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This study provides a detailed spatiotemporal analysis of vegetation health in Southern Thailand from 
2000 to 2023, focusing on the impacts of temperature and water stress on vegetation degradation. 
Using high-resolution Landsat-derived kernel Normalized Difference Vegetation Index (kNDVI) and 
Land Surface Temperature (LST), alongside precipitation (PPT), soil moisture (SM), vapor pressure 
deficit (VPD), and solar radiation (SR), several key indices were derived such as Vegetation Condition 
Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI). The study offers 
a robust framework to monitor vegetation health under climate stress by integrating satellite-
based indices with detailed climate datasets. Our findings reveal significant temperature-induced 
stress during critical years like 2005 and 2016, with over 60% of the region experiencing vegetation 
degradation. Long-term trend analysis indicates that while 22.5% of forested areas show signs of 
recovery, 3.6% continue to degrade, primarily due to persistent temperature extremes and water 
stress. Soil moisture emerged as a critical driver during the dry season, positively influencing 11.16% 
of the region, while solar radiation exhibited mixed effects depending on moisture availability. These 
insights highlight the complex interplay of climatic drivers on vegetation dynamics, particularly in 
tropical ecosystems. The study underscores the need for adaptive management strategies to enhance 
resilience against climate extremes, providing valuable guidance for sustainable land management in 
Southern Thailand.
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The increase in both frequency and intensity of climate extremes has become a critical global issue1,2, significantly 
impacting tropical ecosystems where vegetation is highly vulnerable to temperature changes and water stress3–6. 
Given these shifts, vegetation health is now seen as a critical indicator of ecosystem resilience, requiring 
consistent monitoring to support effective land management and conservation7–9. Southern Thailand, known 
for its tropical forests, mangroves, and agricultural landscapes, faces escalating impacts from rising temperatures 
and shifting rainfall patterns10,11. While the vulnerabilities of these ecosystems are broadly acknowledged, limited 
research has been conducted on the region’s long-term vegetation dynamics under climate stress, highlighting 
a significant research gap. These climate changes pose severe risks to vegetation health, contributing to land 
degradation, declining productivity, and biodiversity loss12–14. Various indices, such as kNDVI, VCI, TCI, 
and VHI have proven effective for assessing vegetation health by capturing the complex interactions among 
vegetation growth, climate factors, and environmental stressors15,16. These indices provide a nuanced view 
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of vegetation dynamics by accounting for biotic and abiotic stressors like drought, heat waves, and moisture 
availability17–19. The evaluation of vegetation health remains a core focus in ecological and environmental 
research, with numerous indices designed to measure vegetation vigor and stress20,21. However, while these 
indices are widely applied, their integration with detailed climate datasets to examine the interplay of multiple 
stressors across spatiotemporal scales remains underexplored in Southern Thailand’s diverse ecosystems. The 
Normalized Difference Vegetation Index (NDVI) is the most widely utilized metric for monitoring vegetation 
dynamics22,23. However, recent advancements have introduced enhanced versions, such as the kNDVI, which 
offers improved sensitivity to vegetation changes in complex ecosystems24. The kNDVI employs kernel-based 
methods to overcome limitations associated with traditional NDVI, particularly in tropical regions, where dense 
vegetation and varied landscapes may obscure changes in vegetation health24,25. The kernel NDVI (kNDVI) 
was adopted because it outperforms standard NDVI in three practical ways. (i) kNDVI remains quasi-linear up 
to LAI ≈ 6–7, whereas NDVI plateaus near LAI ≈ 3–424,25. (ii) its Gaussian kernel linearizes illumination- and 
sensor-induced heteroscedasticity, reducing scene-level noise by ≈ 10–15% in huid, cloud-affected imagery26. 
(iii) Background bias being rank based, kNDVI is far less sensitive to soil and aerosol contamination than Soil 
Adjusted Vegetation Index (SAVI) or Enhanced Vegetation Index (EVI), which require empirical coefficients30. 
Comparative evaluations at Southeast-Asian flux-tower sites show that kNDVI explains 8–11% more ariance in 
gross primary production than NDVI or EVI31. Alongside kNDVI, indices like VCI and TCI have been designed 
to offer more focused assessments of specific environmental stressors27. VCI, for instance, assesses vegetation 
health by comparing it to historical variability, making it especially useful for identifying the effects of drought 
and land degradation28,29. Conversely, TCI specifically targets temperature-related stress, a growing concern in 
tropical areas experiencing rising temperatures and frequent extreme heat events30,31. By combining indices like 
TCI and VCI, the VHI provides a holistic tool for assessing biotic and abiotic stressors, making it valuable for 
tracking long-term vegetation trends32,33. Spatial modeling approaches, as demonstrated in recent studies on 
water availability and vegetation stress in India34–36, provide valuable insights for integrating climatic factors 
into vegetation health assessments across tropical ecosystems. In addition, optimizing land use for climate 
mitigation through nature-based solutions, as highlighted in Rajasthan37, reinforces the role of vegetation 
monitoring in guiding sustainable land-use planning. Furthermore, soil moisture anomalies have been shown to 
significantly impact agricultural productivity and water resource management38, underlining their critical role 
in understanding vegetation dynamics within moisture-sensitive regions.

Climatic drivers of vegetation dynamics
The association between climate factors and vegetation health is well-documented, with temperature and 
water availability emerging as critical influences on vegetation dynamics39–42. Higher temperatures, especially 
during the growing season, are associated with reduced vegetation productivity and higher mortality from heat 
stress43–45. Like those in Southern Thailand, tropical ecosystems are particularly at risk, operating near their 
thermal limits46,47. Studies increasingly highlight the impact of temperature anomalies, noting that extreme 
heat events can significantly impair vegetation growth and lead to long-term ecosystem degradation48–52. Water 
availability, often estimated through precipitation (PPT) and soil moisture (SM), is critical to vegetation health. 
Drought conditions resulting from lower rainfall or higher evapotranspiration are linked to severe vegetation 
stress and land degradation in tropical regions39,53,54. VPD further complicates this relationship by intensifying 
water stress through increased transpiration and moisture loss during prolonged dry spells55,56. Studies show 
that regions with sufficient soil moisture display stronger resilience to temperature stress, highlighting the need 
for comprehensive assessments that integrate both temperature and moisture factors to monitor vegetation 
health accurately57–59.

Vegetation dynamics in Southern Thailand
Research on vegetation dynamics in Southern Thailand has primarily focused on its biodiversity and the 
effects of land use changes, such as deforestation and agricultural growth60. However, the impact of long-term 
climate variability on vegetation health is less frequently addressed. Some studies indicate rising temperatures 
and shifting rainfall patterns drive vegetation degradation, especially within forests and agricultural zones61,62. 
Mangrove ecosystems, critical for coastal protection and biodiversity, also face threats from sea-level rise and 
temperature stress, posing further risks to the region’s ecological stability63–67. Despite these challenges, there is 
limited research integrating vegetation indices that incorporate climate responsiveness, such as kNDVI, VCI, 
TCI, and VHI with climatic drivers to capture the interplay of stressors in these critical ecosystems.

