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This study investigates the composition, hydrolysis, fermentation, kinetic studies and optimization by

response surface methodology (RSM) of ten different lignocellulosic materials in ethanol production

using enzymatic hydrolysis of isolated Trichoderma reesei and Aspergillus niger and fermentation by

Zymomonas mobilis and Saccharomyces cerevisiae. Proximate and ultimate analyses reveal that

sugarcane bagasse and rice husk are ideal feedstocks due to their high volatile matter, low moisture, and

ash content, offering more fermentable carbohydrates. The highest glucose concentrations were

achieved from sugarcane bagasse (0.5689 g L−1) using T. reesei and from rice husk (0.5803 g L−1) using

A. niger. Pretreatment increased glucose yields, with rice husk (RHAn) yielding 9.3 g L−1 ethanol in 60 h

and sugarcane bagasse (SBTr) yielding 8.1 g L−1 in 48 h, and the particle size reduction to 75 mm

enhanced glucose yields due to increased surface area. Kinetic models, including the Monod and

Michaelis–Menten models, were used to describe ethanol production, with RHAn exhibiting the highest

growth parameters. This study reports optimized ethanol production that achieved maximum yields

under controlled conditions, further supporting the feasibility of large-scale bioethanol production.
Introduction

Due to the worldwide overreliance on fossil fuel-based energy
and increasing concerns about the environment, there is
a global interest in developing alternative fuel and energy
sources that are renewable and sustainable.1,2 Some of the
physical effects of climate change that have already occurred
include sea level rise, melting glaciers and polar ice, and
increased risks of heatwaves, oods, and droughts. Therefore,
a rapid and signicant reduction in greenhouse gas emissions
is required to prevent these effects from worsening and
threatening the survival of most life on Earth.3,4

Two-thirds (66%) of the world's energy consumption comes
from conventional nonrenewable fuels, including coal (27%),
petrol (34%), and oil (24%). This has led to signicant price
increases and substantial environmental risks such as climate
change and global warming.5 Renewable energy sources, such
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as biomass, solar, wind, hydropower, biodiesel and geothermal
energy,2,6 have emerged as competitive substitutes for fossil
fuels. Over the last three decades, 56% of research studies on
renewable energy have focused on biomass, which is considered
an ideal substitute for fossil fuels as an energy source.7–9

With an annual global production of over 182 billion tonnes,
of which only about 8 billion tonnes are currently utilised,
lignocellulosic biomass is the most common renewable raw
resource.10 The renewable energy generated from agricultural
biomasses has the potential to substitute fossil fuel genera-
tion.11 Agricultural waste can be safely and affordably disposed
of via bioconversion, which also has the ability to turn ligno-
cellulosic wastes into useful forms like reducing sugars for
ethanol production.12–14 About 3–4% of all ethanol produced
worldwide is produced synthetically. The remainder is
produced through the fermentation of biomass, comprising
mostly cereals and sugar crops such as cane and beetroot.15,16

Lignocellulosic biomass comprises about 30% to 50%
cellulose, 15 to 30 weight percent (wt) of hemicellulose, and 10
to 30 weight percent (wt) of lignin, as well as smaller amounts of
(organic and inorganic) extractives and other inorganic
compounds, depending on the type of plant.17,18 Cellulosic
ethanol, another name for second-generation (2 G) ethanol, is
generated from lignocellulosic biomass.19 The primary sources
of biomass are forestry wastes, crops, animal and industrial
residues, sewage, and municipal solid waste. Biomass is mostly
sourced from plants and plant-derived chemicals.20
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The cultivation and processing of maize (corn stover), wheat
(wheat straw), rice (rice straw), sorghum (sorghum stalks),
barley (barley straw) and sugarcane (sugarcane bagasse) are the
main sources of agro-based lignocellulosics with high cellulose
and hemicellulose contents.15,18 Therefore, it is possible to
establish non-food biomass feedstock for the environmentally-
friendly, sustainable manufacturing of transportation fuels
from biomass resources. The three primary steps of the
bioconversion process are pretreatment, hydrolysis, and the
fermentation process.21 Kinetic models are required for chem-
ical and biochemical processes because they describe the
process performance. For example, enzymatic hydrolysis kinetic
models can be used to understand how an enzyme interacts
with its substrate in the generation of ethanol from lignocel-
lulose materials. A few investigations studied the kinetics and
optimization of the process variables of ethanol production
from lignocellulose materials. For example, to maximises the
hydrolysis and fermentation of Colocynthis vulgaris Shrad seed
shell (CVSSS), the Box–Behnken Design (BBD) of Response
Surface Methodology (RSM) was used and a kinetic study was
conducted. However, their investigation was restricted to
a single culture (Aspergillus niger). With a yield of 0.38 g ethanol
per g substrate, volumetric productivity of 0.64 g L−1 h−1, and
fermentation efficiency of 73.6%, rice straw (RS) grown with
Candida tropicalis achieved the highest ethanol concentration
of 15.3 g L−1 in a 24 hours period.22,23

In a previous study,24 the operating conditions of the xylanase
production process were optimised (medium pH and incubation
temperature). Bioethanol was synthesised from lignocellulosic
biomass using xylanase. Other hydrolytic enzymes (Aspergillus
niger) produce xylanase under submerged fermentation when oil
palm empty fruit brunches were used as carbon sources. In
another study, the validity of the kinetic model was tested using
three different agri-food residues: rice husks, wheat straw, and
exhausted sugar beetroot pulp.25 It was discovered that some
crucial operating variables, like the enzyme dose and the inoc-
ulum strength, must be well coupled to obtain the maximum
yield from residues. Two kinetic models were combined to create
a general kinetic model for the simultaneous saccharication
and fermentation of lignocellulosic materials.26,27

