

<u>APPLIED FOOD BIOTECHNOLOGY, 2024, 11 (1):e21</u> Journal homepage: www.journals.sbmu.ac.ir/afb

pISSN: 2345-5357 eISSN: 2423-4214

Research Article

Synergistic effects of recombinant AGAAN antimicrobial peptide with organic acid against foodborne pathogens attached to chicken meat

Nafiu Usman Jiddah^{1, 2}, Ya'u Sabo Ajingi^{1, 3}, Neeranuch Rukying¹, Triwit Rattanarojpong¹, Worapot Suntornsuk¹, Patthra Pason⁴, Nujarin Jongruja*¹

Abstract

Background and Objective: Fresh chicken meat includes the capacity to contain foodborne pathogens. A previous study has demonstrated efficacy of recombinant AGAAN antimicrobial peptide against various bacterial strains. In general, AGAAN is a newly discovered antimicrobial peptide with a unique cationic alpha-helical structure. The peptide is originated from the skin secretions of *Agalychnis annae*. This peptide showed a significant affinity towards the negatively-charged microbial lipid bilayer, as previously demonstrated by the experimental and *in-silico* analyses. However, the major concerns include high production costs, limited expression, laborious process and potential toxicity associated with concentrated peptides. In this research, the synergistic effects with organic acid were addressed to decrease these problems while preserving its bactericidal activity.

Material and Methods: Recombinant AGAAN and organic acids were assessed on *Staphylococcus aureus* ATCC 6538 and *Escherichia coli* ATCC 8739. This was carried out by assessing minimum inhibitory concentration and fractional inhibitory concentration. In addition, effects of the combination on bacterial membrane integrity by carrying out beta-galactosidase assessment. Additionally, the potential efficacy of this combination in preserving poultry meat was investigated.

Results and Conclusion: Minimum inhibitory concentration of the recombinant AGAAN against the two bacterial strains was 0.15 mg.ml^{-1} . In contrast, the minimum inhibitory concentration of acetic acid against Staphylococcus aureus and Escherichia coli were 0.2 and 0.25% v v⁻¹, respectively. The combination demonstrated significant synergy, as evidenced by fractional inhibitory indices of 0.375 against the two foodborne pathogens. Based on the study, the combination effectively inhibited proliferation of these disease-causing microorganisms that led to foodborne illnesses within 300 min. Presence of intracellular beta-galactosidase indicated that the combination of factors has caused damages to the cell membrane, resulting in its compromised integrity. Red blood cells exposed to various concentrations of recombinant AGAAN and acetic acid did not result in hemolysis. Results showed significant differences (p < 0.05) in all the experiments on meat samples that received treatments with recombinant AGAAN and acetic acid. The current study detected that a combination of recombinant AGAAN antimicrobial peptide with organic acid could effectively inhibit growth of pathogens at lower concentrations. Data presented in this study can help food industries develop further efficient cost-effective antimicrobial uses.

Conflict of interest: The authors declare no conflict of interest.

How to cite this article

Jiddah NU, Ajingi YS, Rukying N, Rattanarojpong T, Suntornsuk W, Pason P, Jongruja N. Synergistic effects of recombinant AGAAN antimicrobial peptide with organic acid against foodborne pathogens attached to chicken meat. Appl Food Biotechnol. 2024; 11 (1): e21. http://dx.doi.org/10.22037/afb.v1ii.44981

Article Information

Article history:

- Received 5 Apr 2024 - Revised 12 May 2024 - Accepted 1 Jun 2024

Keywords:

- · Foodborne pathogens
- Formic acid
- Peptide expression
- Recombinant bioactive peptide

Corresponding author: Nujarin Jongruja

Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand. Tel: +66-882001545

E-mail: nujarin.jon@kmutt.ac.th

¹Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

²Department of Biochemistry, Faculty of Science, Gombe State University, Gombe, Nigeria.

³Department of Biology, Faculty of Science, Aliko Dangote University of Science and Technology (ADUSTECH), Wudil, Nigeria. ⁴Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

1. Introduction

Prevalence of foodborne diseases has emerged as a significant global health concern. The World Health Organization (WHO) report indicates that nearly 600 million cases of foodborne illnesses occur annually due to the consumption of food substances contaminated with microorganisms and chemicals [1]. Food contamination and increases in the risk of foodborne diseases are caused by pathogenic microorganisms [2]. Meat and meat products are important sources of nutrients for humans due to their high protein composition and other essential nutrients [3]. However, these foods provide appropriate environments for the growth of foodborne microbes due to their high water content and nutrients, [4]. A significant number of studies have shown that Staphylococcus aureus and Escherichia coli are associated with meat contamination [5-7]. The S. aureus is a facultative anaerobic, Gram-positive non-sporeforming bacterium [8]. It is a major problem in foodborne illnesses [9]. The S. aureus infections cause significant morbidity and mortality in developing and developed countries [10]. Similarly, E. coli is a non-spore-forming bacterium and the major cause of foodborne diseases in Gram-negative bacteria. Disease-causing strains of E. coli can infect the stomach, leading to serious abdominal symptoms [11]. Previous studies have primarily concentrated on spore-forming microorganisms, thereby overlooking non-spore-forming ones such as E. coli and S. aureus. Based on their contribution to foodborne illnesses, it is important to develop a cost-effective user-friendly approach to slow their rapid proliferation in food products.

Organic acids have been used as antimicrobial agents to inhibit foodborne pathogenic bacterial growth in chicken meats during processing [12]. Due to the potential resistance development by microorganisms, there are needs of drug alternatives that can efficiently kill resistant bacteria and enhance preservation [13]. Antimicrobial peptides (AMP) are produced by living organisms and include critical functions in protecting hosts against infections [14,15]. Likelihood of microbes exhibiting resistance to AMP is exceedingly low because of their wide range of mechanisms of action. Multiple studies have emphasized potential of AMP as a viable option for preventing meat spoilage and foodborne diseases [16-19]. In a previous investigation by the current authors, recombinant AGAAN (rAGAAN) effectively was cloned, expressed and analytically characterized [20]. Technically, AGAAN is a novel antimicrobial peptide with a cationic α-helical structure from the skin secretions of the blue-sided frogs. The rAGAAN is stable at various temperatures and pH and destroys a wide range of bacteria [20]. A hemolytic assay has shown that the peptide is relatively non-toxic to mammalian red blood cells (RBCs). Combination of these characteristics with its rapid

killing kinetics demonstrates that rAGAAN includes the potential as an effective food preservative against foodborne pathogens. Nevertheless, major issues include exorbitant production expenses, labor-intensive procedures and potential toxicity of using high concentrations of peptides.