Although numerous studies examine climate change impacts on vegetation health, a crucial gap remains 
in understanding the long-term spatiotemporal dynamics of vegetation health in Southern Thailand. Much 
research has focused on broader areas or specific vegetation types, often overlooking the distinct climatic 
conditions and land-use patterns unique to this tropical region. Furthermore, while traditional indices like 
NDVI are widely used, fewer studies have adopted advanced indices such as kNDVI alongside essential climate 
variables to capture the combined effects of moisture stress and energy-related variables, including temperature 
and solar radiation, on vegetation. Research on the resilience of different land uses, such as forests, agricultural 
lands, shrublands, and mangroves, to prolonged climate stress over decades is also notably limited. This study 
integrates widely employed indices, including kNDVI, VHI, and TCI, with detailed climate datasets in a long-
term spatiotemporal framework, focusing specifically on Southern Thailand’s unique tropical ecosystems. By 
employing a dynamic thresholding approach and analyzing ecosystem-specific responses, the study provides 
novel insights into the interplay of temperature and water stress on vegetation health, offering actionable 
recommendations for adaptive management. Given these gaps, this study hypothesizes that vegetation health 
in Southern Thailand exhibits distinct responses to climatic stressors, driven predominantly by temperature 
and water availability, with variability across land-use types and ecosystems. The objectives are: (1) Quantify 
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long-term vegetation stress and degradation using advanced satellite-derived indices (kNDVI, VCI, TCI, and 
VHI) from 2000 to 2023. (2) Analyze the contributions of key climate variables (PPT, SM, VPD, SR, and LST) 
to vegetation health trends across seasonal and annual timescales. (3) Identify critical years of vegetation stress 
and assess the severity of degradation. (4) Evaluate the resilience of different land-use types (forests, agricultural 
lands, shrublands, and mangroves) to climatic extremes. Ultimately, this research seeks to address the identified 
knowledge gaps and provide actionable insights to support adaptive land management strategies that mitigate 
the impacts of climate variability and enhance ecosystem resilience in tropical ecosystems.

Materials and methods
Study area
The study area covers Southern Thailand, from 97.63°E to 102.09°E longitude and 5.62°N to 11.03°N latitude. 
This region experiences a tropical climate with consistently high temperatures and distinct wet and dry seasons, 
making it particularly susceptible to extreme temperature changes and water scarcity68,69. This area’s diverse 
ecosystems, including tropical rainforests, mangroves, and agricultural lands, exhibit varying resilience to 
drought and rising temperatures70 (Fig. 1). These ecosystems are ecologically vital and central to the region’s 
economy, especially in agriculture and forestry, and rely heavily on vegetation health71,72. Declined vegetation 
vitality due to climate stress could have significant socio-economic effects, including reduced agricultural 
productivity and accelerated land degradation73.

Recent trends in climate variability characterized by rising temperatures and unpredictable precipitation 
patterns highlight Southern Thailand’s ecosystems’ increasing vulnerability to persistent environmental 
stressors74–76. Although these ecosystems are critically important, there is a notable scarcity of long-term 
research specifically investigating the effects of climate variability on vegetation health. This gap makes Southern 

Fig. 1.  (A) Map of Thailand showing regional divisions with the Southern Region highlighted. (B) The Land 
Use/Land Cover (LULC) map of Southern Thailand displays different land cover types, including forest, 
shrubland, arable land, mangrove forest, built-up areas, barren land, and water bodies. The LULC map provides 
the spatial distribution of these categories across Southern Thailand. LULC data were obtained from the ESA 
WorldCover 2021 dataset (https://esa-worldcover.org). The map was generated using the QGIS stable version 
(Long Term version for Windows (3.34 L)). The software is available at ​h​t​t​p​s​:​/​/​w​w​w​.​q​g​i​s​.​o​r​g​/​d​o​w​n​l​o​a​d​/​​​​​.​​​​
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Thailand an insightful case for studying the broader implications of climate change on tropical ecosystems. In 
such contexts, climate stress can set off a series of cascading impacts spanning ecological, economic, and social 
dimensions, with significant and widespread consequences.

Dataset
The dataset for this study spans 2000 to 2023 and integrates satellite-derived and climate data to evaluate vegetation 
health. Primary data sources include Landsat 5, 7, 8, and 9 for calculating kNDVI and LST, supplemented by 
environmental variables such as PPT, SM, VPD, and SR. LST values were derived on the Google Earth Engine 
(GEE) platform, following77’s methodology, which extracts LST from the thermal infrared bands of Landsat 5, 7, 
8, and 9 (see Table 1). The GEE code repository facilitated high-resolution LST calculations, aligning them with 
kNDVI data for consistency78. Additionally, PPT data were sourced from the Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) dataset, known for its high spatial resolution79,80. SM, VPD, and SR data 
were obtained from the TerraClimate database to account for moisture conditions, atmospheric demand, and 
energy availability for vegetation growth, respectively81,82 (Table 1).

Preprocessing the datasets involved several vital steps to ensure consistency and accuracy. Landsat images 
were atmospherically corrected and cloud-masked using GEE functions83,84. Both kNDVI and LST were derived 
from the processed Landsat imagery. At the same time, the PPT, SM, VPD, and SR datasets were resampled 
using bilinear interpolation to match the 30-meter spatial resolution of the Landsat data. Given the challenges 
of obtaining clear monthly Landsat imagery in humid regions like southern Thailand, robust preprocessing 
steps were implemented to handle cloud cover and ensure data quality. Temporal aggregation was performed 
to compute annual, dry season, and wet season averages, which are the most suitable timeframes for Southern 
Thailand. For monthly composites, median compositing was used to reduce the influence of residual cloud 
contamination and ensure representative surface reflectance. Annual and seasonal composites were derived by 
averaging these monthly medians. In cases where more than 50% of the pixels in a month were masked due to 
clouds, linear interpolation was used from adjacent months to fill gaps, validated against CHIRPS precipitation 
anomalies to confirm that seasonal patterns were preserved (R² = 0.78, p < 0.01) (Figure S5). All datasets were 
clipped to the study area and aligned to ensure uniform spatial and temporal scales for further analysis (Fig. 2).

Methodology
Landsat imagery and kNDVI calculation
Landsat satellite imagery was obtained from the United States Geological Survey (USGS), providing multispectral 
data at a 30-meter spatial resolution. From these images, the kNDVI was calculated using the Near-Infrared 
(NIR) and red bands24 (Eq. 1).

	
kNDV I = k (n, n) − k (n, r)

k (n, n) + k (n, r) � (1)

where n and r represent the reflectance of the NIR and red bands, respectively. The k (n, r) represents the kernel 
function (Eq. 2)

	
k (n, r) = exp

(
− (n − r)2

2σ 2

)
� (2)

Simplifies as (Eq. 3)

	
kNDV I_new = tanh

(
n − r

2σ 2

)
� (3)

Monthly kNDVI values (kNDVI_new) were computed and then averaged for the growing season to represent the 
dominant vegetation growth for each year between 2000 and 2023. The parameter σ was identified pixel-wise as 
region-specific to ensure the accuracy of kNDVI values for the study area85,86. Dense forest areas utilized smaller 
σ values to enhance sensitivity to subtle vegetation changes, while agricultural and mixed-use areas employed 
larger σ values to account for heterogeneity. The annual and seasonal σ values are provided in Tables S1 and 

Dataset Variables Spatial Temporal Acquisition Period† Access URL / GEE ID

Landsat 5, 7, 8, 9 kNDVI, LST 30 m Monthly, Annual, Dry / Wet Jan 2001 – Dec 2023 USGS EarthExplorer
https://earthexplorer.usgs.gov

