
Next Energy 8 (2025) 100256

Contents lists available at ScienceDirect

Next Energy

journal homepage: www.sciencedirect.com/journal/next-energy

Research article 

A novel prediction of the PV system output current based on integration of 
optimized hyperparameters of multi-layer neural networks and polynomial 
regression models
Hussein Mohammed Ridhaa,b,⁎, Hashim Hizama,⁎⁎, Seyedali Mirjalilic,d,  
Mohammad Lutfi Othmana, Mohammad Effendy Ya’acoba,e,  
Noor Izzri Bin Abdul Wahaba, Masoud Ahmadipourf

a Advanced Lightning, Power and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Putra Malaysia, 
Serdang 43400, Malaysia 
b Department of Computer Engineering, Mustansiriyah University, Baghdad, Iraq 
c Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia 
d University Research and Innovation Center, Obuda University, Budapest 1034, Hungary 
e Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia 
f School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia 

A R T I C L E  I N F O

Keywords: 
PV model
Artificial intelligence
Machine learning
Deep machine learning
Prediction
Optimization
Mountain Gazelle optimizer

A B S T R A C T

The renewable energy system has yielded substantial enhancements to worldwide power generation. Therefore, 
precise prediction of long-term renewable energy conductivity is vital for grid system. This study introduces a 
new predictive output current for the photovoltaic (PV) system using actual experimental data. This research 
proposes three key contributions: The IMGO method is enhanced using several hybrid tactics to improve local 
search capabilities and increase exploration of significant regions within the feature space. Subsequently, the 
architecture of the multilayer feedforward artificial neural network is developed. The IMGO is employed to 
determine the appropriate hyperparameters of the model, ranging from the number of neurons in the hidden 
layers and learning rate. The Bayesian regularization backpropagation procedure is applied to update the 
weights and bias of the network. The proposed IMGOMFFNN model is ultimately combined with Polynomial 
regression model to improve the predictability of the PV system. The experimental results demonstrated that the 
proposed IMGO algorithm is very effective in addressing complex problems with high accuracy, capability, and 
speedy convergence. The proposed hybrid IMGOPMFFNN model proved its superior correlation evaluations, 
surpassing the performance of ant lion optimizer based on random forest (ALORF) model, two stages of ANN 
(ALO2ANN) model, long short-term memory (LSTM), gated recurrent unit (GRU), extreme learning machine 
(ELM), least square support vector machine (LSSVM), and convolutional neural network (CNN) models. The 
MATLAB code of the IMGO is free available at: https://www.mathworks.com/matlabcentral/fileexchange/ 
177214-improved-mgo-method.

1. Introduction

Recent breakthroughs in renewable energy sources (RESs) have 
significantly advanced as a technique to mitigate pollution and climate 
change caused by fossil fuels use. Government and companies must 
transition from traditional energy sources to renewable energy sources 
[1]. Photovoltaic (PV) technology is regarded as one of the most 

appealing sustainable energy sources for both off-grid and grid-tied 
applications, owning to its silent operation, renewable supply, and 
prolonged lifespan [2]. The efficacy of PV system is affected by several 
environmental conditions, such as solar radiation, ambient tempera
ture, wind velocity, humidity, and physical attributes of the PV module. 
These characteristics directly influence the system's performance, often 
evaluated under standard test conditions (STC). Consequently, the 
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reliability and cost-effectiveness of PV system may be significantly 
enhanced by accurate and exact predicting [3].

The output prediction of the PV modules can be delineated into two 
phases: the first phase utilizes Machine Learning (ML) models without 
estimating the physical parameters of the PV module, depending on the 
correlation between input data (meteorological data) and output data 
(power or current) [4]; the subsequent phase mathematically resolves 
the equations of the PV model by deriving the physical parameters of 
the electrical equivalent circuit [5]. Obtaining genuine meteorological 
data across various climatic conditions, depending on location, is a 
means to assess and predict the output current of the PV model. A 
variety of models have been analyzed in the literature to clarify the 
correlation between climatic circumstances and physical characteristics 
of the PV cell, with the objective of establishing the most accurate 
model [6]. The predicting of PV output current may often be classified 
into four categories: Machine Learning, Statistical, Persistence, and 
Hybrid models [7]. The statistical approaches [8,9] and persistence 
model [7] insufficiently account for nonlinear characteristics because of 
computational complexity. Nevertheless, these models exhibit strong 
performance for a single input dataset. The ML models are susceptible 
to local minima and overfitting, particularly in artificial neural net
works (ANNs) such as radial basis function (RBF) [10], adaptive neuro- 
fuzzy interface system (ANFIS) [11], Support vector machine (SVM) 
[12], long short-term memory (LSTM) [13], and extreme learning 
machine (ELM). These models demonstrate considerable sensitivity to 
the selection of the kernel functions, penalty factors, and the appro
priate assignment of weights and node biases [14–16]. In contrast, 
when satellite data are accessible, recurrent neural networks and con
volutional neural networks provide enhanced predictions [17,18]. A 
restricted quantity of research papers investigates the predicting of PV 
systems in relation to the diverse climatic variables. This is owing to the 
challenges that the statistical and ML models face difficulty to learn 
from only the historical dataset, leading to increasingly complex pre
dictions. Furthermore, regardless to the size of the datasets used for 
training, adequate performance cannot be achieved [19].

