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ARTICLE INFO ABSTRACT

The renewable energy system has yielded substantial enhancements to worldwide power generation. Therefore,
precise prediction of long-term renewable energy conductivity is vital for grid system. This study introduces a
new predictive output current for the photovoltaic (PV) system using actual experimental data. This research
proposes three key contributions: The IMGO method is enhanced using several hybrid tactics to improve local
search capabilities and increase exploration of significant regions within the feature space. Subsequently, the
architecture of the multilayer feedforward artificial neural network is developed. The IMGO is employed to
determine the appropriate hyperparameters of the model, ranging from the number of neurons in the hidden
layers and learning rate. The Bayesian regularization backpropagation procedure is applied to update the
weights and bias of the network. The proposed IMGOyprnny model is ultimately combined with Polynomial
regression model to improve the predictability of the PV system. The experimental results demonstrated that the
proposed IMGO algorithm is very effective in addressing complex problems with high accuracy, capability, and
speedy convergence. The proposed hybrid IMGOpprrpnyny model proved its superior correlation evaluations,
surpassing the performance of ant lion optimizer based on random forest (ALOgr) model, two stages of ANN
(ALO2ann) model, long short-term memory (LSTM), gated recurrent unit (GRU), extreme learning machine
(ELM), least square support vector machine (LSSVM), and convolutional neural network (CNN) models. The
MATLAB code of the IMGO is free available at: https://www.mathworks.com/matlabcentral/fileexchange/
177214-improved-mgo-method.
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appealing sustainable energy sources for both off-grid and grid-tied
applications, owning to its silent operation, renewable supply, and

1. Introduction

Recent breakthroughs in renewable energy sources (RESs) have
significantly advanced as a technique to mitigate pollution and climate
change caused by fossil fuels use. Government and companies must
transition from traditional energy sources to renewable energy sources
[1]. Photovoltaic (PV) technology is regarded as one of the most

prolonged lifespan [2]. The efficacy of PV system is affected by several
environmental conditions, such as solar radiation, ambient tempera-
ture, wind velocity, humidity, and physical attributes of the PV module.
These characteristics directly influence the system's performance, often
evaluated under standard test conditions (STC). Consequently, the
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reliability and cost-effectiveness of PV system may be significantly
enhanced by accurate and exact predicting [3].

The output prediction of the PV modules can be delineated into two
phases: the first phase utilizes Machine Learning (ML) models without
estimating the physical parameters of the PV module, depending on the
correlation between input data (meteorological data) and output data
(power or current) [4]; the subsequent phase mathematically resolves
the equations of the PV model by deriving the physical parameters of
the electrical equivalent circuit [5]. Obtaining genuine meteorological
data across various climatic conditions, depending on location, is a
means to assess and predict the output current of the PV model. A
variety of models have been analyzed in the literature to clarify the
correlation between climatic circumstances and physical characteristics
of the PV cell, with the objective of establishing the most accurate
model [6]. The predicting of PV output current may often be classified
into four categories: Machine Learning, Statistical, Persistence, and
Hybrid models [7]. The statistical approaches [8,9] and persistence
model [7] insufficiently account for nonlinear characteristics because of
computational complexity. Nevertheless, these models exhibit strong
performance for a single input dataset. The ML models are susceptible
to local minima and overfitting, particularly in artificial neural net-
works (ANNs) such as radial basis function (RBF) [10], adaptive neuro-
fuzzy interface system (ANFIS) [11], Support vector machine (SVM)
[12], long short-term memory (LSTM) [13], and extreme learning
machine (ELM). These models demonstrate considerable sensitivity to
the selection of the kernel functions, penalty factors, and the appro-
priate assignment of weights and node biases [14-16]. In contrast,
when satellite data are accessible, recurrent neural networks and con-
volutional neural networks provide enhanced predictions [17,18]. A
restricted quantity of research papers investigates the predicting of PV
systems in relation to the diverse climatic variables. This is owing to the
challenges that the statistical and ML models face difficulty to learn
from only the historical dataset, leading to increasingly complex pre-
dictions. Furthermore, regardless to the size of the datasets used for
training, adequate performance cannot be achieved [19].

Unlike stochastic optimization algorithms, ML models do not need a
mathematical linking inputs to outputs. However, optimizing their
hyperparameters requires more processing time [20]. Consequently,
hybrid models have been widely used due to their ability to address the
limitations of prior research in predicting the output current of the PV
system. Liu et al. [21] introduced a genetic algorithm (GA) to improve
the weights of several ANN models. The authors of [12] hybrid model
consisted of wavelet transform (WT) to choose an appropriate input
dataset, while particle swarm optimization (PSO) is employed to opti-
mize the parameters of the SVM. A historical prediction series involving
contiguous PV plants was conducted in [13] utilizing a GA with en-
hanced bidirectional LSTM model. Li et al. [19] improved the multi-
verse optimizer by using a chaotic sequence technique to optimally
determine SVM parameters. The results indicated that the SVM model
had strong performance with short-term historical data [22]. Ibrahim
et al. [23] introduced ant lion optimizer (ALO) to regulate the quantity
of trees and leaves in the random forest (RF) model. Density-based
Spatial Clustering of Application with Noise (DBSCAN) technique is
applied to remove and substitute outlier data during the training phase.
Modifications are implemented for the suboptimal solutions to expedite
the optimization process. Chen et al. [24] presented an online predic-
tion model that use singular spectrum analysis (SSA) to remove noise
and outliers from the input dataset. The improved PSO is then im-
plemented to enhance the parameters of the kernel in the ELM model.
The authors of [25] suggested a GA to update the weights of the non-
linear auto-regressive neural network with exogenous input (NARX).
The experimental findings demonstrated a suitable level of accuracy.
Nevertheless, improving the weights of NARX does not provide a sig-
nificant improvement in the output accuracy. Yadav et al. [26] em-
ployed five different ANN models and various linear regression models
to predict one-minute intervals of PV output power, Nevertheless, the
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authors applied only a single layer with manually adjusted neuron
numbers in the hidden layers, leading to unsatisfactory performance.

ALO was implemented in [27] to ascertain appropriate weights and
biases for ANN model. An additional ANN was utilized to predict the
output power of PV system. The results exhibited more accuracy than
ANN and GAann, respectively. However, enhancing just the weights
and biases is inadequate for predicting the output power of the PV
system. Consequently, these parameters are only adjusted using a
single-hidden layer [28]. Furthermore, the design of ANN significantly
influences the transfer of information from input to output, thereby
affecting the system's accuracy. Conversely, the prudent selection of
neurons in the hidden layers may mitigate redundancy in the parameter
space solutions, thereby diminishing the sensitivity of these solutions to
the resulting parameters in comparison to traditional learning models
[29]. Considering that a limited number of neurons may lead to poor
performance, while many neurons may cause overfitting [30]. Conse-
quently, the appropriate number of neurons in each layer should be
judiciously selected to provide precise predictions for the real-world
applications of the PV system [31].

The complexity of the correlation between the parameters have
been extensively verified using both linear and nonlinear regression
models [32]. The authors of [33] proposed ANN model to predict the
PV module's output current on bright and overcast days using actual
measured data collected from Marmara University, Istanbul, Turkey.
The results were compared using various regression models. In [34],
proposed multiple linear regression model to predict different PV
modules' output in Chile region. However, the previous models may
produce a notable amount of inaccuracy when the long-term of the data
are obtained. Deep ML model based on ELM is proposed in [35] to
characterize the electrical behavior of the PV module using different
types of PV technologies. This study found that the best number of the
neurons is 450 for a single hidden layer, which results accurate pre-
diction for the large data sets of the I-V curves. A dynamic/adaptive K-
Nearest Neighbor model using is proposed in Ref. [36] to estimate the
efficiency of grid-connected PV system at Hashemite University. The
proposed model proved its superiority over numerous methods from the
literature using various statistical measures. In [37], a convolutional
neural network (CNN) based on Pixel-wise Voting Network software is
proposed to predict the output power of the PV module, utilizing
temperature and solar radiation as inputs and the historical PV power
as output, which achieved acceptable outcomes. The authors of [38]
proposed ELM for PV output power prediction in a real case study
conducted in Amman, Jordan. The proposed algorithm demonstrated a
superiority over a back propagation neural network. Qing et al. [39]
suggested a LSTM model to predict hourly daily solar radiation. Ac-
cording to the outcomes, the LSTM model achieved better performance
than various models mentioned in the literature [40]. Yuan et al. [41]
proposed a hybrid model integrating of improved butterfly optimiza-
tion method, adaptive boosting, and relevance vector machine (IBOA-
AdaBoost-RVM) to predict the output power of the wind turbine. The
proposed model confirmed its superiority compared to other hybrid
models via various statistical evaluations. The summary of the litera-
ture review is provided in Table 1.

Numerous real-world applications may be represented as optimi-
zation problems involving constraints and decision variables, using
nonlinear and high-dimensional objective functions. Meta-heuristic al-
gorithms can effectively tackle these problems because of their adapt-
ability, simplicity, derivative-free nature, and preventing of local op-
tima entrapment [42]. These algorithms, on the other hand, cannot
provide global solutions for real-world problems, limiting their uses. To
increase the applicability of current algorithms, they must be improved
in terms of performance, accuracy, and trade-off between the explora-
tion and exploitation stages [43]. The meta-heuristic algorithms have
been extensively implemented to solve real-world optimization pro-
blems, including photovoltaic models [44], economic load dispatch
problem [45], cloud computing [46], civil engineering [47], multi-
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Table 1 (continued)

Results

Forecast Horizon

Data processing

Predictive models

Refs.