CHIRPS v2.1 Precipitation 0.05° (~ 5.5 km) Monthly, Annual, Dry / Wet Jan 2001 – Dec 2023 GEE ID: UCSB-CHG/CHIRPS/DAILY  ​h​t​t​p​s​
:​/​/​w​w​w​.​c​h​c​.​u​c​s​b​.​e​d​u​/​d​a​t​a​/​c​h​i​r​p​s​​​​​​

TerraClimate

Soil moisture 1/24° (~ 4 km) Monthly, Annual, Dry / Wet Jan 2001 – Dec 2023 GEE ID: IDAHO_EPSCOR/TERRACLIMATE ​
h​t​t​p​s​:​/​/​w​w​w​.​c​l​i​m​a​t​o​l​o​g​y​l​a​b​.​o​r​g​​​​​​

Vapour-pressure 
deficit 1/24° Monthly, Annual, Dry / Wet Jan 2001 – Dec 2023 Same as above

Solar radiation 1/24° Monthly, Annual, Dry / Wet Jan 2001 – Dec 2023 Same as above

Table 1.  Summary of datasets used in the Study. †All datasets were clipped to the study period 2001–2023 and 
to Landsat path/rows 129/53–130/53, 129/54, 128/55 and 127/56 that fully cover southern Thailand.
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S2 to enhance transparency and reproducibility87,88. The calculated kNDVI data, along with LST, were used 
to derive three key indices (i.e., VCI, TCI, and VHI) to assess vegetation stress and drought conditions more 
holistically89,90. These indices provide a robust framework for understanding the interaction between vegetation 
vigor, climatic factors, and temperature-induced stress, which are essential for the long-term monitoring of 
vegetation health.

Climatic stress indicators of vegetation health
VCI was derived from kNDVI to monitor vegetation vigor relative to its historical range. It reflects how 
current vegetation conditions compare to the best and worst observed conditions over the study period91,92. 
By normalizing kNDVI to the historical minimum and maximum values, VCI captures the relative health of 
vegetation based on its growth potential under normal conditions (Eq. 4).

Fig. 2.  Step-by-step process for dataset integration, analysis, and evaluation of climatic impacts on vegetation 
health.
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V CI = kNDV I − kNDV Imin

kNDV Imax − kNDV Imin
× 100� (4)

where kNDVImin ​and kNDVImax​ represent the minimum and maximum kNDVI values observed over the study 
period. This index is critical for identifying periods of vegetation stress due to drought or land degradation, as it 
directly links current conditions to historical extremes93.

TCI reflects temperature-induced stress in vegetation and is based on LST. High temperatures can lead to 
moisture loss, heat stress, and reduced photosynthetic activity, which negatively impact vegetation94,95. TCI 
measures how far the current LST deviates from the optimal temperature range for vegetation growth96 (Eq. 5).

	
T CI = LST max − LST

LST max − LST min
× 100� (5)

TCI is essential for assessing the impact of extreme temperatures on vegetation, particularly in regions where 
heat stress is a major limiting factor for plant growth. VHI integrates both VCI and TCI to comprehensively 
assess vegetation health, capturing both vegetation vigor and temperature-related stress97.

VHI integrates both VCI and TCI to provide a comprehensive indicator of vegetation health, accounting for 
both biotic (vegetation vigor) and abiotic (temperature stress) influences97,98. (Eq. 6).

	 V HI = α × V CI + (1 − α ) × T CI � (6)

Where α is a weighting factor, typically set to 0.5, giving equal importance to VCI and TCI 99,100. The flexible 
weighting allows for adjustments based on the relative importance of temperature and vegetation vigor in 
different regions or seasons. This adaptability is particularly useful in areas like Southern Thailand, where 
climatic factors and temperature stress influence vegetation during wet and dry seasons. These indices were 
calculated for each year from 2000 to 2023, providing a detailed, multi-dimensional assessment of vegetation 
health, and stress across the study period. Integrating kNDVI, LST, and climate variables allows for a more 
robust analysis of vegetation dynamics, helping to identify critical periods of stress and offering valuable insights 
into environmental management and drought mitigation.

Anomaly calculation for vegetation health, vegetation condition, and temperature condition 
indices
This study assesses vegetation health from 2000 to 2023 by calculating anomalies for VHI, VCI, and TCI, which 
indicate deviations from long-term trends and highlight periods of vegetation stress or favorable conditions. 
Annual mean values for each index were calculated as the average of monthly data for each year (Eq. 7)101,102, 
and long-term averages were established as baselines for detecting anomalies (Eq. 8)103.

	
Meani

X =
∑

n
m=1Xi

m

n
� (7)

	
−
X=

∑
N
i=1Xi

m

N
� (8)

Here, Meani
x ​ represents the annual mean for index X in year i, and 

−
X  denotes the long-term mean of the 

index over n years. Anomalies ( Xi
anomaly ​) were expressed as the percentage deviation from the long-term 

mean (Eq. 9).

	
Xi

anomaly = Meani
X−

−
X

−
X

× 100� (9)

Positive anomaly values indicate better-than-average vegetation health, while negative values suggest potential 
stress or drought conditions98,104. A dynamic thresholding approach was applied to ensure the meaningful 
identification of significant anomalies.

Dynamic threshold approach for anomaly detection in vegetation health indices
This study evaluated the annual anomalies of the VHI, VCI, and TCI from 2000 to 2023 to assess vegetation stress 
and drought conditions. To objectively identify significant anomalies, dynamic thresholds were established for 
each index based on their statistical distributions105. Specifically, a severe anomaly threshold was defined as 
two standard deviations below the mean (µX − 2σX​), and a normal threshold as two standard deviations above 
the mean (µX + 2σX​)105,106. This approach is grounded in the empirical rule, which posits that approximately 
95% of normally distributed data falls within ± 2 standard deviations from the mean, ensuring that identified 
anomalies are statistically significant and not due to random variability107. For each index X (VHI, VCI, TCI), 
the thresholds were calculated as (Eqs. 10 and 11):

	 Severe Threshold = µX − 2σX� (10)

	 Normal Threshold = µX + σX� (11)
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where µX​ represents the mean of the annual anomalies for index X and σX​ denotes the standard deviation of 
the yearly anomalies for index X. This method ensures that significant deviations from the norm, identified as 
anomalies, are statistically robust and not due to random fluctuations. Furthermore, to isolate the most critical 
adverse events, the 90th percentile of the severity index was employed to identify the top 10% worst years for 
each index. This percentile-based criterion focuses the analysis on extreme events that have the most substantial 
impact on vegetation health, enhancing the study’s relevance for drought monitoring and environmental 
management. The selected thresholds are pivotal for differentiating typical variability from significant 
stress events in vegetation indices. By employing statistically derived thresholds, the study ensures that the 
identification of severe anomalies is both objective and reproducible, thereby strengthening the validity and 
reliability of the findings. Additionally, this study applies the dynamic thresholding approach in combination 
with integrated statistical and spatial analysis methods, such as the use of kNDVI and climate variables, to better 
capture subtle vegetation responses under complex environmental stressors. This enhanced detection of extreme 
stress events, tailored to the unique conditions of Southern Thailand’s tropical ecosystems, provides a more 
detailed understanding of vegetation health dynamics compared to conventional static thresholds.