Unlike stochastic optimization algorithms, ML models do not need a 
mathematical linking inputs to outputs. However, optimizing their 
hyperparameters requires more processing time [20]. Consequently, 
hybrid models have been widely used due to their ability to address the 
limitations of prior research in predicting the output current of the PV 
system. Liu et al. [21] introduced a genetic algorithm (GA) to improve 
the weights of several ANN models. The authors of [12] hybrid model 
consisted of wavelet transform (WT) to choose an appropriate input 
dataset, while particle swarm optimization (PSO) is employed to opti
mize the parameters of the SVM. A historical prediction series involving 
contiguous PV plants was conducted in [13] utilizing a GA with en
hanced bidirectional LSTM model. Li et al. [19] improved the multi- 
verse optimizer by using a chaotic sequence technique to optimally 
determine SVM parameters. The results indicated that the SVM model 
had strong performance with short-term historical data [22]. Ibrahim 
et al. [23] introduced ant lion optimizer (ALO) to regulate the quantity 
of trees and leaves in the random forest (RF) model. Density-based 
Spatial Clustering of Application with Noise (DBSCAN) technique is 
applied to remove and substitute outlier data during the training phase. 
Modifications are implemented for the suboptimal solutions to expedite 
the optimization process. Chen et al. [24] presented an online predic
tion model that use singular spectrum analysis (SSA) to remove noise 
and outliers from the input dataset. The improved PSO is then im
plemented to enhance the parameters of the kernel in the ELM model. 
The authors of [25] suggested a GA to update the weights of the non
linear auto-regressive neural network with exogenous input (NARX). 
The experimental findings demonstrated a suitable level of accuracy. 
Nevertheless, improving the weights of NARX does not provide a sig
nificant improvement in the output accuracy. Yadav et al. [26] em
ployed five different ANN models and various linear regression models 
to predict one-minute intervals of PV output power, Nevertheless, the 

authors applied only a single layer with manually adjusted neuron 
numbers in the hidden layers, leading to unsatisfactory performance.

ALO was implemented in [27] to ascertain appropriate weights and 
biases for ANN model. An additional ANN was utilized to predict the 
output power of PV system. The results exhibited more accuracy than 
ANN and GAANN, respectively. However, enhancing just the weights 
and biases is inadequate for predicting the output power of the PV 
system. Consequently, these parameters are only adjusted using a 
single-hidden layer [28]. Furthermore, the design of ANN significantly 
influences the transfer of information from input to output, thereby 
affecting the system's accuracy. Conversely, the prudent selection of 
neurons in the hidden layers may mitigate redundancy in the parameter 
space solutions, thereby diminishing the sensitivity of these solutions to 
the resulting parameters in comparison to traditional learning models 
[29]. Considering that a limited number of neurons may lead to poor 
performance, while many neurons may cause overfitting [30]. Conse
quently, the appropriate number of neurons in each layer should be 
judiciously selected to provide precise predictions for the real-world 
applications of the PV system [31].

The complexity of the correlation between the parameters have 
been extensively verified using both linear and nonlinear regression 
models [32]. The authors of [33] proposed ANN model to predict the 
PV module's output current on bright and overcast days using actual 
measured data collected from Marmara University, Istanbul, Turkey. 
The results were compared using various regression models. In [34], 
proposed multiple linear regression model to predict different PV 
modules' output in Chile region. However, the previous models may 
produce a notable amount of inaccuracy when the long-term of the data 
are obtained. Deep ML model based on ELM is proposed in [35] to 
characterize the electrical behavior of the PV module using different 
types of PV technologies. This study found that the best number of the 
neurons is 450 for a single hidden layer, which results accurate pre
diction for the large data sets of the I-V curves. A dynamic/adaptive K- 
Nearest Neighbor model using is proposed in Ref. [36] to estimate the 
efficiency of grid-connected PV system at Hashemite University. The 
proposed model proved its superiority over numerous methods from the 
literature using various statistical measures. In [37], a convolutional 
neural network (CNN) based on Pixel-wise Voting Network software is 
proposed to predict the output power of the PV module, utilizing 
temperature and solar radiation as inputs and the historical PV power 
as output, which achieved acceptable outcomes. The authors of [38]
proposed ELM for PV output power prediction in a real case study 
conducted in Amman, Jordan. The proposed algorithm demonstrated a 
superiority over a back propagation neural network. Qing et al. [39]
suggested a LSTM model to predict hourly daily solar radiation. Ac
cording to the outcomes, the LSTM model achieved better performance 
than various models mentioned in the literature [40]. Yuan et al. [41]
proposed a hybrid model integrating of improved butterfly optimiza
tion method, adaptive boosting, and relevance vector machine (IBOA- 
AdaBoost-RVM) to predict the output power of the wind turbine. The 
proposed model confirmed its superiority compared to other hybrid 
models via various statistical evaluations. The summary of the litera
ture review is provided in Table 1.

