoksi)-6-metoksi-5,5-dimetil-2-butenil)-1,4-benzokuinon (**91**). Dua dari- padanya iaitu sebatian **89** dan **91** merupakan sebatian baru. Rubraxanton (**5**) and cowanin (**52**) telah diasingkan kembali bersamaan dengan 1,5-dihiroksixanton (**92**) dari akar *G. cowa*.

Sebatian–sebatian tersebut diuji aktiviti sitotoksik mengguakan kaedah mikrotitratan (MTT) terhadap sel HL-60, MCF-7, DU-145 adan NCI-H460. Didapati Sebatian **81**, **86**, **87**, **88**, **89**, **90** and **91** menunjukkan aktiviti baik hingga tinggi ke atas sel uji. Walaupun begitu, sebatian **85** memberikan aktiviti yang selektif kepada NCI-H460 (IC₅₀=16.3 μ M ± 3.0).

vii

Analisis kitaran sel sebatian **85** terhadap sel NCI-H460 telah dilakukan dengan kaedah aliran sitrometri. Sebatian **85** didapati menghambat kitaran sel NCI-H460 pada fasa G₁. Uji terhadap sebatian **85** dilanjutkan ke kajian *in vivo*. Menariknya, sebatian ini dapat melambatkan selama 5 hari pertumbuhan sel NCI-H460 yang ditanamkan ke tikus percubaan, berbanding kawalan.

Rubraxanton (5), α-mangostin (81) dan sebatian 85 dilakukan uji terhadap perencatan NO. Rubraxanton (5) menunjukkan perencatan NO dengan nilai peratus 24% dan 77% nilai kehidupan sel RAW 264.7. α-Mangostin (81) memberikan nilai peratus perencatan NO 83%, dan nilai kehidupan sel RAW masing-masingnya 82%. Perencatan NO oleh sebatian 85 memberikan nilai peratus 81% dengan 40% nilai kehidupan sel RAW 264.7.

ACKNOWLEDGEMENTS

All praises do to Allah SWT, Lord of the universe, the Most Gracious and Merciful, for giving me the strength and patience to complete this thesis.

I wish to express my sincere thanks to my supervisor Prof. Dr. Md. Nordin Hj. Lajis, for his invaluable guidance, advice, and support throughout the course of this project.

My gratitude also goes to the members of my supervisory committee, Associate Professor Dr. Johnson Stanslas, who has taught me so much about biological activities and for his constructive comments, Associate Professor Dr. Khozirah Shaari for her guidance in solving NMR problems and Associate Professor Dr. Daud Ahmad Israf Ali for his assistance in my research. Thanks are also due to Dr. Rusdi Tamin, Andalas University for identifying the plant material.

Special thanks are gift to the Malaysian Ministry of Science, Technology and Innovation (MOSTI), International Foundation for Sciences, L'Oreal Indonesia-Komnas Unesco and Directorate of Higher Education, Department of Education Republic Indonesia for financial support.

Thanks are extended to Mr. Salahudin and Mrs. Mazina for their effort in obtaining spectroscopy data, to my labmates at Laboratory of Natural Products, especially Uwik, Pak Rizal, Siti Mariam, Puan Salmah and Sagi for their helpful suggestions and encouragement.

My appreciations are extended to the CRDD group in Laboratory of Pharmacotherapeutics, for their helpful and remarkable guidance. Not to forget Lim and Tang, thank you for their assistance when I was doing *in vitro* and *in vivo* studies of my project.

My gratitude also goes to my housemate Kak Azilah, thanks a lot for your help and joyous moments during my study. Thanks to all friends who put some fun in difficult time during my study.

Finally, my deepest thanks to my parents, husband, sisters and brother for their love, support and never ending prayers.

Х

I certify that a Thesis Examination Committee has met on 11 Augustus 2009 to conduct the final examination of Fatma Sri Wahyuni on her thesis entitled "Isolation, characterization and preliminary pharmacological evaluation of constituents of *Garcinia cowa* Roxb" in accordance with the Universities and University Collegges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mawardi Rahmani, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd. Aspollah Sukari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal examiner)

Ahmad Bustamam Abdul, PhD

Associate Professor Faculty of Medicines and Health Sciences Universiti Putra Malaysia (Internal examiner)

Mary J. Garson, Ph.D.

Professor Department of Chemistry University of Queensland Australia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follow:

MD. NORDIN HJ. LAJIS, PhD

Professor Institute of Bioscience Universiti Putra Malaysia (Chairman)

JOHNSON STANSLAS, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

KHOZIRAH SHAARI, PhD

Associate Professor Institute of Bioscience Universiti Putra Malaysia (Member)

DAUD AHMAD ISRAF ALI, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 January 2010

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree at UPM or other institutions.

