UNIVERSITI PUTRA MALAYSIA

ISOLATION, CHARACTERIZATION AND PRELIMINARY PHARMACOLOGICAL EVALUATION OF CONSTITUENTS OF GARCINIA COWA ROXB

FATMA SRI WAHYUNI
IB 2009 14
Kesempurnaan seseorang manusia itu dapat dilihat dari jauh dan dekatnya kepada Allah SWT. Selama ilmunya banyak dan sempurna, maka ia semakin dekat kepada Allah SWT, dan semakin menyerupai malaikat (Imam al-Ghazali)

To my daughter and son:
Meliannisa’ Afader and Muhammad Rizki Afader
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION, CHARACTERIZATION AND PRELIMINARY PHARMACOLOGICAL EVALUATION OF CONSTITUENTS OF GARCINIA COWA ROXB

By

FATMA SRI WAHYUNI

August 2009

Chairman : Professor Nordin Hj Lajis, PhD

Institute : Bioscience

Preliminary screening for in vitro cytotoxic and inhibition nitric oxide (NO) production activities were carried out on fourteen extracts of different parts of eight Garcinia species. These extracts were evaluated for cytotoxic activity using microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay by measuring the reduction of viability of cell cultures in the presence and absence of the extracts. Four type of cancer cell lines, HL-60 (leukemia), MCF-7 (breast), DU-145 (prostate) and NCI-H460 (non-small cell lung) were used for a preliminary picture of extracts selectivity profile. NO inhibition (in lipopolysaccharide (LPS)-activated macrophages) activity was evaluated using Griess assay.

Extract of the stem bark from G. cowa Roxb showed selective cytotoxicity towards NCI-H460 (IC\textsubscript{50} = 11 \mu g/mL). The extract also exhibited inhibition of NO production (IC\textsubscript{50} =
25 μg/mL) without being cytotoxic to RAW 264.7 cells. Based on these promising selective cytotoxicity towards NCI-H460 and NO inhibitory activities, *G. cowa* was selected for further studies on the isolation and identification its active components.

Bioassay-guided isolation of the stem extracts, yielded seven cytotoxic compounds. Utilising various spectroscopic (EI-MS, UV, IR, NMR and HRMS) analyses, three of them were identified as new compounds and characterized as [2E,6E,10E]-(+)-4β-hydroxy-3-methyl-5β-(3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraenyl-2-cyclohexen-1-one (85), 2-(3-methyl-2-butenyl)-1,5,6-trihydroxy-3-methoxy-4-(1,1-dimethyl-2-propenyl)-9H-xanthen-9-one (87) and 1,3,6-trihydroxy-7-methoxy-4-(4-acetoxy-3-methyl-2-butenyl)-8-(3,7-dimethyl-2,6-octadienyl)xanthone (88). Four other known compounds were elucidated on the basis of their spectroscopy data and comparison with the literature. They were identified as rubraxanthone (5), cowanin (52), α-mangostin (81) and hydroxycalabaxanthone (86). Three compounds isolated from leaves of *G. cowa* including methyl 2,4,6-trihydroxy-3-(3-methylbut-2-etyl)benzoate (89), garcinisidone-A (90) and 3-(1-methoxycarbonyl-4,6-dihydroxyphenox)-6-methoxy-5,5-dimethyl-2-butenyl)-1,4-benzoquinone (91). Compounds 89 and 91 were identified as new compounds. In addition, rubraxanthone (5) and cowanin (52) were reisolated from roots of this plant together with 1,5-dihydroxyxanthone (92).

Compounds 81, 86, 87, 88, 89, 90 and 91 exhibited moderate to strong cytotoxic activity on tested cells. However, only compound 85 showed selectivity towards NCI-H460 cell
line with IC\textsubscript{50} value of 16.3 µM ± 3.0. The effect of compound 85 on the cell cycle progression of NCI-H460 cells was evaluated by using a flow cytometer. Compound 85 was found to significantly arrest cells growing, predominantly in the G\textsubscript{1} phase. Furthermore, compound 85 was subjected to \textit{in vivo} antitumor assay on NCI-H460 xenografted nude mice. Interestingly, compound 85 slowed the tumor growth by 5 days.