Numerous real-world applications may be represented as optimi
zation problems involving constraints and decision variables, using 
nonlinear and high-dimensional objective functions. Meta-heuristic al
gorithms can effectively tackle these problems because of their adapt
ability, simplicity, derivative-free nature, and preventing of local op
tima entrapment [42]. These algorithms, on the other hand, cannot 
provide global solutions for real-world problems, limiting their uses. To 
increase the applicability of current algorithms, they must be improved 
in terms of performance, accuracy, and trade-off between the explora
tion and exploitation stages [43]. The meta-heuristic algorithms have 
been extensively implemented to solve real-world optimization pro
blems, including photovoltaic models [44], economic load dispatch 
problem [45], cloud computing [46], civil engineering [47], multi- 
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microgrid systems [48], and others [49]. According to the No Free 
Launch theory [50], there is no specific algorithm can handle all opti
mization problems. Therefore, there is still a roam for further devel
opments in order to improve the exploration/exploitation tendencies 
[51]. The majority of research papers utilize hybridization of several 
ML approaches to predict the PV power output without considering the 
values of the hyperparameters, which might have a direct impact on the 
proposed model's accuracy [52]. Moreover, most of authors improved 
the weights and bias of the ANN model, which did not provide a greater 
accuracy as compared to development in the ANN's structure. Finally, 
employing only multiple regression models can result a modest degree 
of accuracy [53]. According to the previous, we have developed the 
original Mountain Gazelle Optimizer (MGO) using several powerful 
strategies in order to achieve a balance between the exploration and 
exploitation tendencies. Then, the Improved Mountain Gazelle Opti
mizer (IMGO) is applied to enhance the hyperparameters of the mul
tiple feed-forward neural network, including number of the neurons in 
the three hidden layers and learning rate. In addition to that, the pro
posed IMGOPMFFNN model is integrated with polynomial regression 
model based on linear square method to precisely predict the output 
current of the PV module under various environmental conditions. The 
proposed IMGOPMFFNN is verified by various well-published models. a 
new model to precisely predict the PV model output current using real 
experimental data. The contributions of this study can be highlighted as 
follows:

In terms of developments of MGO algorithm: 

• The improvements of the MGO is undertaken with the objective of 
enhancing both the exploration and exploitation stages.

• The multi-migration searching strategy (MMSS) is newly developed 
based generalized opposition based learning (GOL) and gaussian 
mutation mechanisms, which can considerably reduce slipping into 
local minima and increase the variety of solutions in the exploration 
phase.

• The multi-strategy bachelor male herds (MSBMH) is proposed using 
Levy flight and GOL strategies to boost the convergence to global 
solution while considering the information of best optimal solutions 
for enhancing exploitation phase.

• By upgrading the upper and lower limits based on a transformation 
of the solutions from locally to globally using the best optimum 
information, the exploitation phase in sufficiently enhanced. With 
this strategy, the quality of and diversity of solutions are developed 
for all iterations during the optimization process.

• Finally, the convergence rate is boosted by shifting the four newly 
generated solutions from external to internal loops.

In terms of predicting of PV output power: 

• The architecture of the multiple feed-forward neural network 
(MFFNN) is improved to precisely handling the data during training.

• The IMGO method is employed to optimize the number of neuros in 
the hidden layers and learning rate, while the Bayesian regulariza
tion backpropagation algorithm is applied for updating weights and 
biases.

• The Polynomial Regression based on linear least square method is 
applied to predict final output current of the PV system.

The IMGO is verified by standard unimodal, multimodal, and fixed- 
dimensional benchmark functions, compared against several methods, 
and applied to solve six engineering design problems. Moreover, the 
proposed IMGOPMFFNN model is validated using various hybrid models 
using real experimental data.

The present paper is structured in the following manner: The 
equivalent circuit of the PV model is presented in Section 2. The 
methodology of the basic principle, mathematical equations, improve
ments of the MGO, hybrid model for predicting output current of the PV Ta
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e 
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system, and assessment criteria are expounded upon in Section 3. The 
evaluation and application of IMGO method, and performance of the 
proposed hybrid model for predicting output PV system are presented 
in Section 4. Section 5 summaries the achievements of this work and the 
future work direction.

2. Equivalent circuit of PV model

The solar radiation and ambient temperature have a direct effect on 
the operation of the PV cell, where each cell conducts DC current during 
the day and the diode in opposite direction is activated at night. The 
electrical circuit of the single diode (1D PV) model is depicted in Fig. 1. 
The 5 physical parameters of the 1D PV model may be mathematically 
described as follows [54]:

= + +I I I V IR
V

V IR
R

exp 1Ph o
s

t

s

p (1) 

where Rs and Rp are series and parallel resistances. The thermal voltage 
V( t) can be computed as follows:

=V dKBT
qt

c

(2) 

where KB and q are Boltzmann's constant × J K(1.38 10 /23 ) and elec
tron charge ( × C1.60 10 )19 , respectively. The Tc is the cell temperature 
(K ). The short-circuit current (I )sc and open-circuit voltage V( )oc are 
computed as follows [23]:

= + ×
+

I I I V I R
V

R
R R

exp 1sc Ph o
sc s

t

p

s p (3) 

= ×V R I I V
V

exp 1oc p Ph o
oc

t (4) 

Therefore, the current at maximum power point (Impp) may be ex
pressed as follows [23]:

=
+ +

I I I
V I R

V
V I R

R
exp 1mpp Ph o

mpp mpp s

t

mpp mpp s

p (5) 

Consequently, the Pmpp is computed by multiplying ×I Vmpp mpp.

3. Methodology

3.1. Mountain Gazelle optimizer (MGO)

The MGO is found throughout a considerable portion of the Arabian 
Peninsula and its surroundings, but its prevalence is small. There are 
three main groupings of gazelles are the mother-offspring hers, young 
male herds, and single males' territory. In the wild, gazelles regularly 
move in search of food throughout a 120 km broad territory, running at 
speeds of up to 80 km [55]. The following expression are modeled to 
mathematically describe the lives of MGO: bachelor male herds, ma
ternity herds, solitary males, and movement in search of food. 