Combining two or more AMPs may boost antimicrobial activity at lower doses [21]. The present study assessed pairwise combinations of the rAGAAN with formic and acetic acids against E. coli and S. aureus. Selection of these two organic acids was based on their high effectiveness against the highlighted bacterial strains. In addition, FAO/WHO Expert Committee on Food Additives has classified acetic and formic acids as generally regarded as safe. The former chemical was assigned to an unrestricted group acceptance daily intake (ADI), while the latter was assigned to an ADI range of 0-3 mg.kg⁻¹ [22]. Combination of rAGAAN and these organic acids could decrease the concentration while preserving their potentially bactericidal activity. Differences in their mechanisms of action necessitate assessment of synergy in membrane permeation and kinetics of inactivation. This study could provide an additional option for poultry industries to protect chicken meats from pathogens.

2. Materials and Methods

2.1 Bacterial strains

Department of Microbiology at King Mongkut's University of Technology Thonburi in Bangkok, Thailand, supplied the foodborne pathogenic strains of *E. coli* ATCC 8739 and *S. aureus* ATCC 6538.

2.2 Recombinant AGAAN peptide expression and purification

The rAGAAN was produced based on the method of Ajingi et al., [20]. Briefly, the recombinant plasmid (pET-AGAAN) was transformed into E. coli BL21 (DE 3) competent cells. A colony of the competent cells with recombinant plasmids was inoculated into Luria-Bertani (LB) broth supplemented with chloramphenicol and ampicillin and grown at 37 °C and 200 rpm overnight. Then, 1% v v-1 from the overnight culture was introduced into a fresh 1-1 LB broth supplemented with chloramphenicol and ampicillin as well as 1% w v-1 glucose. Culture was grown to an optical density (OD 600 nm) range of 0.4–0.6 at 37 °C and 200 rpm. Then, rAGAAN was expressed through induction with isopropyl β-D-1-thiogalactopyranoside at a concentration of 500 mM. Culture was grown at 16 °C for 18 h at 150 rpm. Cells were collected through centrifugation at 6,120× g for 30 min at 4 °C. Then, cells were suspended in 10 ml of buffer solution (10 mM Tris-HCl, 1 M NaCl; pH 8.0). These were subjected to sonication at an amplitude of 60% for 2 min, repeated for five cycles to induce cell

disruption. Supernatant was purified after sonication and centrifugation at 6,120× g for 25 min at 4 °C using HisTrap FF column linked to the FPLC system. The column was preequilibrated with binding buffer (10 mM Tris-HCl, 1 M NaCl; pH 8.0). Elution of the bound peptide was carried out using buffer B (10 mM Tris-HCl, 1 M NaCl, 250 mM imidazole; pH 8.0). Then, dialysis was carried out overnight at 4 °C using 50 mM Tris-HCl solution. Then, peptide was concentrated using 3-kDa centricon centrifugal filter tubes (Amicon, Germany). Concentration of the rAGAAN was measured using Bradford protein assay and its purity was assessed using 16% tricine-sodium dodecyl sulfate—polyacrylamide gel electrophoresis (tricine-SDS-PAGE).

2.3 rAGAAN and organic acid preparation

The rAGAAN was formulated in milligrams per milliliter (mg.ml $^{-1}$). It was dissolved in $1\times$ phosphate-buffered saline (PBS), whereas the organic acids were formulated in percentages (% v v $^{-1}$) by dissolving in distilled water (DW).

2.4 Culture preparation

A volume of 20 μ l of microbial stock, previously stored at -80 °C, were plated on LB agar. The resulting culture was incubated at 37 °C for 18 h. Then, subculture process was carried out for each strain under identical conditions to preserve integrity and purity of the cells. On the next day, a suspension was generated by transferring isolated colonies into sterilized 10-ml LB media. The bacterial strains were cultured until they reached an OD of 10^8 cfu.ml⁻¹. This measurement was achieved at 600 nm using spectrophotometer (U-2900UV/VIS Hitachi Tokyo, Japan). Concentration was modified to 10^5 cfu.ml⁻¹ using sterile LB broth.

2.5 Minimum inhibitory concentration assessment

Briefly, 50 µl of the inoculated sample were administered into each well of the 96-well plates. Then, aliquots of 50 µl were dispensed into the wells, containing rAGAAN and organic acids at various concentrations. The 96-well plates with the lids closed were incubated at 37 °C for 18 h. Results were analyzed at 600 nm using microplate reader (BioTek, synergy H1, Winooski, USA). Control contained 100 µl of the bacterial inoculum. The MIC values included the lowest concentrations of the antimicrobial agents that cause bacterial growth inhibition.

2.6 Synergistic effects of rAGAAN with acetic and formic acids

Combination effects of rAGAAN with organic acids against the bacterial strains were assessed using checkerboard method. Briefly, 18-h cultures in LB broth were used to inoculate fresh LB broth to achieve a cell density of approximately 10⁵ cfu.ml⁻¹. Generally, 50 µl of the inoculated sample were added into 96-well microplates. Then, rAGAAN and organic acids were transferred into the 96-well microplates with increasing concentrations arran-

ged in columns and rows, respectively. The organic acids were mixed with rAGAAN separately to assess their combinatorial effects on pathogenic bacteria. The purpose was to decrease the effective concentration of rAGAAN while preserving its antimicrobial activity. Assessment of the synergistic interactions involved the summation of the fractional inhibitory concentration indices (FICI) as Eq. 1 [23].

$$\begin{aligned} \text{FICI} &= \frac{\text{MIC (rAGAAN + organic acid) mixture}}{\text{MIC (rAGAAN only)}} + \\ &\frac{\text{MIC (rAGAAN + organic acid) mixture}}{\text{MIC (organic only)}} + \\ &\text{Eq. 1} \end{aligned}$$

where, FICI ≤ 0.5 indicated synergistic relationships between the rAGAAN and organic acids that increased the antimicrobial activity, FICI > 0.5–4.0 was indifferent and FICI > 4.0 was antagonistic.

