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1. Introduction

Prevalence of foodborne diseases has emerged as a
significant global health concern. The World Health
Organization (WHO) report indicates that nearly 600
million cases of foodborne illnesses occur annually due to
the consumption of food substances contaminated with
microorganisms and chemicals [1]. Food contamination and
increases in the risk of foodborne diseases are caused by
pathogenic microorganisms [2]. Meat and meat products are
important sources of nutrients for humans due to their high
protein composition and other essential nutrients [3].
However, these foods provide appropriate environments for
the growth of foodborne microbes due to their high water
content and nutrients, [4]. A significant number of studies
have shown that Staphylococcus aureus and Escherichia
coli are associated with meat contamination [5-7]. The S.
aureus is a facultative anaerobic, Gram-positive non-spore-
forming bacterium [8]. It is a major problem in foodborne
illnesses [9]. The S. aureus infections cause significant
morbidity and mortality in developing and developed
countries [10]. Similarly, E. coli is a non-spore-forming
bacterium and the major cause of foodborne diseases in
Gram-negative bacteria. Disease-causing strains of E.
coli can infect the stomach, leading to serious abdominal
symptoms [11]. Previous studies have primarily
concentrated on spore-forming microorganisms, thereby
overlooking non-spore-forming ones such as E. coli and S.
aureus. Based on their contribution to foodborne illnesses,
it is important to develop a cost-effective user-friendly
approach to slow their rapid proliferation in food products.

Organic acids have been used as antimicrobial agents to
inhibit foodborne pathogenic bacterial growth in chicken
meats during processing [12]. Due to the potential resistance
development by microorganisms, there are needs of drug
alternatives that can efficiently kill resistant bacteria and
enhance preservation [13]. Antimicrobial peptides (AMP)
are produced by living organisms and include critical
functions in protecting hosts against infections [14,15].
Likelihood of microbes exhibiting resistance to AMP is
exceedingly low because of their wide range of mechanisms
of action. Multiple studies have emphasized potential of
AMP as a viable option for preventing meat spoilage and
foodborne diseases [16-19]. In a previous investigation by
the current authors, recombinant AGAAN (rAGAAN)
effectively was cloned, expressed and analytically
characterized [20]. Technically, AGAAN is a novel antimi-
crobial peptide with a cationic a-helical structure from the
skin secretions of the blue-sided frogs. The rAGAAN is
stable at various temperatures and pH and destroys a wide
range of bacteria [20]. A hemolytic assay has shown that the
peptide is relatively non-toxic to mammalian red blood cells
(RBCs). Combination of these characteristics with its rapid

killing kinetics demonstrates that rAGAAN includes the
potential as an effective food preservative against foodborne
pathogens. Nevertheless, major issues include exorbitant
production expenses, labor-intensive procedures and
potential toxicity of using high concentrations of peptides.

Combining two or more AMPs may boost antimicrobial
activity at lower doses [21]. The present study assessed
pairwise combinations of the rAGAAN with formic and
acetic acids against E. coli and S. aureus. Selection of these
two organic acids was based on their high effectiveness
against the highlighted bacterial strains. In addition,
FAO/WHO Expert Committee on Food Additives has
classified acetic and formic acids as generally regarded as
safe. The former chemical was assigned to an unrestricted
group acceptance daily intake (ADI), while the latter was
assigned to an ADI range of 0-3 mg.kg* [22]. Combination
of rAGAAN and these organic acids could decrease the
concentration while preserving their potentially bactericidal
activity. Differences in their mechanisms of action necess-
itate assessment of synergy in membrane permeation and
kinetics of inactivation. This study could provide an
additional option for poultry industries to protect chicken
meats from pathogens.

2. Materials and Methods

2.1 Bacterial strains

Department of Microbiology at King Mongkut's
University of Technology Thonburi in Bangkok, Thailand,
supplied the foodborne pathogenic strains of E. coli ATCC
8739 and S. aureus ATCC 6538.