Trend analysis
A detailed trend analysis of VHI, TCI, and VCI was conducted to assess vegetation health across distinct land 
use categories in Southern Thailand. This analysis involved both seasonal and annual trends, employing the 
Mann-Kendall test to evaluate the presence of monotonic trends and Sen’s slope estimator to quantify the rate 
of these changes.

Mann-Kendall test
The Mann-Kendall test was selected due to its non-parametric nature, making it suitable for environmental time 
series data that often deviate from normality108,109. The test evaluates the trend by analyzing pairs of observations 
over time. For a time, the series of n observations x1, x2…, xn, the Mann-Kendall statistic S was computed as 
follows (Eq. 12):

	
S =

∑
n−1
k=1

∑
n
j=k+1sgn (xj − xk) � (12)

where sgn (xj − xk)is the sign function, defined as (Eq. 13):

	

Z =




s−1√
var (s)

when S > 0
0 when S = 0
s+1√
var (s)

when S < 0
� (13)

This test identifies whether there is a statistically significant upward or downward trend. A positive S indicates 
an increasing trend, while a negative S suggests a decreasing trend110. The significance level is determined using 
Z-statistics, enabling us to evaluate the null hypothesis of no trend.

Sen’s slope estimator
To measure the magnitude of the trends,  Sen’s slope, was applied which provides a robust estimate of the rate of 
change111,112. This method calculates the slope (β) between each pair of data points and then takes the median of 
these slopes as the trend magnitude. For any two points (i, j) in the time series, the slope is calculated by using 
Eq. 14:

	
Qi = xj − xi

j − i
, for all 1 ≤ i < j ≤ n. � (14)

Here, Sen’s slope offers a resilient estimate to reduce the influence of outliers and also represents the median rate 
of changes in VHI, TCI, and VCI anomalies.

The Mann-Kendall test and Sen’s slope were applied across seasonal and annual VHI, TCI, and VCI datasets. 
This allowed us to observe vegetation and temperature stress patterns under varying climatic conditions. Trends 
in land use types, were assessed including forested regions, shrublands, agricultural land, and urban areas. The 
seasonal analysis captured the variability of vegetation responses during dry and wet periods, while the annual 
analysis offered insights into long-term trends.

Quantitative assessment of climate factor contributions to VHI, VCI, and TCI variations
This study employs a rigorous quantitative approach to assess the relative contributions of selected climate 
variables LST, PPT, VPD, SM, and SR to variations in three key vegetation indices: the VHI, VCI, and TCI. The 
analysis utilizes a partial derivative-based model, implemented within a linear regression framework, to derive 
the sensitivity of each index to climate factors and the corresponding interannual variability. The results allow for 
the computation of the relative contributions of each factor, highlighting their influence on vegetation dynamics.

Modeling framework
The relationship between each vegetation index (VHI, VCI, TCI) and the climate factors was modeled using a 
linear regression approach. The relative contributions of each climate factor to variations in these indices were 
computed based on the partial derivative of each index for the respective climate variables113,114 (Eq. 15). For 
VHI, all selected climate factors were included to capture the comprehensive influence of climate variability 
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on overall vegetation health. In contrast, the VCI analysis focused on PPT, VPD, SM, and SR, as these factors 
are more directly related to water availability and vegetation conditions. For TCI, the analysis was narrowed 
down to LST, VPD, and SR, as these factors are more directly related to temperature stress and its impact on 
vegetation115,116. This targeted approach for each index ensures the most relevant climate factors are assessed 
based on the specific dynamics of the studied index.

	 Cfi= β fi • ∆ fi � (15)

where Cfi​​ denotes the contribution of the ith climate factor, βfi​​ represents the sensitivity of VHI to the ith climate 
factor derived from the linear regression model117. The Δfi​​ signifies the temporal variation (standard deviation) 
of the ith climate factor. The total contribution of each climate factor was calculated by combining its sensitivity 
with the degree of its variability over time118.

Sensitivity analysis
The sensitivity of each vegetation index to the selected climate factors β fi

​​ was also computed as the partial 
derivative of the index for each climate variable119,120 (Eq. 16). This sensitivity reflects how responsive each index 
is to incremental changes in the respective climate factors. Larger absolute values of the regression coefficients 
indicate a stronger influence of the corresponding climate factor on vegetation dynamics, while statistical 
significance reflects the robustness of the estimation.

	
β fi = ∂ V HI

∂ fi
� (16)

Here, the β fi
​​ represents the responsiveness of VHI to changes in the ith climate factor. The linear regression 

coefficients served as sensitivity estimates, where more significant coefficients indicated a greater influence of the 
associated climate factor on VHI dynamics.

Interannual variability of climate factors
The interannual variability of each climate factor ∆ fi was quantified as the standard deviation over the study 
period. This measure captures temporal fluctuations in each climate factor and helps assess how much variability 
each factor contributes to vegetation dynamics. The variability was calculated independently for each factor.

Relative contribution calculation
The relative contribution of each climate factor to the variations in vegetation health indices was determined 
using Eq. 17121,122.

	
Rfi = |Cfi |∑

n
i=1 |Cfi |

× 100� (17)

where Rfi represents the relative contribution of the ith climate factor to VHI variations and n denotes the 
number of climate factors considered. Here, |Cfi | is the absolute contribution of the ith climate factor, as defined 
earlier. This formulation ensures that the contributions are normalized, allowing for comparison across different 
factors, with the sum of all contributions totaling 100%. Factors with higher relative contributions exert a more 
substantial influence on VHI dynamics.

Statistical evaluation of contributions
The contributions of each climate factor were evaluated using p-values derived from the linear regression model, 
with factors exhibiting p-values below 0.05 deemed statistically significant. This ensured identifying the most 
impactful climate drivers for each vegetation index, distinguishing them from those with less significance. A 
classification-based method was then applied to assess various climate factors’ positive and negative influences 
on vegetation dynamics. For VHI, all five climate factors were considered, while for VCI and TCI, the analyses 
were tailored to the most relevant climate factors, as previously outlined.

Each factor was classified as contributing either positively or negatively to vegetation health, and these 
classifications were summed to determine the overall impact in each region. Regions where all factors contributed 
positively or negatively were classified as having predominantly positive or negative impacts, respectively123. To 
further refine the analysis, the dominant climate factor representing the most substantial positive or negative 
influence was mapped for each area, providing a comprehensive spatial assessment of the factors driving 
vegetation health. The analysis then identified the dominant climate factor in regions experiencing both positive 
and negative impacts, facilitating mapping the most influential drivers. The spatial extent of these effects was 
measured, offering a clearer picture of the relative influence of each factor across the study area. By integrating 
a partial derivative-based analysis with this classification approach, the study thoroughly evaluates the effects 
of climate factors on vegetation health at both annual and seasonal scales. This dual approach enhances the 
understanding of short- and long-term climate impacts on vegetation dynamics, providing critical insights for 
developing effective climate adaptation strategies.

Results
Vegetation stress and drought severity
The vegetation health indices (VHIs) from 2000 to 2023 highlight critical years of vegetation stress in Southern 
Thailand. A dynamic threshold approach was employed to identify severe anomalies, which allowed for the 
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objective differentiation of significant stress events from normal fluctuations. In 2005, all three indices indicated 
considerable stress, with 21.52% of the area classified as severely stressed by VHI and 60.36% experiencing 
severe temperature anomalies, according to TCI. This combined impact of vegetation health deterioration and 
temperature stress made 2005 particularly challenging for vegetation health. In 2016, stress persisted, with 
17.03% of the area under severe conditions, according to VHI, and 65.31% experiencing severe temperature 
stress, as indicated by TCI (Fig. 3). In Fig. 3, the Less Severe category represents areas where vegetation health 
indices deviate moderately from the long-term mean falling between one and two standard deviations below the 
average. These regions indicate mild to moderate stress, distinct from the most critical zones classified as Severe.