2.7 Kinetics of inactivation

The OD of bacterial strain was measured to assess the rate of inactivation when treated with rAGAAN, acetic acids or their combination. Bacterial culture, diluted in LB broth to a concentration of approximately 10^5 cfu.ml⁻¹, was added to 96 well plates. The rAGAAN and acetic acid were added at their minimum inhibitory concentration (MIC) levels, individually and in combination with their fractional inhibitory concentration (FICI) at $1\times$, $2\times$ and $3\times$ to separate wells. The 96-well plate was incubated at 37 °C. The procedure entailed monitoring the rate of inactivation for various bacterial strains by measuring the OD at consistent intervals of 1 h for 5 h. The OD was measured using spectrophotometer set at 600 nm and microplate reader (BioTek, synergy H1, Winooski, USA).

2.8 β-Galactosidase assay

The β-galactosidase assay was carried out to assess effects of the rAGAAN and acetic acid or their combination on membranes of the bacteria. First, E. coli was inoculated into lactose broth and incubated at 37 °C for 18 h to stimulate β -galactosidase production. The bacterial cells were centrifuged and the pellet was washed thrice with $1\times$ PBS. Then, the bacterial concentration was modified to roughly 10⁵ cfu.ml⁻¹ in 1× PBS solution. Moreover, 50 μl of purified rAGAAN, acetic acid and their combination at 1× FICI, 2× FICI and 3× FICI were added into wells of a microplate containing 50 µl of E. coli cell suspension. A volume of 30 μl of O-nitrophenyl-β-D-galactoside (ONPG) were added into every well of the microplate. The microplate was incubated at 37 °C and activity was assessed by measuring the spectrophotometric absorbance at 405 nm and various time intervals.

2.9 Hemolysis assay

The RBC lytic assay was carried out based on a procedure by Taniguchi et al. [24] with minor adjustments. The RBCs were washed thrice in $1 \times PBS$ and centrifuged at

14,530× g for 10 min. Pellet was dissolved in 1× PBS to achieve a concentration of 4%. Generally, 500 μ l of blood were mixed with 500 μ l of rAGAAN and acetic acid, individually and in various combinations (1×FICI, 2×FICI, and 3×FICI). The positive control included a solution containing 0.1% TritonX-100, while the negative control included a solution containing 1× PBS. Solution was incubited in microtubes at 37°C for 1 h and centrifugation was carried out at 14,530× g for 5 min. Then, 100 μ l of the supernatant were extracted from each microtube and transferred to each well of 96-well plate. Assessment of hemoglobin release was carried out by measuring the absorbance at 540 nm.

2.10 rAGAAN-acetic acid against chicken meat spoilage

Antimicrobial efficacy of the rAGAAN and acetic acid combination was assessed using a methodology described by Ajingi et al. [25], with minor adjustments. In brief, fresh chicken meat was purchased from a local market and immediately transferred to the laboratory. Meat was divided into approximately 10-g specimens and washed thoroughly. Specimens were transferred into a laminar flow hood and 100 μl of 10⁵ cfu of *E. coli* were divided to five separate locations. Sample was set for 1 h to promote appropriate attachment of the bacterial strains. Then, meat sample was submerged into 200-ml solution of rAGAAN/acetic acid for 1 h. Furthermore, sample was extracted, transferred into a plastic bag and incubated at 37 °C for 3 d. The chicken meat sample was transferred into a plastic bag with solution consisting of 0.1% peptone water. Sample was mechanically pulverized using stomacher to enhance liberation of the bacterial cells. Following the process of serial dilution, a 100 µl of sample were transferred onto an LB-agar plate. Number of colonies on the plate was counted at intervals of 0, 1, 2 and 3 d. Control group was administered with DW.

2.11 Statistical analysis

Results were present as mean $\pm SD$ (standard deviation) of three replicates. Statistical distinction was assessed using one-way analysis of variance (ANOVA) with Duncan's multiple-range test. Differences with p < 0.05 were regarded as statistically significant.

3. Results and Discussion

3.1 Minimum inhibitory concentration

The MICs of rAGAAN and organic acids against *S. aureus* and *E. coli* are present in Table 1. The MIC of rAGAAN against *S. aureus* and *E. coli* was assessed as 0.15 mg.ml⁻¹. The organic acids inhibited proliferation of the pathogenic bacteria at various concentrations expressed as proportions (%).

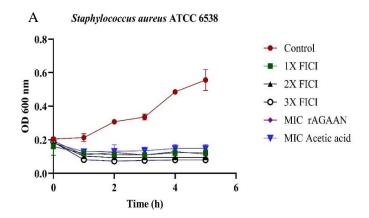
Table 1. Minimum inhibitory concentration of rAGAAN (mg.ml $^{-1}$), acetic acid (%v v $^{-1}$) and formic acid (%v v $^{-1}$) against *Staphylococcus aureus* and *Escherichia coli*.

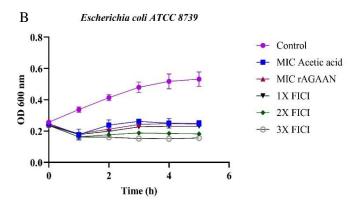
Bacteria Strains	Minimum Inhibitory Concentration (MICs)				
Bacteria Strains	rAGAAN	Acetic acid	Formic acid		
S. aureus (ATCC 6538)	0.15	0.20	0.25		
E. coli (ATCC 8739)	0.15	0.25	0.2		