2.2 Recombinant AGAAN peptide expression and
purification

The rAGAAN was produced based on the method of
Ajingi et al., [20]. Briefly, the recombinant plasmid (pET-
AGAAN) was transformed into E. coli BL21 (DE 3)
competent cells. A colony of the competent cells with
recombinant plasmids was inoculated into Luria-Bertani
(LB) broth supplemented with chloramphenicol and
ampicillin and grown at 37 °C and 200 rpm overnight. Then,
1% v v* from the overnight culture was introduced into a
fresh 1-1 LB broth supplemented with chloramphenicol and
ampicillin as well as 1% w v glucose. Culture was grown
to an optical density (OD 600 nm) range of 0.4-0.6 at 37 °C
and 200 rpm. Then, rAGAAN was expressed through
induction with isopropyl B-D-1-thiogalactopyranoside at a
concentration of 500 mM. Culture was grown at 16 °C for
18 h at 150 rpm. Cells were collected through centrifugation
at 6,120x g for 30 min at 4 °C. Then, cells were suspended
in 10 ml of buffer solution (10 mM Tris-HCI, 1 M NaCl; pH
8.0). These were subjected to sonication at an amplitude of
60% for 2 min, repeated for five cycles to induce cell
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disruption. Supernatant was purified after sonication and
centrifugation at 6,120x g for 25 min at 4 °C using HisTrap
FF column linked to the FPLC system. The column was pre-
equilibrated with binding buffer (10 mM Tris-HCI, 1 M
NaCl; pH 8.0). Elution of the bound peptide was carried out
using buffer B (10 mM Tris-HCI, 1 M NaCl, 250 mM imid-
azole; pH 8.0). Then, dialysis was carried out overnight at 4
°C using 50 mM Tris-HCI solution. Then, peptide was
concentrated using 3-kDa centricon centrifugal filter tubes
(Amicon, Germany). Concentration of the rAGAAN was
measured using Bradford protein assay and its purity was
assessed using 16% tricine-sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (tricine-SDS-PAGE).

2.3 rAGAAN and organic acid preparation

The rAGAAN was formulated in milligrams per
milliliter (mg.mI?Y). It was dissolved in 1x phosphate-
buffered saline (PBS), whereas the organic acids were
formulated in percentages (% v v'*) by dissolving in distilled
water (DW).

2.4 Culture preparation

A volume of 20 pl of microbial stock, previously stored
at -80 °C, were plated on LB agar. The resulting culture was
incubated at 37 °C for 18 h. Then, subculture process was
carried out for each strain under identical conditions to
preserve integrity and purity of the cells. On the next day, a
suspension was generated by transferring isolated colonies
into sterilized 10-ml LB media. The bacterial strains were
cultured until they reached an OD of 108 cfu.ml?. This
measurement was achieved at 600 nm using spectrophot-
ometer (U-2900UV/VIS Hitachi Tokyo, Japan). Concen-
tration was modified to 10° cfu.ml! using sterile LB broth.

2.5 Minimum inhibitory concentration assessment

Briefly, 50 ul of the inoculated sample were
administered into each well of the 96-well plates. Then,
aliquots of 50 pl were dispensed into the wells, containing
rAGAAN and organic acids at various concentrations. The
96-well plates with the lids closed were incubated at 37 °C
for 18 h. Results were analyzed at 600 nm using microplate
reader (BioTek, synergy H1, Winooski, USA). Control
contained 100 pl of the bacterial inoculum. The MIC values
included the lowest concentrations of the antimicrobial
agents that cause bacterial growth inhibition.

2.6 Synergistic effects of rAGAAN with acetic and
formic acids

Combination effects of rAGAAN with organic acids
against the bacterial strains were assessed using
checkerboard method. Briefly, 18-h cultures in LB broth
were used to inoculate fresh LB broth to achieve a cell
density of approximately 10° cfu.ml. Generally, 50 pl of
the inoculated sample were added into 96-well microplates.
Then, rAGAAN and organic acids were transferred into the
96-well microplates with increasing concentrations arran-

ged in columns and rows, respectively. The organic acids
were mixed with rAGAAN separately to assess their
combinatorial effects on pathogenic bacteria. The purpose
was to decrease the effective concentration of rAGAAN
while preserving its antimicrobial activity. Assessment of
the synergistic interactions involved the summation of the
fractional inhibitory concentration indices (FICI) as Eq. 1
[23].