VCI values across all analyzed years, including 2005 and 2022, showed less variability, with 3.18% of the 
area classified as severely stressed, indicating relatively stable vegetation conditions and fewer extreme drought 
impacts than VHI and TCI. Comparative analysis across the indices suggests that temperature anomalies 
had the most significant impact on vegetation stress, as evidenced by the higher proportion of severe areas in 
TCI compared to VHI and VCI, and the years 2005 and 2016 emerged as the most critical, with substantial 
areas affected by severe anomalies. While VHI provided a balanced assessment of overall vegetation health, 
TCI captured more acute stress driven by temperature variability, emphasizing the importance of considering 
multiple indices for a comprehensive understanding of drought impacts. These findings underscore the need 
for targeted mitigation strategies addressing temperature-induced stress to enhance vegetation resilience in 
Southern Thailand.

Trend analysis
Vegetation anomalies and land use dynamics: seasonal and annual VHI trends
The analysis of VHI anomalies across Southern Thailand’s land use classes reveals complex seasonal and annual 
vegetation patterns. In forested areas, 55.4% show insignificant decreasing trends on a yearly basis, suggesting 
short-term variability rather than a consistent decline. However, 22.5% of forests demonstrate significant 
increases, indicating regions of recovery, while 3.6% experience marked decreases. During the dry season, 53% 
of forests experience minor decreases, reflecting vulnerability under limited water conditions, while 30.2% 
exhibit significant improvements. The wet season presents a more refined perspective, with 25.8% of forests 
showing significant recovery due to ample water availability, while 55.9% exhibit slight declines.

The analysis of VHI anomalies across Southern Thailand’s land use classes reveals complex seasonal and 
annual vegetation patterns. In forested areas, 55.4% show insignificant decreasing trends on a yearly basis, 
suggesting short-term variability rather than a consistent decline. However, 22.5% of forests demonstrate 
significant increases, indicating regions of recovery, while 3.6% experience marked decreases, likely due to 
deforestation or water stress. During the dry season, 53% of forests experience minor decreases, reflecting 
vulnerability under limited water conditions, while 30.2% exhibit significant improvements, potentially due to 
adaptive ecological processes. These improvements suggest that some forested areas may be recovering naturally, 
emphasizing the importance of maintaining these regions for long-term resilience. Notably, 4.4% of these areas 
face significant declines, likely driven by persistent drought stress or other environmental pressures (Fig. 4).

The wet season presents a more refined perspective, with 25.8% of forests showing significant recovery due 
to ample water availability, while 55.9% exhibit slight declines, possibly indicating stabilization rather than full 
recovery. Yet, 3.4% of forest areas continue to degrade, suggesting unresolved stressors potentially related to soil 
quality or human activities. A similar trend is observed in shrublands. This persistent degradation highlights 
the need for targeted reforestation and soil management strategies to address long-term ecological challenges. 
During the dry season, 47.9% show insignificant declines, reflecting overall vulnerability, though significant 
changes are minimal. In the wet season, 42.5% of shrublands also exhibit insignificant decreases, highlighting 
that even favorable water conditions may not lead to full recovery.

Arable land, being more sensitive to water availability, presents a mixed response. Dry season data suggest 
some resilience, likely aided by irrigation practices, while wet season improvements hint at a more robust 
recovery driven by sufficient rainfall. These contrasting responses across different land use types emphasize 
the significant impact of seasonal dynamics on vegetation health. While forests and arable lands show signs 
of resilience and potential recovery, the shrubland remains particularly vulnerable, indicating the need for 
focused management strategies. These findings underscore the importance of targeted interventions to mitigate 
environmental stressors and promote long-term sustainability across various ecosystems. Targeted water 
management and sustainable agricultural practices can mitigate stress in arable lands and shrublands, ensuring 
long-term vegetation health.

Spatiotemporal dynamics of VCI anomalies across LULC
The spatiotemporal analysis of VCI anomalies in Forest Land (FL) shows that 31.6% of the area shows notable 
increasing trends in vegetation health, likely to indicate successful reforestation efforts or favorable climatic 
conditions. However, 4.7% of the forested regions exhibit significant declines, raising concerns about ongoing 
deforestation or the impacts of prolonged drought, particularly during dry periods. Seasonal analysis indicates 
that 35.7% of forested areas show VCI improvements during the dry season, which may reflect enhanced water 
management strategies. In contrast, 4.4% show declines, potentially signaling stress caused by insufficient water 
availability. In the wet season, 33.9% of forests exhibit VCI increases, benefiting from ample rainfall, while another 
4.4% face declines, suggesting persistent environmental challenges that remain even during more favorable 
periods (Fig. 5). Resilience is evident in mangrove forests (MF), especially during the wet season, where 33.9% of 
areas show VCI improvements, likely benefiting from favorable water conditions. In contrast, 4.4% of mangrove 
regions experience declines, which may be attributed to environmental challenges like coastal erosion or human 
activities impacting these sensitive ecosystems. During the dry season, significant VCI increases across 35.7% 
of arable land are likely the result of enhanced irrigation systems or the use of drought-tolerant crops (Fig. 6E). 
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Fig. 3.  Drought severity in Southern Thailand (2000–2023) based on VHI, VCI, and TCI indices. Critical 
years of vegetation stress include 2005 and 2016, with VHI and TCI indicating extensive, severe stress areas, 
mainly driven by temperature anomalies captured by TCI. The analysis underscores the impact of temperature-
induced stress on vegetation health in the region. The map was generated using the QGIS stable version (Long 
Term version for Windows (3.34 L)). The software is available at https://www.qgis.org/download/.
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Fig. 4.  Seasonal and annual VHI trends across LULC classes in Southern Thailand, showing the distribution 
of vegetation health trends. (A) Annual VHI, (B) Dry season VHI, and (C) Wet season VHI reveal varying 
responses to environmental conditions. Forest and arable lands display resilience with notable increases in 
VHI, while shrublands show persistent vulnerability. This indicates that shrublands are inherently less resilient 
to environmental stress, requiring interventions to enhance their adaptive capacity.
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However, many agricultural areas face insignificant decreases during the wet season, revealing vulnerabilities 
in productivity caused by fluctuating water availability. This variability underscores the need for sustainable 
agricultural practices, such as improving drainage infrastructure and optimizing irrigation strategies, to mitigate 
the risks to food security. (Fig. 6 ABCDFGHI).