Acetic acid demonstrated inhibitory effects on the growth of S. aureus at 0.2% v v-1 and on the growth of pathogenic E. coli at 0.25% v v⁻¹. Formic acid inhibited growth of S. aureus at 0.25% v v⁻¹ and growth of E. coli at 0.2% v v⁻¹. The findings for acetic acid were similar to those against eleven mastitis pathogens in dairy cows with MIC values ranging of 0.125-0.25% v v⁻¹ [26]. Similarly, Fraise et al. [27] reported antimicrobial activity of acetic acid against Pseudomonas aeruginosa and S. aureus at 0.166 and 0.312% v v⁻¹, respectively. Manuel et al. [28] detected that formic acid at a concentration of 0.06% v v-1 exhibited antimicrobial effects against E. coli. Variations in their effectiveness against the microorganisms might be attributed to their chemical compositions. Methyl group (CH3) in acetic acid donated electron density to O-H bond, resulting in increased difficulties in removing the hydrogen atom. Consequently, acetic acid was weaker than the formic acid. Weak acids included a higher ability to pass through bacterial membranes, compared to strong acids due to the balances between their ionized and non-ionized states. The non-ionized form could easily diffuse through hydrophobic membranes. As a result, they provided proton gradients needed for ATP synthesis to collapse. This occurred because free anions such as acetate in this situation combined with periplasmic protons that were pumped out by the electron transport chain. Then, anions transported the protons back across the membrane without F1Fo ATP synthase [29].

3.2 Synergistic effects of rAGAAN with organic acids

The inhibitory concentration index (FICI), demonstrating combined effects of rAGAAN and organic acids, is present in Table 2. The compound rAGAAN demonstrated synergistic effects against S. aureus and E. coli when combined with organic acids. Results showed that the synergistic effects were strongest when using acetic acid for the two bacterial strains, compared to when using formic acid. The FICI values for the combination of rAGAAN with acetic acid were assessed as 0.375 (p < 0.5) for S. aureus and E. coli. The FICI values for the combination of rAGAAN with formic acid were assessed as 0.375 for S. aureus and O.5 for E. coli.


Table 2. Synergistic effects of rAGAAN with organic acids against Staphylococcus aureus and Escherichia coli


Strain	Individual Compound	MIC of Individual	FIC of Organic acid and rAGAAN in combination			
Suam		Compound	Organic Acid	rAGAAN	FIC Index	Effect of combination
S. aureus ATCC 6538	Acetic acid	0.2	0.025	0.0375	0.375	Synergistic
	Formic acid	0.25	0.0625	0.0188	0.375	Synergistic
	rAGAAN	0.15				
E. coli ATCC 8739	Acetic acid	0.25	0.0313	0.0375	0.375	Synergistic
	Formic acid	0.2	0.05	0.0375	0.5	Synergistic
	rAGAAN	0.15				

Results indicated that sub-MICs of the antimicrobials were needed to effectively terminate the bacterial growth. Combination of rAGAAN and acetic acid resulted in a 25% decrease in the concentration of each antimicrobial, compared to their MICs. Synergism can occur when two various antibacterial agents, each with non-overlapping mechanisms of action, are combined with each other [30]. Therefore, the authors suggest that the antimicrobial effects could be strengthened using synergistic effects of combined organic acid with rAGAAN. While the precise process; by which, combination of rAGAAN with organic acid created synergistic effects is still unknown, studies have demonstrated that the cell membrane of bacteria is a shared target for the antibacterial effects of various antimicrobial peptides. Additionally, these peptides include an affinity for bacterial cellular components, including DNA [31]. In contrast, it is suggested that organic acids can delay absorption of nutrients and disrupt flow of electrons, leading to decreases in ATP production [32]. This various mechanism of action enables swift eradication of bacteria.

3.3 Kinetics of inactivation

Acetic acid was chosen for the study because it included stronger antimicrobial effects than that formic acid with rAGAAN did. Growth inhibition kinetics of rAGAAN, acetic acid and their combination on the logarithmic phase of the pathogenic bacteria are illustrated in Figure 1. When the peptide rAGAAN was mixed with acetic acid at the FIC, there was no noticeable alteration in OD for either of the bacterial strains during 5 h. This indicated that the bacterial growth was entirely suppressed. The combination demonstrated significant inhibitory effects, greater than that of the individual antimicrobial agent and control group. The combination exhibited the capacity to inhibit proliferation of S. aureus ATCC 6538 and E. coli ATCC 8739 at various concentrations within a few hours of exposure. Upon analyzing each treatment individually, it became clear that progressive decreases occured in OD measurements as time progressed. Nevertheless, use of rAGAAN with acetic acid led to further pronounced decreases in the turbidity level of the culture.

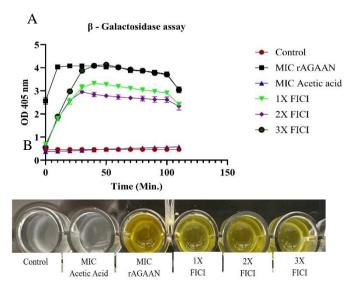


Figure 1. Inactivation kinetics of minimum inhibitory concentration-rAGAAN, minimum inhibitory concentrationacetic acid and their combination at fractional inhibitory concentration. (A) *Staphylococcus aureus* and (B) *Escherichia coli*

3.4 \(\beta\)-Galactosidase assay

To clarify the mechanism; by which, the combination acted, membrane permeability assay was carried out. This experiment used $E.\ coli$ that was cultured in media containing lactose broth, which stimulated the synthesis of β -galactosidase. The β -galactosidase is an endogenous enzyme synthesized by the lac operon in bacteria. Release of this enzyme depends on disruption of the cell membrane. Release of the β -galactosidase enzyme from the disrupted cytoplasmic membrane was detected within 10 min of incubation with rAGAAN alone. In addition, cell membrane was destabilized by a combination of rAGAAN with acetic acid at $1\times$ FICI, $2\times$ FICI and $3\times$ FICI, as shown in Figure 2.