The objectives of this study are to carry out the kinetic
studies of enzymatic hydrolysis and fermentation, and to opti-
mize the ethanol production from lignocellulose materials
using a mixed culture of isolated Aspergillus niger, Trichoderma
reesei, (enzymatic hydrolysis) and Saccharomyces cerevisiae and
Zymomonas mobilis (fermentation). The novelty of this study lies
in the synergistic use of mixed microbial cultures for efficient
ethanol production from lignocellulosic biomass. Additionally,
the study's kinetic analysis and optimization strategies provide
valuable insights to enhance the sustainability and economic
feasibility of bioethanol production.

Materials and methods
Sample collection and preparations

The lignocellulose feedstock used include (2 kg each) rice husk,
maize straw, cob and husk, millet straw and husk, corn straw
26092 | RSC Adv., 2025, 15, 26091–26103
and husk, groundnut shell and sugarcane bagasse. Before
characterisation, the samples were washed with distilled water
and oven-dried for 48 h at 70 °C. The dried substrates were
stored at room temperature in polyethylene bags.

Lignocellulosic characterisation

The proximate analysis of the samples was conducted in
accordance with ASTM Standard D7582-12. This included the
determination of the moisture content, volatile matter, ash
content, and xed carbon. Moisture was measured by oven-
drying at 105 °C until a constant weight was achieved. The
volatile matter was determined by heating samples in a muffle
furnace at 950 °C for 7 minutes, and the ash content was
determined by combustion at 750 °C for 6 hours. Fixed carbon
was calculated by difference.

The ultimate analysis was carried out based on ASTM Stan-
dard D3176-15, supplemented by established procedures
from.28 The analysis quantied carbon (C), hydrogen (H),
nitrogen (N), sulfur (S), and oxygen (O) content. A CHNS
elemental analyzer (e.g., PerkinElmer 2400 Series II) was used
for C, H, N, and S, while the oxygen content was calculated by
difference. All proximate and ultimate analyses were performed
in duplicate, and the mean values were recorded. The standard
deviation was calculated and reported in the corresponding
results tables to reect the experimental variability.

Isolation of micro-organisms

A. niger was isolated from bread mold, and T. reesei, Z. mobilis
and S. cerevisiae were isolated from decaying wood and termite
nest. To produce a stock solution, the samples were combined
with sterile distilled water (DW). Then, using sterile test tubes,
a series of dilutions were made up to a dilution factor of 10−7.
The microorganisms were cultured and maintained on Potato
Dextrose Agar (PDA) from room temperature up to 32 °C, and
cultured until a pure isolate was obtained as reported earlier.29

Pretreatment of feedstock

Initially, two kg each of the feedstock was blended and
delignied by ammonia steeping technique, as previously
described by other authors.30 The feedstock was pretreated
using diluted alkaline. A 250 ml Erlenmeyer ask containing
10 g of biomass and 100ml of 2.9 MNH4OHwas shaken for 24 h
at 25 °C. Distilled water was used to lter and completely wash
the feedstock. Additionally, a solid loading ratio was performed
using a dry feedstock loading of 1 : 10 w/v biomass/water. The
mixture was then autoclaved for one hour at 121 °C, allowed to
cool to room temperature, and neutralised with 10 mol L−1

NaOH to reach pH 5.0. The pretreatment was conducted in
duplicate for each feedstock type.

Hydrolysis of feedstock

Samples were weighed in batches and transferred into a 100 ml
shake-ask of 2 g each, and charged with 5ml of media agar and
inoculated with a suspension of 0.1 g of either T. reesei or A.
niger with 100 ml of 0.1 M sodium acetate buffer solution at pH
© 2025 The Author(s). Published by the Royal Society of Chemistry
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4.5. The batches were then subjected to a shaker for agitation at
150 rpm and temperature of 50 °C. Furthermore, a separate
batch of 2 g of treated and untreated feedstock was transferred
to a 100 ml shaker ask, and 0.1 g of T. reesei or A. niger was
added with 100ml of 0.1M sodium acetate buffer solution at pH
4.5. The ask was put on a shaker set at 50 °C and an agitation
rate of 150 rpm, and allowed to equilibrate for 5 h. The samples
were ltered and analyzed for glucose. Samples were collected
every 0.5 h to examine the glucose concentration of the feed-
stocks using a spectrophotometric analyzer. The hydrolysis of
both treated and untreated feedstocks was performed in
duplicate shaker ask experiments under identical conditions.

Determination of glucose

The dinitrosalicylic acid (DNS) colorimetric method was used to
measure the amount of glucose present in the hydrolysed
feedstocks, as described in the literature.31 It was assayed by
adding 3 ml of 3,5-DNS reagents to 3 ml of the sample. The
glucose concentration of the treated sample was determined for
the feedstock with the highest cellulose. The effects of particle
size and substrate pretreatment on the degree of hydrolysis
were examined in a different run. Each run was duplicated, and
the average value of each set of runs was reported.

Effect of particle sizes of the feedstocks

The substrate of each feedstock was passed through different
sizes of Tyler standard sieves. The particles sizes were <75 mm,
75 mm, 150 mm, 300 mm and 425 mm. Each particle size was
hydrolyzed and the glucose concentration was analyzed.