FICI = MIC (rAGAAN + organic acid) mixture
- MIC (rAGAAN only)

MIC (rAGAAN +organic acid) mixture

MIC (organic only)

Eq.1

between the rAGAAN and organic acids that increased the
antimicrobial activity, FICI > 0.5-4.0 was indifferent and
FICI > 4.0 was antagonistic.

where, FICI < 0.5 indicated synergistic relationships

2.7 Kinetics of inactivation

The OD of bacterial strain was measured to assess the
rate of inactivation when treated with rAGAAN, acetic acids
or their combination. Bacterial culture, diluted in LB broth
to a concentration of approximately 10° cfu.ml?, was added
to 96 well plates. The rAGAAN and acetic acid were added
at their minimum inhibitory concentration (MIC) levels,
individually and in combination with their fractional
inhibitory concentration (FICI) at 1x, 2x and 3x to separate
wells. The 96-well plate was incubated at 37 °C. The
procedure entailed monitoring the rate of inactivation for
various bacterial strains by measuring the OD at consistent
intervals of 1 h for 5 h. The OD was measured using
spectrophotometer set at 600 nm and microplate reader
(BioTek, synergy H1, Winooski, USA).

2.8 p-Galactosidase assay

The B-galactosidase assay was carried out to assess
effects of the rAGAAN and acetic acid or their combination
on membranes of the bacteria. First, E. coli was inoculated
into lactose broth and incubated at 37 °C for 18 h to
stimulate B-galactosidase production. The bacterial cells
were centrifuged and the pellet was washed thrice with 1x
PBS. Then, the bacterial concentration was modified to
roughly 10° cfu.ml in 1x PBS solution. Moreover, 50 pl of
purified rAGAAN, acetic acid and their combination at 1x
FICI, 2x FICI and 3x FICI were added into wells of a
microplate containing 50 pl of E. coli cell suspension. A
volume of 30 pl of O-nitrophenyl-B-D-galactoside (ONPG)
were added into every well of the microplate. The
microplate was incubated at 37 °C and activity was assessed
by measuring the spectrophotometric absorbance at 405 nm
and various time intervals.

2.9 Hemolysis assay

The RBC lytic assay was carried out based on a
procedure by Taniguchi et al. [24] with minor adjustments.
The RBCs were washed thrice in 1x PBS and centrifuged at
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14,530% g for 10 min. Pellet was dissolved in 1x PBS to
achieve a concentration of 4%. Generally, 500 pl of blood
were mixed with 500 ul of rAGAAN and acetic acid, indivi-
dually and in various combinations (1xFICI, 2xFICI, and
3%FICI). The positive control included a solution containing
0.1% TritonX-100, while the negative control included a
solution containing 1x PBS. Solution was incubited in
microtubes at 37°C for 1 h and centrifugation was carried
out at 14,530x g for 5 min. Then, 100 pl of the supernatant
were extracted from each microtube and transferred to each
well of 96-well plate. Assessment of hemoglobin release
was carried out by measuring the absorbance at 540 nm.

