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Abstract

Antimicrobial resistance (AMR) poses a significant threat to human health and food safety. Lactic acid bacteria
(LAB) produce bioactive compounds, known as postbiotics, that act as promising natural preservatives with broad-
spectrum antimicrobial activity. This study aimed to evaluate the antimicrobial spectrum, production dynamics,
and physicochemical properties of postbiotics derived from five LAB strains: Lactobacillus plantarum NBRC 3070,
Lactobacillus acidophilus ATCC 4356, Lactobacillus casei ATCC 393, Lactobacillus rhamnosus GG ATCC 53103, and
Bifidobacterium animalis subsp. lactis ATCC 27673. The antimicrobial activity of these postbiotics was assessed
against several Gram-positive and Gram-negative pathogens. A crude bacteriocin-like inhibitory substance (BLIS), a
postbiotic component, was partially purified using ammonium sulfate purification and characterized enzymatically.
Its molecular weight was estimated by SDS-PAGE. The results showed that postbiotics, particularly those from L.
plantarum and L. acidophilus, exhibited strong antimicrobial activity. The inhibitory effect was most pronounced
against Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus after a 16-h exposure. The postbiotics
production peaked between 24 and 36 h of incubation, achieving 85.71-89.28% inhibition. These postbiotics
remained stable at high temperatures (up to 121 °C), across a wide pH range (3-5 and 9-11), and under varying
salt concentrations. Neutralized cell-free supernatants from L. plantarum, L. acidophilus, L. casei, and L. rhamnosus
GG retained antimicrobial activity, and enzyme treatments confirmed the proteinaceous nature of the BLIS. SDS-
PAGE revealed diffuse protein bands between <3.3 and 6.5 kDa. Lyophilization enhanced the concentration and
stability of antibacterial compounds by reducing water content. In addition to BLIS, LAB strains produced other
antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, fatty acids, and notably, oleic acid.
These postbiotic components remained effective after one month of storage at 4 °C and 20 °C for one month.
The novelty of this study lies in its comprehensive characterization of postbiotics from well-established LAB strains
across multiple functional parameters. Overall, the findings suggest that these LAB-derived postbiotics are stable,
effective, and hold potential as natural antimicrobial agents in food preservation.
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Introduction

Foodborne pathogens and spoilage microorganisms
threaten human health and food quality, leading to global
public health concerns [1]. Notable pathogens such as
Escherichia coli, Salmonella Typhimurium, Staphylococ-
cus aureus, Pseudomonas aeruginosa, Shigella sonnei,
Serratia marcescens, Listeria monocytes, Campylobacter
jejuni, and Bacillus cereus, responsible for severe illness
and fatalities worldwide [2]. These risks underscore the
urgent need for effective agents that enhance food safety
and extend shelf life [3]. As consumers demand shift away
from chemical preservatives due to health concerns [4],
to natural preservation strategies, particularly bio-pres-
ervation, have gained momentum [5-8]. Compounding
these challenges is the global rise of antimicrobial resis-
tance (AMR) and multi-drug resistance (MDR), which
limits the efficacy of conventional antibiotics and pre-
servatives [9]. In response, lactic acid bacteria (LAB) and
their metabolites are being explored as natural, broad-
spectrum antimicrobial agents with potential to counter
AMR in food systems [10]. These bio-preservatives align
with the food industries, increasing focus on safety and
consumer health [11]. Consequently, recent research
emphasizes screening microorganisms capable of pro-
ducing active biomolecules and characterizing their anti-
bacterial compounds [12].

LAB produces a variety of antimicrobial metabolites,
including organic acids, hydrogen peroxide (H,0,), car-
bon dioxide, bacteriocins, and bacteriocin-like inhibitory
substances (BLIS), collectively referred to as postbiotics
[13]. International Scientific Association for Probiotics
and Prebiotics (ISAPP) defines postbiotics as"a prepara-
tion of inanimate microorganisms and/or their compo-
nents that confers a health benefit on the host"[14]. LAB
strains such as Lactobacillus and Bifidobacterium release
these compounds into their cell-free supernatant (CES)
during growth [15], thereby contributing to pathogen
inhibition [16, 17]. Bacteriocins and BLIS are ribosomally
synthesized peptides or proteins classified as “Gener-
ally Regarded As Safe” (GRAS) [18]. They exhibit either
broad- or narrow-spectrum bactericidal and bacterio-
static activity against foodborne pathogens and spoilage
bacteria [19]. Due to their low toxicity, high thermal and
pH stability, salt tolerance, lack of resistance develop-
ment and immunogenicity, and susceptibility to diges-
tive proteases, these compounds are ideal candidates
for safe food preservatives [20-23]. The term BLIS is
typically used when bacteriocin has not yet been fully
characterized at the molecular level [24]. Derived from
various LAB species and strains, BLIS shows significant
antimicrobial activity against both Gram-positive and
Gram-negative bacteria and remains stable across vary-
ing environmental conditions [25, 26]. Analytical tech-
niques such as SDS-PAGE and high performance liquid
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chromatography (HPLC) commonly identify and char-
acterize BLIS in postbiotics [27]. However, challenges
to commercialization remain, including the need for
thorough physicochemical characterization and stabil-
ity testing. The production and effectiveness of postbiot-
ics, including BLIS, depend on multiple factors, such as
bacterial species, growth conditions, media types and
composition, and production strategies [28]. Therefore,
optimizing these parameters is crucial for maximizing
the efficacy and the industrial applications of postbiotics
in meat and food preservation [29].

This study focuses on five commercial probiotic LAB
strains: Lactobacillus plantarum NBRC 3070, Lactoba-
cillus acidophilus ATCC 4356, Lactobacillus casei ATCC
393, Lactobacillus rhamnosus GG ATCC 53103, and Bifi-
dobacterium animalis subsp. lactis ATCC 27673. While
previous research has confirmed these strains’ ability
to produce antimicrobial substances, such as organic
acids, H,0,, bacteriocins, and BLIS, their full antimicro-
bial and physicochemical potential, particularly strains
ATCC 4356, ATCC 393, ATCC 53103, and ATCC 27673,
remains underexplored [30—34]. Despite increasing inter-
est in LAB-derived postbiotics in the last decades, key
knowledge gaps persist in areas such as physicochemi-
cal properties, enzyme sensitivity, cultivation conditions
(temperature, pH, and salt), inhibition profile, and stor-
age stability of their postbiotic metabolites. Moreover,
limited data exist on the partial characterization of BLIS
and chemically characterized the CES from these strains
in terms of protein, acetic acid, lactic acid, and FA contri-
butions to antibacterial activity. Most existing literature
focuses primarily on the inhibitory effects of bacterio-
cins or BLIS against specific pathogens like E. coli, Salm.
Typhi, and Staph. aureus aureus (2, 35, 36].