Fermentation

The 500 ml of ltrate that was obtained aer the hydrolysis
process (glucose syrup solution) was mixed with the fungus (S.
cerevisiae) and bacteria (Z. mobilis) inoculum using the
stationary method of fermentation. The reagent bottles that
contained the glucose solutions were examined during the
fermentation process to determine the amount of ethanol
produced using a spectrophotometric method, as described
earlier. The spectrophotometer was switched on and allowed to
warm up for 10 min to stabilize. A standard ethanol calibration
curve was rst prepared by reacting known concentrations of
ethanol with the chromogenic reagent. The reaction mixtures
were incubated in a water bath at 60 °C for 20 minutes to ensure
complete color development. A blank solution containing all
reagents except ethanol was prepared and used to calibrate the
spectrophotometer. The wavelength was set to the maximum
absorbance for the ethanol–reagent complex, typically at
540 nm for the reagent used (potassium dichromate). Each
sample was reacted with the same reagent under identical
conditions. Aer incubation, the absorbance was measured
against the blank. The ethanol concentration in the unknown
samples was calculated by comparing their absorbance values
with the standard calibration curve. All measurements were
carried out in duplicate to ensure accuracy and reliability.

To support the growth of both Z. mobilis and S. cerevisiae, the
hydrolysate's pH was brought to 5 prior to fermentation using
© 2025 The Author(s). Published by the Royal Society of Chemistry
sodiumhydroxide (NaCl) and hydrochloric acid (HCl). To collects
the distillate, the generated ethanol is poured into round-bottom
asks fastened to the opposite end of the distillation column. To
heat the round-bottomed ask holding the ethanol–water
mixture, the heating mantle's temperature was set to 78 °C.

Monod equation

Microbial growth as a function of ethanol and total reducing
sugar (TRS) concentration is related by the Monod kinetic
expression, which includes the non-competitive substrate and
product inhibition:32

m ¼ mmaxS

Ks þ S
(1)

where, the limiting substrate concentration is S (g L−1), the
maximum specic growth rate is mmax (h

−1), and the saturation
constant is Ks (g L−1).

Michaelis–Menten equation

Based on simplications and presumptions like the quasi-
steady-state assumption, the Michaelis–Menten rate law
proposed an approximate kinetic formulation for the kinetic
study of biological reactions. The kinetics of the enzymatic
hydrolysis can be described by the Michaelis–Menten equation,
as follows:33

rA ¼ VmaxðSÞ
Km þ ðSÞ (2)

where rs is the rate of reaction, Vmax the maximum rate of the
reaction, S the substrate concentration, and Km is the Michae-
lis–Menten constant.

�1

rs
¼ 1

Vmax

þ Km

Vmax

�
1

S

�
(3)

For a plot of � 1
rs
against

�
1
S

�
for a straight line, Vmax and Km

can be calculated from the intercept and the slope, respectively.

Optimization procedure

Response Surface Methodology (RSM) was used to determine
the optimal performance. Meanwhile, the central composite
design (CCD), which developed the correlation between the
independent variables (pH, substrate concentration, and
fermentation time), was utilised to forecast and validate the
model. The response is the dependent variable (ethanol
production). The levels of factors are presented in Table 1. RSM
analysis was performed based on duplicate experimental runs
for each design point to ensure the accuracy and reliability of
the predicted model. ANOVA was used to validate the model's
statistical signicance.

Analysis of variance (ANOVA) was used to determine the
statistical signicance of the generated regression model. P-
Values were estimated, with a p-value of less than 5% serving as
the signicance limit similar to previous studies in the
literature.34,35
RSC Adv., 2025, 15, 26091–26103 | 26093



Table 1 Independent variables and their coded levels

Factors Variables Levels

pH X1 4.5 5
Substrate concentration X2 1 5
Fermentation time X3 35 50

RSC Advances Paper
Results and discussion
Composition of the feedstocks

Proximate analysis was used to determine the moisture, xed
carbon, volatiles and ash content of the feedstocks. These levels
are used to predict the behavior of the samples in hydrolysis
and fermentation processes. The ash component of the proxi-
mate analysis denes the inorganic residue remaining aer
ignition of the combustible biomass, while the xed carbon and
volatile matter content signicantly affect the presence of the C,
H, and O content of biomass.36,37

For bioethanol production, feedstocks with high volatile
matter, moderate moisture content, and low ash content are
preferred, as they contain more fermentable carbohydrates.11

The proximate results are presented in Table 2.
The proximate and ultimate analysis results are presented as

mean ± standard deviation, based on two replicates. For
example, the ash content of millet husk was 9.95% ± 0.17%,
and the carbon content of rice husk was 47.2% ± 0.46%. This
accounts for variability in the sample handling and equipment
precision.
Table 2 Proximate analysis of biomass feedstocks with estimated error

Feedstock Ash (%) Moisture cont

Millet husk 9.95 � 0.12 4.56 � 0.10
Millet cob 11.79 � 0.15 2.78 � 0.09
Sorghum husk 11.50 � 0.14 3.14 � 0.10
Sorghum cob 12.00 � 0.15 4.23 � 0.11
Maize husk 11.22 � 0.13 4.76 � 0.12
Maize cob 13.00 � 0.15 4.11 � 0.11
Maize straw 10.50 � 0.12 4.42 � 0.10
Rice husk 10.37 � 0.13 2.11 � 0.08
Groundnut shell 15.37 � 0.18 4.63 � 0.12
Sugarcane bagasse 10.97 � 0.14 2.74 � 0.09