Compound 85 was subjected to Griess assay along with rubraxanthone (5) and α-mangostin (81). It was realised that the inhibition of NO production by compound 85 was most likely due to their cytotoxicity, with % inhibition of NO production value of 81% and 40% of cell viability. However, inhibition of NO production by α-mangostin 81 is high with 83% inhibition and 82% cell viability. Rubraxanthone 5 showed weak inhibition of NO production with 24% inhibition value and 77% of cell viability.
Kajian awal terhadap aktiviti sitotoksik dan perencatan penghasilan nitrik oksida (NO) telah dilakukan ke atas 14 ekstrak pelbagai bahagian dari lapan *Garcinia* spesies. Eksrak ini diuji aktiviti sitotoksiknya dengan kaedah 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Barisan sel kanser, HL-60 (leukemia), MCF-7 (kanser payudara), DU-145 (prostat) dan NCI-H460 (paru-paru) dipakai untuk kajian sitotoksik ekstrak. Kaedah Griess digunakan untuk menentukan perencatan pendhasilan NO.

Ekstrak kulit batang *G. cowa* Roxb didapati mempunyai aktiviti kesitotoksikan yang selektif terhadap NCI-H460 (IC\textsubscript{50} = 11 µg/mL). Ekstrak ini juga didapati menunjukkan aktiviti perencatan produksi NO (IC\textsubscript{50} = 25 µg/mL) tanpa menunjukkan kesitotoksikan.
terhadap sel RAW 264.7. *Garcinia cowa* Roxb telah dipilih untuk kajian lebih lanjut berdasarkan keputusan penilaian aktiviti-aktiviti biologi tersebut.

Pengasingan dan penulenan ekstrak kulit batang *G. cowa* berpandukan biocerakin telah membawa kepada tujuh penemuan sebatian. Daripada tujuh sebatian tersebut, tiga merupakan sebatian baru dan dicirikan sebagai \([2E,6E,10E]-(+)-4\beta\)-hidroksi-3-metil-5β-(3,7,11,15-tetrametil-2,6,10,14-heksadecatetraenil-2-sikloheksen-1-on (85), 2-(3-metil-2-butenil)-1,5,6-trihidroksi-3-metoksi-4-(1,1-dimetil-2-propenil)-9H-xanten-9-on (87) and 1,3,6-trihidroksi-7-metoksi-4-(4-asetoksi-3-metil-2-butenil)-8-(3,7-dimetil-2,6-octa\-dienil)xanton (88). Empat sebatian lainnya dicirikan sebagai rubraxanton (5), cowanin (52), α-mangostin (81) and 6-hidroksikalabaxanton (86). Tiga sebatian telah diaisingkan dari daun *G. cowa* dan dicirikan sebagai metil 2,4,6-trihidroksi-3-(3-metilbut-2-enil)benzoat (89), garsinisol-A (90) dan 3-(1-metoksikarbonil-4,6-dihidroksipenoksi)-6-metoksi-5,5-dimetil-2-butenil)-1,4-benzokuinon (91). Dua dari- padanya iaitu sebatian 89 dan 91 merupakan sebatian baru. Rubraxanton (5) and cowanin (52) telah diaisingkan kembali bersamaan dengan 1,5-dihidroksixanton (92) dari akar *G. cowa*.

Sebatian–sebatian tersebut diuji aktiviti sitotoksik menggunakan kaedah mikrotitratan (MTT) terhadap sel HL-60, MCF-7, DU-145 adan NCI-H460. Didapati Sebatian 81, 86, 87, 88, 89, 90 and 91 menunjukkan aktiviti baik hingga tinggi ke atas sel uji. Walaupun begitu, sebatian 85 memberikan aktiviti yang selektif kepada NCI-H460 (IC₅₀=16.3 µM ± 3.0).

Rubraxanton (5), α-mangostin (81) dan sebatian 85 dilakukan uji terhadap perencatan NO. Rubraxanton (5) menunjukkan perencatan NO dengan nilai peratus 24% dan 77% nilai kehidupan sel RAW 264.7. α-Mangostin (81) memberikan nilai peratus perencatan NO 83%, dan nilai kehidupan sel RAW masing-masingnya 82%. Perencatan NO oleh sebatian 85 memberikan nilai peratus 81% dengan 40% nilai kehidupan sel RAW 264.7.
ACKNOWLEDGEMENTS

All praises do to Allah SWT, Lord of the universe, the Most Gracious and Merciful, for giving me the strength and patience to complete this thesis.