This research enhances data quality and eliminates noisy data points using linear resampling of the I-V data curves. The irradiation-

Long term

Resampling and

ELM

temperature grid method is implemented to downsample the datasets. Then, the ELM is applied to predict the I-V curves for various types of
PV modules. The proposed method is tested using many statistical metrics and compared against BPNN, GRNN, SVM, RF, and DE.

normalization methods

This paper uses a dynamic/adaptive K-nearest Neighbor (K-NN) model to assess conversion efficiency of the PV system. The condition's

Medium term

Manual cleaning

Adaptive K-NN

6]

Mirjalili et al.

weights are identified by their resemblance to the test pattern. The proposed model surpassed ANN, ELM, and MLR in performance.

In this study, the Conventional neural network using PVPNet model is presented to predict the output power of the PV system. The proposed

model is compared with SVM, RF, decision tree, MLP, and LSTM.

Short term

Normalized

CNN-PVPNet model

[37]

ELM is presented to predict the power output of the PV system using real experimental data collected from the Faculty of Engineering at the

Applied Science University, Amman, Jordan. The proposed model surpassed BP-ANN model in performance.

Short term

Manual processing-

normalized
Normalized

ELM

[38]

The LSTM is employed to predict hourly day-ahead solar radiation. The experimental findings indicated the superiority of the LSTM over

persistence, linear least squares regression (LR), and BPNN models.

Short term

LSTM

[39]

This study proposes the Adam optimizer based on a unified PSO algorithm to optimize the weights of the LSTM model. The experimental

findings demonstrated the superiority of the proposed model relative to those documented in the literature.

Short term

Pearson model

Adam-UPSO-LSTM

[40]

This research normalizes the data and the Pearson model is applied to assess the correlation between the variables. The AdaBoost is used to

Short term

Normalization and
Pearson model

IBOA-AdaBoost-RVM

[41]

augment the weights of individual samples, RVM is employed to eliminate the overfitting during training, and IBOA is applied to enhance the

hyperparameters of the model.

extreme learning machine; GRU =

Density-based Spatial Clustering of Application with Noise; ELM =

convolutional neural network; DBSCAN

artificial neural network; CNN
gated recurrent unit; LSSVM = least square support vector machine; LSTM = long short-term memory; PSO = particle swarm optimization; PV

support vector machine; MLNN

FCM

ant lion optimizer; ANN

ALO

photovoltaic; RBF = radial basis function; RF = random forest; SVM

high quality context; HIMVO

Hybrid improved multi-verse optimization algorithm;

Gauss-Newton Based on Bayesian Regularization; HQC =

Multilayer Neural Network; GNBR
Whale Optimization Algorithm; NPKDE

Unified Particle Swarm Optimization; IBOA

Kernel-based Extreme

Dynamical Adjustment of the Inertia Weight PSO; KELM =

Non-parametric kernel Density Estimation; DAIWPSO

Fuzzy c-means; WOA

Relevance Vector Machine.

Improved Butterfly Optimization Algorithm; RVM =

Learning Machine; UPSO
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microgrid systems [48], and others [49]. According to the No Free
Launch theory [50], there is no specific algorithm can handle all opti-
mization problems. Therefore, there is still a roam for further devel-
opments in order to improve the exploration/exploitation tendencies
[51]. The majority of research papers utilize hybridization of several
ML approaches to predict the PV power output without considering the
values of the hyperparameters, which might have a direct impact on the
proposed model's accuracy [52]. Moreover, most of authors improved
the weights and bias of the ANN model, which did not provide a greater
accuracy as compared to development in the ANN's structure. Finally,
employing only multiple regression models can result a modest degree
of accuracy [53]. According to the previous, we have developed the
original Mountain Gazelle Optimizer (MGO) using several powerful
strategies in order to achieve a balance between the exploration and
exploitation tendencies. Then, the Improved Mountain Gazelle Opti-
mizer (IMGO) is applied to enhance the hyperparameters of the mul-
tiple feed-forward neural network, including number of the neurons in
the three hidden layers and learning rate. In addition to that, the pro-
posed IMGOpyrryny model is integrated with polynomial regression
model based on linear square method to precisely predict the output
current of the PV module under various environmental conditions. The
proposed IMGOpyrpny is Verified by various well-published models. a
new model to precisely predict the PV model output current using real
experimental data. The contributions of this study can be highlighted as
follows:
In terms of developments of MGO algorithm:

e The improvements of the MGO is undertaken with the objective of
enhancing both the exploration and exploitation stages.

The multi-migration searching strategy (MMSS) is newly developed
based generalized opposition based learning (GOL) and gaussian
mutation mechanisms, which can considerably reduce slipping into
local minima and increase the variety of solutions in the exploration
phase.

The multi-strategy bachelor male herds (MSBMH) is proposed using
Levy flight and GOL strategies to boost the convergence to global
solution while considering the information of best optimal solutions
for enhancing exploitation phase.

By upgrading the upper and lower limits based on a transformation
of the solutions from locally to globally using the best optimum
information, the exploitation phase in sufficiently enhanced. With
this strategy, the quality of and diversity of solutions are developed
for all iterations during the optimization process.

Finally, the convergence rate is boosted by shifting the four newly
generated solutions from external to internal loops.

In terms of predicting of PV output power:

The architecture of the multiple feed-forward neural network
(MFFNN) is improved to precisely handling the data during training.
The IMGO method is employed to optimize the number of neuros in
the hidden layers and learning rate, while the Bayesian regulariza-
tion backpropagation algorithm is applied for updating weights and
biases.

The Polynomial Regression based on linear least square method is
applied to predict final output current of the PV system.

The IMGO is verified by standard unimodal, multimodal, and fixed-
dimensional benchmark functions, compared against several methods,
and applied to solve six engineering design problems. Moreover, the
proposed IMGOpyrrny model is validated using various hybrid models
using real experimental data.

The present paper is structured in the following manner: The
equivalent circuit of the PV model is presented in Section 2. The
methodology of the basic principle, mathematical equations, improve-
ments of the MGO, hybrid model for predicting output current of the PV
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Fig. 1. The equivalent circuit of 1D-PV model. PV = photovoltaic.

system, and assessment criteria are expounded upon in Section 3. The
evaluation and application of IMGO method, and performance of the
proposed hybrid model for predicting output PV system are presented
in Section 4. Section 5 summaries the achievements of this work and the
future work direction.

2. Equivalent circuit of PV model

The solar radiation and ambient temperature have a direct effect on
the operation of the PV cell, where each cell conducts DC current during
the day and the diode in opposite direction is activated at night. The
electrical circuit of the single diode (1D PV) model is depicted in Fig. 1.
The 5 physical parameters of the 1D PV model may be mathematically
described as follows [54]:

VR | v
v

I=1Ip, — Ia[exp(
Ry (€D

t

where R, and R, are series and parallel resistances. The thermal voltage
(V) can be computed as follows:
_ dKBT,

1%
q 2

where KB and ¢ are Boltzmann's constant (1.38 x 10723J/K) and elec-
tron charge (1.60 x 107*C), respectively. The T is the cell temperature
(K). The short-circuit current () and open-circuit voltage (V,.) are
computed as follows [23]:

<R R
Le=Iy—1, EXP(M)—I X P
Vi R; + R, 3

Voe = R, X (Iph -1, [exp (%) - 1}) @
t

Therefore, the current at maximum power point (I,,,) may be ex-
pressed as follows [23]:

Vipp + ImppRs) _ 1] _ Voupp + IuppRs
Vi R, ()

Impp =Ipm—1 [GXP(
Consequently, the B, is computed by multiplying Lny, X Vipp-

3. Methodology
3.1. Mountain Gazelle optimizer (MGO)

The MGO is found throughout a considerable portion of the Arabian
Peninsula and its surroundings, but its prevalence is small. There are
three main groupings of gazelles are the mother-offspring hers, young
male herds, and single males' territory. In the wild, gazelles regularly
move in search of food throughout a 120 km broad territory, running at
speeds of up to 80 km [55]. The following expression are modeled to
mathematically describe the lives of MGO: bachelor male herds, ma-
ternity herds, solitary males, and movement in search of food.

Next Energy 8 (2025) 100256

e Territorial solitary males
The robust and mature gazelle establishes a solitary territory, and
the adult males work to maintain their location, as expressed by the
following:

TSM = mg — |(riy X BH — ri; X X (t)) X FI X C; (6)

where m, and ri;_, are the locations of the global solution and
random values 1 or 2 [55]. BH, F, and C; are coefficients of the
young male herd, control parameter, and randomly number updated
in each iteration, which may be acquired to improve the searching
ability [55], as follows:

N
BH = X,y X + My, X 1, ra = {[?]N} o

where X, is randomly picked within the range of ra, M,, is the average

number of search agents chosen at random [ N ], N is the total number of
solutions, and 1, are randomly selected between 0 and 1.