Table 3 Ultimate analysis of feedstocks with ± SD

Feedstock Carbon Hydrogen

Millet husk 42.40 � 4.24 6.32 � 0.63
Millet cob 41.80 � 4.18 6.36 � 0.64
Sorghum husk 43.70 � 4.37 7.41 � 0.74
Sorghum cob 43.10 � 4.31 7.70 � 0.77
Maize husk 44.10 � 4.41 7.86 � 0.79
Maize cob 42.90 � 4.29 6.99 � 0.70
Maize straw 43.10 � 4.31 6.99 � 0.70
Rice husk 47.20 � 4.72 7.27 � 0.73
Groundnut shell 41.80 � 4.18 7.32 � 0.73
Sugarcane bagasse 49.80 � 4.98 8.44 � 0.84

26094 | RSC Adv., 2025, 15, 26091–26103
Sorghum cob, millet cob, and rice husk are ideal due to their
high volatile matter and relatively low moisture and ash
content, making them rich in cellulose and hemicellulose for
enzymatic hydrolysis. Sugarcane bagasse is also a strong
candidate due to its widespread use in ethanol production. The
lower xed carbon, as seen in sugarcane bagasse (11.60%),
indicates lower lignin content, reducing the need for extensive
pre-treatment. However, feedstocks with high ash content may
pose challenges due to the non-fermentable residues.38,39

Overall, sorghum cob, millet cob, rice husk and sugarcane
bagasse are the most suitable for bioethanol production based
on their composition.40

The nal analysis shows how much cross-linking there is,
and how many high molecular weight compounds there are in
the feedstocks. The nal examination of feedstocks aids in
determining their eligibility for the manufacturing of bio-
ethanol based on the concentration of carbon (C), hydrogen (H),
oxygen (O), nitrogen (N), and sulphur (S) (Table 3).41

The high carbon and hydrogen content indicates the pres-
ence of carbohydrates necessary for fermentation, while the
oxygen content reects the proportion of cellulose, hemi-
cellulose, and lignin. Sugarcane bagasse (49.8% C, 8.32% H)
and rice husk (47.2% C, 8.27% H) have the highest carbon
content, suggesting the presence of a signicant amount of
lignocellulosic material. However, they may require pre-
treatment to break down the lignin and release the ferment-
able sugars. Sugarcane bagasse42 and rice husk38 are considered
as good candidates, which is partially due to their high oxygen
content, indicating a good proportion of carbohydrates. Low
bars

ent (%) Fixed carbon (%) Volatile matter (%)

5.76 � 0.15 40.2 � 0.5
37.34 � 0.40 42.6 � 0.6
41.49 � 0.45 44.7 � 0.5
38.39 � 0.40 56.2 � 0.7
38.97 � 0.35 33.2 � 0.6
2.58 � 0.10 31.1 � 0.4
2.58 � 0.10 33.5 � 0.5

38.61 � 0.38 62.2 � 0.8
31.50 � 0.33 34.0 � 0.5
11.60 � 0.25 63.4 � 0.8

Nitrogen Oxygen Sulphur

0.03 � 0.00 61.00 � 6.10 0.13 � 0.01
0.02 � 0.00 94.00 � 9.40 0.82 � 0.08
0.02 � 0.00 69.00 � 6.90 0.51 � 0.05
0.03 � 0.00 47.00 � 4.70 0.32 � 0.03
0.02 � 0.00 62.00 � 6.20 0.11 � 0.01
0.02 � 0.00 71.00 � 7.10 0.20 � 0.02
0.02 � 0.00 71.00 � 7.10 0.20 � 0.02
0.02 � 0.00 57.00 � 5.70 0.11 � 0.01
0.08 � 0.01 20.00 � 2.00 0.29 � 0.03
0.02 � 0.00 67.00 � 6.70 0.05 � 0.01

© 2025 The Author(s). Published by the Royal Society of Chemistry
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nitrogen and sulfur levels are desirable, as they reduce the
formation of inhibitory compounds during fermentation.
Sugarcane bagasse (0.018% N, 0.05% S) and rice husk
(0.019% N, 0.11% S) have the lowest levels, making them
favorable for ethanol production.
Glucose composition

The cellulose component in Sugar bagasse (SB) with respect to
A. niger hydrolysate was found to be the highest compared to the
other nine feedstocks in this study. Meanwhile, the lowest was
found in millet cob. Furthermore, the cellulose component in
Rice Husk (RH) with respect to T. reesei hydrolysate was found
to be the highest with the least frommaize cob. Fig. 1 shows the
glucose concentration of the feedstocks aer 10 h.

The glucose concentrations of 0.5689 and 0.5803 g L−1 were
found for the sugarcane bagasse with T. reesei (SBTr) and rice
husk with A. niger (RHAn), respectively. Hence, these two feed-
stocks were used for further study. This study demonstrated
a low hydrolysis time of 10 h due to the nature of the feedstock.
Additionally, cheap production costs for industrial use and
a fast hydrolysis time would be advantageous for small
production processes.43–46
Effect of pretreatment on feedstocks

The effects of pretreatment on the feedstocks and the glucose
concentration with respect to time are presented in Fig. 2 for
treated and untreated glucose concentration of SBTr and
RHAn.47

Polysaccharide is typically le behind aer alkaline
pretreatment techniques remove the lignin component from
Fig. 1 Glucose concentration.