To address these gaps, this study examines the anti-
microbial efficacy of LAB-derived postbiotics against a
broad range of foodborne pathogens, including E. coli,
Salmonella Typhimurium, Staphylococcus aureus, Shi-
gella sonnei, Pseudomonas aeruginosa, Serratia marc-
escens, and Bacillus cereus. Our approach is novel in its
integration of production profiling, environmental sta-
bility testing, storage assessments, and in-depth chemi-
cal analysis of the CFS components. Furthermore, we
screened the strains to determine optimal growth condi-
tions (pH and biomass density) for active postbiotic pro-
duction. Enzymatic treatments were used to confirm the
pretentious nature of the active compounds, and semi-
purified BLIS was further characterized using ammo-
nium sulfate precipitation and SDS-PAGE analysis. These
findings of the study have significant industrial and com-
mercial implications, offering insights into the develop-
ment of stable, natural preservatives for improving food
safety and shelf life while contributing to the broader
fight against AMR.
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Material and methods

Bacterial strains, media, and cultivation conditions

This study evaluated the antibacterial potency of five
commercially available probiotic lactic acid bacteria
(LABs) strains: Lactiplantibacillus plantarum NBRC
3070 (LP 3070), Lactobacillus acidophilus ATCC 4356
(LA 4356), Lacticaseibacillus casei ATCC 393 (LC 393),
Lacticaseibacillus rhamnosus GG ATCC 53103 (LGG
53103), and Bifidobacterium animalis subsp. lactis ATCC
27673 (BAL 27673). These strains were selected based on
their established probiotic status and reported ability to
inhibit foodborne and spoilage microorganisms. Antimi-
crobial activity was tested against seven Gram-positive
and Gram-negative indicator strains: Escherichia coli
ATCC 25922, Salmonella Typhimurium ATCC 14028,
Staphylococcus aureus ATCC 43300, Shigella sonnei
ATCC 25931, Pseudomonas aeruginosa ATCC 10145,
Serratia marcescens ATCC 14756, and Bacillus cereus
ATCC 14579. These indicators were chosen for their sus-
ceptibility to probiotic action, relevance in food spoilage,
and availability. All bacterial strains were kindly provided
as liquid stocks by the Faculty of Applied Science, School
of Biology at Universiti of Technology MARA (UiTM),
Malaysia. LAB strains were revived in de Man, Rogosa,
and Sharpe (MRS) broth (Condalab, Spain) under anaer-
obic conditions using RS Biotech, Galaxy S Incubator
(UK) at 37 °C for 24 h. Indicator strains were cultured in
Luria Bertani (LB) broth (Condalab, Spain) at 28-37 °C
for 24 h (Supplementary Table S1). All final cultures were
stored at—80 °C in 40% glycerol (Sigma, EU) using an
ultra-low temperature freezer (SANYO, Japan) for fur-
ther use.

Physical characterizations of postbiotics

Antimicrobial spectrum

The antibacterial spectrum of the cell-free supernatant
(CES) of LAB, containing postbiotics, was assessed via
broth microdilution in 96-well plates [37]. LAB strains
were inoculated at 2% (v/v) into 50 ml MRS broth and
incubated anaerobically at 37 °C for 18 h to produce anti-
microbial substances. CFS was collected at the end of
the logarithmic phase (ODgyy,,: 0.52-0.68,~10° CFU/
mL) using a UV-Vis Spectrophotometer (Thermo Scien-
tific, Multiskan GO, Finland). Cultures were centrifuged
(10,000 rpm, 20 min, 4 °C, Eppendorf 5430 R), heated at
80 °C for 20 min (WTB15, Memmert GmbH, Germany),
pH-adjusted to 6.0-6.5 with 5 M NaOH (Sigma, Ger-
many), sterile-filtered (0.22 um Millex PVDF Syringe fil-
ter, Merck), and lyophilized (Labconco™, Thermo Fisher
Scientific). Lyophilized neutralized CFS (nCFS) was
for storage at 4 °C [38]. As per Yi & Kim [37] 40 pL of
untreated CFS (rCFS) was poured into 96-well plates
(SPL, Korea), followed by 10 pL of overnight indicator
cultures (ODgyppm: 0.120-0.18) and adjusted to 200 pL
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with LB broth. MRS broth (pH 6.5) served as the negative
control, while cultures without rCFS served as growth
controls.

Time-dependent antimicrobial effectiveness

The effect of rCES exposure time on pathogen inhibition
was evaluated via agar well diffusion after 16 and 24 h,
following Ohaegbu [39]. LB agar plates were swabbed
with indicator inoculum (ODg,,,:0.14—0.18). After 1 h,
6-mm wells were pounced using the reverse end of ster-
ile pipette tips filled with 100 pL of rCFS. Plates were
allowed to diffuse for 30 min at room temperature, with
MRS broth and 0.02% acetic acid used as negative and
positive controls, respectively. Inhibition zones were
measured using a vernier caliper after incubation.

Evaluation of BLIS

Neutralized, heat-treated CFS (nCFS) retaining antago-
nistic activity was assumed to contain BLIS. To test this,
two-fold serial dilutions of lyophilized nCFS (cCES) were
mixed indicator cultures in 96-well plates, based on
Bajpai [40]. Each well received 50 uL of LB broth, 50 uL
of cCFS, and indicator inoculum (ODggy,,,: 0.10-0.14).
MRS broth and indicator-only wells served as controls.
ODygponm Was measured after 24 h of incubation at 37 °C.
Inhibition (%) was calculated using Eq. 1:

%, = [(ODggonmcontrol — ODgoonmsample) /ODggonmcontrol] X 100 (1)

All tests were performed in triplicate (#=3), and the
results were summarized.

Postbiotics production dynamics

Growth (ODgyonm)> PH change, and antimicrobial pro-
duction dynamics of each LAB strain were studied by
inoculating 1% (v/v, 10 mL) into 1 L MRS broth (initial
pH of 6.20+0.2), incubated at 37 °C for 48 h. At 4-h inter-
vals, samples were taken (10 mL) to measure ODgy,
using a spectrophotometer and pH meter using a pH
meter (Mettler Toledo SevenCompact S220, Schwiez).
The antimicrobial activity of harvested CFS was evalu-
ated using a 96-well broth microdilution using E. coli
ATCC 25922 as the test strain [41]. A Box-Behnken
response surface methodology (RSM) model was used to
analyze the effects of incubation time (0-48 h), OD val-
ues (01.20), and pH (3.8-6.5) on antimicrobial activity.
The RSM model was defined as: Y=+ XB.X; + ;X >+ X
B;XX;, where Y =antimicrobial activity, X;=independent
variables (time, pH, OD), and f terms as regression coef-
ficients for linear, quadratic, and interaction effects. All
tests were conducted in triplicate to ensure the reliability
of the results.
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Susceptibility of postbiotics to temperature, pH, and salt
concentrations

Thermal stability of rCFS was determined by heating
15 mL aliquots at 40°C 60°C, 80°C, or 100°C for 30 min in
a water bath, autoclaving at 121°C for 15 min (STURDY
SA-300H, Taiwan). pH tolerance was tested by adjusting
rCFS to pH 3.0, 5.0, 7.0, 9.0, and 11.0 with 5 M NaOH or
HCI, followed by a 2-h incubation at room temperature,
and readjusted to pH 6.5 before testing. Salt tolerance
was evaluated by supplementing rCFS with 2—10%NacCl
and incubating at 37 °C for 2 h. The antimicrobial activity
was tested against E. coli ATCC 25922 and Staph. aureus
ATCC 43300 in 96-well plates by mixing treated rCFS
with LB broth (1:1) inoculated with 0.05% (v/v) bacterial
culture. The assay was performed in 96-well microplates
using the broth microdilution method. Untreated rCES
and MRS broth were used as positive and growth con-
trols, respectively. All assays were carried out in triplicate
(n=3).

Enzymatic susceptibility of BLIS

To determine the proteinaceous nature of the BLIS, nCFS
was treated with proteolytic enzymes: pepsin (pH 3.0, 37
oC, 0.1 M HCI), trypsin, and papain (both in pH 7.5, 37
oC, 10 mM PBS) at 1.0 mg/mL [26, 42]. Enzymes (Ben-
dosen, Norway) were incubated with nCFS at 37 °C for
4 h, then inactivated by heating at 100 °C for 5 min. Anti-
bacterial activity was assessed via broth microdilution
against E. coli ATCC 25922, Salm. Typhimurium ATCC
14028, Staph. aureus ATCC 43300, and Ps. aeruginosa
ATCC 10145.