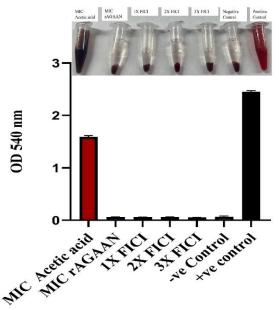


Figure 2. Beta-galactosidase analysis following treatment with minimum inhibitory concentration-rAGAAN, minimum inhibitory concentration-acetic acid and their combination at fractional inhibitory concentration. (A) Optical density and (B) O-nitrophenol released following membrane disruption and action of β-galactosidase on O-nitrophenyl-β-D-galactoside. 1×Fractional inhibitory concentration (0.0313% v v⁻¹ acetic acid & 0.0378 mg.ml⁻¹ rAGAAN); 2× fractional inhibitory concentration (0.0626% v v⁻¹ acetic acid and 0.0756 mg.ml⁻¹ rAGAAN); and 3× fractional inhibitory concentration (0.0939% v v⁻¹ acetic acid and 0.1134 mg.ml⁻¹ rAGAAN)

Findings showed that the presence of rAGAAN, independently and in combination with acetic acid, could result in permeability of the cell membrane of *E. coli*. However, acetic acid alone did not demonstrate effects on permeability of the membrane. Increasing OD measurements over time were directly linked to the rate of O-nitrophenol production from the breakdown of ONPG. The current results were similar to those of Yuan et al. [33], who observed increases in OD due to the degradation of ONPG when *Larimichthys crocea* myosin heavy chain protein-derived peptide was combined with low-intensity ultra-sound. Cell membrane disruption might lead to releases of intracellular components [34].

3.5 Hemolysis assay

Potential cytotoxicity of the chemical combination on human RBCs was assessed. Results of the hemolytic assay are present in Figure 3. The experimental group supernatant included clarity and transparency, which sharply contrasted to that the positive control group supernatant did. Furthermore, no substantial fluctuation was recorded in absorbance of the experimental groups. This demonstrated that combination of acetic acid and rAGAAN did not include any adverse effects on RBCs. However, absorbance of acetic acid alone resulted in approximately 50% hemolysis of the RBCs presented at high concentrations. Results suggested that the two antibacterial agents could effectively be combined as harmless food additives to combat pathogens.

Antimicrobial Peptide Concentration

Figure 3. Hemolysis assay for minimum inhibitory concentration-rAGAAN, minimum inhibitory concentration-acetic acid and their combination at fractional inhibitory concentration. $1\times$ Fractional inhibitory concentration (0.0313% v v⁻¹ acetic acid and 0.0378 mg.ml⁻¹ rAGAAN); $2\times$ fractional inhibitory concentration (0.0626% v v⁻¹ acetic acid and 0.0756 mg.ml⁻¹ rAGAAN); and $3\times$ fractional inhibitory concentration (0.0939% v v⁻¹ acetic acid and 0.1134 mg.ml⁻¹ rAGAAN)

3.6 rAGAAN-acetic acid against chicken meat spoilage

Results of the experiment are shown in Table 3 and Figure 4. Use of rAGAAN and acetic acid, either separately or in combination, led to significant suppressions of the E. coli growth. Inhibition was observed at various durations of exposure, in contrast to the control group (Table 3). At the beginning of the experiment (Day 0) after exposure to DW for 1 h, the control group showed decreases in the cell population to a value of 6.06 log 10 cfu.g-1. Significant decreases (p = 0.05) were observed in the bacterial count after individual treatment with rAGAAN and acetic acid (4.87 and 5.01 cfu.g⁻¹, respectively). Similarly, when the combination therapy was administered at concentrations of $1\times$, $2\times$ and $3\times$, the resulting bacterial counts were 4.85, 4.82 and 4.81 cfu.g-1, respectively. Significant differences in decreases were reported when comparing the control group to the groups that received rAGAAN treatment alone and the groups that received combination treatments at a threefold fractional inhibitory concentration index as the duration of treatment increased. On Day 1 of the experiment, statistically significant decreases were seen in values of the microorganisms. More precisely, rAGAAN alone and its combination resulted in decreases of 1.39 and 1.40 log 10 cfu.g⁻¹, respectively.

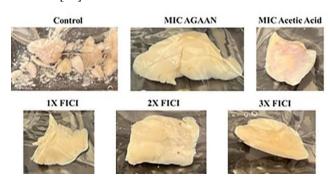


Table 3. Effects of minimum inhibitory concentration-rAGAAN, minimum inhibitory concentration-acetic acid and their combination at fractional inhibitory concentration on inactivation of *Escherichia coli* growth in chicken meat (log cfu.g⁻¹)

Days	Control	MIC rAGAAN	MIC Acetic acid	1× FICI§	2× FICI [†]	3× FICI [‡]
0	6.06 ± 0.02^{A}	4.87 ± 0.01^{C}	5.01 ± 0.01^{B}	$4.85 \pm 0.02^{\circ}$	$4.82 \pm 0.02^{\circ}$	$4.81 \pm 0.02^{\circ}$
1	6.29 ± 0.00^{A}	$4.9 \pm 0.00^{\circ}$	5.04 ± 0.00^{B}	$4.89 \pm 0.00^{\circ}$	4.84 ± 0.00^{D}	4.81 ± 0.01^{E}
2	6.38 ± 0.00^{A}	$4.97 \pm 0.03^{\circ}$	5.1 ± 0.01^{B}	4.92 ± 0.02^{D}	4.9 ± 0.02^{DE}	4.85 ± 0.00^{E}
3	6.49 ± 0.01^{A}	4.98 ± 0.02^{C}	5.14 ± 0.01^{B}	4.94 ± 0.01^{D}	4.94 ± 0.01^{D}	4.86 ± 0.01^{E}

 $^{\$}1\times$ FICI (0.0313% v v⁻¹ acetic acid + 0.0378 mg.ml⁻¹ rAGAAN); $^{\dagger}2\times$ FICI (0.0626% v v⁻¹ acetic acid + 0.0756 mg.ml⁻¹ rAGAAN); $^{\ddagger}3\times$ FICI (0.0939% v v⁻¹ acetic acid + 0.1134 mg.ml⁻¹ rAGAAN). Mean that share the same letter along the row are not significantly different (p < 0.05).