© 2025 The Author(s). Published by the Royal Society of Chemistry
lignocellulosic biomass. Meanwhile, acid pretreatment tech-
niques have a higher recovery of cellulose components because
the hemicelluloses are removed.48,49 The untreated samples
yield less glucose concentration compared to the treated
substrate due to the absences of lignin and hemicelluloses or
their inhibition (lignin obstructs hydrolysis). The pretreatment
increases the substrate's inner surface area, which helps to
create an environment that is favorable for enzymatic hydrolysis
to occur. The glucose yield from RHAn is greater than that of
SBTr. This is because the three major factors in enzymatic
hydrolysis are the nature of the enzyme, the structure of the
substrate system, and the interactions between the enzyme and
substrate. This nding shows that pretreatment in enzymatic
hydrolysis is benecial in cellulose production, which agrees
with other studies.50–52
Effects of particle size on the feedstocks

A key factor in the economy of glucose production is the feed-
stock particle size, which typically has a benecial impact on the
hydrolysis glucose yields. Fig. 3 shows the effects of the particle
size on the glucose concentration.

In this study, it was found that the improved yield can be
ascribed to the increase in the specic area and the cellulose
availability for hydrolysis. By increasing the specic surface
area, the decreasing particle size improves the hydrolysis yields.
The best-performing particle size was 75 mm for the glucose
concentration in both SBTr and RHAn. Aderemi et al. (2008)
observed that when the size of the rice straw particles decreased
from 425 to 75 mm, the amount of glucose produced increased
from 43% to 87%. However, further reduction of the particle
RSC Adv., 2025, 15, 26091–26103 | 26095



Fig. 2 Treated and untreated glucose yields of SBTr and RHAn.

Fig. 3 Effects of particle size on glucose concentration in (a) SBTr and (b) RHAn.

RSC Advances Paper
size below this point has no effect on the amount of glucose
produced.30

Kinetic model for hydrolysis

The Lineweaver–Burk linearization models of the Michaelis–
Menten equation was used to determine the rmax and Km values.
Fig. 4 depicts the Lineweaver–Burk plot of the Michaelis–
Menten kinetics.

The kinetic parameters were determined using the Line-
weaver–Burk model at a xed temperature (50 °C), pH (5) and
enzyme amount (0.1 g L−1) with varied substrate concentration.
The kinetic parameters were estimated, where rmax is 5.9 g
L−1 min−1 and Km is 14.41 g L−1, respectively. The slope reects
the enzyme efficiency, helping to optimize the bioethanol
production by identifying the ideal feedstock and enzymatic
conditions. Previously, A. niger was used to hydrolyze the sago
starch, where the kinetic parameters rmax and Km were deter-
mined to be 4.78 g L−1 min−1 and 0.6 g L−1, respectively.53 The
26096 | RSC Adv., 2025, 15, 26091–26103
substrate plays a key role in determining the kinetic parameters.
The disparity in the obtained values are due to the differences in
the hydrolysis conditions, including the use of different
substrates. A similar scenario has been reported earlier.54

According to the evaluated kinetic parameters, the model
equation in this study is given as follows:

r ¼ 5:9Cs

14:41þ Cs

(4)

The consistency of this model equation was tested with the
generated data to evaluate its reliability. A comparison of the
model-predicted rate against the experimentally obtained rate is
shown in Fig. 5.

To validate the model, a comparison between the predicted
and experimentally observed hydrolysis rates was performed, as
shown in Fig. 5. To further bolster the reliability of the kinetic
model, the following statistical analyses were conducted. The R2
© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Lineweaver–Burk plot of Michaelis–Menten kinetics.

Fig. 5 Comparison of model predicted rate with experimental results.

Paper RSC Advances
value for the model t was 0.981, indicating that the kinetic
model explained 98.1% of the variability in the experimental
data. The Root Mean Square Error (RMSE) between the pre-
dicted and observed rates was 0.23 g L−1 min−1, conrming the
low predictive error. Residual plots showed no clear trend,
suggesting that the model assumptions (linearity and homo-
scedasticity) were valid and the residuals were randomly
distributed.

These metrics conrm that the Lineweaver–Burk model
provided an excellent t to the experimental data, supporting its
use for predictive analysis in optimizing the hydrolysis condi-
tions. The validated kinetic model can be used for scale-up
simulations and optimizing operational parameters for enzy-
matic hydrolysis in bioethanol production.

Fermentation of hydrolysates

Alkali/acid pretreatment was carried out as necessary before
fermentation, and the hydrolysates that had been pretreated
were then fermented. Hydrolysate from the sugar bagasse and
rice husk have shown the highest cellulose generation based on
the A. niger and T. reesei strains. Therefore, they were selected
for fermentation using mixed S. cerevisiae/Z. mobilis, with S.
cerevisiae and Z. mobilis as the inoculums. Furthermore,
a mixed culture of S. cerevisiae/Z. mobilis was studied since only
© 2025 The Author(s). Published by the Royal Society of Chemistry
limited research has examined how the twomicrobes interact to
affect the hydrolysate made from lignocellulosic materials.

Under the fermentation conditions of 30 °C, pH 5 and
120 rpm, the reducing sugar consumption indicated the exis-
tence of a nutrient limitation or inhibitory metabolites in the
medium, while the accumulation of reducing sugar represses
the production of cellulose.55 Fig. 6 shows the ethanol produc-
tion with fermentation time.