Fig. 5.  Seasonal and annual VCI trends across LULC classes in Southern Thailand. (A) Annual VCI, (B) Dry 
season VCI, and (C) Wet season VCI display varying responses among LULC classes. Forest and upland areas 
exhibit resilience with significant increases, while arable and shrubland areas show more mixed trends, with 
some regions experiencing substantial declines.
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Fig. 6.  Spatial distribution of annual, dry, and wet season trends in VHI (ABC), VCI (DEF), and TCI 
(GHI) across Southern Thailand. The maps display areas of significant increase and decrease in each index, 
highlighting the seasonal variability in vegetation health and stress. Green areas indicate substantial increases, 
while red areas show significant reductions, with darker shades representing higher confidence (p < 0.05). The 
map was generated using the QGIS stable version (Long Term version for Windows (3.34 L)). The software is 
available at https://www.qgis.org/download/.
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Minimal significant trends appear in shrubland (SL), with much of the area showing insignificant decreases 
in seasonal and annual analyses. This indicates that shrublands may be less affected by seasonal variations, likely 
due to their adaptive nature and low vegetation density. However, localized factors such as land management 
practices or grazing could explain the few areas showing notable trends. As anticipated, urban land (UL) exhibits 
mostly insignificant VCI trends, reflecting the limited vegetation typical of urban landscapes. The few significant 
changes observed are likely tied to shifts in urban green spaces or the impact of infrastructure development on 
vegetation. This analysis underscores the importance of seasonal and environmental conditions in influencing 
vegetation dynamics across LULC categories. Forest lands exhibit signs of recovery but also contain areas 
requiring attention due to decreasing trends. Mangrove forests demonstrate resilience but still face localized 
stressors. Agricultural areas show adaptive capacity in the dry season but remain vulnerable during wetter 
periods. Shrublands appear less responsive to seasonal changes, and the urban regions exhibit relative stability, 
with occasional vegetation changes tied to urban development124,125. These findings emphasize the need for land-
use-specific interventions, such as reforestation, agricultural water management, and urban green planning, to 
enhance vegetation health and resilience across ecosystems.

Assessing temperature stress: TCI anomalies
The evaluation of TCI across Southern Thailand’s land-use categories reveals varying responses to temperature 
stress. In forested areas, 67.8% exhibit minor, statistically insignificant decreases in TCI (p ≥ 0.05), suggesting 
that temperature fluctuations have a limited overall impact on vegetation in these regions (Fig. 7). However, 
13.8% of forested regions show significant improvements (p < 0.05), indicating areas where favorable temperature 
conditions promote healthier vegetation. Conversely, 1.6% of forested regions experience significant declines, 
highlighting localized vegetation loss due to temperature stress, particularly during the dry season (Fig. 6I). 
During this period, 61.4% of forests show insignificant decreases, reflecting mild temperature stress without 
severe consequences. In contrast, 24.7% display significant TCI increases, implying localized climatic benefits 
or the presence of temperature-adaptive species. However, 3% of forested areas face significant declines, 
underscoring hotspots where temperature stress is a major driver of vegetation degradation. Mangrove forests 
show predominantly insignificant TCI decreases, suggesting that temperature fluctuations exert limited influence 
on overall vegetation health. Nonetheless, areas with significant increases highlight regions where favorable 
temperature conditions aid mangrove growth and recovery, particularly in coastal environments. Arable lands 
exhibit increased sensitivity to temperature stress, with insignificant TCI decreases dominating during the dry 
season. In the wet season, significant TCI increases reflect enhanced vegetation growth, as favorable temperature 
and moisture conditions boost agricultural productivity. Shrublands exhibit mixed responses, with 58.4% 
showing insignificant decreases in TCI during the dry season, indicating limited sensitivity to temperature 
fluctuations. However, small regions with significant declines point to areas adversely affected by prolonged 
temperature stress. Urban land, as expected, shows predominantly insignificant trends due to limited vegetation 
cover, with substantial trends linked to urban green spaces or temperature management strategies.

A comparative analysis of TCI’s performance across these land-use types highlights its unique ability 
to capture temperature-related stress, particularly in regions with extreme fluctuations. For example, while 
traditional indices like NDVI or VHI might overlook localized stressors, TCI effectively identifies areas where 
temperature is a primary driver of vegetation change. This makes it especially valuable in ecosystems like arable 
lands and mangroves, where vegetation health is closely tied to seasonal temperature dynamics. These findings 
emphasize the importance of TCI in identifying temperature-induced vulnerabilities and informing adaptive 
management strategies to mitigate climate impacts. For forested areas, identifying hotspots with significant TCI 
declines underscores the need for reforestation programs with temperature-adaptive species. At the same time, 
the role of TCI in arable lands highlights the necessity for temperature-resilient crops and irrigation systems 
during dry seasons. This analysis underscores the varying degrees of temperature stress across land-use types 
and highlights TCI’s capability to capture critical stress points. Forested areas demonstrate a mix of resilience 
and vulnerability, while mangroves and arable lands exhibit adaptability under favorable conditions. Shrublands 
show overall stability with localized stress points, and urban areas remain largely unaffected, apart from trends 
tied to urban greening initiatives. These insights reinforce the need for targeted strategies, such as optimizing 
temperature management in arable lands and strengthening mangrove conservation in coastal environments, to 
sustain vegetation health under rising climate pressures.

Annual and seasonal climate contributions to vegetation health: comparative impacts on 
VHI, VCI, and TCI in tropical ecosystems
This study examines the impact of critical climatic factors SM, SR, VPD, PPT, and LST on vegetation health 
through three key indices: the VHI, VCI, and TCI. The analysis spans annual, dry, and wet seasons, allowing 
for the identification of seasonal variations in how these environmental variables affect vegetation. The findings 
below outline the contributions of each factor to the indices, followed by a seasonal comparison.

Annual contributions to vegetation health
The annual analysis highlights the significant impact of climatic variables on vegetation health, with substantial 
variations in their contributions across the VHI, VCI, and TCI indices. SM emerged as the dominant factor 
influencing VHI, with positive and negative effects. It improved vegetation health across 13.11% of the area, 
where optimal moisture levels supported plant growth but negatively impacted 16.41%, likely due to water stress 
caused by insufficient or excessive moisture. This highlights the critical role of SM in balancing water availability, 
as drought and waterlogging can hinder vegetation productivity. SR also played a dual role. It negatively 
affected 13.42% of the area by increasing evapotranspiration, leading to moisture depletion and plant stress. 
However, SR positively influenced regions with sufficient soil moisture, benefiting 11.93% of the area by driving 
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Fig. 7.  Seasonal and annual TCI trends across LULC classes in Southern Thailand. (A) Annual TCI, (B) Dry 
season TCI, and (C) Wet season TCI illustrate the percentage distribution of significant and insignificant 
trends across different LULC types. Forest lands show high levels of stability with minor increases, while arable 
and upland areas display more substantial increases in TCI, particularly during the wet season, indicating 
temperature-driven resilience.
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photosynthesis. This underscores the importance of SR in maintaining energy balance and promoting growth 
(Fig. 8A). PPT and LST also negatively impacted 10.81% and 10.34% of the area, respectively. These effects are 
likely linked to excess rainfall or heat stress. Despite this, VPD and PPT contributed more minor but significant 
positive effects, benefiting 9.15% and 7.32% of the area. These findings suggest that, under moderate conditions, 
these factors play a supportive role in maintaining healthy vegetation. As hydrological conditions significantly 
influence urban and vegetation health34, this study further highlights their critical role in shaping vegetation 
dynamics in Southern Thailand.

SR played a significant role in influencing VCI, negatively affecting 21.80% of the area. This is likely due 
to increased evapotranspiration, which depletes moisture, especially under high radiation, leading to water 
stress. In regions where moisture was not limited, however, SR positively impacted 11.39% of the area by 
facilitating photosynthesis (Fig. 8B). This dual role reflects SR’s influence on the energy balance of vegetation. 
Excessive solar radiation can cause harm, while moderate levels enhance growth. SM had mixed effects as well. 
It negatively impacted 12.47% of the area, likely due to waterlogging, but improved vegetation health in 17.11% 
of the area where moisture levels were optimal. VPD and PPT followed similar patterns. VPD had a more 
prominent negative effect, highlighting the role of atmospheric moisture demand in vegetation stress. However, 
moderate VPD levels supported growth in areas under less stress, illustrating the complex relationship between 
atmospheric moisture and plant responses.