On Day 2, the 3× FICI combination group showed statistically significant decreases of 1.53 log 10 cfu.g⁻¹, compared to the control group (p = 0.05). Furthermore, significant decreases of 1.63 log 10 cfu.g-1 were reported on Day 3, compared to the control group. Results of this study demonstrated that use of rAGAAN and acetic acid included combined antibacterial effects on E. coli in meat samples stored at 37 °C for 3 d. The synergistic effect was detected as superior to the antibacterial effects of rAGAAN when used separately. Results supported changes in the color of the meat. The transformation is documented through the alteration in color of the meat (Figure 4). The control group demonstrated a significant color change and included an unpleasant smell. This might be attributed to the proliferation of microbial organisms. Katiyo et al. [35] reported strong correlations between the odor and growth of microorganisms in chicken legs. The putrid smell of spoiled meat might be due to the existence of various compounds such as sulfur compounds, carbonyls, ketones, diamines and alcohols [36].

Figure 4. Effects of minimum inhibitory concentration-rAGAAN, minimum inhibitory concentration-acetic acid and their combination at fractional inhibitory concentration against *E. coli* on meat spoilage. 1× Fractional inhibitory concentration (0.0313% v v⁻¹ acetic acid and 0.0378 mg.ml⁻¹ rAGAAN); 2× fractional inhibitory concentration (0.0626% v v⁻¹ acetic acid and 0.0756 mg.ml⁻¹ rAGAAN); and 3× fractional inhibitory concentration (0.0939% v v⁻¹ acetic acid and 0.1134 mg.ml⁻¹ rAGAAN)

4. Conclusion

This study provided evidence on the synergistic effects of combining rAGAAN antimicrobial peptides with organic acids to inhibit growth of two prevalent foodborne pathogens of *S. aureus* and *E. coli*. Significantly, this integrated approach created inhibitory effects at decreased con-

centrations, compared to separate uses of these substances. The study revealed that rAGAAN included the highest beneficial synergy when combined with acetic acid. Simultaneous administration of rAGAAN and acetic acid caused disruption of the bacterial cell membrane without causing detectable harms to mammalian RBCs. Furthermore, implementation of multiple treatments led to decreases in the presence of microorganisms in chicken meats after 3 d, compared to the group with no treatments. The study results can be used as secure economically feasible alternatives for the preservation of chicken meats. While the current study assessed two pathogens, further studies are necessary to investigate effects of the chemical combinations on a wider range of microorganisms as well as assessing precise mechanisms of the synergistic interactions.

5. Acknowledgements

This study was supported by research funds from Petchra Pra Jom Klao Research Scholarship (contract no. 74/2563) and Faculty of Science, King Mongkut's University of Technology Thonburi.

6. Conflict of Interest

The authors declare no conflict of interest.

7. Authors Contributions

Investigation, writing-original draft, data curation and formal analysis, N.U.J.; formal analysis, validation, Y.S.A.; Data curation, formal analysis, N.R.; project administration and supervision, T.R.; methodology, supervision, W.S.; project administration and supervision, P.P.; supervision, conceptualization, funding acquisition, resources, methodology, N.J.

References

 WHO (World Health Organization). WHO estimates of the global burden of foodborne diseases. 2015.

https://iris.who.int/bitstream/handle/10665/199350/97892415651 65_eng.pdf?sequence=1

2. Krepker M, Shemesh R, Danin Poleg Y, Kashi Y, Vaxman A, Segal E. Active food packaging films with synergistic antimicrobial activity. Food Control. 2017; 76:117-126.

https://doi.org/10.1016/j.foodcont.2017.01.014.

3. Bohrer BM. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci Technol. 2017; 65: 103-112.

https://doi.org/10.1016/j.tifs.2017.04.016.

4. Zhou GH, Xu XL, Liu Y. Preservation technologies for fresh meat - A review. Meat Sci. 2010; 86: 119-28.

https://doi.org/10.1016/j.meatsci.2010.04.033

5. Xin WG, Wu G, Ying JP, Xiang YZ, Jiang YH, Deng XY, Lin LB, Zhang QL. Antibacterial activity and mechanism of action of bacteriocin LFX01 against Staphylococcus aureus and Escherichia coli and its application on pork model. Meat Sci. 2023; 196.

https://doi.org/10.1016/j.meatsci.2022.109045.

6. Raftari M, Jalilian FA, Abdulamir AS, Son R, Sekawi Z, Fatimah AB. Effect of organic acids on Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat. Open Microbiol J. 2009; 3: 121-127.

https://doi.org/10.2174/1874285800903010121

7. Diyantoro, Wardhana DK. Risk factors for bacterial contamination of bovine meat during slaughter in ten Indonesian abattoirs. Vet Med Int. 2019; 2019: 2707064.

https://doi.org/10.1155/2019/2707064.

8. Pal M, Ketchakmadze D, Durglishvili N, Ketchakmadze I. Staphylococcus Aureus: A major pathogen of food poisoning. J Nutr Food Processing. 2022; 5: 01-3.

https://doi.org/10.31579/2637-8914/074.

9. Sun R, Li Y, Du T, Qi Y. Recent advances in integrated dualmode optical sensors for food safety detection. Trends Food Sci Technol. 2023; 135: 14-31.

https://doi.org/10.1016/j.tifs.2023.03.013.

10. Jackson KA, Gokhale RH, Nadle J, Ray SM, Dumyati G, Schaffner W, Ham DC, Magill SS, Lynfield R, See I. Public Health Importance of Invasive Methicillin-sensitive Staphylococcus aureus Infections: Surveillance in 8 US Counties, 2016. Clin Infect Dis 2020; 70:1021-1028.

https://doi.org/10.1093/cid/ciz323.

11. Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol. 2017; 199:811-825.

https://doi.org/10.1007/s00203-017-1393-y.

12. Hajati H. Application of organic acids in poultry nutrition. Int J Avian & Wildlife Biol. 2018; 3: 324-329.

https://doi.org/10.15406/ijawb.2018.03.00114.

13. Pisoschi AM, Pop A, Georgescu C, Turcus V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur J Med Chem. 2018; 143: 922-935.

https://doi.org/10.1016/j.ejmech.2017.11.095.

14. Ma B, Fang C, Lu L, Wang M, Xue X, Zhou Y, Li M, Hu Y, Luo X, Hou Z. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metalloβ-lactamase. Nat Commun. 2019; 10(1): 3517.

https://doi.org/10.1038/s41467-019-11503-3.