The fermentation study demonstrated that the mixed S.
cerevisiae/Z. mobilis cultures produced the highest ethanol yield
in both SBTr and RHAn hydrolysates, indicating a synergistic
effect between the two strains. The peak ethanol production
times varied, with mixed cultures reaching their highest yield at
60 h for RHAn hydrolysate (9.3 g L−1) and 48 h for SBTr
hydrolysate (8.1 g L−1), surpassing the individual strains.
However, the combination of both strains likely enhances sugar
utilization, overcoming the challenge of fermenting hexose and
pentose sugars in lignocellulosic hydrolysates. This highlights
the potential of mixed cultures to improve ethanol yield and
reduce production costs, making bioethanol production more
viable. This nding aligned with the literature nding.23 Addi-
tionally, factors like pH, temperature, and incubation time play
crucial roles in optimizing microbial metabolism, emphasizing
the need for precise control of fermentation conditions for
RSC Adv., 2025, 15, 26091–26103 | 26097



Fig. 6 Ethanol production over fermentation time: (a) SBTr fermented hydrolysate and (b) RHAn fermented hydrolysate.

Fig. 7 Change in pH for various hydrolysates.
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maximum ethanol output.56 Fig. 7 shows the change in pH for
various hydrolysates during fermentation.

The gradual decrease in pH from 5 to around 4.5 during
fermentation indicates microbial activity and the production of
organic acids alongside ethanol synthesis. The stabilization of
pH at 4.5 aligns with the optimal range for yeast and bacterial
fermentation, ensuring efficient enzymatic activity. The obser-
vation that ethanol production is inuenced by pH and incu-
bation temperature supports previous studies,57,58 emphasizing
the need for controlled fermentation conditions to maximize
yield. The ability of the tested strains to adapt to the fermen-
tation environment suggests their suitability for large-scale
ethanol production. Given the importance of pH in microbial
metabolism, further investigations into the optimal pH range
(4.5–4.7) could enhance the ethanol yield, making the process
more efficient and economically viable.
Kinetic model for ethanol production

The ethanol produced with RHAn hydrolysate demonstrated the
highest yield with the mixed S. cerevisiae/Z. mobilis of 9.3 g L−1.
26098 | RSC Adv., 2025, 15, 26091–26103
It is therefore used for the study of kinetic growth using the
Monod equation. Fig. 8 shows the plot of reciprocals of specic
microbial growth rates against reciprocals of the substrate
concentration.

The kinetic parameters mmax (2.5695) and ks (26.6133)
exhibited a very high regression coefficient r2 = 9966, as
determined from the intercept and slope, respectively. The r2 =
0.9966 value indicates that the model adequately describes the
production of ethanol by the mixed S. cerevisiae/Z. mobilis
culture during fermentation of RHAn hydrolysate. Therefore,
the model equation is as follows:

m ¼ 2:5695s

2:66133s
(5)

Other researchers59 reported on the growth kinetic parame-
ters for rice hydrolysate fermented by C. acetobutylicum as mmax

(4.4649) and ks (2.8035) with r2 = 0.9823. The same researchers
stated that the lower ks (<5) value shows the innate affinity of the
microorganism for the substrate because its reciprocal charac-
terises the cell's affinity for the substrate.
© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Plot of the reciprocals of specific microbial growth rates against the reciprocals of substrate concentration.
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Ethanol production optimization

Table 4 presents the experimental design for ethanol produc-
tion using a CCD, where the pH (A), substrate concentration (B),
and fermentation time (C) were varied across 20 experimental
runs to observe their effects on the ethanol yield (%V/Wt).

The results indicate that ethanol production uctuates with
changes in these factors, with the highest yield (10.5% V/Wt)
occurring at pH 4.5, substrate concentration of 1 g L−1, and
fermentation time of 50 hours (Run 9). In contrast, lower
ethanol yields were observed at higher pH values (e.g., Run 1
with pH 5.0, yielding 4.8%). This suggests that a lower pH
(around 4.5) and longer fermentation time enhance ethanol
production, aligning with optimal microbial fermentation
conditions. This study highlights the signicance of optimizing
these parameters to efficiently maximize the ethanol yield.

Table 5 presents the Analysis of Variance (ANOVA) results for
ethanol production, evaluating the statistical signicance of the
Table 4 Experimental design based on CCD for ethanol production

Run A: pH
B: Substrate
concentration (g L−1)

1 5.00 5
2 4.75 1
3 4.5.0 1
4 4.75 5
5 4.75 3
6 4.75 3
7 5.00 1
8 5.00 1
9 4.50 1
10 4.50 5
11 4.75 3
12 4.75 3
13 5.00 3
14 4.75 3
15 4.75 3
16 4.75 3
17 4.75 3
18 5.00 5
19 4.50 5
20 4.50 3

© 2025 The Author(s). Published by the Royal Society of Chemistry
factors (pH, substrate concentration, and fermentation time) on
the ethanol yield.

The model is signicant (p < 0.0001, F = 73.13), indicating
that the chosen factors strongly inuence ethanol production.
Among the individual factors, pH (A) has the highest impact (F
= 295.75, p < 0.0001), followed by the substrate concentration
(B, F= 198.33, p < 0.0001) and fermentation time (C, F= 84.79, p
< 0.0001). The quadratic terms A2 (p = 0.0273) and C2 (p =

0.0002) also signicantly affect the ethanol yield, suggesting
a nonlinear relationship. However, the interaction terms AB, AC,
and BC are not signicant, indicating that the combined effects
of these factors do not notably impact ethanol production. The
lack of t is not signicant (p = 0.1519), conrming the model's
reliability for predicting the ethanol yield. The developed
empirical model equation represents the relationship between
the ethanol production (response variable) and the indepen-
dent factors:
C: Fermentation
time (Hour)