• Territorial solitary males
The robust and mature gazelle establishes a solitary territory, and 
the adult males work to maintain their location, as expressed by the 
following:

= × × × ×TSM m ri BH ri X t F C|( ( )) |g i1 2 (6) 

where mg and ri1 2 are the locations of the global solution and 
random values 1 or 2 [55]. BH , F , and Ci are coefficients of the 
young male herd, control parameter, and randomly number updated 
in each iteration, which may be acquired to improve the searching 
ability [55], as follows:

= × + × = …BH X r M r ra N N,
3ra pr1 2 (7) 

where Xra is randomly picked within the range of ra, Mpr is the average 
number of search agents chosen at random N

3 , N is the total number of 
solutions, and r1 2 are randomly selected between 0 and 1.

= × ×F N D t
T

( ) exp 2 2
1 (8) 

where N1 is the standard distribution selected at random. t and T are 
the current and maximum iterations.

=

+ +
×

× × × ×

C

a r
a N D

r D
N D N D r N D

( 1)
( )

( )
( ) ( ) cos (( 2) ( ))

i

3

2

4

3 4
2

4 3 (9) 

where r3 and r4 are return random scalar obtained from a uniform 
distribution of the interval (0, 1). N2, N3, and N4 are integers drawn 
at random from the population, while a is computed as follows [55]:

= + ×a t
T

1 1
(10) 

• Maternity herds
The maternity herds are responsible for producing packs that give 
birth to sturdy males, in which may influence the delivery of young 
males to occupy females, as modeled by the following:

= + + × × ×MH BH C ri m ri X C( ) ( )r g r r1 3 4 2 (11) 

where BH is the impact factor's vector of young male, C r1 and C r2 are 
selected at random to compute the independently, ri3 and ri4 are 
random numbers 1 or 2 [55], and Xr is vector selected at random 
from population.

• Bachelor male herds
Once the male gazelles become mature, they establish territories and 
seize control of the females. The young gazelles use aggression to 
dominate female gazelles and it is given by the following [55]:

= + × × ×BMH X t D ri m ri BH C( ( ) ) ( )g r5 6 (12) 

where X t( ) represents the gazelle's location in the current iteration, 
ri5 and ri6 are random numbers 1 or 2 [55], and D is computed as 
follows:

= + × ×D X t m r(| ( )| | |) (2 1)g 6 (13) 

where r6 is randomly selected within range of 0 and 1.
• Migration to search for food

The Mountain Gazelles, which have a fast running speed and strong 
leaping, are in charge of providing food supplies. This behavior is for
mulated as follows:

= ×MSF ub lb r lb( ) 7 (14) 

where ub and lb are the upper and lower limits, and r7 is a random 
values between 0 and 1 [55]. Consequently, the four TSM , MH , BMH , 

Fig. 1. The equivalent circuit of 1D-PV model. PV = photovoltaic. 
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and MSF tactics are applied to generate new solutions. The population 
is expanded to include the additional four vectors, after which the so
lutions are arranged in ascending order. Then, the weakness solutions 
are removed from the current iteration. This process will continue until 
the stopping criteria is satisfied.

3.2. The proposed improved MGO

• Mult-migration strategy searching for food

In the basic MGO, the Migration Search Food step has weakness in 
terms of looking for of new potential areas. This is because the newly 
created solutions consider only the lower and upper borders. Therefore, 
the new MMSS depends on fast sprinting and forceful leaping of ga
zelles by implementing the GOL strategy mechanism to sufficiently 
escape from neighborhood and improve the propensity for exploration 
at the first stage of half number population size [56], whereas the 
gaussian mutation is applied in the rest for increasing the diversity of 
solutions in the exploratory phase. Moreover, the GOL tactic utilizes 
upper and lower limits of the current vector iteration to prevent the loss 
of highly solutions quality during the exploitation stage. Therefore, the 
MMSS may be expressed as follows:

=
× + × × <

× +
MMSS

m C GOL X C X t r X ifi N
X t rn otherwise

( ) ( ( ) ) /2
( ) (1 )

g r r r r

(15) 

where = × +GOL r A B X t( ) ( )t t , rn returns a random scalar obtained 
from a uniform distribution of the interval (0, 1), and

=GOL A B ;j N[ , ] 1, 2, ... ,t t (16) 

where At and Bt are the upper and lower variables of the current 
iterations. Therefore, the A B[ , ]t t are dynamically updated during the 
optimization process in order to prevent premature convergence and 
local minima [57]. 

• Mult-strategy bachelor male herds
The exploiter mechanism acts with a poor performance, where the 
optimizer MGO struggles to escape from local minima and reach 
globally. Therefore, the MSBMH step is officially formulated by 
considering the neighborhood information around the best optimal 
solution with including the levy flight (Levy) movements when the 
number of iterations is less than half number of population size, 
while the rest is addressed by the GOL [58]. In this way, the 
searching mechanism is ensured by utilizing multi-explore strategy 
for looking for new promising zones and avoiding premature con
vergence, as represented by the following:

=
+ × <

×
MSBMH

m X Levy X t ifi N
m M GOL C otherwise

(( ) ( )) /2
( )

g r

g r (17) 

where Levy is a step sizes chosen randomly using a probability 
function [59]. The Levy is computed as follows:

Levy x( ) | |j
1 (18) 

where xj refers to the flight's length, while the exponent of the 
power-law is between 1 < < 2 [60]. The Levy's probability den
sity in the integral form is represented by [61],