Partial purification and characterization of crud BLIS

The study aimed to extract and partially purify BLIS
from five LAB strains following the method of [43] with
slight modifications. Briefly, 10 mL of LAB strains were
cultured in 1 L of MRS broth (2%, v/v) at 37 °C for 24 h
under anaerobic conditions in a shaking incubator (BS-
1E, Zenith Lab, China) at 125 rpm. The cultures were
centrifuged at 10,000 rpm for 20 min at 4 °C, and the
pH of the resulting supernatant was adjusted to 6.0-6.5
using 5 M NaOH. The nCFS was then filtered through
a 0.22 um membrane to obtain crude BLIS [44], which
was stored at 4 °C for subsequent use. For protein pre-
cipitation, 350 g of ammonium sulfate (Duksan, Korea)
was gradually added to 500 mL of BLIS (70% satura-
tion) at 4 °C, gently stirring, and incubated overnight.
The precipitated proteins were recovered by centrifu-
gation (10,000 rpm, 30 min, 4 °C), dissolved in PBS
(0.1 M pH 7.4), and dialyzed overnight using a 3000 Da
molecular weight cut-off dialysis Membrane (Thermo
Fisher Scientific, USA). This dialyzed filtrate, referred to
as'semi-purified BLIS'[45], was assessed for antimicrobial
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activity against Salm. Typhimurium ATCC 14028 before
freeze-drying.

The molecular weight of semi-purified BLIS was deter-
mined using 12% SDS-PAGE (Bio-Rad, USA), follow-
ing the procedure described by Islam et al. [46]. Protein
bands were visualized with Coomassie Brilliant Blue
(CBB) R-250 (Thermo Scientific, USA), and molecular
weight was estimated using a pre-stained protein marker
(Bio-Rad, USA) ranging from 3.3-31 kDa.

Chemical characterization of cell-free supernatants

Protein analysis

Protein concentrations in rCFS, nCFS, and cCFS from
LAB strains were quantified using the Bradford method
[47] with modifications. A 5 pL aliquot of each CFS sam-
ple was mixed with 250 pL of Bradford reagent and incu-
bated at room temperature for 5 min. Absorbance was
measured at 595 nm (ODgyq,,)- A standard curve was
generated using serial dilutions of bovine serum albumin
(BSA, Thermo-Fisher Scientific, USA), and the protein
concentration (mg/mL) was calculated using the follow-
ing equation: y=0.0012x + 0.3572 (R?=0.998), where ‘y’ is
the absorbance measured at ODgy -, 0.0012 is the slop
of the standard curve, ‘x’ is the protein concentration in
mg/mL, and ‘0.3572’ stands for the intercept of the stan-
dard curve (Supplementary Fig. S1).

Organic acid analysis

To quantify lactic and acetic acid production, 10 mL of
the homogenized sample was titrated with 0.25 mol/L
NaOH using 1 mL of phenolphthalein (0.5% in 50% alco-
hol) as an indicator. Titratable acidity was expressed as
mg/mL of lactic acid and acetic acid, calculated from
their molar equivalents. One milliliter of 1 N NaOH was
assumed to neutralize 9.008 mg of lactic acid or 6.005 mg
of acetic acid [48].

Hydrogen peroxide analysis

Hydrogen peroxide (H,O,) levels were determined by
titrating approximately 25 mL of each fermenting sample
with 0.1 N potassium permanganate, in the presence of
20 mL of diluted sulfuric acid (H,SO,) [48]. Results were
expressed in mg, assuming that 1 mL of titrant corre-
sponded to 1.70 mg of H,O,,.

Fatty acid methyl esters

Fat and fatty acids (FAs) were extracted from cCFS using
the hydrolytic method and methylated with metha-
nol and HCI for form fatty acid methyl esters (FAMEs).
The FAMEs were analyzed via gas chromatography-
mass spectrometry (GC-MS, Shimadzu GC-2010-Plus)
equipped with a flame ionization detector (FID) and
Supelco SP™-2560 capillary column. Injector and detec-
tor temperatures were maintained at 225 °C and 285 °C,
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respectively. The oven temperature program was as fol-
lows: initial hold at 100 °C for 4 min, ramped at 3 °C/min
to 208 °C, and then held for 15 min at 244 °C. Helium was
used as the carrier gas at a flow rate of 0.75 mL/min with
a split ratio of 200:1. A 3 pL injection volume was used.
FAMEs were identified and quantified using the Supelco
37 Component FAME Mix (Sigma-Aldrich, USA).

Storage stability of postbiotics

The rCFS containing antimicrobial substances from five
LAB strains was prepared as described earlier and stored
at 4 °C and-20 °C for 15 and 30 days. Antimicrobial
activity against E. coli ATCC 25922, Salm. Typhimurium
ATCC 14028, Staph. aureus ATCC 43300, and Ps. aeru-
ginosa ATCC 10145 were evaluated using the agar well
diffusion method. Changes in pH were also analyzed,
and the antimicrobial activity of stored samples was com-
pared with freshly prepared rCFS following the method
of Silva et al. [49].

Statistical analysis

All experiments were conducted in a completely random-
ized design (CRD), with LAB strains and indicator patho-
gens treated as independent variables. Data was analyzed
using SPSS software version 25 (IBM Corp., USA, 2023).
The parametric test, including one-way analysis of vari-
ance (ANOVA), t-test, and repeated measure ANOVA,

Inhibitory activity (%) of CFS of five LAB strains
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were performed under the general linear model (GLM)
to investigate significant variations among sample means
(confidence level: 95%). Duncan’s Multiple Range Test
(DMRT) was used for post-hoc comparisons. Differ-
ences in antibacterial activity among LAB strains and
storage times were examined using univariate GLM
analysis. Sensitivity differences among pathogenic bac-
teria were analyzed using one-way ANOVA followed by
Duncan’s test. The 3D surface plot was constructed using
SigmaPlot version 15. Each experiment was replicated
in triplicates (n=3), and the data was expressed as mean
value + standard deviation.

Results and discussions

Antimicrobial screening of postbiotics

The global rise of antimicrobial resistance (AMR) has
rendered many conventional antibiotics less effective,
highlighting the urgent need for alternative antimicrobial
agents [50]. In this context, lactic acid bacteria (LAB)-
derived postbiotics are gaining attention as natural pre-
servatives capable of inhibiting multi-drug-resistant
(MDR) microorganisms while ensuring food safety [3].
Five LAB strains were screened for postbiotics produc-
tion and evaluated for antibacterial activity using a broth
microdilution assay in 96-well plates. The percentage of
inhibitory activity against seven indicator strains is pre-
sented in Fig. 1 and detailed in supplementary Table S2.