I wish to express my sincere thanks to my supervisor Prof. Dr. Md. Nordin Hj. Lajis, for his invaluable guidance, advice, and support throughout the course of this project.

My gratitude also goes to the members of my supervisory committee, Associate Professor Dr. Johnson Stanslas, who has taught me so much about biological activities and for his constructive comments, Associate Professor Dr. Khozirah Shaari for her guidance in solving NMR problems and Associate Professor Dr. Daud Ahmad Israf Ali for his assistance in my research. Thanks are also due to Dr. Rusdi Tamin, Andalas University for identifying the plant material.

Special thanks are gift to the Malaysian Ministry of Science, Technology and Innovation (MOSTI), International Foundation for Sciences, L’Oreal Indonesia-Komnas Unesco and Directorate of Higher Education, Department of Education Republic Indonesia for financial support.

Thanks are extended to Mr. Salahudin and Mrs. Mazina for their effort in obtaining spectroscopy data, to my labmates at Laboratory of Natural Products, especially Uwik, Pak Rizal, Siti Mariam, Puan Salmah and Sagi for their helpful suggestions and encouragement.
My appreciations are extended to the CRDD group in Laboratory of Pharmacotherapeutics, for their helpful and remarkable guidance. Not to forget Lim and Tang, thank you for their assistance when I was doing *in vitro* and *in vivo* studies of my project.

My gratitude also goes to my housemate Kak Azilah, thanks a lot for your help and joyous moments during my study. Thanks to all friends who put some fun in difficult time during my study.

Finally, my deepest thanks to my parents, husband, sisters and brother for their love, support and never ending prayers.
I certify that a Thesis Examination Committee has met on 11 Augustus 2009 to conduct the final examination of Fatma Sri Wahyuni on her thesis entitled “Isolation, characterization and preliminary pharmacological evaluation of constituents of *Garcinia cowa* Roxb” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mawardi Rahmani, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd. Aspollah Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal examiner)

Ahmad Bustamam Abdul, PhD
Associate Professor
Faculty of Medicines and Health Sciences
Universiti Putra Malaysia
(Internal examiner)

Mary J. Garson, Ph.D.
Professor
Department of Chemistry
University of Queensland
Australia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follow:

MD. NORDIN HJ. LAJIS, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

JOHNSON STANSLAS, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

KHOZIRAH SHAARI, PhD
Associate Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

DAUD AHMAD ISRAF ALI, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree at UPM or other institutions.

FATMA SRI WAHYUNI

Date: November 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 General information on Genus of *Garcinia*
2.1.1 Ethnomedical information
2.1.2 Chemical constituents and biological activities
2.2 Species of *Garcinia cowa* Roxb
2.3 Cancer
2.3.1 General information
2.3.2 MTT assay
2.3.3 Cell cycle
2.3.4 Cancer and cell cycle
2.3.5 *In vivo* antitumor study on animal tumor xenografts
2.3.6 Anticancer agents from natural products
2.3.7 Lung cancer (NSCLC) and its chemotherapeutic agents
2.4 Anti-inflammatory activity
2.4.1 Nitric oxide and inflammation
2.4.2 Anti-inflammatory agents from natural products

3 MATERIALS AND METHODS

3.1 Isolation and purification
3.1.1 Materials
3.1.2 Instruments
3.1.3 Isolation and purification experiment
3.1.4 Extraction and isolation of compounds from the stem bark of
\textit{G. cowa} \hfill 50

3.1.5 Extraction and isolation of compounds from leaves of \textit{G. cowa} \hfill 64

3.1.6 Extraction and isolation of compounds from the roots of \textit{G. cowa} \hfill 72

3.2 Bioassay experiment \hfill 75

3.2.1 Plant materials and crude extracts preparation for screening \hfill 75

3.2.2 Cytotoxic assay \hfill 76

3.2.3 Cell cycle analysis by flow cytometry \hfill 80

3.2.4 Maximum Tolerated Dose (MTD) \hfill 82

3.2.5 \textit{In vivo} antitumour study \hfill 83

3.2.6 \textit{In vitro} test for anti-inflammatory activity-Griess assay \hfill 86