LST had a significant negative impact on 19.61% of the area, according to TCI, as thermal stress disrupted 
plant metabolism and reduced vegetation health. In contrast, moderate temperatures positively affected 11.44% 
of the area, allowing plants to thrive under more favorable conditions. SR significantly improved photosynthesis 
and benefited vegetation health across 24.53% of the area (Fig. 8C). However, excessive solar radiation negatively 
affected 10.58%, showing the delicate balance between helpful and harmful radiation levels. VPD also contributed 
positively to 23.75% of the area by promoting transpiration, a crucial process for nutrient transport in plants. 
Still, high VPD levels, which increase moisture demand, negatively impacted 10.10% of the area, contributing 
to vegetation stress, a pattern also observed with VHI and VCI. The pixel-wise climatic sensitivities (β), inter-
annual variability (Δ), absolute contributions (C = β·Δ) and normalised relative contributions (R) that underpin 
these percentage patterns are provided in Supplementary Figure. S4, with accompanying study-area statistics in 
Table S3.

Seasonal contributions to vegetation health
In the dry season, SM remained the most significant negative contributor to vegetation health under the VHI, 
affecting 15.86% of the area. SR followed closely with a negative impact on 13.14% of the area. PPT and VPD also 
showed adverse effects, although LST had a more minor influence. Notably, PPT emerged as the most significant 
positive factor in this season, enhancing vegetation health in 13.13% of the area, while SM contributed positively 
to 11.16%. These findings underscore the importance of targeted water management practices, such as soil 
moisture retention and efficient irrigation systems, to mitigate stress and optimize vegetation health during the 
dry season. Although smaller in magnitude, SR and LST also played positive roles, indicating their relevance 
in supporting plant productivity under favorable conditions. During the wet season, LST showed a dramatic 
shift, becoming the dominant positive factor contributing to 30.61% of the area, underlining the significance of 
thermal dynamics during this period (Fig. 9). SR and PPT also made substantial positive contributions, while 
SM and VPD had more minor positive impacts. Negative influences were led by SM (11.00%) and SR (8.57%), 
with LST showing the least negative effect, highlighting the seasonally shifting importance of these factors.

The VCI reflected similar patterns. SM and VPD had more pronounced negative impacts during the dry season, 
with SM affecting 19.63% of the area and elevated VPD influencing 16.81%. This underscores the vulnerability 
of vegetation to moisture deficits in arid conditions. SR further reduced vegetation vitality, negatively affecting 
14.85% of the area, which is in line with its negative role observed in the VHI analysis. Positive contributions 
from SM and SR were limited, suggesting that only certain regions benefited from favorable conditions, much 
like the constrained positive impacts seen in the VHI. In the wet season, solar radiation positively influenced 
20.36% of the area, while soil moisture supported vegetation health across 15.10% of the region, reflecting its role 
in VHI. The reduction in adverse effects of precipitation and the expansion of its positive influence underscores 
the critical role of sufficient rainfall during this period. VPD, while generally contributing to vegetation 
stress, played a more supportive role in the wet season, positively impacting 11.55% of the area by facilitating 
transpiration under more favorable moisture conditions.

The TCI highlighted the increasing importance of LST during the dry season, contributing positively to 
44.63% of the area. This emphasizes the role of moderate temperatures in sustaining vegetation health when 
moisture is limited. The relatively minor adverse effects of LST (4.23%) indicate that while thermal stress 
can occur, LST remains a beneficial factor in maintaining vegetation growth in arid conditions. SR positively 
influenced 23.71% of the area but continued to exert adverse effects over 7.91%, demonstrating the dual impact 
of SR seen in both VHI and VCI. VPD’s negative impact of 10.20% was more prominent, reflecting the increased 
atmospheric moisture demand that exacerbates water stress in vegetation during the dry season. During the wet 
season, LST emerged as the most critical positive factor, contributing to 50.03% of the area. This highlights the 
importance of favorable thermal conditions in supporting vegetation growth under well-watered conditions. 
However, SR’s negative impact increased to 14.30%, likely due to heat stress despite moisture availability, while 
positive contributions were more restricted (9.45%). The negative influence of VPD also grew to 16.84%, 
stressing vegetation even in areas with adequate soil moisture, reflecting its role in regulating transpiration and 
moisture demand. This seasonal variability highlights the need for adaptive strategies that address the shifting 
importance of climate drivers, such as optimizing thermal conditions and balancing water availability to sustain 
vegetation productivity year-round.
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Fig. 8.  Percentage contribution of environmental predictors to the VHI, VCI, and TCI on an annual, dry, 
and wet seasonal basis in Southern Thailand. (A) VHI contributions highlight SM and SR as key influences, 
with positive and negative effects varying by season. (B) VCI contributions strongly influence SR and SM, 
particularly in the wet season. (C) TCI contributions show temperature (LST) as the dominant factor, 
especially in the wet season, reflecting temperature-driven vegetation stress. This analysis emphasizes the 
seasonal sensitivity of vegetation health to climatic variables.
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Synthesis and implications for vegetation management
The analysis demonstrates that SM and SR consistently emerged as the most influential variables, with their 
effects varying across seasons. In the wet season, LST showed solid positive contributions, underscoring its 
critical role in tropical vegetation dynamics during periods of high precipitation. These findings highlight the 
necessity for adaptive environmental management strategies that account for seasonal variability in climate 
drivers to enhance ecosystem resilience in tropical regions. The VCI results aligned closely with the VHI, 
reinforcing the importance of SR, SM, and VPD in determining vegetation health across seasons. Both indices 
demonstrate the dual roles of these factors: while optimal conditions promote vegetation growth, excesses or 
deficits can result in stress and reduced vitality. These complementary insights further underscore the need for 
adaptive management strategies that consider seasonal fluctuations in environmental drivers, particularly under 
the pressures of climate change. LST emerged as a crucial driver of vegetation health across all seasons, with its 
positive influence being most pronounced during the wet season. The complex, season-dependent impacts of SR 
and VPD suggest careful management is needed to mitigate thermal and moisture stress. The interplay between 
these factors, as evidenced in the VHI and VCI results, points to the importance of optimizing shading and 
selecting heat-tolerant species to minimize the adverse effects of climate-induced stress on vegetation.

Fig. 9.  The spatial distribution of dominant climate factors impacts vegetation health Across seasons. The 
maps display the combined dominant impacts of Climatic predictors on vegetation health indices: VHI, VCI, 
and TCI for Annual (A), Dry (B), and Wet (C) seasons. The individual contributions of climatic factors SM, 
SR, VPD, PPT, and LST to vegetation health indices VHI, VCI, and TCI across annual, dry, and wet seasons 
are detailed in Supplementary Material Appendix A. Figures S1, S2, and S3 illustrate these seasonal impacts, 
revealing the detail and season-dependent influences of each predictor on vegetation health. The map was 
generated using the QGIS stable version (Long Term version for Windows (3.34 L)). The software is available at 
https://www.qgis.org/download/.
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Overall, this comprehensive analysis highlights that vital environmental factors have significant and seasonally 
dependent impacts on vegetation health indices (VHI, VCI, and TCI) in Southern Thailand. SM and SR were 
consistently identified as primary drivers across all seasons, with SM exhibiting both positive and negative effects 
depending on moisture availability and seasonal conditions. LST demonstrated a substantial positive influence 
during the wet season, affecting over 30% of the area for VHI and over 50% for TCI, supporting its role in 
promoting vegetation health under moist conditions. The VCI analysis further highlighted the need to manage 
moisture availability and mitigate excessive heat stress. SR and VPD can either exacerbate moisture stress during 
dry periods or support vegetation growth under optimal conditions.