Ethanol production
(%V/Wt)

35.0 4.80
42.5 7.50
35.0 9.70
42.5 5.30
42.5 6.90
35.0 6.70
35.0 6.70
50.0 8.40
50.0 10.5
50.0 8.60
42.5 6.70
42.5 7.00
42.5 5.70
42.5 7.10
50.0 8.30
42.5 7.20
42.5 7.00
50.0 6.30
35.0 7.40
42.5 8.40

RSC Adv., 2025, 15, 26091–26103 | 26099



Table 5 Analysis of variance (ANOVA) for ethanol production

Source Sum of squares df Mean square F value p-Value Prob > F

Model 35.89 9 3.99 73.13 <0.0001 Signicant
A-pH 16.13 1 16.13 295.75 <0.0001
B-substrate concentration 10.82 1 10.82 198.33 <0.0001
C-Fermentation time 4.62 1 4.62 84.79 <0.0001
AB 5.000 × 10−3 1 5.000 × 10−3 0.092 0.7683
AC 0.18 1 0.18 3.30 0.0993
BC 5.000 × 10−3 1 5.000 × 10−3 0.092 0.7683
A2 0.36 1 0.36 6.67 0.0273
B2 0.23 1 0.23 4.14 0.0694
C2 1.82 1 1.82 33.38 0.0002
Residual 0.55 10 0.055
Lack of t 0.40 5 0.079 2.68 0.1519 Not signicant
Pure error 0.15 5 0.030
Cor total 36.44 19
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Ethanol production (g L−1) = 6.86 − 1.27 × A − 1.04

× B + 0.68 × C + 0.025 × AB

+ 0.15 × AC + 0.025 × BC + 0.36

× A2 − 0.29 × B2 + 0.81 × C2 (6)

This equation indicates that the pH and substrate concen-
tration have a negative effect on the ethanol yield, meaning that
higher values reduce the ethanol production. The fermentation
time has a positive effect, suggesting that a longer fermentation
time enhances the ethanol yield. The interaction terms AB, AC,
and BC are minor, indicating weak combined effects. This
Fig. 9 Predicted values versus the actual values for the ethanol product

26100 | RSC Adv., 2025, 15, 26091–26103
model helps predict the ethanol yield based on the selected
fermentation conditions, and guides the optimization for the
maximum production efficiency.
Response surface analysis

As shown in Fig. 9, the predicted and actual values are quite
similar. This graphic suggests that independent variables and
the response can be correlated by the developed model. This
pattern suggests that the model is appropriate for the current
investigation.
ion.

© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 10 Surface plots of interactions as a function of (a) substrate concentration and pH, (b) fermentation time and pH, and (c) fermentation time
and substrate concentration.
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Plotting the model's surface responses clearly demonstrates
how the independent variables affect the responses. Fig. 10
shows the response surface plots, displaying the ethanol
production across various independent variable combinations
and their combined effects.

Fig. 9 presents the interactive effects of ethanol production
with two independent variables, while keeping the other vari-
able at a xed level. At high and low levels of some of the
interactions, the ethanol production is minimal. However, there
is a region where no change occurred in the adsorption
capacity. This region shows that an optimum ethanol produc-
tion for the variables exists. It can be deduced from Fig. 10(a)
(due to the lack of a denite curvature) that the ethanol
production is not appreciable as a result of the inuence of the
substrate concentration and pH (6.6 g L−1) when compared to
the inuences of the fermentation time and pH (9.4 g L−1), as
depicted in Fig. 10(b). The curved contour lines reveal that there
is an interaction between the fermentation time and pH, whose
combined effect inuences the ethanol production. Further-
more, the fermentation time and substrate concentration in
Fig. 10(c) demonstrate less inuence on the ethanol production
(8.6 g L−1) when compared to Fig. 10(b).

When P < 0.001, the interaction between the independent
variables is highly signicant. The results of the analysis of
variance and the regression model's test for signicance match
the performances represented in the curved contour lines.
These ndings show that the model provides a sufficient
© 2025 The Author(s). Published by the Royal Society of Chemistry
explanation of the experimental range under study. The tted
regression equation indicates the association between the
independent variables, and demonstrates a satisfactory t of
the models. There are reports of similar studies.11,57

The optimization analysis from the soware gave the results
as selected based on the response results fed to the soware.
The comparison between the predicted ethanol production
(10.5 g L−1) and the experimental result (10.1 g L−1) shows
a small difference of 0.4 g L−1, indicating a high level of accu-
racy in the developedmodel. Since this variation is minimal, the
model can be considered a good t for predicting the ethanol
production under the given conditions. This validates the reli-
ability of the empirical equation in estimating the ethanol yield,
and suggests that the model can be used to optimize the
fermentation parameters for improved efficiency.60

Conclusion

This study evaluated the suitability of various lignocellulosic
feedstocks for bioethanol production based on their proximate
and ultimate compositions, glucose yield, and fermentation
efficiency. Sorghum cob, millet cob, rice husk and sugarcane
bagasse demonstrated optimal volatile matter, moisture, and
ash content, making them promising candidates. Ultimate
analysis revealed that rice husk and sugarcane bagasse exhibi-
ted high oxygen and hydrogen content, enhancing the enzy-
matic hydrolysis efficiency. Among the tested feedstocks,
RSC Adv., 2025, 15, 26091–26103 | 26101
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sugarcane bagasse and rice husk produced the highest glucose
yields when hydrolyzed using A. niger and T. reesei, respectively,
with alkaline and acid pretreatments signicantly improving
the conversion rates. Fermentation studies conrmed that
mixed cultures of S. cerevisiae and Z. mobilis achieved the
highest ethanol yields, demonstrating synergistic sugar utili-
zation. These ndings highlight the potential of optimized
ethanol production and microbial selection to enhance bio-
ethanol production. Furthermore, it shows the kinetics models
for hydrolysis and fermentation processes. Although the
specic quantication of cellulose, hemicellulose, and lignin
was not conducted in this study, future work will incorporate
these analyses to rene the kinetic modeling and substrate-
microbe compatibility, particularly for mixed microbial
systems targeting specic saccharides.
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and L. V. A. Gurgel, Energy Convers. Manage., 2025, 323,
119225.