2
F=N;(D) x exp(z -t X (—))

T ®
where N; is the standard distribution selected at random. ¢t and T are
the current and maximum iterations.

(a+1)+n
a X N,(D)
1, (D)
N;(D) X N4 (D)* x cos((r X 2) X N3(D)) 9

where r; and r; are return random scalar obtained from a uniform
distribution of the interval (0, 1). N>, N3, and N, are integers drawn
at random from the population, while a is computed as follows [55]:

az_Htx(_Tl) (10)

e Maternity herds
The maternity herds are responsible for producing packs that give
birth to sturdy males, in which may influence the delivery of young
males to occupy females, as modeled by the following:

MH = (BH + Cy,) + (i3 X mg — rig X X;) X Cy an

where BH is the impact factor's vector of young male, C;, and C,, are
selected at random to compute the independently, ri; and ri, are
random numbers 1 or 2 [55], and X, is vector selected at random
from population.

Bachelor male herds

Once the male gazelles become mature, they establish territories and
seize control of the females. The young gazelles use aggression to
dominate female gazelles and it is given by the following [55]:

BMH = (X (t) — D) + (ris X mg — rig X BH) X C, 12)

where X (t) represents the gazelle's location in the current iteration,
ris and rig are random numbers 1 or 2 [55], and D is computed as
follows:

D =X+ Imgl) x 2 X1, — 1) (13)

where r; is randomly selected within range of 0 and 1.
e Migration to search for food

The Mountain Gazelles, which have a fast running speed and strong
leaping, are in charge of providing food supplies. This behavior is for-
mulated as follows:

MSF = (ub — b)) x 1, — Ib (14)

where ub and Ib are the upper and lower limits, and r, is a random
values between 0 and 1 [55]. Consequently, the four TSM, MH, BMH,
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and MSF tactics are applied to generate new solutions. The population
is expanded to include the additional four vectors, after which the so-
lutions are arranged in ascending order. Then, the weakness solutions
are removed from the current iteration. This process will continue until
the stopping criteria is satisfied.

3.2. The proposed improved MGO
e Mult-migration strategy searching for food

In the basic MGO, the Migration Search Food step has weakness in
terms of looking for of new potential areas. This is because the newly
created solutions consider only the lower and upper borders. Therefore,
the new MMSS depends on fast sprinting and forceful leaping of ga-
zelles by implementing the GOL strategy mechanism to sufficiently
escape from neighborhood and improve the propensity for exploration
at the first stage of half number population size [56], whereas the
gaussian mutation is applied in the rest for increasing the diversity of
solutions in the exploratory phase. Moreover, the GOL tactic utilizes
upper and lower limits of the current vector iteration to prevent the loss
of highly solutions quality during the exploitation stage. Therefore, the
MMSS may be expressed as follows:

my, — C, X (GOL — X,) + G, X (X(t) — r x X,)ifi < N/2

MMSS =
{ X (t) X (1 + rn)otherwise

(15)

where GOL = r X (A; + B;) — X (t), rn returns a random scalar obtained
from a uniform distribution of the interval (0, 1), and

GOL € [A;, Blj=1, 2, ...,N (16)

where A, and B, are the upper and lower variables of the current
iterations. Therefore, the [A;, B;] are dynamically updated during the
optimization process in order to prevent premature convergence and
local minima [57].

o Mult-strategy bachelor male herds

The exploiter mechanism acts with a poor performance, where the
optimizer MGO struggles to escape from local minima and reach
globally. Therefore, the MSBMH step is officially formulated by
considering the neighborhood information around the best optimal
solution with including the levy flight (Levy) movements when the
number of iterations is less than half number of population size,
while the rest is addressed by the GOL [58]. In this way, the
searching mechanism is ensured by utilizing multi-explore strategy
for looking for new promising zones and avoiding premature con-
vergence, as represented by the following:

— ((X,) + Levy x X (1))ifi < N/2

m
MSBMH ={ ¢ )
— (M — GOL) x C,otherwise a7

where Levy is a step sizes chosen randomly using a probability
function [59]. The Levy is computed as follows:

Levy(ar) = Ix;I' == (18)

where x; refers to the flight's length, while the exponent of the
power-law is between 1 < a < 2 [60]. The Levy's probability den-
sity in the integral form is represented by [61],

1 ©
f G 0) = — [ exp(~yg*)cos (qr)dg (19)

where a denotes to the distribution index which controls the cale
properties of the process, y is utilized for selection of the scale unit.
The integral is employed when «a = 2 represents the Gaussian dis-
tribution, and when o = 1 represents a Cauchy distribution [62].
The series expansion method is essential when x has a large value,
as given below:
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yT (1 + a)sin(?)

o) » X =0

fL (X, lu’ O') =

where I' is Gamma function in which I'(1 + «) is equal to « !.
According to [61], the « value is ranged within 0.3 and 1.99.
Therefore, the Mantegna method is applied to conduct a random
value utilizing Levy distribution, as described below:

Levy(x) = 0.05 X ——
y(e) = Iyl”“ (20)

where x and y are 2 normal distributions values and given by the

following:

x = Normal(0, ¢7), and y = Normal(0, o), where g, is calculated by

the following:

ra+ oc)n(?)

o = —
1"((1;“))0(2( ) D
where « = 1.5 and g, = 1. The Levy tactic has motions with small
steps size combined with large jumps.
Gazelle traveling from locality to optimal new territory
After the 4 TSM, MH, MSBMH , and MMSS tactics produce the new
solutions, their boundaries are updated using straightforward me-
chanism by returning either maximum or lowest value of each
variable, which delays not only the search for the best solution but
also postposes the convergence rate. Therefore, the new strategy
imposes the new gazelle to gather information from the male gazelle
(best solution) while increasing the diversity by integrating the
upper and lower variables to avoid falling in locality. In the other
words, the newly generated solutions are strengthened in light of
best solution found so far, as expressed by the following [5]:

mg — € X (r X (ub — 1b))ifX (t) > ub(t)
€ X (r X (ub — Ib)) + m,ifX (t) < ub(t)
X (t)otherwise (22)

X(t) =

where € is a small integer number [63].
o Accelerating the convergence rate

Adding the four new generating solutions, at the end of maximum
iteration, in the basic MGO to the existing population leads to delay the
optimization process, and the population size becomes very large
without any gains. As a consequence, the solutions are sorted and
weakness solutions are removed after each new iteration, which leads
to boost the convergence rate. The flowchart of the IMGO is demon-
strated in Fig. 2.

The performance of the proposed IMGO algorithm on solving
benchmark functions and solving engineering problems are provided in
Supplementary Materials.

3.3. Hybrid model for predicting output power of the PV system

This section presents a description of the proposed IMGOpyrrnn
model by employing IMGO to optimize the hyperparameters of the
MFFNN, including number of neurons in the hidden layers and learning
rate. Afterward, the Polynomial regression model is hybridized to
predict the output current of the PV module.

3.3.1. Artificial neural network (ANN)

ANN can be considered an information processing system that
models human nervous activities impacted by the neuronal connection
and behavior [64]. ANN can tackle difficult problems effectively due to
its capacity to cope with nonlinear relationships between the input and
output variables, where learning process has a substantial influence on
its effectiveness [65]. The primary models of the multilayer perceptron
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Fig. 2. Flowchart of the proposed IMGO.

(MLP) are radial basis function (RBF), feed-forward neural network
(FFNN), cascade forward neural network (CFNN), general regression neural
network (GRNN), and hybrid network [20,66]. Consequently, determining
numbers of layers and nodes are crucial for designing a complicated non-
linear function. However, underfitting and overfitting challenges arise as a
result of the growing number of nodes and improper selection of learning
rate value [67]. Therefore, the architecture of the MFFNN has five distinct
levels, including the input layer, three hidden layers, and the output layer.
To effectively improve the data processing and training, the input data are
normalized, the constant values in each row are omitted, the tansigmoidal
activation function is chosen to handle regression difficulties [68], and the
linear activation function is addressed for the output layer [69]. Conse-
quently, the IMGO is employed to determine the most desirable numbers of
neurons in the hidden layers (N7, N, and N3) and optimum value of
learning rate (LR). The data contains number of ambient temperature and
solar radiation, whereas the final output is the PV system's output current.
Finally, the polynomial regression integrated with IMGOprny to predict the
output current.

3.3.2. Polynomial regression (PR) model

The PR model is considered one of the most promising tool to pre-
dict the output variable based on independent input variables. PR
model is a statistical algorithm which permits the numeric inputs to be
numeric output [70]. In this paper, the PR model is integrated in the
last stage to verify the accuracy between the actual and predicted
current of the PV model by using Toolbox implemented in MATLAB
software. The PR model offers a higher accuracy, especially when it is
solved by using linear least square method, which is given by the fol-
lowing [64]:

n+1

y= pixn+1—i
; (23)

where y is the response variable, x is the input variable (regressor), and
n is the polynomial's degree and the order represents the number of
coefficients to be fit. In this research, the 1st degree is computed to
provide a high level accuracy of the predict output current using a
linear least squares (LLS) approach, as given below:

f&x)=px+p, 24

The main benefit of the polynomial models is that it has ability to fit
the data that is not complicated. Hence, the nonlinearity of the input
has been solved by IMGOyrnny model, while the poly fit model is
employed for a precise fit for given data range.