B E. coli ATCC 25922
® Salm. Typhimurium ATCC 14028
® Staph. aureus ATCC 43300
m Sh. sonnei ATCC 25931
Ps aeruginosa ATCC 10145
Ser. marcescens ATCC 14756
B. cereus ATCC 14579

oA aA
ﬂbA bcA
bcA A AR
aA
I

LGG ATCC 53103 BAL ATCC 27673

LAB strains

Fig. 1 Inhibitory activity (%) of untreated cell-free supernatant (rCFS) of LAB-containing antimicrobial substances. The inhibition was determined against
seven indicator microorganisms assessed by broth microdilution techniques. The error bars indicate the standard error of the mean (n=3). a-c Represents
statistically significant differences among different indicator strains within each LAB strain (n=3, p <0.05, Duncan’s test). A and B Represents statistically
significant differences among different LAB strains within each indicator strain (n=3, p <0.05, Duncan’s test). LP, L. plantarum NBRC 3070; LA, L. acidophilus
ATCC 4356; LC, L. casei ATCC 393; LGG, L. rhamnosus GG ATCC 53103, and BAL, B. animalis subsp. lactis ATCC 27673
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Except for Bifidobacterium animalis subsp. lactis ATCC
27673 (BAL 27673, p=0.620), postbiotics from all LAB
strains exhibited significant variability (p<0.01), with
inhibition ranging from 81.39 to 86.47%. This suggests
a broad-spectrum efficacy against both Gram-positive
and Gram-negative pathogens [51-53]. Statistically sig-
nificant inhibition (p>0.05) was observed only against
Ps. aeruginosa (p=0.023), while inhibition of other
strains was not significant. Notably, LAB postbiotics
were most effective against E. coli (85.10-86.47%), Salm.
Typhimurium (86.52—85.29%), and Staph. aureus (84.23—
85.49%), aligning with previous findings [52]. Research
by Qiao et al. [54] Prabhurajeshowar and Chandrakanth
[55], and Roubhi et al. [56] demonstrated that postbiotics
from various Lactobacillus strains significantly inhibit
common pathogens including, E. coli, Salm. enterica,
Salm. typhi, Ps. aeruginosa, Staph. aureus, L. mono-
cytogenes and Shigella spp. The inhibitory effect likely
stems from cell membrane-disrupting compounds such
as organic acids (e.g., lactic and acetic acid) and bac-
teriocins [16]. Among the strains, Lactiplantibacillus
plantarum NBRC 3070 (LP 3070) and Lactobacillus aci-
dophilus ATCC 4356 (LA 4356) postbiotics exhibited the
highest inhibitory activity (83.53-86.47%, p=0.000 and
83.09-86.18%, p=0.005, respectively). Lacticaseibacillus
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rhamnosus GG ATCC 53103 (LGG 53103) postbiot-
ics maintained consistent activity against E. coli, Salm.
Typhimurium, and Staph. aureus. In contrast, Lactica-
seibacillus casei ATCC 393 (LC 393) showed moderate
activity, and both LC 393 and LGG 53103 were less effec-
tive against Sh. sonnei and Ps. aeruginosa, with inhibition
rates not exceeding 82%. Such strain-specific differences
may result from variable concentrations of postbiotics,
detection methods, and inherent resistance of specific
pathogens [57].

Time-dependent antimicrobial effectiveness

Agar well diffusion assay was used to assess the time-
dependent antimicrobial activity of postbiotics at 16-h
and 24-h. Statistically significant differences were
observed between LAB strains and exposure time
(p<0.05) (Supplementary Table S3). As shown in Fig. 2,
postbiotics were more effective after 16 h than 24 h, with
activity declined by 1.73-14.21%. This decline aligns with
previous findings showing that bioactive compounds
can degrade or lose synergistic effects beyond 16-18 h
[40, 58—60]. Prolonged exposure may also enable patho-
gens to adapt to acidic environments or active resis-
tance mechanisms [61, 62]. Postbiotics from LC 393 and
LGG showed the greatest decline in activity over 24 h
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Fig. 2 Inhibition zone of untreated cell-free supernatants from LAB strains incubated for 16 and 24 h. The substances'antimicrobial activity was deter-
mined when they were exposed to pathogens of E. coli ATCC 25922 (a), Staph. aureus ATCC 43300 (b), Salm. Typhimurium ATCC 14028 (c), Sh. sonnei ATCC
25931 (d), Ps. aeruginosa ATCC 10145 (e), and B. cereus ATCC 14579 (f). The error bars indicate the standard error of the mean (n=3). CFS, Cell-free superna-
tant. a-c Represents statistically significant differences among different CFS of LAB strains exposed to respective pathogens tested for 16 h (n=3, p<0.05,
Duncan’s test). *# Represents statistically significant differences among different CFS of LAB strains exposed to respective pathogens tested for 24 h. (n=3,
p <0.05, Duncan’s test). LP, CFS obtained from L. plantarum NBRC 3070; LA, CFS obtained from L. acidophilus ATCC 4356; LC, CFS obtained from L. casei ATCC
393; LGG, CFS obtained from L. rhamnosus GG ATCC 53103, and BAL, CFS obtained from B. animalis subsp. lactis ATCC 27673
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(4.15-14.21% and 4.76-10.64%, respectively), especially
against Sh. somnei and Ps. aeruginosa (Supplementary
Table S4). These findings suggest the potential of LAB
postbiotics in short-term applications, such as fresh meat
preservation or rapid antimicrobial interventions.

Evaluation of Bacteriocin-like inhibitory substances (BLIS)
To confirm the presence of bacteriocin-like inhibitory
substances (BLIS) as active components, heat-treated,
pH-neutralized, and lyophilized CFS (cCES) samples
were analyzed. Earlier studies suggest that the lyophili-
zation process itself and the MRS medium reduced oxy-
gen metabolites and H,O, activity [63]. As illustrated
in supplementary Fig. S2, all strains except BAL 27673
retained 11.84-44.72% antimicrobial activity, indicating
the presence of heat-stable and pH-resistant postbiotic
components, such as BLIS [19, 24, 64]. BLIS of LP 3070
and LA 4356 were effective against all tested pathogens,
while LC 393 and LGG 53103 were only active against
Salm. Typhimurium and Sh. sonnei, consistent with ear-
lier studies [65—-67]. The absence of BLIS activity in BAL
27673 suggests that its antimicrobial activity primarily
results from organic acid [68]. These results further con-
firm that BLIS production is strain-specific (p <0.01).

Dynamics of postbiotics production

The optimum incubation time and temperature are cru-
cial for LAB growth and metabolite production [69].
To see the dynamics of postbiotics production, in this
study, LAB strains were cultivated in MRS broth under
optimum conditions. Postbiotic production began in
the early logarithmic phase (4 h) with inhibition ranging
from 17.40-24.74%, at a pH of 5.21-5.27 and ODy,, of
0.23-0.27 (Fig. 3a, b, c). This result explained that LAB
strains effectively produce bioactive metabolites for
their survival in the early logarithmic phase [70]. Aver-
age peak antimicrobial activity (87.50%) occurred dur-
ing the stationary phase (32 h), corroborating the ODg,
value of 1.21-1.35 and a pH drop of 3.76—3.84. Postbiotic
levels slightly declined after peak production (87.50% to
82.45%, as depicted in Fig. 3), likely due to nutrient deple-
tion, increased organic acid production, and reduced
metabolic activity [71, 72]. Previous studies [73-77]
indicate that maximum postbiotic levels are usually pro-
duced during the mid-to-late exponential or early sta-
tionary phase, with peak activity occurring after 24—48 h
of incubation [78—80]. LC 393 produced postbiotics with
the highest activity during the exponential (16-20 h)
and early stationary (24—-32 h) phases, followed by LGG
53103. LP 3070 and LA 4356 reached half-maximal activ-
ity at 24 h, compared to 16 h for LC 393 and LGG 53103.
Response surface plots (Fig. 4) revealed optimal postbi-
otic production (>90% activity) conditions of 28-31 h
incubation, ODg,,, 0.7-1.1, and pH 3.8-4.9. LP 3070
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reached maximum activity earlier (28 h), while LC 393
required a higher cell density. LGG 53103 showed the
highest activity at the lower pH (3.90), reflecting stain-
specific metabolic differences in selection for their indus-
trial and preservative applications.