2.10 rAGAAN-acetic acid against chicken meat spoilage
Antimicrobial efficacy of the rAGAAN and acetic acid
combination was assessed using a methodology described
by Ajingi et al. [25], with minor adjustments. In brief, fresh
chicken meat was purchased from a local market and
immediately transferred to the laboratory. Meat was divided
into approximately 10-g specimens and washed thoroughly.
Specimens were transferred into a laminar flow hood and
100 pl of 10° cfu of E. coli were divided to five separate
locations. Sample was set for 1 h to promote appropriate
attachment of the bacterial strains. Then, meat sample was
submerged into 200-ml solution of rAGAAN/acetic acid for
1 h. Furthermore, sample was extracted, transferred into a
plastic bag and incubated at 37 °C for 3 d. The chicken meat
sample was transferred into a plastic bag with solution
consisting of 0.1% peptone water. Sample was mechanically
pulverized using stomacher to enhance liberation of the
bacterial cells. Following the process of serial dilution, a
100 pl of sample were transferred onto an LB-agar plate.
Number of colonies on the plate was counted at intervals of
0, 1, 2 and 3 d. Control group was administered with DW.

2.11 Statistical analysis

Results were present as mean £SD (standard deviation)
of three replicates. Statistical distinction was assessed using
one-way analysis of variance (ANOVA) with Duncan’s
multiple-range test. Differences with p < 0.05 were regarded
as statistically significant.

3. Results and Discussion

3.1 Minimum inhibitory concentration

The MICs of rAGAAN and organic acids against S.
aureus and E. coli are present in Table 1. The MIC of
rAGAAN against S. aureus and E. coli was assessed as 0.15
mg.ml*. The organic acids inhibited proliferation of the
pathogenic bacteria at various concentrations expressed as
proportions (%).

Table 1. Minimum inhibitory concentration of rAGAAN (mg.ml?),
acetic acid (%v v?) and formic acid (%v v?!) against
Staphylococcus aureus and Escherichia coli.

Minimum Inhibitory Concentration (MICs)

Bacteria Strains

rAGAAN Acetic acid Formic acid
S. aureus (ATCC 6538) 0.15 0.20 0.25
E. coli (ATCC 8739) 0.15 0.25 0.2

Acetic acid demonstrated inhibitory effects on the growth
of S. aureus at 0.2% v v and on the growth of pathogenic
E. coli at 0.25% v v. Formic acid inhibited growth of S.
aureus at 0.25% v v and growth of E. coli at 0.2% v v
The findings for acetic acid were similar to those against
eleven mastitis pathogens in dairy cows with MIC values
ranging of 0.125-0.25% v v! [26]. Similarly, Fraise et al.
[27] reported antimicrobial activity of acetic acid against
Pseudomonas aeruginosa and S. aureus at 0.166 and
0.312% v V!, respectively. Manuel et al. [28] detected that
formic acid at a concentration of 0.06% v v exhibited
antimicrobial effects against E. coli. Variations in their
effectiveness against the microorganisms might be
attributed to their chemical compositions. Methyl group
(CH3) in acetic acid donated electron density to O-H bond,
resulting in increased difficulties in removing the hydrogen
atom. Consequently, acetic acid was weaker than the formic
acid. Weak acids included a higher ability to pass through
bacterial membranes, compared to strong acids due to the
balances between their ionized and non-ionized states. The
non-ionized form could easily diffuse through hydrophobic
membranes. As a result, they provided proton gradients
needed for ATP synthesis to collapse. This occurred because
free anions such as acetate in this situation combined with
periplasmic protons that were pumped out by the electron
transport chain. Then, anions transported the protons back
across the membrane without F1Fo ATP synthase [29].

3.2 Synergistic effects of rAGAAN with organic acids

The inhibitory concentration index (FICI), demons-
trating combined effects of rAGAAN and organic acids, is
present in Table 2. The compound rAGAAN demonstrated
synergistic effects against S. aureus and E. coli when
combined with organic acids. Results showed that the
synergistic effects were strongest when using acetic acid for
the two bacterial strains, compared to when using formic
acid. The FICI values for the combination of rAGAAN with
acetic acid were assessed as 0.375 (p < 0.5) for S. aureus
and E. coli. The FICI values for the combination of
rAGAAN with formic acid were assessed as 0.375 for S.
aureus and 0.5 for E. coli.
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Table 2. Synergistic effects of rAGAAN with organic acids against Staphylococcus aureus and Escherichia coli