3.4. Model assessment criteria

This paper uses four statistical criteria to verify the performance of
the proposed model: root mean square error (RMSE), mean bias error
(MBE), coefficient of determination (R?), and absolute error (AE)
[71,72]. RMSE defines the deviation scale between the predicted and
target values and it is calculated by the following:

1 n
RMSE = |= Y (I — [)?
n § ' (25)

MBE defines as the mean forecasted error is obtained to verify the
average deviation the predicted and target values, which is given as
follows:

n
MBE = ~ -1
nia (26)
R? is defined as square of correlation between the predicted and
target values, which is equal indicates highly correlated data and zero
for non-correlated data, as represented by the following:

S e — I)?

R=1-28 .
D Up = )2 @7

where [; is the experimental current mean (f, = %E?:l I,-).
AE is presented for assessing the absolute deviation between the

actual and predicted values and it is expressed as follows:

AE = Ip — Il (28)

The RMSE and MBE refer to the difference between the expected
and actual data. Higher RMSE and MBE values indicate a greater var-
iance in the expected and measured data, and vice versa. As a result, the
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Table 2
Technical specification of the PV model

Module type STF-120P6
Rated power (By) 120W
Short-circuit current (I;) 7.63A
Open-circuit voltage (Vo) 21.5V
Current at MPP (I,;,) 6.89 A
Voltage at MPP (V,,) 17.4V
Temperature coefficient of I, (a) 6.93mA%/°C
Temperature coefficient of V. (3) —0.068V/°C
Temperature coefficient of B, (y) —-0.39 %

PV = photovoltaic.

model's accuracy is at its best when the RMSE and MBE values are close
to zero. The linear relationship between the measured and anticipated
results is assessed using R? statistic. The closer R? to one, the more ac-
curate the model is. Finally, the AE describes the difference between the
actual and expected model's output, a lower value of AE indicates a
better level of accuracy [73].

4. Experiment results and discussion
This section presents a description of the proposed IMGOpprrnn

model by employing IMGO to optimize the hyperparameters of the
MFFNN, including number of neurons in the hidden layers and
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learning rate. Afterward, the polynomial model based on linear least
squares is obtained for predicting the PV module's output current.
This research uses 25 modules silicon PV titled at 15° and output
current of (3 kWp) installed at the faculty of Engineering Built and
Environment, Universiti Kebangsaan Malaysia with longitude value
of 101.7713° and latitude value of 2.9210° [74]. The technical data of
the PV model is tabulated in Table 2 [75]. The performance of the
utilized in this work is six months of hourly meteorological data of the
system, including solar radiation and ambient temperature. The
system composes of transmitter of solar radiation of silicon PV de-
tector (WE300) model with accuracy of + 1%, sensor of temperature
for the PV model's surface WE710 with accuracy of + 0.25°C, sensor of
air temperature WE700 model with range of — 50°C to 50°C and ac-
curacy of + 0.1°C, and current transducer CTH-050 model with input
and output ranges of 0 — 50 A (DC) and 4 — 20 mA [74]. The hourly
meteorological data input and output current are given in Fig. 3.

In this study, the data information is classified into two sections:
70% for training and 30% for testing [76]. The proposed models are
IMGOwmgrnN, IMGOmcenn, IMGORg, ALORr [76], IMGO2aNN, ALO2aNN
[27] applied to select the hyperparameters for the ANN and RF
techniques. The population size is 30 and the maximum iteration is
100. The upper and lower hyperparameters for ANN method for the
N3, No, N3, and LR are [1,25], [1,25], [1,25], and [0,1], respectively.
Whereas the upper and lowers hyperparameters for RF method for the
Numbers of trees (Nt), leaves (N), predictor (Np), and sample (Ns)
are [100,700], [10,100], [1,10], and [1,10], respectively. The au-
thors of [76] optimized only numbers of trees and leaves. While, the
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Table 3 Table 4
Optimal hyperparameters using five models Tuned control parameters of the DML models
Method Hyperparameters IMGOyrrnn IMGOpcrnn IMGOgg ALOgr Control parameter ELM GRU LSSVM CNN
ANN LR 0.5661 0.0194 Number of layers 500 1 - 3
N; 2 11 Number of iterations 5000 5000 5000 5000
Ny 11 11 Number of nodes - 200 - 20
N3 7 1 - - Activation function RBF - RBF ReLU
RF Nr - - 571 681 LR - le—8 le—-5 le—-8
N - - 20 19
Np R R 10 CNN = convolutional neural network; ELM = extreme learning machine; GRU
Ng - - 8 = gated recurrent unit; LSSVM = least square support vector machine; RBF =

ALO = ant lion optimizer; ANN = artificial neural network; MFFNN = mul-
tiple feed-forward neural network; RF = random forest; MCFNN = Multiple
Layer Cascade Forward Neural Network.

authors of ALOsann Optimizes the weights and bias for only one
hidden layer, which is set to be 12. Therefore, the optimal hy-
perparameters estimated by the mentioned models are presented in
Table 3, while the optimized structure of the IMGOyppny is shown in
Fig. 4. For the DML models, the, LSTM [39], GRU [77], ELM [35], and
LSSVM [78] are proposed for validation the performance of the pro-
posed model, while their control parameter setting are given in
Table 4.

The actual output current and the proposed models are demon-
strated for the testing data in Fig. 5. As illustrated in zoomed figures,
the proposed IMGOyrpny model has closest prediction for the actual
current compared with other models. It is worth to note that the
predicted of the actual current is not straightforward task, this is
because of the highly nonlinearity of the meteorological data, which
are changeable during the day. However, the IMGOyppny model of-
fers better accuracy, making it more suitable for predicting the PV
model's output current. The ALOsann exhibited poorest prediction of
the PV output current, especially at maximum peak-energy during the
day.

0.9
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03+
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0 0.1 0.2 0.3

radial basis function.

The best RMSE, MSE, MBE, and R? are achieved by the IMGOyrrny
model, according to the Table 5, with statistical values of 0.0280,
7.8958E-4, —3.8184E-4, and 0.9951, respectively. For Central Proces-
sing Unit (Process time) (CPU) execution time, LSTM model yields the
best time value with value of 4.2s. The IMGOycpnny and ELM models
are ranked second, followed by IMGOsanN, LSSVM, ALO2anN, IMGOgg,
ALOgg, LSTM, and IMGO,any models, and GRU, where their statistical
values are given in Table 5. The worst performance was registered by
the CNN model. This is because of that CNN are hardly to handle long-
term meteorological data. Moreover, it can be clearly seen that IM-
GOoann model offers a better performance compared with ALOsann
model, owning to affective employed exploration and exploitation
tendencies in selecting proper set of the weight and bias, but the pre-
diction of the PV output current using IMGOyrny model provides a
higher accuracy and stability. Therefore, it can be concluded that de-
veloping the structure of the ANN model along with optimizing its
hyperparameters can considerably provide a better prediction to the PV
module's output current.

Similarly, the IMGOgr provided more accuracy with slightly dif-
ference in terms of RMSE, MSE, MBE, and R?> parameters as compared
with ALOgr models. This is because the IMGO model obtains powerful

Ho,

05

06 0.7 0.8 09 1

Optimized architecture of the MFFNN using IMGO. MFFNN = multiple feed-forward neural network.
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Fig. 5. Results of the forecasted PV system's output current using various models. PV = photovoltaic.
Table 5
A comparison of statistical values using different models
Model RMSE MSE MBE Rr2 Time s
IMGOwErnN 0.0280 7.8958E-4 —3.8184E-4 0.9951 24719.82
IMGOpicran 0.0283 8.0603E-4 —9.9312E-4 0.9949 90944.92
IMGOgyr 0.0287 8.2595E-4 —0.00112 0.9948 488718.74
ALOgg 0.0301 9.1109e-4 —0.00101 0.9942 135046.2
IMGO2anN 0.0289 8.3935e-4 0.00082 0.9946 259.2
ALOsanN 0.0292 8.5811e-4 0.00189 0.9945 120.3
LSTM 0.0321 0.001037 —8.166e-4 0.9935 4.2
GRU 0.0331 0.001099 —9.184E-4 0.9931 20099.3
LSSVM 0.0290 0.000845 —0.00135 0.9947 3127.0
ELM 0.0283 0.000806 —0.00151 0.9950 4.6
CNN 0.7810 0.610015 0.16194 0.9025 15128.2

ALO = ant lion optimizer; ANN = artificial neural network; CNN = convolutional neural network; ELM = extreme learning machine; GRU = gated recurrent unit;
LSSVM = least square support vector machine; LSTM = long short-term memory; MBE = mean bias error; MFFNN = multiple feed-forward neural network; RF =

random forest; RMSE = root mean square error.
The best model is pesented with Bold face.

strategies to select the most optimum hyperparameters for training
RF, and it also optimizes the numbers of predictor and sample
during the optimization process, which reflects a higher accuracy
than ALOgr model. To end this, employing simply machine learning
for forecasting the output current of the PV system might cause a
serious problem for the gird rather leading to an increase in faults and
costs.