15. Monteiro JMC, Oliveira MD, Dias RS, Nacif-Marçal L, Feio RN, Ferreira SO, Oliveira LL, Silva CC, Paula SO. The antimicrobial peptide HS-1 inhibits dengue virus infection. Virol. 2018; 514: 79-87.

https://doi.org/10.1016/j.virol.2017.11.009.

16. Heymich ML, Friedlein U, Trollmann M, Schwaiger K, Böckmann RA, Pischetsrieder M. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chem 2021; 347. 128917

https://doi.org/10.1016/j.foodchem.2020.128917.

17. Dong B, Lin Y, Wang J, Du W, Sun C, Fu S, Wu T. Antibacterial activity of antimicrobial peptide gcDefb1 against foodborne pathogenic bacteria and its application in pork storage. Food Sci Biotechnol. 2022; 31: 597-605.

https://doi.org/10.1007/s10068-022-01060-9.

18. Zhao G, Kempen PJ, Zheng T, Jakobsen TH, Zhao S, Gu L, Solem C, Jensen PR. Synergistic bactericidal effect of nisin and phytic acid against Escherichia coli O157:H7. Food Control. 2023; 144. 109324.

https://doi.org/10.1016/j.foodcont.2022.109324.

19. Luo X, Song Y, Cao Z, Qin Z, Dessie W, He N, Wang Z, Tan Y. Evaluation of the antimicrobial activities and mechanisms of synthetic antimicrobial peptide against food-borne pathogens. Food Biosci. 2022; 49. 101903.

https://doi.org/10.1016/j.fbio.2022.101903.

20. Ajingi YS, Rukying N, Jiddah NU, Koga Y, Jongruja N. Cloning, recombinant expression, purification and functional characterization of AGAAN antibacterial peptide. 3 Biotech 2023; 13(3). 88.

https://doi.org/10.1007/s13205-023-03512-3.

21. Chatupheeraphat C, Peamchai J, Luk-in S, Eiamphungporn W. Synergistic effect and antibiofilm activity of the antimicrobial peptide K11 with conventional antibiotics against multidrugresistant and extensively drug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol. 2023; 13. 1153868.

https://doi.org/10.3389/fcimb.2023.1153868.

22. World Health Organization Organisation mondiale de la Santé The world health report 1998 Life in the 21st century: a vision for all. 1998.

https://apps.who.int/gb/archive/pdf_files/WHA51/ea3.pdf

23. Hossain F, Follett P, Dang Vu K, Harich M, Salmieri S, Lacroix M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol 2016; 53: 24-30.

https://doi.org/10.1016/j.fm.2015.08.006.

24. Taniguchi M, Ochiai A, Takahashi K, Nakamichi S ichi, Nomoto T, Saitoh E, Kato T, Tanaka T. Antimicrobial activity against Porphyromonas gingivalis and mechanism of action of the cationic octadecapeptide AmyI-1-18 and its amino acidsubstituted analogs. J Biosci Bioeng. 2016; 122: 652-659.

https://doi.org/10.1016/j.jbiosc.2016.05.008.

25. Ajingi YS, Rodpan S, Usman JN, Koga Y, Jongruja N. Synergistic effect of nisin with acetic and propionic acids inactivates Bacillus subtilis on meat and potato. Biocatal Agric Biotechnol. 2022; 41. 102317.

https://doi.org/10.1016/j.bcab.2022.102317.

26. Pangprasit N, Srithanasuwan A, Suriyasathaporn W, Pikulkaew S, Bernard JK, Chaisri W. Antibacterial activities of acetic acid against major and minor pathogens isolated from mastitis in dairy cows. Pathogens. 2020; 9:1-6.

https://doi.org/10.3390/pathogens9110961.

27. Fraise AP, Wilkinson MAC, Bradley CR, Oppenheim B, Moiemen N. The antibacterial activity and stability of acetic acid. J Hosp Infect. 2013; 84: 329-331. https://doi.org/10.1016/j.jhin.2013.05.001

28. Gómez-García M, Sol C, De Nova PJG, Puyalto M, Mesas L, Puente H, Mencía-Ares Ó, Miranda R, Arguello H, Rubio P,

Carvajal A. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcin Health Manag. 2019; 5: 32.

https://doi.org/10.1186/s40813-019-0139-4.

 Halstead FD, Rauf M, Moiemen NS, Bamford A, Wearn CM, Fraise AP, Lund PA, Oppenheim BA, Webber MA. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS One. 2015; 10(9), e0136190.

https://doi.org/10.1371/journal.pone.0136190.

 Peh E, Kittler S, Reich F, Kehrenberg C. Antimicrobial activity of organic acids against Campylobacter spp. And development of combinations-A synergistic effect? PLoS One 2020; 15(9). e0239312.

https://doi.org/10.1371/journal.pone.0239312.

Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci. 2017; 11: 73

https://doi.org/10.3389/fnins.2017.00073.

32. McDermott A, Whyte P, Brunton N, Lyng J, Fagan J, Bolton DJ. The effect of organic acid and sodium chloride dips on the shelf-life of refrigerated Irish brown crab (Cancer pagurus) meat. LWT. 2018; 98: 141-147.

https://doi.org/10.1016/j.lwt.2018.08.039.

- Yuan Z, Aweya JJ, Li J, Wang Z, Huang S, Zheng M, Shi L, Deng S, Yang S. Synergistic antibacterial effects of lowintensity ultrasound and peptide LCMHC against *Staphyl*ococcus aureus. Int J Food Microbiol. 2022; 373. 109713 https://doi.org/10.1016/j.ijfoodmicro.2022.109713.
- 34. Bajpai VK, Park IW, Khan I, Alshammari FH, Kumar P, Chen L, Na M, Huh YS, Han YK, Shukla S. (–)-Tetrahydroberberrubine acetate accelerates antioxidant potential and inhibits food associated *Bacillus cereus* in rice. Food Chem. 2021; 339. 127902.

https://doi.org/10.1016/j.foodchem.2020.127902.

35. Katiyo W, de Kock HL, Coorey R, Buys EM. Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT 2020; 128. 109468.

https://doi.org/10.1016/j.lwt.2020.109468.