Strain Individual Compound MIC of Individual

FIC of Organic acid and rAGAAN in combination

Compound Organic Acid rAGAAN FIC Index Effect of combination
S, aureus Acetic acid 0.2 0.025 0.0375 0.375 Synergistic
ATCC 6538 Formic acid 0.25 0.0625 0.0188 0.375 Synergistic
rAGAAN 0.15
E coli Acetic acid 0.25 0.0313 0.0375 0.375 Synergistic
. I . . ..
ATCC 8739 Formic acid 0.2 0.05 0.0375 0.5 Synergistic
rAGAAN 0.15
Results indicated that sub-MICs of the antimicrobials A
were needed to effectively terminate the bacterial growth. SaphylococrusarensAICC 635
Combination of rAGAAN and acetic acid resulted in a 25% 0.8 & Cotindl
decrease in the concentration of each antimicrobial, S TR
compared to their MICs. Synergism can occur when two o 0.6 i SCEICL
various antibacterial agents, each with non-overlapping E v
hanisms of action, are combined with each other [30] g 4 o X
mecl ; | €ach o ' a ~+ MIC rAGAAN
Therefore, the authors suggest that the antimicrobial effects C .
. .. . 0.2 ¥ MIC Acetic acid
could be strengthened using synergistic effects of combined
organic acid with rAGAAN. While the precise process; by 00
. - - - - - U
which, combination of rAGAAN with organic acid created J 5 v :
synergistic effects is still unknown, studies have Time (h)
demonstrated that the cell membrane of bacteria is a shared
target for the antibacterial effects of various antimicrobial B Escherichia coli ATCC §739
peptides. Additionally, these peptides include an affinity for 6
bacterial cellular components, including DNA [31]. In ~e- Control
contrast, it is suggested that organic acids can delay & MIC Acetic acid
absorption of nutrients and disrupt flow of electrons, leading s e MICAGAAN
. . - . = C
to decreases in ATP production [32]. This various g - LH
mechanism of action enables swift eradication of bacteria. g e
-= 3XFICI
3.3 Kinetics of inactivation
Acetic acid was chosen for the study because it included 0.0 T T )
stronger antimicrobial effects than that formic acid with 0 2 4 6

rAGAAN did. Growth inhibition kinetics of rAGAAN,
acetic acid and their combination on the logarithmic phase
of the pathogenic bacteria are illustrated in Figure 1. When
the peptide rAGAAN was mixed with acetic acid at the FIC,
there was no noticeable alteration in OD for either of the
bacterial strains during 5 h. This indicated that the bacterial
growth was entirely suppressed. The combination
demonstrated significant inhibitory effects, greater than that
of the individual antimicrobial agent and control group. The
combination exhibited the capacity to inhibit proliferation
of S. aureus ATCC 6538 and E. coli ATCC 8739 at various
concentrations within a few hours of exposure. Upon
analyzing each treatment individually, it became clear that
progressive decreases occured in OD measurements as time
progressed. Nevertheless, use of rAGAAN with acetic acid
led to further pronounced decreases in the turbidity level of
the culture.

Time (h)

Figure 1. Inactivation Kinetics of minimum inhibitory
concentration-rAGAAN, minimum inhibitory concentration-
acetic acid and their combination at fractional inhibitory
concentration. (A) Staphylococcus aureus and (B) Escherichia coli