Susceptibility of postbiotics to temperature, pH, and salt
concentrations

The stability of postbiotics under extreme conditions
like thermal stability, pH tolerance, and salt tolerance
holds great promise for food bio-preservation [81]. For
instance, they can be easily incorporated into food for-
mulations without significant alterations to existing
processing or can withstand thermal processing (pas-
teurization), making them practical alternatives to syn-
thetic preservations [82, 83]. Therefore, in this study,
thermal stability, pH, and salt tolerance of postbiotics
were investigated. As shown in supplementary Table S5,
postbiotics retained>95% of their antimicrobial activ-
ity after heat treatment (40-100 °C for 30 min). Even at
121 °C for 15 min, high activity persisted, with only a
slight reduction in LP 3070 postbiotics, consistent with
reports on bacteriocin from Lactobacillus spp. and Weis-
sella cibaria [84, 85]. Postbiotics remained active across
a wide pH range of 3-11, showing peak activity (=96%)
at pH 3-5, supporting their suitability for food preserva-
tion in acidic environments [42, 86, 87]. Although activ-
ity declined under basic conditions (pH 9-11), residual
efficacy (19.75-44.48%) was observed. In this study, LP
3070 and LA 4356 showed diminished activity at neutral
pH, while LC 393 and LGG 53103 retained 23.04—26.46%
activity. Postbiotics were also found to be salt tolerant,
retaining > 97% activity at NaCl concentrations of 2—10%,
agreeing with the findings of Piazentin et al. [88] and sur-
passing the salt stability previously reported by Afrin et
al. [43]. They observed activity loss in LAB bacteriocins
of L. plantarum, L. rhamnosus, and L. casei, with increas-
ing salt levels of 1-7%. These characteristics confirm
the robustness of postbiotics in various meat and other
animal-based food product processing environments,
contributing to enhanced microbial safety and extending
shelf-life without synthetic additives.

Susceptibility of BLIS to enzymes

The proteinaceous nature of BLIS was confirmed by
enzymes susceptibility testing. As shown in Fig. 5,
antibacterial activity of cCFS against E. coli, Salm.
Typhimurium, Staph. aureus, and Ps. aeruginosa
decreased (p<0.01) by 1.28-10.97% following treatment
with proteolytic enzymes such as trypsin (Fig. 5a), pep-
sin (Fig. 5b), and papain (Fig. 5¢). This enzyme sensitivity
underscores the role of peptide-based BLIS in antimicro-
bial activity, corroborating prior studies [25, 89]. Ghan-
bari et al. [90] found that treating L. casei AP8 and L.
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Fig. 3 Effect of OD value and pH changes on the postbiotics activity of LAB strains. The LAB strains were incubated for 48 h at 37 °C, and the inhibitory
activity of these postbiotics against £. coli ATCC 25922 was influenced by (a) cell density (OD value), (b) pH values, and (c) OD and pH values. The bar
graphs represent the antimicrobial activity of postbiotics, and the line graphs represent OD and pH values, respectively. OD values and optical density
are measured at ODyyg,,,,. LP: OD and pH values from L. plantarum NBRC 3070; LA: OD and pH values from L. acidophilus ATCC 4356; LC: OD and pH values
from L. casei ATCC 393; LGG: OD and pH values from L. rhamnosus GG ATCC 53103

plantarum H5 CFSs with proteolytic enzymes eliminated
their antimicrobial effect, indicating that peptides are
the inhibitory components. These enzymes break down
proteins into smaller peptides, supporting the idea that
BLIS are bacteriocins [91]. As shown in Fig. 5, pepsin,
more effective in acidic conditions, cleaves BLIS more

efficiently than trypsin and papain. Some remaining
activity of BLIS shows it is partially resistant to enzyme
breakdown. However, its overall inactivity means that
enzymes damage the structure and function of BLIS [92].
This leads to a loss of their ability to disrupt the mem-
branes of harmful bacteria. Thus, the results confirm
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Fig. 4 Response surface plot of postbiotics activity. The Box-Behnken designs of the surface plot addressing parameters as independent variables in the
axis of (a) incubation time (0-48 h) and ODg,, Value (0-1.2), (b) incubation time (0-48 h) and pH value (3.8-6.5), and (c) ODgg,m (0-1.2) and pH values
(3.8-6.5). The combined effect of these independent variables changes the response or dependent variables of the antimicrobial activity of postbiotics.
They were obtained from L. plantarum NBRC 3070 (1), L. acidophilus ATCC 4356 (2), L. casei ATCC 393 (3), L. rhamnosus GG ATCC 53103 (4), and (5) B. ani-

malis subsp. lactis

that the active antibacterial components in BLIS are
protein-based.

Partial purification and characterization of BLIS
Ammonium sulfate precipitation significantly enhanced
the antimicrobial activity of BLIS by enriching bioactive
peptides and removing impurities from crude BLIS [93].
In the present study, 70% ammonium sulfate was used
to concentrate CFS from four LAB strains, to enhance
their activity against Salm. Typhimurium. The activity,
total protein, yield, volume, and purification fold of the
ammonium salt purification are presented in Table 1. Fol-
lowing precipitation, the antimicrobial activity (AU/mL)
of the semi-purified BLIS increased substantially, ranging
from 6,827 to 10,240 AU/mL (Supplementary Fig. S3),
compared to the crude BLIS to 1,067-1,280 AU/mL. The
purification process also resulted in a marked increase
in specific activity, from 16.29-21.30 AU/mg in crude
BLIS to 617.27-876.71 AU/mg in the purified fractions.
The purification folds ranged from 32.99-41.15, with
recovery yields between 12.80% and 16.00%, indicating
successful concentration of bioactive compounds. These
findings demonstrated that ammonium sulfate precipita-
tion effectively concentrates and enhances the potency of
BLIS, consistent with previous reports showing purifica-
tion folds between 1.65 and 106.7 for bacteriocins of Lac-
tobacillus spp. [94-96].

SDS-PAGE analysis further characterized the molecu-
lar sizes of the active components. Coomassie Brilliant
Blue (CBB) staining visualized distinct protein bands for
BLIS from LP 3070, LA 4356, and LGG 53103, with esti-
mated molecular weights ranging from<3.3 to 6.5 kDa
(Fig. 6). These findings align with the known size range
of bacteriocins, or BLIS, which typically range from 0.14
to 8 kDa [94, 97-100], classified into Class I (<5 kDa) and
Class II (<10 kDa) bacteriocins [19, 101]. Specifically, L.
plantarum has been reported to produce several low-
molecular-weight bacteriocins, such as PNMGL2 (7.62
KDa), M1-UVs300 (3.4 kDa), plantaricin W (2.3 kDa),
KL-1Y (3.5 kDa), Z057, Bacteriocin GA15, which are
effective in inhibiting foodborne pathogens [1, 102-105].
Similarly, L. acidophilus strains have been shown to pro-
duce a broader range of bacteriocins, including both
smaller (e.g., 30SC, 3.50 kDA; LaKS400, 7.5 kDa) and
larger bacteriocins with 37-68 kDa [30, 87, 94, 106].
These may correspond to Class II and Class III bacte-
riocins depending on their size and structure [30]. On
the contrary, L. rhamnosus strains in various fermented

foods have also been shown to produce bacteriocins with
lower molecular weight, such as BCN 1 (0.1427 kDa),
BCN 2 (0.605 kDa), and A5 (<14 kDa) [95, 99, 100, 107].
On the other hand, no detectable protein bands were
observed for LC 393 on 12% SDS-PAGE gel, possibly
due to low concentrations of antimicrobial peptides or
the presence of proteins smaller than the detectable limit
(>3.3 kDa). Small bacteriocins, particularly those below
3 kDa, can be difficult to visualize effectively using stan-
dard coomassie-stained DS-PAGE gel [108]. The term
“BLIS” is used when the amino acid sequence or gene
identity of the antimicrobial compound is unknown
[24]. This designation remains appropriate in the current
study, where the precise identity of the active peptides
remains underdetermined.