=f x µ q qx dq( , , ) 1 exp( ) cos ( )L 0 (19) 

where denotes to the distribution index which controls the cale 
properties of the process, is utilized for selection of the scale unit. 
The integral is employed when = 2 represents the Gaussian dis
tribution, and when = 1 represents a Cauchy distribution [62]. 
The series expansion method is essential when x has a large value, 
as given below:

=
+

=+
( )

f x µ
x

x( , , )
(1 ) sin

,L
2

(1 )

where is Gamma function in which +(1 ) is equal to !. 
According to [61], the value is ranged within 0.3 and 1.99. 
Therefore, the Mantegna method is applied to conduct a random 
value utilizing Levy distribution, as described below:

= ×Levy x
y

( ) 0.05
| |1/ (20) 

where x and y are 2 normal distributions values and given by the 
following:

=x Normal (0, )x
2 , and =y Normal (0, )y

2 , where x is calculated by 
the following:

=
+

+( )
( )
( )

n(1 )

2
x

2
(1 )

2

1/

1
2 (21) 

where = 1.5 and y = 1. The Levy tactic has motions with small 
steps size combined with large jumps.

• Gazelle traveling from locality to optimal new territory
After the 4 TSM , MH , MSBMH , and MMSS tactics produce the new 
solutions, their boundaries are updated using straightforward me
chanism by returning either maximum or lowest value of each 
variable, which delays not only the search for the best solution but 
also postposes the convergence rate. Therefore, the new strategy 
imposes the new gazelle to gather information from the male gazelle 
(best solution) while increasing the diversity by integrating the 
upper and lower variables to avoid falling in locality. In the other 
words, the newly generated solutions are strengthened in light of 
best solution found so far, as expressed by the following [5]:

=
× × >

× × + <X t
m ub lb ifX t ub t

ub lb m ifX t ub t
X t otherwise

( )
(r ( )) ( ) ( )

(r ( )) ( ) ( )
( )

g

g

(22) 

where is a small integer number [63].
• Accelerating the convergence rate

Adding the four new generating solutions, at the end of maximum 
iteration, in the basic MGO to the existing population leads to delay the 
optimization process, and the population size becomes very large 
without any gains. As a consequence, the solutions are sorted and 
weakness solutions are removed after each new iteration, which leads 
to boost the convergence rate. The flowchart of the IMGO is demon
strated in Fig. 2.

The performance of the proposed IMGO algorithm on solving 
benchmark functions and solving engineering problems are provided in 
Supplementary Materials.

3.3. Hybrid model for predicting output power of the PV system

This section presents a description of the proposed IMGOPMFFNN 

model by employing IMGO to optimize the hyperparameters of the 
MFFNN, including number of neurons in the hidden layers and learning 
rate. Afterward, the Polynomial regression model is hybridized to 
predict the output current of the PV module.

3.3.1. Artificial neural network (ANN)
ANN can be considered an information processing system that 

models human nervous activities impacted by the neuronal connection 
and behavior [64]. ANN can tackle difficult problems effectively due to 
its capacity to cope with nonlinear relationships between the input and 
output variables, where learning process has a substantial influence on 
its effectiveness [65]. The primary models of the multilayer perceptron 

H.M. Ridha, H. Hizam, S. Mirjalili et al.                                                                                                                                                          Next Energy 8 (2025) 100256

6



(MLP) are radial basis function (RBF), feed-forward neural network 
(FFNN), cascade forward neural network (CFNN), general regression neural 
network (GRNN), and hybrid network [20,66]. Consequently, determining 
numbers of layers and nodes are crucial for designing a complicated non
linear function. However, underfitting and overfitting challenges arise as a 
result of the growing number of nodes and improper selection of learning 
rate value [67]. Therefore, the architecture of the MFFNN has five distinct 
levels, including the input layer, three hidden layers, and the output layer. 
To effectively improve the data processing and training, the input data are 
normalized, the constant values in each row are omitted, the tansigmoidal 
activation function is chosen to handle regression difficulties [68], and the 
linear activation function is addressed for the output layer [69]. Conse
quently, the IMGO is employed to determine the most desirable numbers of 
neurons in the hidden layers (N1, N2, and N3) and optimum value of 
learning rate (LR). The data contains number of ambient temperature and 
solar radiation, whereas the final output is the PV system's output current. 
Finally, the polynomial regression integrated with IMGOMFFNN to predict the 
output current.

3.3.2. Polynomial regression (PR) model
The PR model is considered one of the most promising tool to pre

dict the output variable based on independent input variables. PR 
model is a statistical algorithm which permits the numeric inputs to be 
numeric output [70]. In this paper, the PR model is integrated in the 
last stage to verify the accuracy between the actual and predicted 
current of the PV model by using Toolbox implemented in MATLAB 
software. The PR model offers a higher accuracy, especially when it is 
solved by using linear least square method, which is given by the fol
lowing [64]:

=
=

+
+y p x

i

n

i
n i

1

1
1

(23) 

where y is the response variable, x is the input variable (regressor), and 
n is the polynomial's degree and the order represents the number of 
coefficients to be fit. In this research, the 1st degree is computed to 
provide a high level accuracy of the predict output current using a 
linear least squares (LLS) approach, as given below:

= +f x p x p( ) 1 2 (24) 

The main benefit of the polynomial models is that it has ability to fit 
the data that is not complicated. Hence, the nonlinearity of the input 
has been solved by IMGOMFFNN model, while the poly fit model is 
employed for a precise fit for given data range.