Fig. 6, illustrates the scatter plot of the proposed IMGOyrrnn and
other models. The findings confirm the superiority of the IMGOyrrnn
among other models, followed by ELM model. From Fig. 6, it can
be clearly seen that the correlation between the measured and

10

predicted currents are acceptable. However, a higher level of accu-
racy and stability is essential for the real applications of the PV
system. This is because of that any mistakes or unsatisfied prediction
may result more expenditure and directly impact on the stability for
system.

Another important statistical criterion is AE, and it is evident from
Fig. 7 that the IMGOyrpny model has lower individual AE values than
others models, indicating its superior ability for predicting the PV
system's output current even at a variety of environmental circum-
stances. The highly unpredictable of solar radiation and ambient
temperature may conduct noticeably larger errors in the PV model's
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Fig. 6. Correlation between the actual and the predicted outputs in the testing data using various ML models. ML = machine learning.

forecasting of the output current, as seen in zoomed-figures. In
comparison to other models, the IMGOyrryy model demonstrates a
greater ability to minimize the error values. This is due the accurate
implementation of learning algorithm of Bayesian Regularization
backpropagation (BR) method, which reduces a combination of
squared errors and weights synchronously. In addition to that the
optimized number of hidden layers and learning rate considerably
assist to boost the accuracy of the multiple layers neural network.
Furthermore, its observed that the BR method performs better than
Levenberg-Marquardt (LM) algorithm, but it takes longer processing
time [68].

Finally, the development of the objective function (OF) using
various models is depicted in Fig. 8. As a results, there are different
formulations to minimize the OF values, where the IMGOwygrnn,
IMGOpcpnns IMGOgg, and ALOgp models optimize the hyperpara-
meters of the ML methods, as shown on the parts (A) and (B). On
contrast, the IMGO,any and ALOoany models enhance the weight and
bias of the ANN, as presented on the part (C) of Fig. 8. It is apparent
that the IMGOyppny model has lowest RMSE value and needs the
fewest iterations to obtain the optimal RMSE value. This is a result of
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the significant advancements of the IMGO algorithm has undergone
to predict the PV output current at a fast convergences rate. More-
over, compared to the IMGOgr model, which has an OF value of
0.0288, the IMGO,anN provides a more precise set of weights and bias
with a minimum value of 0.0113. Consequently, the implementation
of the ANN yields a superiority compared with RF model with opti-
mizing the hyperparameters of the both models. However, the IMG-
Oprnn model delivers a higher level of accuracy than other models for
forecasting the output current of the PV model.

In the second stage, the estimated poly® variables are given in the
Table 6.

Fig. 9, demonstrates agreement between the actual and anticipated
IMGOpyrrnn OUtput current. It can be clearly observed that the IMG-
Opmrrnn Model presents a very high degree of accuracy and almost
overlaps all the data points of the experimental data at various weather
circumstances. The precision and dependability of the proposed IMG-
Opmeann Mmodel are illustrated in Fig. 10. The R? value is extremely close
to 1, and the residuals error has been significantly minimized, as seen in
the top and bottom of the Fig. 10. Sum square error (SSE), RMSE, and R?
statistics for the IMGOpyrpnyn model are tabulated in Table 7.
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Table 6
Method and the predicted variables of the IMGOpyrrnn model
Fit type Method Coefficients Value Lower Upper
Poly1 LLS P1 0.2790 0.2789 0.2792
P2 0.1808 0.1806 0.1809

LLS = linear least squares.

artificial neural network; MFFNN = multiple feed-forward neural network; RF =

12

random forest.

The use of the IMGO as a metaheuristic algorithm to calculate
the hyperparameters of the MFFNN model, which boosts its
capacity to deliver an precise PV module's output. In addition, the
inclusion of the Poly® regression model, in the second stage, utilizing
LLS algorithm demonstrated that the proposed IMGOpyrrny model
provides a higher ability to predict the output current among other
models.



H.M. Ridha, H. Hizam, S. Mirjalili et al.

Next Energy 8 (2025) 100256

7 T T
‘ —@— I Actual
—o—1,IMGO,
6 —
I ‘J |
s 4 ? I 1 o | |
z » Iy l [ 4 .
% 4 1 ul I J | i l\‘ ) :
St
g ? | | \| l ) l :
g [ | o[ 4
= I
S o ‘ l
2 [ I :
P
1 \
y L
0 »
0 100 200 700 800
Tlme (hourly)
Fig. 9. A comparison between the predict current of Fit IMGOFFNN model and actual one.
I I I
e I IMGOPMFFNN vs. I acutal @
6|_ _ _. 1 & 7
poly " fit
5 — —
Z
= 4 -
=
Z 3 i
g
2 — —
=
1 — —
0 — —
o1 L | | | | | l _
0 1 2 3 4 5 6
B I acutal
x 10”
I T I
25|—-@— 'poly] fit - residuals @ |
2 Zero Line II _
1
15 ] —
1
—_
< 1r I
= I
= L _
< 0.5 /
0 —
-0.5 _
1+ _
| | 1 | | 1 |
0 1 2 3 4 5 6
I acutal
Fig. 10. Correlation between the predicted current and actual current.
Table 7 5. Conclusion and future direction
Statistical values of the IMGOppppnn model
Model Fit type SSE RMSE & This st.udy obtained actual hourly expe.rimental data from Malaysia to
offer a unique IMGOpyrnn model to predict the PV module's output cur-
IMGOpmernn Poly* 0.0037 0.0021 0.9999 rent. This work improved the original MGO for solving various kinds of
engineering and predicting output current of the PV system problems. The
RMSE = root mean square error; SSE = sum square error; PMFFNN:

Polynomial Model Forward Neural Network.
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trade-off between the exploration and exploitation are archived by devel-
oping the two main strategies MMSS, MSBMH, and accelerated convergence
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curve. The IMGO is verified through 23 benchmark function and compared
with famous meta-heuristic algorithms like original MGO, Opposition
African Vulture Optimization Algorithm, Improved Sparrow Search
Algorithm, DE, and PSO. The outcomes demonstrated that the IMGO per-
formed excellently on the unimodal, multimodal, and fixed dimensional
multimodal test functions. In addition, the proposed IMGO is investigated to
solve six engineering problems, where the results indicated the efficiency
and affectively implemented developments in handling difficult and con-
strained problems. Finally, the proposed IMGO is integrated with MFFNN
based on 1st degree polynomial to predict the output current of the PV
system using actual experimental data collected at Universiti Kebangsaan
Malaysia, Malaysia. The proposed hybrid IMGOpyrrnn model is compared
with ant lion optimizer based on random forest (ALOgy) model, two stages
of ANN (ALOoany) model, LSTM, GRU, ELM, LSSVM, and CNN utilizing
several statistical metrics. The experimental findings demonstrated that the
proposed IMGOpyrpnn model can precisely predict the output current of the
PV module and verified utilizing SSE, RMSE, and R? statistical criteria with
values of 0.0037, 0.0021, and 0.999, respectively. It can be confirmed that
the IMGOpyrrnn model is more suitable for real-world applications of the
PV system and can precisely simulate the actual behavior of the PV module
output.

For future direction, the proposed IMGO can be hybridized with multi-
objective optimization concept for solving conflicting objective functions.
Furthermore, the output PV module's prediction can be further improved by
utilizing hybrid DML model with PR model by improving its hyperpara-
meters using advanced meta-heuristic method. This suggestion aims to not
only improve the accuracy further, but also handle the longer processing
time of the IMGOpyrrnn model. In addition, the data preprocessing is es-
sentially to reduce the noise and reducing the redundancy before
employing Deep Machine Learning (DML) methods.

CRediT authorship contribution statement

Hussein Mohammed Ridha: Conceptualization, Methodology,
Resources, Writing — original draft, Writing — review & editing, Software,
Formal analysis, Visualization, Investigation. Hashim Hizam: Writing —
review & editing, Validation, Investigation, Formal analysis, Visualization,
Supervision. Seyedali Mirjalili: Writing — review & editing, Methodology,
Formal analysis, Visualization, Software, Investigation, Supervision.
Mohammad Lutfi Othman: Formal analysis, Visualization, Investigation,
Writing - review & editing. Mohammad Effendy Ya'acob: Formal analysis,
Investigation, Visualization, Writing — review & editing. Noor Izzri Bin
Abdul Wahab: Formal analysis, Investigation, Visualization, Writing — re-
view & editing. Masoud Ahmadipour: Formal Analysis, Investigation,
Visualization, Writing — review & editing.

Declaration of Competing Interest
The authors declare no conflict of interests for the publication of paper.
Acknowledgments

The authors would like to thank Mustansiriyah University (www.
uomustansiriyah.edu.iq) Baghdad-Iraq for their support of the present
work.

Appendix A. Supporting material

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.nxener.2025.100256.

References

[1] A. Agga, A. Abbou, M. Labbadi, Y. el Houm, Short-term self consumption PV plant
power production forecasts based on hybrid CNN-LSTM, ConvLSTM models,
Renew. Energy 177 (2021) 101-112, https://doi.org/10.1016/j.renene.2021.05.
095.

14

[2

[3]

[4

[5]

[6

[7]

[8

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Next Energy 8 (2025) 100256

X.J. Dong, J.N. Shen, Z.F. Ma, Y.J. He, Simultaneous operating temperature and
output power prediction method for photovoltaic modules, Energy 260 (2022)
1-12, https://doi.org/10.1016/j.energy.2022.124909.