FATMA SRI WAHYUNI

Date: November 2009

TABLE OF CONTENTS

ABSTRACT

Page	
------	--

iii

ABST	RAK	X	vi		
ACKN	ACKNOWLEDGEMENTS				
APPROVAL			xi		
DECI	DECLARATION				
TABL	E O	F CONTENTS	xiv		
LIST	OF 1	ΓABLES	xvi		
LIST	OF F	FIGURES	xviii		
LIST OF ABBREVIATIONS					
CHAI	PTER	R			
1	INT	FRODUCTION	1		
2	LIT	TERATURE REVIEW			
-	2.1	General information on Genus of <i>Garcinia</i>	5		
	2.1	2.1.1 Ethnomedical information	5		
		2.1.2 Chemical constituents and biological activities	11		
	2.2	-	20		
	2.3	1	28		
		2.3.1 General information	28		
		2.3.2 MTT assay	30		
		2.3.3 Cell cycle	31		
		2.3.4 Cancer and cell cycle	33		
		2.3.5 <i>In vivo</i> antitumor study on animal tumor xenografts	34		
		2.3.6 Anticancer agents from natural products	36		
		2.3.7 Lung cancer (NSCLC) and its chemotherapic agents	39		
	2.4	Anti-inflammatory activity	41		
		2.4.1 Nitric oxide and inflammation	41		
		2.4.2 Anti-inflammatory agents from natural products	42		

MATERIALS AND METHODS 3.1 Isolation and purification 3

ATERIALS AND METHODS		46
Isolati	on and purification	46
3.1.1	Materials	46
3.1.2	Instruments	47
3.1.3	Isolation and purification experiment	49

	-	3.1.4	Extraction and isolation of compounds from the stem bark of <i>G. cowa</i>	50
		3.1.5	Extraction and isolation of compounds from leaves of <i>G. cowa</i>	50 64
			Extraction and isolation of compounds from the roots of <i>G. cowa</i>	
			y experiment	75
			Plant materials and crude extracts preparation for screening	75
			Cytotoxic assay	76
			Cell cycle analysis by flow cytometry	80
			Maximum Tolerated Dose (MTD)	80
			In vivo antitumour study	83
			<i>In vitro</i> test for anti-inflammatory activity-Griess assay	86
	-	5.2.0	In viro test for anti-inflammatory activity-offess assay	00
4			AND DISCUSSIONS	
			tic activity screening on Garcinia sp.	87
			on of LPS-activated NO production by RAW 264.7 cells of	
		Garcin	1	92
			erization of isolated compounds	
		4.3.1	Characterization of compound 85	95
		4.3.2	Characterization of compound 86	110
		4.3.3	Characterization of compound 87	122
		4.3.4	Characterization of compound 5	136
		4.3.5	Characterization of compound 81	147
		4.3.6	Characterization of compound 88	157
		4.3.7	Characterization of compound 52	170
		4.3.8	Characterization of compound 89	180
	2	4.3.9	Characterization of compound 90	190
	2	4.3.10	Characterization of compound 91	199
		4.3.11	Characterization of compound 92	210
	4.4	Cytotoz	xic activity of isolated compounds	221
	4.5	Cell cy	cle analysis	223
	4.6	Maxim	um tolerance dose results	226
	4.7	In vivo	antitumor activity of compound 85	228
	4.8	Anti-in	flammatory activity of isolated compounds	231
5	GEI	NERAI	L DISCUSSION AND CONCLUSION	
		Discuss		232
		Conclu		235
			mendation of future work	236
REF	EREN	CES		237
	ENDI			248
BIO	DATA	OF ST	TUDENT	252

BIODATA OF STUDENT LIST OF PUBLICATIONS

LIST OF TABLES

Table	1	Page
2.1	Common name and ethnomedical information of several species of Garcinia	8
4.1	Cytotoxicity of crude methanolic extracts of Garcinia spp	89
4.2	Nitric oxide inhibitory activity of Garcinia spp	93
4.3	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 85	99
4.4	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 86	113
4.5	Comparison data of compound 86 with literature	114
4.6	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 87	124
4.7	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 5	141
4.8	Comparison data of compound 5 with literature	142
4.9	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 81	149
4.10	Comparison data of compound 81 with literature	150
4.11	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 88	159
4.12	Comparison data of compound 88 with literature	161
4.13	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 52	172
4.14	Comparison data of compound 52 with literature	173
4.15	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 89	182
4.16	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 90	192
4.17	Comparison data of compound 90 with literature	193
4.18	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 91	201
4.19	¹ H-NMR, ¹³ C-NMR, and HMBC data of compound 92	212