20 I. P. d. P. Cansado, P. A. M. Mourão, J. E. Castanheiro,
P. F. Geraldo, S. R. Suero and B. L. Cano, Sustainability,
2025, 17, 335.

21 K. N. Yogalakshmi, T. M. Mohamed Usman, S. Kavitha,
S. Sachdeva, S. Thakur and S. Adish Kumar, Fermentation,
2023, 9, 238.

22 I. C. Nnaemeka, O. Maxwell and A. O. Christain, J. Bioresour.
Bioprod., 2021, 6, 45–64.

23 M. X. Ravindran, N. Asikin-Mijan, G. AbdulKareem-Alsultan,
H. Ong, N. Mustaffarizan, H. Lee, T. A. Kurniawan,
D. Derawi, S. F. M. Yusoff and I. Lokman, J. Environ. Chem.
Eng., 2024, 112330.

24 T. C. Zhi, I. T. S. Chen, T. Y. Peng, L. K. Chang,
K. Balakrishnan and O. Z. Xian, International Symposium on
Green and Sustainable Technology (ISGST 2024), 2025, vol.
603.

25 G. Abdulkareem-Alsultan, N. Asikin-Mijan, H. Lee and
Y. Tauq-Yap, Innovations in Sustainable Energy and Cleaner
Environment, 2020, pp. 489–504.

26 I. Caro Pina, C. Marzo Gago, A. B. D́ıaz Sánchez and
A. M. Blandino Garrido, J. Environ. Chem. Eng., 2024, 12,
111862.

27 D. Khandamov, T. A. Kurniawan, A. Bekmirzayev,
R. Eshmetov, S. Nurullaev, Z. Babakhanova, F. Batool and
G. AbdulKareem-Alsultan, J. Taiwan Inst. Chem. Eng., 2024,
105481.

28 S. Aich and B. K. Nandi, Process Saf. Environ. Prot., 2025, 193,
1243–1260.

29 A. Ajiboye, I. Nnebedum and T. Adesokan, FJPAS, 2024, 9, 56–
66.
© 2025 The Author(s). Published by the Royal Society of Chemistry



Paper RSC Advances
30 B. Aderemi, E. Abu and B. Highina, Afr. J. Biotechnol., 2008, 7,
1745–1752.

31 D. Hebbale and T. Ramachandra, Biomass Convers. Bioren.,
2023, 13, 8287–8300.

32 A. R. Moimenta, D. Troitiño-Jordedo and E. Balsa-Canto, in
2024 IEEE 63rd Conference on Decision and Control (CDC),
IEEE, 2024, pp. 6311–6316.

33 J. Douglas, C. W. Carter and P. R. Wills, Iscience, 2024, 27, 1–
15.

34 M. Abuoudah, A. Giwa, I. Nashef, F. AlMarzooqi and
H. Taher, Chem. Eng. J. Adv., 2022, 12, 100357.

35 H. A. Alrazen, S. M. Aminossadati, H. A. Mahmood,
M. Hasan, G. Abdulkreem-Alsultan and M. Konarova,
Energy, 2023, 282, 128754.

36 C. E. Uzoagba, E. Okoroigwe, M. Kadivar, V. C. Anye, A. Bello,
U. Ezealigo, F. O. Ngasoh, H. Pereira and P. A. Onwualu,
Waste Management Bulletin, 2024, 2, 172–182.

37 E. A.-A. Salman, K. A. Samawi, M. F. Nassar, G. Abdulkareem-
Alsultan and E. Abdulmalek, J. Electroanal. Chem., 2023, 945,
117629.

38 N. Novia, E. Melwita, A. M. Jannah, S. Selpiana, Y. Yandriani,
B. D. Afrah and M. Rendana, Journal of Umm Al-Qura
University for Applied Sciences, 2025, 1–18.

39 I. Shah, R. Adnan, A. G. Alsultan and Y. H. Tauq-Yap, J.
Dispersion Sci. Technol., 2022, 43, 1245–1260.

40 F. H. Kamil, A. Salmiaton, R. M. H. R. Shahruzzaman,
R. Omar and A. G. Alsultsan, Bull. Chem. React. Eng. Catal.,
2017, 12, 81–88.

41 T. S. Mayala, M. D. N. Ngavouka, D. H. Douma,
J. M. Hammerton, A. B. Ross, A. E. Brown, B. M'Passi-
Mabiala and J. C. Lovett, Biomass, 2022, 2, 1–13.

42 R. Nunta, C. Techapun, S. Sommanee, C. Mahakuntha,
K. Porninta, W. Punyodom, Y. Phimolsiripol,
P. Rachtanapun, W. Wang and X. Zhuang, Sci. Rep., 2023,
13, 727.

43 E. Audibert, J. Floret, A. Quintero, F. Martel, C. Rémond and
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