M. Massaoudi, I. Chihi, H. Abu-Rub, S.S. Refaat, F.S. Oueslati, Convergence of
photovoltaic power forecasting and deep learning: state-of-art review, IEEE Access
9 (2021) 136593-136615, https://doi.org/10.1109/ACCESS.2021.3117004.

A. Mellit, S. Kalogirou, Artificial intelligence and internet of things to improve ef-
ficacy of diagnosis and remote sensing of solar photovoltaic systems: challenges,
recommendations and future directions, Renew. Sustain. Energy Rev. 143 (2021)
1-23, https://doi.org/10.1016/j.rser.2021.110889.

H.M. Ridha, H. Hizam, S. Mirjalili, M.L. Othman, M.E. Ya’acob, M. Ahmadipour,
Parameter extraction of single, double, and three diodes photovoltaic model based
on guaranteed convergence arithmetic optimization algorithm and modified third
order Newton Raphson methods, Renew. Sustain. Energy Rev. 162 (2022) 112436,
https://doi.org/10.1016/j.rser.2022.112436.

B. Cortés, R. Tapia Sanchez, J.J. Flores, Characterization of a polycrystalline pho-
tovoltaic cell using artificial neural networks, Sol. Energy 196 (2020) 157-167,
https://doi.org/10.1016/j.solener.2019.12.012.

UK. Das, K.S. Tey, M. Seyedmahmoudian, S. Mekhilef, M.Y.I. Idris, W. van
Deventer, et al., Forecasting of photovoltaic power generation and model optimi-
zation: a review, Renew. Sustain. Energy Rev. 81 (2018) 912-928, https://doi.org/
10.1016/j.rser.2017.08.017.

T. Shireen, C. Shao, H. Wang, J. Li, X. Zhang, M. Li, Iterative multi-task learning for
time-series modeling of solar panel PV outputs, Appl. Energy 212 (2018) 654-662,
https://doi.org/10.1016/j.apenergy.2017.12.058.

J. Fan, L. Wu, F. Zhang, H. Cai, W. Zeng, X. Wang, et al., Empirical and machine
learning models for predicting daily global solar radiation from sunshine duration: a
review and case study in China, Renew. Sustain. Energy Rev. 100 (2019) 186-212,
https://doi.org/10.1016/j.rser.2018.10.018.

X.J. Dong, J.N. Shen, G.X. He, Z.F. Ma, Y.J. He, A general radial basis function
neural network assisted hybrid modeling method for photovoltaic cell operating
temperature prediction, Energy 234 (2021) 1-10, https://doi.org/10.1016/j.
energy.2021.121212.

L. Olatomiwa, S. Mekhilef, S. Shamshirband, D. Petkovi¢, Adaptive neuro-fuzzy
approach for solar radiation prediction in Nigeria, Renew. Sustain. Energy Rev. 51
(2015) 1784-1791, https://doi.org/10.1016/].rser.2015.05.068.

A.T. Eseye, J. Zhang, D. Zheng, Short-term photovoltaic solar power forecasting
using a hybrid Wavelet-PSO-SVM model based on SCADA and meteorological in-
formation, Renew. Energy 118 (2018) 357-367, https://doi.org/10.1016/j.renene.
2017.11.011.

H. Zhen, D. Niu, K. Wang, Y. Shi, Z. Ji, X. Xu, Photovoltaic power forecasting based
on GA improved Bi-LSTM in microgrid without meteorological information, Energy
231 (2021) 1-15, https://doi.org/10.1016/j.energy.2021.120908.

D. Markovics, M.J. Mayer, Comparison of machine learning methods for photo-
voltaic power forecasting based on numerical weather prediction, Renew. Sustain.
Energy Rev. 161 (2022) 1-17, https://doi.org/10.1016/j.rser.2022.112364.

Q. Li, X. Zhang, T. Ma, C. Jiao, H. Wang, W. Hu, A multi-step ahead photovoltaic
power prediction model based on similar day, enhanced colliding bodies optimi-
zation, variational mode decomposition, and deep extreme learning machine,
Energy 224 (2021) 1-20, https://doi.org/10.1016/j.energy.2021.120094.

M. Ma, B. He, R. Shen, Y. Wang, N. Wang, An adaptive interval power forecasting
method for photovoltaic plant and its optimization, Sustain. Energy Technol.
Assess. 52 (2022) 1-10, https://doi.org/10.1016/j.seta.2022.102360.

H. Liu, Q. Gao, P. Ma, Photovoltaic generation power prediction research based on
high quality context ontology and gated recurrent neural network, Sustain. Energy
Technol. Assess. 45 (2021) 1-12, https://doi.org/10.1016/j.seta.2021.101191.

X. Ren, F. Zhang, H. Zhu, Y. Liu, Quad-kernel deep convolutional neural network for
intra-hour photovoltaic power forecasting, Appl. Energy 323 (2022) 1-16, https://
doi.org/10.1016/j.apenergy.2022.119682.

L.L. Li, S.Y. Wen, M.L. Tseng, C.S. Wang, Renewable energy prediction: a novel
short-term prediction model of photovoltaic output power, J. Clean. Prod. 228
(2019) 359-375, https://doi.org/10.1016/j.jclepro.2019.04.331.

M. Talaat, M.A. Farahat, N. Mansour, A.Y. Hatata, Load forecasting based on
grasshopper optimization and a multilayer feed-forward neural network using re-
gressive approach, Energy 196 (2020) 1-12, https://doi.org/10.1016/j.energy.
2020.117087.

L. Liu, Y. Zhao, D. Chang, J. Xie, Z. Ma, Q. Sun, et al., Prediction of short-term PV
power output and uncertainty analysis, Appl. Energy 228 (2018) 700-711, https://
doi.org/10.1016/j.apenergy.2018.06.112.

B. Gu, H. Shen, X. Lei, H. Hu, X. Liu, Forecasting and uncertainty analysis of day-
ahead photovoltaic power using a novel forecasting method, Appl. Energy 299
(2021) 1-14, https://doi.org/10.1016/j.apenergy.2021.117291.

I.A. Ibrahim, M.J. Hossain, B.C. Duck, An optimized offline random forests-based
model for ultra-short-term prediction of PV characteristics, IEEE Trans. Ind. Inf. 16
(2020) 202-214, https://doi.org/10.1109/T11.2019.2916566.

X. Chen, K. Ding, J. Zhang, W. Han, Y. Liu, Z. Yang, et al., Online prediction of ultra-
short-term photovoltaic power using chaotic characteristic analysis, improved PSO and
KELM, Energy 248 (2022) 1-18, https://doi.org/10.1016/j.energy.2022.123574.

M.A. Hassan, N. Bailek, K. Bouchouicha, S.C. Nwokolo, Ultra-short-term exogenous
forecasting of photovoltaic power production using genetically optimized non-
linear auto-regressive recurrent neural networks, Renew. Energy 171 (2021)
191-209, https://doi.org/10.1016/j.renene.2021.02.103.

A K. Yadav, S.S. Chandel, Identification of relevant input variables for prediction of
1-minute time-step photovoltaic module power using Artificial Neural Network and
Multiple Linear Regression Models, Renew. Sustain. Energy Rev. 77 (2017)
955-969, https://doi.org/10.1016/j.rser.2016.12.029.


http://www.uomustansiriyah.edu.iq
http://www.uomustansiriyah.edu.iq
https://doi.org/10.1016/j.nxener.2025.100256
https://doi.org/10.1016/j.renene.2021.05.095
https://doi.org/10.1016/j.renene.2021.05.095
https://doi.org/10.1016/j.energy.2022.124909
https://doi.org/10.1109/ACCESS.2021.3117004
https://doi.org/10.1016/j.rser.2021.110889
https://doi.org/10.1016/j.rser.2022.112436
https://doi.org/10.1016/j.solener.2019.12.012
https://doi.org/10.1016/j.rser.2017.08.017
https://doi.org/10.1016/j.rser.2017.08.017
https://doi.org/10.1016/j.apenergy.2017.12.058
https://doi.org/10.1016/j.rser.2018.10.018
https://doi.org/10.1016/j.energy.2021.121212
https://doi.org/10.1016/j.energy.2021.121212
https://doi.org/10.1016/j.rser.2015.05.068
https://doi.org/10.1016/j.renene.2017.11.011
https://doi.org/10.1016/j.renene.2017.11.011
https://doi.org/10.1016/j.energy.2021.120908
https://doi.org/10.1016/j.rser.2022.112364
https://doi.org/10.1016/j.energy.2021.120094
https://doi.org/10.1016/j.seta.2022.102360
https://doi.org/10.1016/j.seta.2021.101191
https://doi.org/10.1016/j.apenergy.2022.119682
https://doi.org/10.1016/j.apenergy.2022.119682
https://doi.org/10.1016/j.jclepro.2019.04.331
https://doi.org/10.1016/j.energy.2020.117087
https://doi.org/10.1016/j.energy.2020.117087
https://doi.org/10.1016/j.apenergy.2018.06.112
https://doi.org/10.1016/j.apenergy.2018.06.112
https://doi.org/10.1016/j.apenergy.2021.117291
https://doi.org/10.1109/TII.2019.2916566
https://doi.org/10.1016/j.energy.2022.123574
https://doi.org/10.1016/j.renene.2021.02.103
https://doi.org/10.1016/j.rser.2016.12.029

H.M.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Ridha, H. Hizam, S. Mirjalili et al.