Organic acid, protein, and hydrogen-peroxide content in
CFS

Postbiotics are increasingly recognized as natural anti-
microbial alternatives to mitigate the overuse of antibi-
otics and address rising AMR, which poses public health
and economic challenge [109]. Among these, naturally
derived preservatives such as organic acids, H,0O,, bac-
teriocins, BLIS, and FAs from LAB are showing antimi-
crobial potentialities [109]. More specifically, organic
acids lower pH levels, creating conditions that inhibit the
growth of harmful microorganisms, demonstrating their
potential as natural preservatives for food safety [83, 110].
LAB strains are known to produce over 90% of lactic and
acetic acid via microbial fermentation [111, 112] This
study analyzed the chemical profiles of CFSs from five
LAB strains across three forms: untreated (rCFS), neu-
tralized (nCFS), and lyophilized (cCFS). Statistically sig-
nificant variations (p <0.05) were observed in the level of
organic acids, proteins, and H,0, among the strains and
CES forms (Table 2). In rCEFS, lactic acid levels ranged
from 3.11 to 4.12 mg/mL, with LA 4356 producing the
highest amount (4.12 mg/mL). The ¢cCFS demonstrated
an increased concentration, especially LA 4356 (6.01 mg/
mL) and LP 3070 at 5.81 mg/mL. LC 393 showed mod-
erate levels (3.39 mg/mL in rCFS and 5.08 mg/mL in
cCFS). These differences likely reflect strain-specific
metabolism and fermentation characteristics [113, 114],
with LA 4356 showing enhanced lactic acid production
due to its homofermentative nature and acid tolerance
[115, 116]. The concentration effect from lyophilization,
which removes water and increases the molecular den-
sity, further explains the elevated acid levels, consistent
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Fig. 5 Inhibitory activity (%) obtained from neutralized cell-free supernatants (nCFS) of four LAB strains. The nCFSs were treated with (a) trypsin, (b)
pepsin, and (c) papain in broth microdilution assay against £. coli ATCC 25922 (EC), Salm. Typhimurium ATCC 14028 (ST), Staph. aureus ATCC 43300 (SA),
and Ps. aeruginosa ATCC 10145 (PA) for 24 h aerobically. The inhibition activity of enzyme-treated nCFS against pathogenic bacteria strains was compared
with positive control (100% activity of CFS) cultures with three replications. The error bars indicate the standard error of the mean (n=3).2 andb Represent
statistically significant differences within each indicator strain among the BLIS of the LAB strain (n=3, p <0.05, Duncan’s test)

Table 1 Partial purification and activity of BLIS from four LAB strains using 70% ammonium sulfate precipitation

LAB Purification stage Volume Activity Protein Total Activity Specific Purification Yield
Strains (mL) (AU/mL) (mg/mL) protein (AU) activity (AU/ (%)
(mg) mg)

LP CFS 1000 1067 65.49 65,490 1,067,000 16.29 1 100
(NH4),50, precipitated CFS 20 8536 13.38 267.6 170,720 637.97 39.16 16.00

LA CFS 100 1067 54.36 5436 106,700 19.63 1 100
(NH4),S0O, precipitated CFS 2 8536 10.73 2146 17,072 795.53 40.53 16.00

LC CFS 100 1067 57.03 5703 106,700 18.71 1 100
(NH4),S0, precipitated CFS 2 6827 11.06 2212 13,654 617.27 3299 12.80

LGG CFS 100 1280 60.08 6008 128,000 21.30 1 100
(NH4),S0, precipitated CFS 2 10,240 11.68 23.36 20,480 876.71 41.15 16.00

All yield (%) values are expressed as activity units (AU) in the CFSs, with 100% representing the highest value; Purification folds are expressed as specific activities
(AU/mg) in the CFS, with 1 representing the highest value; CFS, Cell-free supernatant; LP, CFS obtained from L. plantarum NBRC 3070; LA, CFS obtained from L.
acidophilus ATCC 4356; LC, CFS obtained from L. casei ATCC 393; LGG, CFS obtained from L. rhamnosus GG ATCC 53103

Ladder LP LA LC

LGG

31 KDa
20.1 KDa
14.4 KDa
6.5 KDa LA-BLIS
LP-BLIS
3.3 KDa
LGG-BLIS

Fig. 6 Molecular weight of extracted bacteriocin-like inhibitory substances (BLIS) by SDS-PAGE analysis. The crude BLIS was obtained through am-
monium sulfate purification from the cell-free supernatant of LAB strains. Ladder: pre-stained SDS-PAGE protein markers (Bio-Rad, USA) with a range of
3.3-31 kDa; LP: semi-purified BLIS from L. plantarum NBRC 3070; LA: semi-purified BLIS from L. acidophilus ATCC 4356; LC: semi-purified BLIS from L. casei
ATCC 393, and LGG: semi-purified BLIS from L. rhamnosus GG ATCC 53103

with previous studies [63]. Lactic acid levels in this study
align with the earlier reports [115] from the strains of L.
plantarum (3.4-73.2), L. acidophilus (8.6-14), L. casei
(6-162), L. rhamnosus (4—68), and B. animalis (0.32—
1.02 mg/mL), though absolute concentrations may vary
based on strains, substrates, and fermentation pH [117].

The acetic acid concentrations followed a similar trend.
In cCEFS, values ranged from 2.12 to 3.08 mg/mL, with
BAL 27673 showing the highest production (3.08 mg/
mL). In rCFS, acetic acid levels ranged from 1.36 to
1.92 mg/mL, again with BAL 27673 leading (1.92 mg/
mL). Generally, the LAB strains produce more lactic acid
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Table 2 Concentration of metabolites (mg/mL) in the CFSs
(rCFS, nCFS, and cCFS) of five LAB strains

Metabolites LAB rCFS

LP LA LC LGG BAL
Lactic acid 3.98% 412° 3.39° 3.22° 3119
Acetic acid 1.50°° 1.36° 1480 1.46%° 1922
Protein 0,65 0.54¢ 0.57°¢ 0.60° 0.57°¢
H,0, 0.02° 0.03° 0.04° 0.03° 0.04°

LAB nCFS

LP LA LC LGG BAL
Lactic acid ND 0.02 ND 0.01 ND
Acetic acid ND ND ND ND ND
Protein 063° 049° 0409 0.57° 0.57°
H,0, ND ND ND ND 0.003

LAB cCFS

LP LA LC LGG BAL
Lactic acid 581° 6.01 508° 4.88¢ 4804
Acetic acid 2240 212° 2.20° 2.18% 3.08°
Protein 0.98 0.84° 0.87° 0.90% 0.92%
H,0, ND ND ND ND ND

2-dRepresent statistically significant differences among different LAB strains for
each metabolite: rCFS untreated cell-free supernatant, nCFS neutralized cell-
free supernatant, cCFS lyophilized cell-free supernatant, ND not detected. LP L.
plantarum NBRC 3070; LA, L. acidophilus ATCC 4356; LC, L. casei ATCC 393; LGG, L.
rhamnosus GG ATCC 53103; and BAL B. animalis subsp. lactis ATCC 27673

than acetic acid [118, 119], as supported by the current
findings. Previous studies [114, 120-123] indicated that
L. plantarum, L. acidophilus, L. casei, L. rhamnosus, and
B. animalis produce acetic acid in the following ranges:
0.7-4.9, 0.822-2.52, 0.2-8.44, 0.4-5.80, and 0.69-
0.79 mg/mL, respectively. Although B. animalis often
produces more acetic acid than lactic acid due to the bifid
shunt [124], lactic acid still dominated in this study, likely
influenced by the glucose-rich MRS medium and a 48-h
fermentation period. The lactic-to-acetic ratio in B. ani-
mals falls within the optimal 1.5-2.5 range for anaerobic
energy efficiency [125]. In nCEFS, lactic and acetic acids
were barely detectable (<0.02 mg/mL), suggesting effec-
tive neutralization during pH adjustment [53].