3.4. Model assessment criteria

This paper uses four statistical criteria to verify the performance of 
the proposed model: root mean square error (RMSE), mean bias error 
(MBE), coefficient of determination (R2), and absolute error (AE) 
[71,72]. RMSE defines the deviation scale between the predicted and 
target values and it is calculated by the following:

=
=n

I IRMSE 1 ( )
i

n

P i
1

2

(25) 

MBE defines as the mean forecasted error is obtained to verify the 
average deviation the predicted and target values, which is given as 
follows:

=
=n

I IMBE 1

i

n

P i
1 (26) 

R2 is defined as square of correlation between the predicted and 
target values, which is equal indicates highly correlated data and zero 
for non-correlated data, as represented by the following:

= =

=

I I
I I

R 1
( )
( ˆ )

i
n

P i

i
n

P i

2 1
2

1
2 (27) 

where Îi is the experimental current mean = =( )I Iî n i
n

i
1

1 .
AE is presented for assessing the absolute deviation between the 

actual and predicted values and it is expressed as follows:

= I IAE | |P i (28) 

The RMSE and MBE refer to the difference between the expected 
and actual data. Higher RMSE and MBE values indicate a greater var
iance in the expected and measured data, and vice versa. As a result, the 

Fig. 2. Flowchart of the proposed IMGO. 
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model's accuracy is at its best when the RMSE and MBE values are close 
to zero. The linear relationship between the measured and anticipated 
results is assessed using R2 statistic. The closer R2 to one, the more ac
curate the model is. Finally, the AE describes the difference between the 
actual and expected model's output, a lower value of AE indicates a 
better level of accuracy [73].

4. Experiment results and discussion

This section presents a description of the proposed IMGOPMFFNN 

model by employing IMGO to optimize the hyperparameters of the 
MFFNN, including number of neurons in the hidden layers and 

learning rate. Afterward, the polynomial model based on linear least 
squares is obtained for predicting the PV module's output current. 
This research uses 25 modules silicon PV titled at 15° and output 
current of (3 kWp) installed at the faculty of Engineering Built and 
Environment, Universiti Kebangsaan Malaysia with longitude value 
of 101.7713° and latitude value of 2.9210° [74]. The technical data of 
the PV model is tabulated in Table 2 [75]. The performance of the 
utilized in this work is six months of hourly meteorological data of the 
system, including solar radiation and ambient temperature. The 
system composes of transmitter of solar radiation of silicon PV de
tector (WE300) model with accuracy of ± 1%, sensor of temperature 
for the PV model's surface WE710 with accuracy of ± 0.25 , sensor of 
air temperature WE700 model with range of 50 to 50 and ac
curacy of ± 0.1 , and current transducer CTH-050 model with input 
and output ranges of 0 50 A (DC) and 4 20 mA [74]. The hourly 
meteorological data input and output current are given in Fig. 3.

In this study, the data information is classified into two sections: 
70% for training and 30% for testing [76]. The proposed models are 
IMGOMFFNN, IMGOMCFNN, IMGORF, ALORF [76], IMGO2ANN, ALO2ANN 

[27] applied to select the hyperparameters for the ANN and RF 
techniques. The population size is 30 and the maximum iteration is 
100. The upper and lower hyperparameters for ANN method for the 
N1, N2, N3, and LR are [1,25], [1,25], [1,25], and [0,1], respectively. 
Whereas the upper and lowers hyperparameters for RF method for the 
Numbers of trees (NT), leaves (NL), predictor (NP), and sample (NS) 
are [100,700], [10,100], [1,10], and [1,10], respectively. The au
thors of [76] optimized only numbers of trees and leaves. While, the 

Table 2 
Technical specification of the PV model 

Module type STF-120P6

Rated power (Pm) 120 W
Short-circuit current (Isc) 7.63 A
Open-circuit voltage (V )oc 21.5 V
Current at MPP (Im) 6.89 A
Voltage at MPP (V )m 17.4 V
Temperature coefficient of Isc ( ) 6.93 mA °C%/
Temperature coefficient of Voc ( ) −0.068 V °C/
Temperature coefficient of Pm ( ) −0.39 %

PV = photovoltaic.

Fig. 3. The information dataset profile of utilized PV system. PV = photovoltaic. 
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authors of ALO2ANN optimizes the weights and bias for only one 
hidden layer, which is set to be 12. Therefore, the optimal hy
perparameters estimated by the mentioned models are presented in 
Table 3, while the optimized structure of the IMGOMFFNN is shown in 
Fig. 4. For the DML models, the, LSTM [39], GRU [77], ELM [35], and 
LSSVM [78] are proposed for validation the performance of the pro
posed model, while their control parameter setting are given in 
Table 4.

The actual output current and the proposed models are demon
strated for the testing data in Fig. 5. As illustrated in zoomed figures, 
the proposed IMGOMFFNN model has closest prediction for the actual 
current compared with other models. It is worth to note that the 
predicted of the actual current is not straightforward task, this is 
because of the highly nonlinearity of the meteorological data, which 
are changeable during the day. However, the IMGOMFFNN model of
fers better accuracy, making it more suitable for predicting the PV 
model's output current. The ALO2ANN exhibited poorest prediction of 
the PV output current, especially at maximum peak-energy during the 
day.