S. Netsanet, D. Zheng, W. Zhang, G. Teshager, Short-term PV power forecasting
using variational mode decomposition integrated with Ant colony optimization and
neural network, Energy Rep. 8 (2022) 2022-2035, https://doi.org/10.1016/j.egyr.
2022.01.120.

F. Han, J. Jiang, Q.H. Ling, B.Y. Su, A survey on metaheuristic optimization for
random single-hidden layer feedforward neural network, Neurocomputing 335
(2019) 261-273, https://doi.org/10.1016/j.neucom.2018.07.080.

L. Zhang, P.N. Suganthan, A survey of randomized algorithms for training neural
networks, Inf. Sci. (NY) 364-365 (2016) 146-155, https://doi.org/10.1016/j.ins.
2016.01.039.

V.K. Ojha, A. Abraham, V. Snasel, Metaheuristic design of feedforward neural
networks: a review of two decades of research, Eng. Appl. Artif. Intell. 60 (2017)
97-116, https://doi.org/10.1016/j.engappai.2017.01.013.

M. Jobayer, M.A.H. Shaikat, M. Naimur Rashid, M.R. Hasan, A systematic review on
predicting PV system parameters using machine learning, Heliyon 9 (2023) 16815,
https://doi.org/10.1016/j.heliyon.2023.e16815.

S. Sobri, S. Koohi-Kamali, N.A. Rahim, Solar photovoltaic generation forecasting
methods: a review, Energy Convers. Manag. 156 (2018) 459-497, https://doi.org/
10.1016/j.enconman.2017.11.019.

A. Mellit, S. Saglam, S.A. Kalogirou, Artificial neural network-based model for es-
timating the produced power ofaphotovoltaic module, Renew. Energy 60 (2013)
71-78, https://doi.org/10.1016/j.renene.2013.04.011.

M. Trigo-Gonzélez, F.J. Batlles, J. Alonso-Montesinos, P. Ferrada, J. del Sagrado,
M. Martinez-Durbén, et al., Hourly PV production estimation by means of an ex-
portable multiple linear regression model, Renew. Energy 135 (2019) 303-312,
https://doi.org/10.1016/j.renene.2018.12.014.

Z. Chen, H. Yu, L. Luo, L. Wu, Q. Zheng, Z. Wu, et al., Rapid and accurate modeling
of PV modules based on extreme learning machine and large datasets of I-V curves,
Appl. Energy 292 (2021) 1-19, https://doi.org/10.1016/j.apenergy.2021.116929.
S. Al-Dahidi, B. Hammad, M. Alrbai, M. Al-Abed, A novel dynamic/adaptive K-
nearest neighbor model for the prediction of solar photovoltaic systems’ perfor-
mance, Results Eng. 22 (2024) 1-12, https://doi.org/10.1016/j.rineng.2024.
102141.

C.J. Huang, P.H. Kuo, Multiple-input deep convolutional neural network model for
short-term photovoltaic power forecasting, IEEE Access 7 (2019) 74822-74834,
https://doi.org/10.1109/ACCESS.2019.2921238.

S. Al-Dahidi, O. Ayadi, J. Adeeb, M. Alrbai, B.R. Qawasmeh, Extreme learning
machines for solar photovoltaic power predictions, Energies (Basel) 11 (2018)
1-18, https://doi.org/10.3390/en11102725.

X. Qing, Y. Niu, Hourly day-ahead solar irradiance prediction using weather fore-
casts by LSTM, Energy 148 (2018) 461-468, https://doi.org/10.1016/j.energy.
2018.01.177.

D. Kothona, I.P. Panapakidis, G.C. Christoforidis, Day-ahead photovoltaic power
prediction based on a hybrid gradient descent and metaheuristic optimizer, Sustain.
Energy Technol. Assess. 57 (2023) 1-12, https://doi.org/10.1016/j.seta.2023.
103309.

Y. Yuan, Q. Yang, J. Ren, K. Li, Z. Wang, Y. Li, et al., Short-term wind power
prediction based on IBOA-AdaBoost-RVM, J. King Saud. Univ. Sci. 36 (2024) 1-9,
https://doi.org/10.1016/j.jksus.2024.103550.

N. Chopra, M. Mohsin Ansari, Golden jackal optimization: a novel nature-inspired
optimizer for engineering applications, Expert Syst. Appl. 198 (2022) 1-15, https://
doi.org/10.1016/j.eswa.2022.116924.

L. Abualigah, D. Yousri, M. Abd Elaziz, A.A. Ewees, M.A.A. Al-qaness,

A.H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm,
Comput. Ind. Eng. 157 (2021) 1-17, https://doi.org/10.1016/j.cie.2021.107250.
D. Yousri, A. Fathy, H. Rezk, T. Sudhakar, M.R. Berber, A reliable approach for
modeling the photovoltaic system under partial shading conditions using three
diode model and hybrid marine predators-slime mould algorithm, Energy Convers.
Manag. 243 (2021) 114269, https://doi.org/10.1016/j.enconman.2021.114269.
M.H. Hassan, S. Kamel, F. Jurado, U. Desideri, Global optimization of economic
load dispatch in large scale power systems using an enhanced social network search
algorithm, Int. J. Electr. Power Energy Syst. 156 (2024) 1-30, https://doi.org/10.
1016/j.ijepes.2023.109719.

E.H. Houssein, A.G. Gad, Y.M. Wazery, P.N. Suganthan, Task scheduling in cloud
computing based on meta-heuristics: review, taxonomy, open challenges, and fu-
ture trends, Swarm Evol. Comput. 62 (2021) 1-41, https://doi.org/10.1016/j.
swevo.2021.100841.

G. Li, H. Hu, Risk design optimization using many-objective evolutionary algorithm
with application to performance-based wind engineering of tall buildings, Struct.
Saf. 48 (2014) 1-14, https://doi.org/10.1016/].strusafe.2014.01.002.

B.A. Fadheel, N.I.A. Wahab, P. Manoharan, A.J. Mahdi, M.A.B.M. Radzi, A.B.C. Soh,
et al., A hybrid sparrow search optimized fractional virtual inertia control for fre-
quency regulation of multi-microgrid system, IEEE Access 12 (2024) 45879-45903,
https://doi.org/10.1109/ACCESS.2024.3376468.

E. Celik, A powerful variant of symbiotic organisms search algorithm for global
optimization, Eng. Appl. Artif. Intell. 87 (2020) 1-14, https://doi.org/10.1016/j.
engappai.2019.103294.

D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Trans.
Evolut. Comput. 1 (1997) 67-82, https://doi.org/10.1109/4235.585893.

Y. Yuan, Q. Yang, J. Ren, X. Mu, Z. Wang, Q. Shen, et al., Attack-defense strategy
assisted osprey optimization algorithm for PEMFC parameters identification,
Renew. Energy 225 (2024) 1-12, https://doi.org/10.1016/j.renene.2024.120211.
C. Ying, W. Wang, J. Yu, Q. Li, D. Yu, J. Liu, Deep learning for renewable energy
forecasting: a taxonomy, and systematic literature review, J. Clean. Prod. 384
(2023) 1-49, https://doi.org/10.1016/j.jclepro.2022.135414.

15

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Next Energy 8 (2025) 100256

A. Keddouda, R. Ihaddadene, A. Boukhari, A. Atia, M. Arici, N. Lebbihiat, et al.,
Solar photovoltaic power prediction using artificial neural network and multiple
regression considering ambient and operating conditions, Energy Convers. Manag.
288 (2023) 1-15, https://doi.org/10.1016/j.enconman.2023.117186.

P. Malik, R. Chandel, S.S. Chandel, A power prediction model and its validation for
a roof top photovoltaic power plant considering module degradation, Sol. Energy
224 (2021) 184-194, https://doi.org/10.1016/j.s0lener.2021.06.015.

B. Abdollahzadeh, F.S. Gharehchopogh, N. Khodadadi, S. Mirjalili, Mountain
Gazelle optimizer: a new nature-inspired metaheuristic algorithm for global opti-
mization problems, Adv. Eng. Softw. 174 (2022) 1-34, https://doi.org/10.1016/].
advengsoft.2022.103282.

S. Das, S.S. Mullick, P.N. Suganthan, Recent advances in differential evolution-an
updated survey, Swarm Evol. Comput. 27 (2016) 1-30, https://doi.org/10.1016/j.
swevo.2016.01.004.

S.Y. Park, J.J. Lee, Stochastic opposition-based learning using a beta distribution in
differential evolution, IEEE Trans. Cyber 46 (2016) 2184-2194, https://doi.org/10.
1109/TCYB.2015.2469722.

G. He, X. li Lu, Quasi opposite-based learning and double evolutionary QPSO with
its application in optimization problems, Eng. Appl. Artif. Intell. 126 (2023) 1-21,
https://doi.org/10.1016/j.engappai.2023.106861.