4 RESULTS AND DISCUSSIONS

4.1 Cytotoxic activity screening on \textit{Garcinia sp.} \hfill 87

4.2 Inhibition of LPS-activated NO production by RAW 264.7 cells of \textit{Garcinia sp.} \hfill 92

4.3 Characterization of isolated compounds

4.3.1 Characterization of compound 85 \hfill 95

4.3.2 Characterization of compound 86 \hfill 110

4.3.3 Characterization of compound 87 \hfill 122

4.3.4 Characterization of compound 5 \hfill 136

4.3.5 Characterization of compound 81 \hfill 147

4.3.6 Characterization of compound 88 \hfill 157

4.3.7 Characterization of compound 52 \hfill 170

4.3.8 Characterization of compound 89 \hfill 180

4.3.9 Characterization of compound 90 \hfill 190

4.3.10 Characterization of compound 91 \hfill 199

4.3.11 Characterization of compound 92 \hfill 210

4.4 Cytotoxic activity of isolated compounds \hfill 221

4.5 Cell cycle analysis \hfill 223

4.6 Maximum tolerance dose results \hfill 226

4.7 \textit{In vivo} antitumor activity of compound 85 \hfill 228

4.8 Anti-inflammatory activity of isolated compounds \hfill 231

5 GENERAL DISCUSSION AND CONCLUSION

5.1 Discussion \hfill 232

5.2 Conclusion \hfill 235

5.3 Recommendation of future work \hfill 236

REFERENCES \hfill 237

APPENDICES \hfill 248

BIODATA OF STUDENT \hfill 252

LIST OF PUBLICATIONS \hfill 253
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Common name and ethnomedical information of several species of Garcinia</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Cytotoxicity of crude methanolic extracts of Garcinia spp</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Nitric oxide inhibitory activity of Garcinia spp</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 85</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 86</td>
<td>113</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison data of compound 86 with literature</td>
<td>114</td>
</tr>
<tr>
<td>4.6</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 87</td>
<td>124</td>
</tr>
<tr>
<td>4.7</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 5</td>
<td>141</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison data of compound 5 with literature</td>
<td>142</td>
</tr>
<tr>
<td>4.9</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 81</td>
<td>149</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison data of compound 81 with literature</td>
<td>150</td>
</tr>
<tr>
<td>4.11</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 88</td>
<td>159</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison data of compound 88 with literature</td>
<td>161</td>
</tr>
<tr>
<td>4.13</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 52</td>
<td>172</td>
</tr>
<tr>
<td>4.14</td>
<td>Comparison data of compound 52 with literature</td>
<td>173</td>
</tr>
<tr>
<td>4.15</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 89</td>
<td>182</td>
</tr>
<tr>
<td>4.16</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 90</td>
<td>192</td>
</tr>
<tr>
<td>4.17</td>
<td>Comparison data of compound 90 with literature</td>
<td>193</td>
</tr>
<tr>
<td>4.18</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 91</td>
<td>201</td>
</tr>
<tr>
<td>4.19</td>
<td>1H-NMR, 13C-NMR, and HMBC data of compound 92</td>
<td>212</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.20</td>
<td>Comparison data of compound 92 with literature</td>
<td>213</td>
</tr>
<tr>
<td>4.21</td>
<td>Cytotoxic activity of isolated compounds towards cancer cell lines</td>
<td>221</td>
</tr>
<tr>
<td>4.22</td>
<td>NO inhibitory activity of isolated compounds</td>