The best RMSE, MSE, MBE, and R2 are achieved by the IMGOMFFNN 

model, according to the Table 5, with statistical values of 0.0280, 
7.8958E-4, −3.8184E-4, and 0.9951, respectively. For Central Proces
sing Unit (Process time) (CPU) execution time, LSTM model yields the 
best time value with value of 4.2 s. The IMGOMCFNN and ELM models 
are ranked second, followed by IMGO2ANN, LSSVM, ALO2ANN, IMGORF, 
ALORF, LSTM, and IMGO2ANN models, and GRU, where their statistical 
values are given in Table 5. The worst performance was registered by 
the CNN model. This is because of that CNN are hardly to handle long- 
term meteorological data. Moreover, it can be clearly seen that IM
GO2ANN model offers a better performance compared with ALO2ANN 

model, owning to affective employed exploration and exploitation 
tendencies in selecting proper set of the weight and bias, but the pre
diction of the PV output current using IMGOMFFNN model provides a 
higher accuracy and stability. Therefore, it can be concluded that de
veloping the structure of the ANN model along with optimizing its 
hyperparameters can considerably provide a better prediction to the PV 
module's output current.

Similarly, the IMGORF provided more accuracy with slightly dif
ference in terms of RMSE, MSE, MBE, and R2 parameters as compared 
with ALORF models. This is because the IMGO model obtains powerful 

Table 3 
Optimal hyperparameters using five models 

Method Hyperparameters IMGOMFFNN IMGOMCFNN IMGORF ALORF

ANN LR 0.5661 0.0194 - -
N1 2 11 - -
N2 11 11 - -
N3 7 1 - -

RF NT - - 571 681
NL - - 20 19
NP - - 10
NS - - 8

ALO = ant lion optimizer; ANN = artificial neural network; MFFNN = mul
tiple feed-forward neural network; RF = random forest; MCFNN = Multiple 
Layer Cascade Forward Neural Network.

Fig. 4. Optimized architecture of the MFFNN using IMGO. MFFNN = multiple feed-forward neural network. 

Table 4 
Tuned control parameters of the DML models 

Control parameter ELM GRU LSSVM CNN

Number of layers 500 1 - 3
Number of iterations 5000 5000 5000 5000
Number of nodes - 200 - 20
Activation function RBF - RBF ReLU
LR - 1e−8 1e−5 1e−8

CNN = convolutional neural network; ELM = extreme learning machine; GRU 
= gated recurrent unit; LSSVM = least square support vector machine; RBF = 
radial basis function.
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strategies to select the most optimum hyperparameters for training 
RF, and it also optimizes the numbers of predictor and sample 
during the optimization process, which reflects a higher accuracy 
than ALORF model. To end this, employing simply machine learning 
for forecasting the output current of the PV system might cause a 
serious problem for the gird rather leading to an increase in faults and 
costs.

Fig. 6, illustrates the scatter plot of the proposed IMGOMFFNN and 
other models. The findings confirm the superiority of the IMGOMFFNN 

among other models, followed by ELM model. From Fig. 6, it can 
be clearly seen that the correlation between the measured and 

predicted currents are acceptable. However, a higher level of accu
racy and stability is essential for the real applications of the PV 
system. This is because of that any mistakes or unsatisfied prediction 
may result more expenditure and directly impact on the stability for 
system.

Another important statistical criterion is AE, and it is evident from 
Fig. 7 that the IMGOMFFNN model has lower individual AE values than 
others models, indicating its superior ability for predicting the PV 
system's output current even at a variety of environmental circum
stances. The highly unpredictable of solar radiation and ambient 
temperature may conduct noticeably larger errors in the PV model's 

Fig. 5. Results of the forecasted PV system's output current using various models. PV = photovoltaic. 

Table 5 
A comparison of statistical values using different models 

Model RMSE MSE MBE R2 Time s

IMGOMFFNN 0.0280 7.8958E-4 −3.8184E-4 0.9951 24719.82
IMGOMCFNN 0.0283 8.0603E-4 −9.9312E-4 0.9949 90944.92
IMGORF 0.0287 8.2595E-4 −0.00112 0.9948 488718.74
ALORF 0.0301 9.1109e-4 −0.00101 0.9942 135046.2
IMGO2ANN 0.0289 8.3935e-4 0.00082 0.9946 259.2
ALO2ANN 0.0292 8.5811e-4 0.00189 0.9945 120.3
LSTM 0.0321 0.001037 −8.166e-4 0.9935 4.2
GRU 0.0331 0.001099 −9.184E-4 0.9931 20099.3
LSSVM 0.0290 0.000845 −0.00135 0.9947 3127.0
ELM 0.0283 0.000806 −0.00151 0.9950 4.6
CNN 0.7810 0.610015 0.16194 0.9025 15128.2

ALO = ant lion optimizer; ANN = artificial neural network; CNN = convolutional neural network; ELM = extreme learning machine; GRU = gated recurrent unit; 
LSSVM = least square support vector machine; LSTM = long short-term memory; MBE = mean bias error; MFFNN = multiple feed-forward neural network; RF = 
random forest; RMSE = root mean square error.
The best model is pesented with Bold face.
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forecasting of the output current, as seen in zoomed-figures. In 
comparison to other models, the IMGOMFFNN model demonstrates a 
greater ability to minimize the error values. This is due the accurate 
implementation of learning algorithm of Bayesian Regularization 
backpropagation (BR) method, which reduces a combination of 
squared errors and weights synchronously. In addition to that the 
optimized number of hidden layers and learning rate considerably 
assist to boost the accuracy of the multiple layers neural network. 
Furthermore, its observed that the BR method performs better than 
Levenberg-Marquardt (LM) algorithm, but it takes longer processing 
time [68].