A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, Marine predators algo-
rithm: a nature-inspired metaheuristic, Expert Syst. Appl. (2020) 113377, https://
doi.org/10.1016/j.eswa.2020.113377.

N.E. Humpbhries, N. Queiroz, J.R.M. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer,
et al., Environmental context explains Levy and Brownian movement patterns of
marine predators, Nature 465 (2010) 1066-1069, https://doi.org/10.1038/
nature09116.

R.N. Mantegna, Fast, accurate algorithm for numerical simulation of Lévy stable
stochastic processes, Phys. Rev. E 49 (1994) 4677-4683, https://doi.org/10.1103/
PhysRevE.49.4677.

X.-S. Yang, Engineering Optimisation: An Introduction with Metaheuristic
Applications, John Wiley and Sons, 2010, https://onlinelibrary.wiley.com/doi/
book/10.1002/9780470640425.

L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A.H. Gandomi, The arithmetic
optimization algorithm, Comput. Methods Appl. Mech. Eng. 376 (2021) 113609,
https://doi.org/10.1016/j.cma.2020.113609.

T.M. Alabi, E.I. Aghimien, F.D. Agbajor, Z. Yang, L. Lu, A.R. Adeoye, et al., A review
on the integrated optimization techniques and machine learning approaches for
modeling, prediction, and decision making on integrated energy systems, Renew.
Energy 194 (2022) 822-849, https://doi.org/10.1016/j.renene.2022.05.123.

E. Gelik, Y. Uzun, E. Kurt, N. Oztiirk, N. Topaloglu, A neural network design for the
estimation of nonlinear behavior of a magnetically-excited piezoelectric harvester,
J. Electron. Mater. 47 (2018) 4412-4420, https://doi.org/10.1007/s11664-018-
6078-z.

R. Ahmed, V. Sreeram, Y. Mishra, M.D. Arif, A review and evaluation of the state-of-
the-art in PV solar power forecasting: techniques and optimization, Renew. Sustain.
Energy Rev. 124 (2020) 1-26, https://doi.org/10.1016/j.rser.2020.109792.

D. Tien Bui, V.H. Nhu, N.D. Hoang, Prediction of soil compression coefficient for
urban housing project using novel integration machine learning approach of swarm
intelligence and multi-layer perceptron neural network, Adv. Eng. Inform. 38
(2018) 593-604, https://doi.org/10.1016/j.a€i.2018.09.005.

R. Khalid, N. Javaid, A survey on hyperparameters optimization algorithms of
forecasting models in smart grid, Sustain. Cities Soc. 61 (2020) 1-25, https://doi.
org/10.1016/j.scs.2020.102275.

K.G. Sheela, S.N. Deepa, Review on methods to fix number of hidden neurons in
neural networks, Math. Probl. Eng. 2013 (2013) 1-12, https://doi.org/10.1155/
2013/425740.

A. Mellit, S. Saglam, S.A. Kalogirou, Artificial neural network-based model for es-
timating the produced power ofaphotovoltaic module, Renew. Energy 60 (2013)
71-78, https://doi.org/10.1016/j.renene.2013.04.011.

J. Zhang, Z. Tan, Y. Wei, An adaptive hybrid model for day-ahead photovoltaic
output power prediction, J. Clean. Prod. 244 (2020) 1-10, https://doi.org/10.
1016/j.jclepro.2019.118858.

T. Ahmad, H. Chen, A review on machine learning forecasting growth trends and
their real-time applications in different energy systems, Sustain. Cities Soc. 54
(2020) 1-27, https://doi.org/10.1016/j.5¢s.2019.102010.

S. Al-Dahidi, O. Ayadi, M. Alrbai, J. Adeeb, Ensemble approach of optimized arti-
ficial neural networks for solar photovoltaic power prediction, IEEE Access 7 (2019)
81741-81758, https://doi.org/10.1109/ACCESS.2019.2923905.

L.A. Ibrahim, T. Khatib, A. Mohamed, W. Elmenreich, Modeling of the output cur-
rent of a photovoltaic grid-connected system using random forests technique,
Energy Explor. Exploit. 36 (2018) 132-148, https://doi.org/10.1177/
0144598717723648.

T. Khatib, W. Elmenreich, Modeling of Photovoltaic Systems Using Matlab:
Simplified green codes, John Wiley & Sons, 2016, https://onlinelibrary.wiley.com/
doi/book/10.1002/9781119118138.

L.A. Ibrahim, M.J. Hossain, B.C. Duck, An optimized offline random forests-based
model for ultra-short-term prediction of PV characteristics, IEEE Trans. Ind. Inf. 16
(2020) 202-214, https://doi.org/10.1109/TI1.2019.2916566.

P.Li, K. Zhou, X. Lu, S. Yang, A hybrid deep learning model for short-term PV power
forecasting, Appl. Energy 259 (2020) 1-11, https://doi.org/10.1016/j.apenergy.
2019.114216.

M. Gao, J. Li, F. Hong, D. Long, Day-ahead power forecasting in a large-scale
photovoltaic plant based on weather classification using LSTM, Energy 187 (2019)
1-12, https://doi.org/10.1016/j.energy.2019.07.168.


https://doi.org/10.1016/j.egyr.2022.01.120
https://doi.org/10.1016/j.egyr.2022.01.120
https://doi.org/10.1016/j.neucom.2018.07.080
https://doi.org/10.1016/j.ins.2016.01.039
https://doi.org/10.1016/j.ins.2016.01.039
https://doi.org/10.1016/j.engappai.2017.01.013
https://doi.org/10.1016/j.heliyon.2023.e16815
https://doi.org/10.1016/j.enconman.2017.11.019
https://doi.org/10.1016/j.enconman.2017.11.019
https://doi.org/10.1016/j.renene.2013.04.011
https://doi.org/10.1016/j.renene.2018.12.014
https://doi.org/10.1016/j.apenergy.2021.116929
https://doi.org/10.1016/j.rineng.2024.102141
https://doi.org/10.1016/j.rineng.2024.102141
https://doi.org/10.1109/ACCESS.2019.2921238
https://doi.org/10.3390/en11102725
https://doi.org/10.1016/j.energy.2018.01.177
https://doi.org/10.1016/j.energy.2018.01.177
https://doi.org/10.1016/j.seta.2023.103309
https://doi.org/10.1016/j.seta.2023.103309
https://doi.org/10.1016/j.jksus.2024.103550
https://doi.org/10.1016/j.eswa.2022.116924
https://doi.org/10.1016/j.eswa.2022.116924
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.enconman.2021.114269
https://doi.org/10.1016/j.ijepes.2023.109719
https://doi.org/10.1016/j.ijepes.2023.109719
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1016/j.strusafe.2014.01.002
https://doi.org/10.1109/ACCESS.2024.3376468
https://doi.org/10.1016/j.engappai.2019.103294
https://doi.org/10.1016/j.engappai.2019.103294
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.renene.2024.120211
https://doi.org/10.1016/j.jclepro.2022.135414
https://doi.org/10.1016/j.enconman.2023.117186
https://doi.org/10.1016/j.solener.2021.06.015
https://doi.org/10.1016/j.advengsoft.2022.103282
https://doi.org/10.1016/j.advengsoft.2022.103282
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1109/TCYB.2015.2469722
https://doi.org/10.1109/TCYB.2015.2469722
https://doi.org/10.1016/j.engappai.2023.106861
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1038/nature09116
https://doi.org/10.1038/nature09116
https://doi.org/10.1103/PhysRevE.49.4677
https://doi.org/10.1103/PhysRevE.49.4677
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470640425
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470640425
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.renene.2022.05.123
https://doi.org/10.1007/s11664-018-6078-z
https://doi.org/10.1007/s11664-018-6078-z
https://doi.org/10.1016/j.rser.2020.109792
https://doi.org/10.1016/j.aei.2018.09.005
https://doi.org/10.1016/j.scs.2020.102275
https://doi.org/10.1016/j.scs.2020.102275
https://doi.org/10.1155/2013/425740
https://doi.org/10.1155/2013/425740
https://doi.org/10.1016/j.renene.2013.04.011
https://doi.org/10.1016/j.jclepro.2019.118858
https://doi.org/10.1016/j.jclepro.2019.118858
https://doi.org/10.1016/j.scs.2019.102010
https://doi.org/10.1109/ACCESS.2019.2923905
https://doi.org/10.1177/0144598717723648
https://doi.org/10.1177/0144598717723648
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119118138
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119118138
https://doi.org/10.1109/TII.2019.2916566
https://doi.org/10.1016/j.apenergy.2019.114216
https://doi.org/10.1016/j.apenergy.2019.114216
https://doi.org/10.1016/j.energy.2019.07.168

	A novel prediction of the PV system output current based on integration of optimized hyperparameters of multi-layer neural networks and polynomial regression models
	1 Introduction
	2 Equivalent circuit of PV model
	3 Methodology
	3.1 Mountain Gazelle optimizer (MGO)
	3.2 The proposed improved MGO
	3.3 Hybrid model for predicting output power of the PV system
	3.3.1 Artificial neural network (ANN)
	3.3.2 Polynomial regression (PR) model

	3.4 Model assessment criteria

	4 Experiment results and discussion
	5 Conclusion and future direction
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supporting material
	References