<td>231</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Isolated compounds from G. parvifolia</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Isolated compounds from G. artroviridis</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Isolated compounds from G. hanburyi</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Isolated compounds from G. hombroniana</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Isolated compounds from G. indica</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Phloroglucinols from G. parvifolia</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Isolated compounds from G. kola</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Griffipavixanthone from G. griffithii</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Isolated compounds from G. nervosa</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Garcina cowa Roxb</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Isolated compounds from stems of G. cowa</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Isolated compounds from fruit of G. cowa</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Xanthones from fruit of G. cowa</td>
<td>26</td>
</tr>
<tr>
<td>2.14</td>
<td>Organic acids in fresh leaves, fruits and dried rinds of G. cowa</td>
<td>27</td>
</tr>
<tr>
<td>2.15</td>
<td>DNA histogram of cell cycle analysis</td>
<td>32</td>
</tr>
<tr>
<td>2.16</td>
<td>Several anticancer agents from natural products</td>
<td>36</td>
</tr>
<tr>
<td>2.17</td>
<td>Several molecules have emerged of natural anticancer agents</td>
<td>37</td>
</tr>
<tr>
<td>2.18</td>
<td>Several anti-inflammatory agents from natural products</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>The solvent-solvent partitioning scheme for stem bark of G. cowa</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Scheme for bioassay guided isolation of compounds from stem bark of</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Scheme for the isolation of compounds 89 and 90 from DCM fraction of leaves of *G. cowa*.
3.4 Scheme for the isolation of compounds 90 and 91 from methanol of leaves of *G. cowa*
3.5 Scheme for the isolation of compound 5, 52 and 92 from DCM fraction of roots of *G. cowa*
3.6 Metabolization of MTT to formazan by viable cells
3.7 Dose response curve of extracts/ compounds
4.1 Selected HMBC correlations of compound 85
4.2 HSQC correlation of geranylgeranyl moiety compound 85
4.3 NOE difference data of compound 85
4.4 FTIR spectrum of compound 85
4.5 13C NMR spectrum of compound 85
4.6 HSQC spectrum of compound 85
4.7 HMBC spectrum of compound 85
4.8 1H NMR spectrum of compound 85
4.9 1H NMR spectrum of compound 85 treated with Eu(fod)$_3$
4.10 NOE difference spectrum of compound 85 after irradiation of H-5
4.11 NOE difference spectrum of compound 85 after irradiation of H$_{6eq}$
4.12 NOE difference spectrum of compound 85 after irradiation of Me-C(3)
4.13 Mass fragmentation of compound 85
4.14 Proposed of biogenetic pathway of compound 85
4.15 Connectivity of chromene ring in 86
4.16 HMBC correlations for H-4, H-5 and H-1’ of 86
4.17 EI-MS spectrum of compound 86
4.18 UV spectrum of compound 86
4.19 FT-IR spectrum of compound 86
4.20 1H NMR spectrum of compound 86
4.21 13C NMR spectrum of compound 86
4.22 HMBC spectrum of compound 86
4.23 HMBC spectrum of compound 86
4.24 HMBC spectrum of compound 86
4.25 Selected HMBC correlations of compound 87
4.26 EIMS spectrum of compound 87
4.27 UV spectrum of compound 87
4.28 FT-IR spectrum of compound 87
4.29 1H NMR spectrum of compound 87
4.30 13C NMR spectrum of compound 87
4.31 COSY spectrum of compound 87
4.32 HMBC spectrum of compound 87
4.33 HMBC spectrum of compound 87
4.34 HMBC spectrum of compound 87
4.35 HMBC spectrum of compound 87
4.36 Mass fragmentation of compound 87
4.37 Proposed biosynthetic pathway of compound 87
4.38 EI-MS fragmentation of compound 5
4.39 Structure of rubraxanthone (5) 138
4.40 EI-MS spectrum of compound 5 139
4.41 UV spectrum of compound 5 139
4.42 FTIR spectrum of compound 5 140
4.43 1H NMR spectrum of compound 5 143
4.44 13C NMR spectrum of compound 5 144
4.45 HMBC correlations of compound 5 145
4.46 HMBC correlations of compound 5 146
4.47 Selected HMBC correlations of compound 81 148
4.48 EI-MS spectrum of compound 81 151
4.49 UV spectrum of compound 81 151
4.50 FTIR spectrum of compound 81 152
4.51 1H NMR spectrum of compound 81 153