Finally, the development of the objective function (OF) using 
various models is depicted in Fig. 8. As a results, there are different 
formulations to minimize the OF values, where the IMGOMFFNN, 
IMGOMCFNN, IMGORF, and ALORF models optimize the hyperpara
meters of the ML methods, as shown on the parts (A) and (B). On 
contrast, the IMGO2ANN and ALO2ANN models enhance the weight and 
bias of the ANN, as presented on the part (C) of Fig. 8. It is apparent 
that the IMGOMFFNN model has lowest RMSE value and needs the 
fewest iterations to obtain the optimal RMSE value. This is a result of 

the significant advancements of the IMGO algorithm has undergone 
to predict the PV output current at a fast convergences rate. More
over, compared to the IMGORF model, which has an OF value of 
0.0288, the IMGO2ANN provides a more precise set of weights and bias 
with a minimum value of 0.0113. Consequently, the implementation 
of the ANN yields a superiority compared with RF model with opti
mizing the hyperparameters of the both models. However, the IMG
OFFNN model delivers a higher level of accuracy than other models for 
forecasting the output current of the PV model.

In the second stage, the estimated poly1 variables are given in the 
Table 6.

Fig. 9, demonstrates agreement between the actual and anticipated 
IMGOPMFFNN output current. It can be clearly observed that the IMG
OPMFFNN model presents a very high degree of accuracy and almost 
overlaps all the data points of the experimental data at various weather 
circumstances. The precision and dependability of the proposed IMG
OPMFANN model are illustrated in Fig. 10. The R2 value is extremely close 
to 1, and the residuals error has been significantly minimized, as seen in 
the top and bottom of the Fig. 10. Sum square error (SSE), RMSE, and R2

statistics for the IMGOPMFFNN model are tabulated in Table 7.

Fig. 6. Correlation between the actual and the predicted outputs in the testing data using various ML models. ML = machine learning. 
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The use of the IMGO as a metaheuristic algorithm to calculate 
the hyperparameters of the MFFNN model, which boosts its 
capacity to deliver an precise PV module's output. In addition, the 
inclusion of the Poly1 regression model, in the second stage, utilizing 
LLS algorithm demonstrated that the proposed IMGOPMFFNN model 
provides a higher ability to predict the output current among other 
models.

Fig. 8. Performance of the IMGOMFFNN, IMGOMMCFNN, IMGORF, ALORF, IMGO2ANN, and ALO2ANN models for minimizing the objective function. ALO = ant lion 
optimizer; ANN = artificial neural network; MFFNN = multiple feed-forward neural network; RF = random forest.

Table 6 
Method and the predicted variables of the IMGOPMFFNN model 

Fit type Method Coefficients Value Lower Upper

Poly1 LLS P1 0.2790 0.2789 0.2792
P2 0.1808 0.1806 0.1809

LLS = linear least squares.

Fig. 7. Individual AE development during the evaluation the data testing using various models. AE = absolute error. 
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5. Conclusion and future direction

This study obtained actual hourly experimental data from Malaysia to 
offer a unique IMGOPMFFNN model to predict the PV module's output cur
rent. This work improved the original MGO for solving various kinds of 
engineering and predicting output current of the PV system problems. The 
trade-off between the exploration and exploitation are archived by devel
oping the two main strategies MMSS, MSBMH, and accelerated convergence 

Fig. 9. A comparison between the predict current of Fit IMGOFFNN model and actual one. 

Fig. 10. Correlation between the predicted current and actual current. 

Table 7 
Statistical values of the IMGOPMFFNN model 

Model Fit type SSE RMSE R2

IMGOPMFFNN Poly1 0.0037 0.0021 0.9999

RMSE = root mean square error; SSE = sum square error; PMFFNN: 
Polynomial Model Forward Neural Network.
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curve. The IMGO is verified through 23 benchmark function and compared 
with famous meta-heuristic algorithms like original MGO, Opposition 
African Vulture Optimization Algorithm, Improved Sparrow Search 
Algorithm, DE, and PSO. The outcomes demonstrated that the IMGO per
formed excellently on the unimodal, multimodal, and fixed dimensional 
multimodal test functions. In addition, the proposed IMGO is investigated to 
solve six engineering problems, where the results indicated the efficiency 
and affectively implemented developments in handling difficult and con
strained problems. Finally, the proposed IMGO is integrated with MFFNN 
based on 1st degree polynomial to predict the output current of the PV 
system using actual experimental data collected at Universiti Kebangsaan 
Malaysia, Malaysia. The proposed hybrid IMGOPMFFNN model is compared 
with ant lion optimizer based on random forest (ALORF) model, two stages 
of ANN (ALO2ANN) model, LSTM, GRU, ELM, LSSVM, and CNN utilizing 
several statistical metrics. The experimental findings demonstrated that the 
proposed IMGOPMFFNN model can precisely predict the output current of the 
PV module and verified utilizing SSE, RMSE, and R2 statistical criteria with 
values of 0.0037, 0.0021, and 0.999, respectively. It can be confirmed that 
the IMGOPMFFNN model is more suitable for real-world applications of the 
PV system and can precisely simulate the actual behavior of the PV module 
output.

For future direction, the proposed IMGO can be hybridized with multi- 
objective optimization concept for solving conflicting objective functions. 
Furthermore, the output PV module's prediction can be further improved by 
utilizing hybrid DML model with PR model by improving its hyperpara
meters using advanced meta-heuristic method. This suggestion aims to not 
only improve the accuracy further, but also handle the longer processing 
time of the IMGOPMFFNN model. In addition, the data preprocessing is es
sentially to reduce the noise and reducing the redundancy before 
employing Deep Machine Learning (DML) methods.
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