4.20	Comparison data of compound 92 with literature	213
4.21	Cytotoxic activity of isolated compounds towards cancer cell lines	221
4.22	NO inhibitory activity of isolated compounds	231

LIST OF FIGURES

Figur	Figure	
2.1	Isolated compounds from G. parvifolia	11
2.2	Isolated compounds from G. artroviridis	12
2.3	Isolated compounds from G. hanburyi	14
2.4	Isolated compounds from G. hombroniana	15
2.5	Isolated compounds from G. indica	16
2.6	Phloroglucinols from G. parvifolia	17
2.7	Isolated compounds from G. kola	18
2.8	Griffipavixanthone from G. griffithii	19
2.9	Isolated compounds from G. nervosa	19
2.10	Garcina cowa Roxb	21
2.11	Isolated compounds from stems of of G. cowa	23
2.12	Isolated compounds from fruit of G. cowa	25
2.13	Xanthones from fruit of G. cowa	26
2.14	Organic acids in fresh leaves, fruits and dried rinds of G. cowa	27
2.15	DNA histogram of cell cycle analysis	32
2.16	Several anticancer agents from natural products	36
2.17	Several molecules have emerged of natural anticancer agents	37
2.18	Several anti-inflammatory agents from natural products	44
3.1	The solvent-solvent partitioning scheme for stem bark of G. cowa	62
3.2	Scheme for bioassay guided isolation of compounds from stem bark of	

3.3	<i>G. cowa</i> Scheme for the isolation of compounds 89 and 90 from DCM fraction of	63
5.5	leaves of <i>G. cowa</i> .	70
3.4	Scheme for the isolation of compounds 90 and 91 from methanol of leaves of <i>G. cowa</i>	71
3.5	Scheme for the isolation of compound 5 , 52 and 92 from DCM fraction of roots of <i>G. cowa</i>	74
3.6	Metabolization of MTT to formazan by viable cells	78
3.7	Dose response curve of extracts/ compounds	79
4.1	Selected HMBC correlations of compound 85	96
4.2	HSQC correlation of geranylgeranyl moiety compound 85	97
4.3	NOE difference data of compound 85	98
4.4	FTIR spectrum of compound 85	100
4.5	¹³ C NMR spectrum of compound 85	101
4.6	HSQC spectrum of compound 85	102
4.7	HMBC spectrum of compound 85	103
4.8	¹ H NMR spectrum of compound 85	104
4.9	¹ H NMR spectrum of compound 85 treated with $Eu(fod)_3$	105
4.10	NOE difference spectrum of compound 85 after irradiation of H-5	106
4.11	NOE difference spectrum of compound 85 after irradiation of H_{6eq}	106
4.12	NOE difference spectrum of compound 85 after irradiation of Me-C(3)	107
4.13	Mass fragmentation of compound 85	108
4.14	Proposed of biogenetic pathway of compound 85	109
4.15	Connectivity of chromene ring in 86	111
4.16	HMBC correlations for H-4, H-5 and H-1' of 86	112

4.17	EI-MS spectrum of compound 86	115
4.18	UV spectrum of compound 86	115
4.19	FT-IR spectrum of compound 86	116
4.20	¹ H NMR spectrum of compound 86	117
4.21	¹³ C NMR spectrum of compound 86	118
4.22	HMBC spectrum of compound 86	119
4.23	HMBC spectrum of compound 86	120
4.24	HMBC spectrum of compound 86	121
4.25	Selected HMBC correlations of compound 87	123
4.26	EIMS spectrum oc compound 87	125
4.27	UV spectrum of compound 87	125
4.28	FT-IR spectrum of compound 87	126
4.29	¹ H NMR spectrum of compound 87	127
4.30	¹³ C NMR spectrum of compound 87	128
4.31	COSY spectrum of compound 87	129
4.32	HMBC spectrum of compound 87	130
4.33	HMBC spectrum of compound 87	131
4.34	HMBC spectrum of compound 87	132
4.35	HMBC spectrum of compound 87	133
4.36	Mass fragmentation of compounf 87	134
4.37	Proposed of biosynthetic pathway of compound 87	135
4.38	EI-MS fragmentation of compound 5	137