3.4 p-Galactosidase assay

To clarify the mechanism; by which, the combination
acted, membrane permeability assay was carried out. This
experiment used E. coli that was cultured in media
containing lactose broth, which stimulated the synthesis of
B-galactosidase. The B-galactosidase is an endogenous
enzyme synthesized by the lac operon in bacteria. Release
of this enzyme depends on disruption of the cell membrane.
Release of the p-galactosidase enzyme from the disrupted
cytoplasmic membrane was detected within 10 min of
incubation with rAGAAN alone. In addition, cell membrane
was destabilized by a combination of rAGAAN with acetic
acid at 1x FICI, 2x FICI and 3% FICI, as shown in Figure 2.
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Figure 2. Beta-galactosidase analysis following treatment with
minimum inhibitory concentration-rAGAAN, minimum inhibitory
concentration-acetic acid and their combination at fractional
inhibitory concentration. (A) Optical density and (B) O-nitro-
phenol released following membrane disruption and action of B-
galactosidase on O-nitrophenyl-p-D-galactoside. 1xFractional inh-
ibitory concentration (0.0313% v v acetic acid & 0.0378 mg.ml*
rAGAAN); 2x fractional inhibitory concentration (0.0626% v v
acetic acid and 0.0756 mg.ml"* rAGAAN); and 3x fractional
inhibitory concentration (0.0939% v v acetic acid and 0.1134
mg.ml rAGAAN)

Findings showed that the presence of rAGAAN,
independently and in combination with acetic acid, could
result in permeability of the cell membrane of E. coli. How-
ever, acetic acid alone did not demonstrate effects on perme-
ability of the membrane. Increasing OD measurements over
time were directly linked to the rate of O-nitrophenol prod-
uction from the breakdown of ONPG. The current results
were similar to those of Yuan et al. [33], who observed
increases in OD due to the degradation of ONPG when
Larimichthys crocea myosin heavy chain protein-derived
peptide was combined with low-intensity ultra-sound. Cell
membrane disruption might lead to releases of intracellular
components [34].

3.5 Hemolysis assay

Potential cytotoxicity of the chemical combination on
human RBCs was assessed. Results of the hemolytic assay
are present in Figure 3. The experimental group supernatant
included clarity and transparency, which sharply contrasted
to that the positive control group supernatant did. Further-
more, no substantial fluctuation was recorded in absorbance
of the experimental groups. This demonstrated that combin-
ation of acetic acid and rAGAAN did not include any
adverse effects on RBCs. However, absorbance of acetic
acid alone resulted in approximately 50% hemolysis of the
RBCs presented at high concentrations. Results suggested
that the two antibacterial agents could effectively be
combined as harmless food additives to combat pathogens.

3_
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Figure 3. Hemolysis assay for minimum inhibitory concentration-
rAGAAN, minimum inhibitory concentration-acetic acid and their
combination at fractional inhibitory concentration. 1x Fractional
inhibitory concentration (0.0313% v v acetic acid and 0.0378
mg.mlt rAGAAN); 2x fractional inhibitory concentration
(0.0626% v v* acetic acid and 0.0756 mg.mlt rAGAAN); and 3x
fractional inhibitory concentration (0.0939% v v* acetic acid and
0.1134 mg.mlt rAGAAN)

3.6 rAGAAN-acetic acid against chicken meat spoilage

Results of the experiment are shown in Table 3 and
Figure 4. Use of rAGAAN and acetic acid, either separately
or in combination, led to significant suppressions of the E.
coli growth. Inhibition was observed at various durations of
exposure, in contrast to the control group (Table 3). At the
beginning of the experiment (Day 0) after exposure to DW
for 1 h, the control group showed decreases in the cell
population to a value of 6.06 log 10 cfu.g™. Significant
decreases (p = 0.05) were observed in the bacterial count
after individual treatment with rAGAAN and acetic acid
(4.87 and 5.01 cfu.g?, respectively). Similarly, when the
combination therapy was administered at concentrations of
1x, 2x and 3x, the resulting bacterial counts were 4.85, 4.82
and 4.81 cfu.g?, respectively. Significant differences in
decreases were reported when comparing the control group
to the groups that received rAGAAN treatment alone and
the groups that received combination treatments at a three-
fold fractional inhibitory concentration index as the duration
of treatment increased. On Day 1 of the experiment,
statistically significant decreases were seen in values of the
microorganisms. More precisely, rAGAAN alone and its
combination resulted in decreases of 1.39 and 1.40 log 10
cfu.g?, respectively.
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Table 3. Effects of minimum inhibitory concentration-rAGAAN, minimum inhibitory concentration-acetic acid and their combination at
fractional inhibitory concentration on inactivation of Escherichia coli growth in chicken meat (log cfu.g?)