Protein content was highest in LP 3070 across all CFS
forms, reaching 0.98 mg/mL in cCES. Protein content
increased significantly (p>0.05) after lyophilization in
all strains (0.84-0.98 mg/ml), likely due to solute follow-
ing water removal [126]. LA 4356 consistently produces
the lowest protein levels (0.54, 0.49, and 0.84 mg/mL for
rCFS, nCFS, and cCFS, respectively). These results mir-
ror earlier studies [63], which also reported higher pro-
tein concentrations in L. plantarum (0.492-0.617 mg/
ml) than L. acidophilus (0.372—0.523 mg/ml). Regard-
ing H,0,, the highest concentrations were observed in
rCFS of LC 393 and BAL 27673 (0.04 mg/mL). In con-
trast, no H,0O, was detected in cCFS, and only trace
amounts (0.003 mg/mL) were observed in nCES of BAL
27673. This indicates that H,O, is unstable in neutral or
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lyophilized conditions and requires an acidic pH for sta-
bility. Its production is closely tied to pH and NADH-
oxidase activity [127], with degradation likely accelerated
during processing. These results suggest that acidification
and enzymatic oxidase activity may contribute to higher
H,0, levels in specific strains such as LC 393 and BAL
27673. Overall, cCFS samples exhibited the highest lev-
els of lactic acid, acetic acid, and proteins, affirming their
suitability for potential postbiotic applications. These
findings are consistent with previous findings [128], and
chemical profiles of LP 3070 and LA 4356 CFSs are com-
parable to other widely studied LAB strains like L. plan-
tarum, L. acidophilus, and L. casei [128, 129], though
some quantitative differences were observed.

Fatty acid methyl esters composition in CFS

Fatty acids (FA), particularly those incorporated into
bacterial membrane structures, play a vital role in the
antimicrobial functionality of LAB-derived postbiotics.
The membrane lipid profile, including saturated (SFA),
monounsaturated (MUFA), and polyunsaturated fatty
acids (PUFA), contributed to both cell membrane fluidity
and antimicrobial mechanisms of LAB [130, 131]. In this
study, 22 out of 36 fatty acid methyl esters (FAME) were
identified in the CFS of five LAB strains using GC-MS
(Table 3). These included various SFAs, MUFAs, PUFAs,
further classified by chain length and position (n-3, n-6,
and n-9). Comparatively, Wong et al. [119] identified 16
FAs L. plantarum CES from 36 FAME, confirming the
strain-and condition-specific nature of the FA profile.
Among the strains, LC 393 showed the most diverse
FA profile (P<0.05), with 21 different FAs detected, fol-
lowed by LGG 53103 and BAL 27673 (20 FAs each), and
LA 4356 and LP 3070 with 13 and 12 FAs, respectively
(Fig. 7). Among the eleven SFAs identified, palmitic acid
(C16:0) and stearic acid (C18:0) were prevalent, while
short-chain SFAs (C6:0 to C18:0) were either low in con-
centrations or undetectable. Notably, LA 4356 showed
a higher level of arachidic acid (C20:0), although its
quantity varied across strains. These results corrobo-
rated the findings of Lim et al. [132], who identified oleic
(C18:1n9c¢) and palmitic acid (C16:0) as dominant in the
CES of Weissella cibaria, CMU. Similarly, Wong et al.
[119] reported higher levels of palmitic and stearic acids
than oleic acids in L. plantarum strains. In this study, six
MUFAs were detected, with oleic acid being consistently
present across all strains. Cis-11-eicosenoic acid (C20:1)
was also observed in some strains, contributing to mem-
brane fluidity and potential antimicrobial functions
[133]. Among the five PUFAs, linolenic acid (C18:3n3)
was detected in all strains, along with linolelaidic acid
(C18:2n6t) and linoleic acid (C18:2n6c¢), supporting their
proposed role in antimicrobial action. LP 3070 and LC
393 had moderate levels of both SFA and PUFA, with
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Table 3 Fatty acids composition (%) of lyophilized cell-free supernatant (cCFS) from five strains of lactic acid bacteria

Fatty acid name Carbon LAB stains (+ SEM)

structure | p LA LC LGG BAL
Caproic acid C6:0 Nd Nd 0.193+0.003" 0.109+0.003® Nd
Caprylic acid 80 Nd Nd 0.371+0.003" 0.164+0.158"® 0.413+0.002¢9A
Capric acid C100 0.110+0.003* 0.250+0.003 0.575+0.0079"®  0322+0005"C  0615+0.004%*
Undecanoic acid C11:0 Nd Nd 0.621+0.0049"  0414+00039"®  0.175+0.0029"
Lauric acid 120 0.150+0.006™  0615+0.008" 0.343+0004"™  0232+0.005 0.355+0.005°"8
Tridecanoic acid C13:0 Nd Nd 0551400069 036700029 0.159+0.0069"
Myristic acid C140 0.359+0.008%" 0,657 +0.005" 0.614+0.0059"  0415+0.003%"°  0.523+0.008°C
Myristoleic acid 141 0.672+0.0069° 145940016 0.811+0.008 041600049 0.885+0.005%
Pentadecanoic acid C150 Nd Nd 0.643+0.0089"  0387+0.0099"  0.199+0.0077"
Cis-10-pentadecenoic acid 151 Nd Nd Nd 4.005+0.004°* 3.810+0.0078°*
Palmitic acid C160 5465+0.103°"  0.225+0,005P 4387 +0.049° 0472+0.009%"C 0654 +0.069%C
Palmitoleic acid Cl16:1 Nd 0424+0021% 0.759+0.0069*  Nd Nd
Heptadecanoic acid C17:.0 Nd Nd Nd Nd Nd
Cis-10-heptadecenoic acid 171 Nd Nd Nd Nd Nd
Stearic acid C180 1834+0003%  22888+0.035%*  1775+0019%C  1792+0013%C 17240059
Elaidic acid C18IN9T  Nd Nd Nd Nd Nd
Oleic acid C18IN9C  86203+0.024*"  5196+0008d°®  80232+0039°°  84439+0029®%  84.182+0.012*
Linolelaidic acid C182N6T  0.217400049C  0.405+0.004™ 0.129+0.001F 0.269+0.003"®  0.162+0.0049"°
Linoleic acid C182N6C  0.121+0.002° 0.267+0.007% 0.110£0.002° 0.232+0.050"®  0.156+0.0059"
y-linolenic acid C18:3N6 Nd Nd Nd Nd Nd
Linolenic acid C18:3N3 3.782+0020® 5635+0.025d°"  3.569+0.016° 3.266+0.014P 3.572+0.060°C
Arachidic acid €200 1.10940021¢C 3200640032  1381+0012® 1.044+0.011¢¢ 0.942+0.013%
Cis-11-eicosenoic acid 201 0447+0007°"8  18824+0.023°*  0442+0.0069"®  0354+0006%"C  0.494+0013%9B
Cis-11,14-eicosadienoic acid C20:2 Nd Nd Nd Nd Nd
Cis-8,11,14-eicosatrienoic acid C20:3N6 Nd Nd Nd Nd Nd
Arachidonic acid C20:4N6 Nd Nd 121+0.017 0734400109 0.360+0.005%9"C
Cis-11,14,17-eicosatrienoic acid C20:3N3 Nd Nd Nd Nd Nd
Cis-5,8,11,14,17-eicosapentaenoic ~ C20:5N3 Nd Nd Nd Nd Nd
acid
Heneicosanoic acid C21:.0 Nd Nd Nd Nd Nd
Behenic acid C22:0 Nd Nd Nd Nd Nd
Erucic acid C22:1N9 Nd Nd 0.168+0.003" Nd 0.155+0.0079™
Cis-13, 16 docosadienoic acid 222 Nd Nd 131740.023% 0.729+0.009® 0363 +0.014%9"C
Docosahexaenoic acid C22:6N3 Nd Nd Nd Nd Nd
Tricosanoic acid C23:0 Nd Nd Nd Nd Nd
Tetracosanoic acid C24:0 Nd Nd Nd Nd Nd
Cis-tetracosenoate acid C24:1 Nd Nd Nd Nd Nd
SFA 8.57+0.056C 56.61+0.098% 113440054  563+0027°C 5.75+0.029°
MUFA 87.32+0.064% 25.75+0.034°8 82.40+0.064* 89.20+0.074% 89.65+0.088%
PUFA 412+0015% 6.26+0.024 6.26+0.023% 517+0034% 460+0.026°
w-3 3.782+0.029°® 5584+0.016% 3.539+0.018%¢  3.266+0.023° 3.572+0.035PE¢
w-6 0.337+0.013 0.678+0.015°® 1441400124 1.17140.019%* 06740011
w-9 86.203+0.038%  5.166+0.037% 803940065  84439+0056*  84.33+0.045%