xx

4.39	Structure of rubraxanthone (5)	138
4.40	EI-MS spectrum of compound 5	139
4.41	UV spectrum of compound 5	139
4.42	FTIR spectrum of compound 5	140
4.43	¹ H NMR spectrum of compound 5	143
4.44	¹³ C NMR spectrum of compound 5	144
4.45	HMBC correlations of compound 5	145
4.46	HMBC correlations of compound 5	146
4.47	Selected HMBC correlations of compound 81	148
4.48	EI-MS spectrum of compound 81	151
4.49	UV spectrum of compound 81	151
4.50	FTIR spectrum of compound 81	152
4.51	¹ H NMR spectrum of compound 81	153
4.52	¹³ C NMR spectrum of compound 81	154
4.53	HMBC spectrum of compound 81	155
4.54	HMBC spectrum of compound 81	156
4.55	Selected HMBC of compound 88	158
4.56	EI-MS spectrum of compound 88	162
4.57	FTIR spectrum of compound 88	162
4.58	¹ H NMR spectrum of compound 88	163
4.59	¹³ C NMR spectrum of compound 88	164
4.60	HMBC spectrum of compound 88	165
4.61	HMBC spectrum of compound 88	166

4.62	HMBC spectrum of compound 88	167
4.63	Mass fragmentation of compound 88	168
4.64	Proposed biosynthetic pathway of compound 88	169
4.65	Selected HMBC correlations of compound 52	171
4.66	EI-MS spectrum of compound 52	174
4.67	UV spectrum of compound 52	174
4.68	FTIR spectrum of compound 52	175
4.69	¹ H NMR spectrum of compound 52	176
4.70	¹³ C NMR spectrum of compound 52	177
4.71	HMBC spectrum of compound 52	178
4.72	Selected HMBC spectrum of compound 52	179
4.73	Connectivity of the prenyl unit and an aromatic proton to benzene ring of compound 89	181
4.74	EI-MS spectrum of compound 89	182
4.75	UV spectrum of compound 89	183
4.76	FTIR spectrum of compound 89	183
4.77	¹ H NMR spectrum of compound 89	184
4.78	¹³ C NMR spectrum of compound 89	185
4.79	HMBC spectrum of compound 89	186
4.80	HMBC spectrum of compound 89	187
4.81	Mass fragmentation of compound 89	188
4.82	Proposed biogenetic pathway of compound 89	189
4.83	Selected HMBC correlations of compound 90	191

xxii

4.84	EI-MS spectrum of compound 90	194
4.85	UV spectrum of compound 90	194
4.86	FT-IR spectrum of compound 90	195
4.87	¹ H NMR spectrum of compound 90	196
4.88	¹³ C NMR spectrum of compound 90	197
4.89	HMBC spectrum of compound 90	198
4.90	Selected HMBC correlations of compound 91	200
4.91	EI-MS spectrum of compound 91	202
4.92	UV spectrum of compound 91	202
4.93	FT-IR spectrum of compound 91	203
4.94	¹³ C NMR spectrum of compound 91	204
4.95	¹ H NMR spectrum of compound 91	205
4.96	HMBC spectrum of compound 91	206
4.97	HMBC spectrum of compound 91	207
4.98	Mass fragmentation of compound 91	208
4.99	HMBC correlations of compound 92	211
4.100	EI-MS spectrum of compound 92	214
4.101	UV spectrum of compound 92	214
4.102	FTIR spectrum of compound 92	215
4.103	¹ H NMR spectrum of compound 92	216
4.104	COSY spectrum of compound 92	217
4.105	¹³ C NMR spectrum of compound 92	218

4.106	HMBC spectrum of compound 92	219
4.107	Hypothetical biogenetic relationship of phloroglucinol compounds from <i>G. cowa</i>	220
4.108	Histogram of NCI-H460 cells treated with compound 85	225
4.109	Percentage body weight change of BALB/c mice treated with compound 85	227
4.110	Antitumour effect of compound 85 on the growth of NCI-H460 xenografts in athymic nude mice	229
4.111	Percentage of body weight change of athymic nude mice bearing NCI-H460 xenograft treated with compound 85	230

.

LIST OF ABBREVIATIONS

α	Alpha
β	Beta
γ	Gamma
δ	Delta, chemical shift in ppm
μg	Microgram
μl	Microliter
μΜ	Micromolar
br	Broad
¹³ C	Carbon-13
d	Doublet
dd	Doublet of doublets
ddd	Doublet of doublets of doublets
CDK	cyclin dependent kinase
COSY	Correlation Spectroscopy
DNA	deoxyribonucleic acid
DEPT	Distortionless Enhancement by Polarization Transfer
DMSO	Dimethylsulfoxide
EIMS	Electron Impact Mass Spectrum
EtOAc	Ethyl acetate
eV	Electron volt
FTIR	Fourier Transform Infra-Red

XXV