4.52 13C NMR spectrum of compound 81 154
4.53 HMBC spectrum of compound 81 155
4.54 HMBC spectrum of compound 81 156
4.55 Selected HMBC of compound 88 158
4.56 EI-MS spectrum of compound 88 162
4.57 FTIR spectrum of compound 88 162
4.58 1H NMR spectrum of compound 88 163
4.59 13C NMR spectrum of compound 88 164
4.60 HMBC spectrum of compound 88 165
4.61 HMBC spectrum of compound 88 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.62</td>
<td>HMBC spectrum of compound 88</td>
<td>167</td>
</tr>
<tr>
<td>4.63</td>
<td>Mass fragmentation of compound 88</td>
<td>168</td>
</tr>
<tr>
<td>4.64</td>
<td>Proposed biosynthetic pathway of compound 88</td>
<td>169</td>
</tr>
<tr>
<td>4.65</td>
<td>Selected HMBC correlations of compound 52</td>
<td>171</td>
</tr>
<tr>
<td>4.66</td>
<td>EI-MS spectrum of compound 52</td>
<td>174</td>
</tr>
<tr>
<td>4.67</td>
<td>UV spectrum of compound 52</td>
<td>174</td>
</tr>
<tr>
<td>4.68</td>
<td>FTIR spectrum of compound 52</td>
<td>175</td>
</tr>
<tr>
<td>4.69</td>
<td>1H NMR spectrum of compound 52</td>
<td>176</td>
</tr>
<tr>
<td>4.70</td>
<td>13C NMR spectrum of compound 52</td>
<td>177</td>
</tr>
<tr>
<td>4.71</td>
<td>HMBC spectrum of compound 52</td>
<td>178</td>
</tr>
<tr>
<td>4.72</td>
<td>Selected HMBC spectrum of compound 52</td>
<td>179</td>
</tr>
<tr>
<td>4.73</td>
<td>Connectivity of the prenyl unit and an aromatic proton to benzene ring of compound 89</td>
<td>181</td>
</tr>
<tr>
<td>4.74</td>
<td>EI-MS spectrum of compound 89</td>
<td>182</td>
</tr>
<tr>
<td>4.75</td>
<td>UV spectrum of compound 89</td>
<td>183</td>
</tr>
<tr>
<td>4.76</td>
<td>FTIR spectrum of compound 89</td>
<td>183</td>
</tr>
<tr>
<td>4.77</td>
<td>1H NMR spectrum of compound 89</td>
<td>184</td>
</tr>
<tr>
<td>4.78</td>
<td>13C NMR spectrum of compound 89</td>
<td>185</td>
</tr>
<tr>
<td>4.79</td>
<td>HMBC spectrum of compound 89</td>
<td>186</td>
</tr>
<tr>
<td>4.80</td>
<td>HMBC spectrum of compound 89</td>
<td>187</td>
</tr>
<tr>
<td>4.81</td>
<td>Mass fragmentation of compound 89</td>
<td>188</td>
</tr>
<tr>
<td>4.82</td>
<td>Proposed biogenetic pathway of compound 89</td>
<td>189</td>
</tr>
<tr>
<td>4.83</td>
<td>Selected HMBC correlations of compound 90</td>
<td>191</td>
</tr>
</tbody>
</table>
4.84 EI-MS spectrum of compound 90
4.85 UV spectrum of compound 90
4.86 FT-IR spectrum of compound 90
4.87 1H NMR spectrum of compound 90
4.88 13C NMR spectrum of compound 90
4.89 HMBC spectrum of compound 90
4.90 Selected HMBC correlations of compound 91
4.91 EI-MS spectrum of compound 91
4.92 UV spectrum of compound 91
4.93 FT-IR spectrum of compound 91
4.94 13C NMR spectrum of compound 91
4.95 1H NMR spectrum of compound 91
4.96 HMBC spectrum of compound 91
4.97 HMBC spectrum of compound 91
4.98 Mass fragmentation of compound 91
4.99 HMBC correlations of compound 92
4.100 EI-MS spectrum of compound 92
4.101 UV spectrum of compound 92
4.102 FTIR spectrum of compound 92
4.103 1H NMR spectrum of compound 92
4.104 COSY spectrum of compound 92
4.105 13C NMR spectrum of compound 92
4.106 HMBC spectrum of compound 92
4.107 Hypothetical biogenetic relationship of phloroglucinol compounds from G. cowa
4.108 Histogram of NCI-H460 cells treated with compound 85
4.109 Percentage body weight change of BALB/c mice treated with compound 85
4.110 Antitumour effect of compound 85 on the growth of NCI-H460 xenografts in athymic nude mice
4.111 Percentage of body weight change of athymic nude mice bearing NCI-H460 xenograft treated with compound 85
LIST OF ABBREVIATIONS

α Alpha
β Beta
γ Gamma
δ Delta, chemical shift in ppm
µg Microgram
µl Microliter
µM Micromolar
br Broad
13C Carbon-13
d Doublet
dd Doublet of doublets
ddd Doublet of doublets of doublets
CDK cyclin dependent kinase
COSY Correlation Spectroscopy
DNA deoxyribonucleic acid
DEPT Distortionless Enhancement by Polarization Transfer
DMSO Dimethylsulfoxide
EIMS Electron Impact Mass Spectrum
EtOAc Ethyl acetate
eV Electron volt
FTIR Fourier Transform Infra-Red