2~iRepresent statistically significant differences among different fatty acids within each LAB strain; ~"CRepresent statistically significant differences among different
LAB strains within each fatty acid; LP, L. plantarum NBRC 3070; LA, L. acidophilus ATCC 4356; LC, L. casei ATCC 393; LGG, L. rhamnosus GG ATCC 53103; and BAL, B.
animalis subsp. lactis ATCC 27673, Nd not detected, SAF Saturated fatty acid, MUFA Monounsaturated fatty acid, PUFA Polyunsaturated fatty acid, w—3 Omega-3 fatty

acid, w—6 Omega-3 fatty acid, w—9 Omega-9 fatty acid

higher MUFA levels. LA 4356 had a dominant SFA pro-
file, whereas LGG 53103 and BAL 27673 displayed a
more balanced FA distribution. These results support
the previous findings [134], that long and medium-chain
FAs, especially oleic and linoleic acid, have significant

antimicrobial effects against Gram-positive foodborne
pathogens. In summary, the FA composition of the LAB
CESs not only differed among strains but also reflected
their potential contribution to antimicrobial properties.
The presence of key MUFAs and PUFAs suggests a role
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Fig. 7 The chromatogram in the gas chromatography-mass spectrometry system (GC-MS). The GC-MS of saturated and unsaturated fatty acid content
in lyophilized cell-free supernatant (cCFS) of L. casei ATCC 393 (a), L. rhamnosus GG ATCC 53103 (b), B. animalis subsp. lactis ATCC 27673 (c), L. acidophilus

ATCC 4356 (d), and L. plantarum NBRC 3070 (e)

in disrupting pathogen cell membranes or modulating
microbial interactions, highlighting the multifaced anti-
microbial mechanisms of LAB-derived postbiotics.

Storage stability of postbiotics in CFS

The long-term stability of antimicrobial substances in LAB-
derived CFS is crucial for their potential in food preserva-
tion, especially under conditions that simulate commercial
and domestic storage. Ideally, these bioactive compounds
should retain their efficacy at refrigeration or ambient tem-
peratures, minimizing the need for cold-chain logistics.
In this study, CES from five LAB strains were stored for
30 days at both 4 °C and -20 °C. Antimicrobial activity was
measured via agar well assays against E. coli ATCC 25922,
Salm. Typhimurium ATCC 14028, Staph. aureus ATCC
43300, and P aeruginosa ATCC 10145 at 15- and 30-day
intervals. Corresponding pH changes were also monitored.
Overall, the antimicrobial efficacy of the CFS remained sta-
ble against pathogens during the storage period, particularly
at —20 °C (Supplementary Tables S6-S10). However, a nota-
ble decline (p<0.05) was observed in LGG 53103-derived
CES after 30 days, with final pH values reaching 4.01-4.19.
This suggests that acidic degradation of active compounds
may contribute to reduced efficacy, underscoring the
importance of pH for long-term storage [135, 136]. Our
findings are consistent with previous reports of Koohestani
et al. [16], who observed comparable stability in CFS from

L. acidophilus LA-5 and L. casei for four weeks at 4 or 25 °C.
Similarly, [137] found that CES from Enterococcus faecalis
maintained activity for only one month at varying tempera-
tures but showed a 61% reduction in antibacterial activity
at 37 °C, attributed to the degradation of low molecular
weight peptides. Arrioja-Bretdn et al. [52] further demon-
strated that temperature significantly impacts the antibac-
terial persistence of CFS from L. plantarum NRRL B4496,
L. saki NRRL B1917, and L. rhmnosus NRRL B442 over a
20-weeks period. These results affirm that LAB-derived
postbiotics, particularly when stored at sub-zero tempera-
tures, are relatively stable and retain bioactivity. Their ability
to inhibit both Gram-positive and Gram-negative bacteria
supports their potential application as natural preservatives
to extend product the shelf-life of perishable food products.

Conclusion

Given the growing threat of antimicrobial resistance
(AMR) in foodborne pathogens, LAB-derived postbiotics
offer a promising natural alternative to chemical preser-
vatives. In the present study, we evaluated the antimicro-
bial spectrum, production kinetics, and physicochemical
properties of postbiotics from five LAB strains: LP 3070,
LA 4356, LC 393, LGG 53103, and BAL 27673. All strains
demonstrated broad-spectrum antimicrobial activity
against both Gram-positive and Gram-negative patho-
gens, with LP 3070 and LC 393 exhibiting the strongest
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effects, particularly after 16 h of incubation. Peak activity
was sustained up to 36 h, indicating a viable window for
postbiotic preparation. The postbiotics remained stable
under various environmental conditions, while BLIS was
sensitive to proteolytic enzymes, confirming its protein-
aceous nature. SDS-PAGE analysis revealed molecu-
lar weights between<3.3 and 6.5 kDa for BLIS from LP
3070, LA 4356, and LGG 53103. In addition to BLIS, the
presence of antimicrobial compounds such as lactic, ace-
tic, and oleic acids further contributed to the inhibitory
effects. Despite these promising findings, several limita-
tions must be acknowledged. First, the antimicrobial activ-
ity was not validated in a meat model or complex food
matrix. Second, only reference strains were tested, which
may not reflect the full spectrum of real-world pathogens.
Third, while the molecular weight of BLIS was determined
primarily, detailed purification and amino acid sequence
were not performed. Fourthly, although physicochemical
stability under laboratory conditions was confirmed, real-
life food system applications remain to be validated. Fifth,
there existed limitations regarding the absence of stability
testing at extremely low pH and bile salt tolerance. Lastly,
the scalability of postbiotics production under industrial
settings was not addressed, which is critical for commer-
cial viability. To fully establish the applicability of LAB-
derived postbiotics in food systems, future investigations
should include molecular characterization of BLIS using
advanced proteomic techniques (e.g, MALDI-TOF),
in vivo validation using real food models, stability trials
under commercial storage conditions (especially lower
pH and bile salt matrix), and broad-spectrum screen-
ing against emerging AMR pathogens. Moreover, strate-
gies to overcome production-scale challenges (process
optimization, cost-effective substrates, and formulation
technologies) should be explored to facilitate industrial
application. Such studies would strengthen the evidence
base for incorporating LAB-derived postbiotics into func-
tional foods and bio-preservation strategies.
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