 Casaburi A, Piombino P, Nychas GJ, Villani F, Ercolini D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015; 45(Pt. A):83-102.

https://doi.org/10.1016/j.fm.2014.02.002.

APPLIED FOOD BIOTECHNOLOGY, 2024, 11 (1):e21 Journal homepage: www.journals.sbmu.ac.ir/afb

Research Article

pISSN: 2345-5357 eISSN: 2423-4214

اثرات همافزایی پپتید ضد میکروبی AGAAN نوترکیب با اسید آلی بر میکربهای بیماریزای غذازاد مرتبط با گوشت مرغ

نفیو عثمان جیدا $^{(7)}$ ، یاپو سابو آجینجی $^{(e^7)}$ ، نیرانوچ روکینگ $^{(e^7)}$ ، تریویت راتاناروجپانگ $^{(e^7)}$ ، وراپت سانتورنسوک $^{(e^7)}$ ، پاترا پاسون $^{(e^7)}$ ، نوجارین جانگروجا $^{(e^7)}$

- ۱ گروه میکروبیولوژی، دانشکده علوم، دانشگاه صنعتی شاه مانگ کات، تن باری، بانکوک، تایلند.
 - ۲ گروه بیوشیمی، دانشکده علوم، دانشگاه ایالتی گومبه، گومبه، نیجریه.
 - ٣ گروه زيست شناسي، دانشكده علوم، دانشگاه علم و صنعت اَليكو دانگت، ووديل، نيجريه.
- ۴ موسسه توسعه و آموزش نیمه صنعتی، دانشگاه فناوری شاه مونگکوت، تونبوری، بانکوک، تایلند.

چکیده

سابقه و هدف: گوشت مرغ تازه مستعد رشد میکربهای بیماریزای غذازاد های است. گزارشهای قبلی اثربخشی پپتید ضدمیکروبی نوترکیب AGAAN را در برابر سویههای مختلف باکتری نشان داده است. به طور کلی، AGAAN یک پپتید ضدمیکروبی تازه کشف شده با ساختار آلفا-مارپیچ کاتیونی منحصر به فرد است. منشا این پپتید از ترشحات پوستی آگالیکنیس آنایه است. این پپتید تمایل قابل توجهی نسبت به دولایهای لیپیدی میکروبی با بار منفی نشان داده همان طور که قبلاً توسط آنالیزهای آزمایشگاهی و in silico نشان داده شده بود. به هر حال، محدودیتهای عمده در مورد آن شامل هزینههای تولید بالا، بیان محدود، فرآیند پر زحمت و سمیت بالقوه مرتبط با پپتیدهای غلیظ است. در این تحقیق اثرات همافزایی با اسید آلی برای کاهش این مشکلات و حفظ فعالیت باکتری کشی آن مورد توجه قرار گرفت.

مواد و روش ها: AGAAN نوترکیب و اسیدهای آلی بر روی استافیلوکوکوس اورئوس ATCC 6538 و اشرشیا کلی ATCC8739 مورد ارزیابی قرار گرفتند. این کار با ازمون حداقل غلظت مهاری و غلظت مهاری جزیی انجام شد. علاوه بر این، اثرات این ترکیب بر روی یکپارچگی غشای باکتریایی با انجام ارزیابی بتا-گالاکتوزیداز بررسی شد. به علاوه، اثربخشی بالقوه این ترکیب در نگهداری گوشت طیور مورد بررسی قرار گرفت.

یافتهها و نتیجه گیری: حداقل غلظت بازدارنده اسید استیک در برابر دو سویه باکتریایی 1/10 میلی گرم در میلی لیتر بود. در مقابل، حداقل غلظت بازدارنده اسید استیک در برابر استافیلوکوکوس اورئوس و اشریشیا کلی به ترتیب 1/10 و 1/10 درصد حجمی بود. ترکیب این دو هم افزایی قابل توجهی را نشان داد، به طوری که شاخص های بازدارنده کسری 1/10 در برابر دو میکرب غذازاد مشاهده شد. بر اساس این مطالعه، این ترکیب به طور موثر تکثیر میکروارگانیسمهای بیماریزا غذازاد که در عرض 1/10 دقیقه عارضه ایجاد میکنند ، را به طور موثر جلوگیری کرد. حضور بتا گالاکتوزیداز درون سلولی نشان داد که ترکیب دو ماده باعث آسیب به غشای سلولی و در نتیجه به خطر افتادن یکپارچگی آن شده است. در معرض قرارگرفتن گلبول های قرمز در برابر غلظت های مختلف AGAAN نوترکیب و اسید استیک منجر به همولیز آنها نشد. نتایج نشان داد که در تمام آزمایشها بر روی نمونههای گوشتی که تیمارهای و اسید استیک را دریافت کرده بودند، تفاوت معنیداری وجود داشت 1/10 و اسید استیک را دریافت کرده بودند، تفاوت معنیداری وجود داشت 1/10 و اگربردهای نفتان داد که ترکیب پپتید ضد میکروبی نوترکیب 1/10 ها اسید آلی میتواند به طور موثری رشد بیماریزاها را در غلظتهای پایین تر مهار کند. داده های ارائه شده در این مطالعه می تواند به صنایع غذایی کمک کند تا کاربردهای ضد میکروبی مقرون به صرفه بیشتری را توسعه دهند.

تعارض منافع: نویسندگان اعلام می کنند که هیچ نوع تعارض منافعی مرتبط با انتشار این مقاله ندارند.

تاريخچه مقاله

دریافت ۵ آوریل ۲۰۲۴ داوری ۱۲ مه ۲۰۲۴ پذیرش ۱ ژوئن ۲۰۲۴

واژگان کلیدی

- بیماریزاهای غذایی
 - اسید فرمیک
 - بيان پپتيد
- پپتید فعال زیستی نوترکیب

نويسنده مسئول

نوجارين جانگروجا

گروه میکروبیولوژی، دانشکده علوم، دانشگاه صنعتی شاه مانگ کات، تن باری، خیابان اوتیت پراچا ۱۲۶، بانگ مد، تانگخرو، بانکوک، ۱۰۱۴۰، تایلند.

پست الکترونیک: nujarin.jon@kmutt.ac.th