Days Control MIC rAGAAN MIC Acetic acid 1x FICI® 2x FICI 3x FICI

0 6.06 = 0.02~ 4.87 +0.01°¢ 5.01+0.018 4.85+0.02°¢ 4.82 +0.02¢ 4.81+0.02¢
1 6.29 +0.00~ 4.9 +0.00¢ 5.04 +0.008 4.89 +0.00°¢ 4.84 +0.00P 4.81+0.01F
2 6.38 = 0.00~ 4.97 £0.03°¢ 5.1+0.018 4,92 +£0.02° 4.9 +£0.02°F 4.85 + 0.00F
3 6.49 +0.01~ 4,98 + 0.02°¢ 5.14 +0.018 4.94 +0.01P 4,94 +0.01P 4.86 +0.01F

§1x FICI (0.0313% v v-! acetic acid + 0.0378 mg.mI: rAGAAN); T2x FICI (0.0626% v v acetic acid + 0.0756 mg.mI-t rAGAAN); £3x FICI (0.0939% v v
acetic acid + 0.1134 mg.ml-t rAGAAN). Mean that share the same letter along the row are not significantly different (p < 0.05).

On Day 2, the 3x FICI combination group showed
statistically significant decreases of 1.53 log 10 cfu.g?,
compared to the control group (p = 0.05). Furthermore,
significant decreases of 1.63 log 10 cfu.g™ were reported on
Day 3, compared to the control group. Results of this study
demonstrated that use of rAGAAN and acetic acid included
combined antibacterial effects on E. coli in meat samples
stored at 37 °C for 3 d. The synergistic effect was detected
as superior to the antibacterial effects of rAGAAN when
used separately. Results supported changes in the color of
the meat. The transformation is documented through the
alteration in color of the meat (Figure 4). The control group
demonstrated a significant color change and included an
unpleasant smell. This might be attributed to the prolif-
eration of microbial organisms. Katiyo et al. [35] reported
strong correlations between the odor and growth of
microorganisms in chicken legs. The putrid smell of spoiled
meat might be due to the existence of various compounds
such as sulfur compounds, carbonyls, ketones, diamines and
alcohols [36].

Control MICAGAAN MIC Acctic Acid
. ,/ >
A

2X FICI AXFICI

Figure 4. Effects of minimum inhibitory concentration-rAGAAN,
minimum inhibitory concentration-acetic acid and their
combination at fractional inhibitory concentration against E. coli
on meat spoilage. 1x Fractional inhibitory concentration (0.0313%
v v acetic acid and 0.0378 mg.ml* rAGAAN); 2x fractional
inhibitory concentration (0.0626% v v acetic acid and 0.0756
mg.ml* rAGAAN); and 3x fractional inhibitory concentration
(0.0939% v v* acetic acid and 0.1134 mg.ml* rAGAAN)

4. Conclusion

This study provided evidence on the synergistic effects
of combining rAGAAN antimicrobial peptides with organic
acids to inhibit growth of two prevalent foodborne
pathogens of S. aureus and E. coli. Significantly, this integr-
ated approach created inhibitory effects at decreased con-

centrations, compared to separate uses of these substances.
The study revealed that rAGAAN included the highest
beneficial synergy when combined with acetic acid.
Simultaneous administration of rAGAAN and acetic acid
caused disruption of the bacterial cell membrane without
causing detectable harms to mammalian RBCs. Further-
more, implementation of multiple treatments led to decre-
ases in the presence of microorganisms in chicken meats
after 3 d, compared to the group with no treatments. The
study results can be used as secure economically feasible
alternatives for the preservation of chicken meats. While the
current study assessed two pathogens, further studies are
necessary to investigate effects of the chemical combi-
nations on a wider range of microorganisms as well as
assessing precise mechanisms of the synergistic intera-
ctions.
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