Discussion
Climatic drivers of vegetation health in Southern Thailand
The results of this study reveal significant spatiotemporal variations in vegetation health, driven by climatic 
factors such as SM, SR, PPT, VPD, and LST. Vegetation in Southern Thailand shows pronounced sensitivity to 
seasonal and annual climate dynamics, especially under extreme temperature and moisture conditions, aligning 
with findings from similar tropical ecosystems.

Impact of extreme temperature and moisture deficits on vegetation stress
Spectral monitoring has proven effective for assessing vegetation health in tropical ecosystems, particularly during 
seasonal extremes126. The applicability of vegetation indices to aquatic systems, such as the Dharoi Reservoir, 
further underscores their utility in diverse environments37. The patterns observed in Southern Thailand reflect 
these findings, reaffirming the capacity of indices like VHI and kNDVI to capture climate-induced vegetation 
stress. This stress has serious implications for agriculture, as shown in simulations from Jammu and Kashmir, 
where concurrent heat and drought threaten food production127. Similar risks are evident in Southern Thailand, 
where vegetation degradation due to temperature and moisture extremes affects food systems and livelihoods.

The VHI identified severe vegetation stress during 2005 and 2016, aligning with temperature anomalies 
detected by TCI. These years saw temperature-induced stress across 60.36% and 65.31% of the region, respectively, 
highlighting the compounding effects of heat and moisture deficits. Events like April 2016’s drought, linked to 
ENSO and anthropogenic influences, disrupted agriculture and reduced yields128. Rising temperatures further 
limit evapotranspiration and intensify soil moisture deficits, suppressing productivity under prolonged heat 
stress129–133. These outcomes align with global trends linking heat and drought to reduced yields, reinforcing the 
need for climate-adaptive agriculture134,135. Forests and mangroves are especially vulnerable forests that decline 
rapidly under moisture deficits, while mangroves face risks from combined heat and water stress136,137. This 
degradation threatens biodiversity, timber production, and coastal protection. For agriculture, temperature and 
moisture stress reduce productivity, disrupt food supply chains, and endanger rural livelihoods138.

Southern Thailand’s experience mirrors broader patterns: increasing drought and heat reduce photosynthesis 
and resilience, exacerbating food insecurity139. In Southern Africa, for instance, recurring ENSO-induced 
droughts disrupt economies and livelihoods, demanding urgent adaptation140. These challenges highlight the 
need for climate-smart practices like drought-tolerant crops, improved irrigation, and resilient afforestation141. 
High-resolution climate models also support mitigation planning under extreme events142. The interlinkage 
between vegetation health, ecological resilience, and human well-being necessitates proactive adaptation to 
protect food security and livelihoods as ecosystems approach critical thresholds.

Drivers of vegetation degradation and resilience across land cover types
While the VCI remained relatively stable, the more significant fluctuations in TCI indicate that temperature 
stress, rather than water availability, is the primary driver of vegetation degradation in this region. This 
observation is consistent with143, who found that TCI is dominant in detecting vegetation stress, especially in dry 
areas. Likewise, increases in temperature caused by forest degradation and land conversion in tropical regions 
are known to push species closer to their thermal limits144. Temperature-driven degradation is also linked to 
greenhouse gas emissions from forest loss, which are often underestimated in climate models145. In subtropical 
wetlands, increased temperature sensitivity further intensifies vegetation stress146,147.

Trend analysis across land use categories provides insight into vegetation resilience and vulnerability. 
Forested areas recovered in 22.5% of the region but a decline in 3.6%, particularly during the dry season, likely 
due to sustained water stress or deforestation pressures. These findings mirror those from other tropical regions, 
where droughts have heightened forest vulnerability to fires, exacerbating degradation during dry periods148,149. 
These patterns suggest a variety of factors influencing forest health, including potential recovery in some areas 
and degradation in others. The decreases in some forested areas could be attributed to deforestation or water 
stress, as suggested by previous studies150. The improvements noted in some forests during the dry season 
could potentially be due to adaptive ecological processes151. However, the significant declines in 4.4% of areas, 
likely driven by persistent drought stress or other environmental pressures, highlight the need for targeted 
conservation efforts. The differences observed during the wet season, with 25.8% of forests showing recovery 
and 55.9% slight declines, indicate that while water availability is a critical factor, other issues such as soil quality 
or human activities might also play a role in determining vegetation health152.

This persistent degradation highlights the need for targeted reforestation and soil management strategies 
to address long-term ecological challenges. The spatiotemporal analysis of VCI and TCI anomalies across land 
cover types reveals that mangrove forests are generally resilient to seasonal fluctuations and remain vulnerable 
to localized stressors such as coastal erosion and human activity. This aligns with global trends of mangrove 
degradation, where aquaculture, urban development, and nutrient depletion have driven significant losses, as 
seen in Brazil and the Indian Sundarbans153]– [154. Global assessments show that human-driven factors accounted 
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for 62% of mangrove degradation between 2000 and 2016, highlighting the urgency of targeted conservation 
efforts155.

Climate factors and vegetation stress dynamics
The analysis highlights the critical role of climate factors, particularly SM and SR, in shaping vegetation 
dynamics. SR exhibits a dual effect, promoting vegetation growth in moisture-rich areas but intensifying stress 
in regions with limited water availability due to increased evapotranspiration. Groundwater-rich zones are better 
able to sustain vegetation under high SR, while moisture-limited areas face significant stress156–158. Similarly, 
soil moisture plays a pivotal role, especially during the dry season, supporting vegetation in 11.16% of the study 
area. This underscores the importance of water retention strategies and irrigation to mitigate drought impacts, 
particularly as climate change exacerbates seasonal dryness. Temperature stress further compounds vegetation 
vulnerability. During the wet season, LST positively influenced vegetation health across 30.61% of the region, 
showcasing its importance in tropical ecosystems with ample precipitation159–161. However, excessive SR during 
the dry season negatively affected 13.14% of the area, demonstrating the need for strategies to manage SR 
exposure and reduce heat-induced stress. These findings underscore the sensitivity of vegetation to combined 
heat and moisture challenges, particularly in tropical climates where ecosystems operate near critical thresholds.

Vegetation degradation carries significant socioeconomic repercussions, particularly for forestry and 
agriculture. Deforestation-driven greenhouse gas emissions in forestry contribute to climate change162– 163 
while reducing timber yields and carbon trading opportunities, undermining local and global economies164. 
Agricultural productivity is similarly affected, with soil erosion and irregular precipitation increasing costs and 
threatening food security. Rural livelihoods are disproportionately impacted by vegetation loss. Communities 
dependent on forest resources suffer from reduced biodiversity and ecosystem services, disrupting their income 
and resource stability. Vulnerable populations in developing regions are particularly at risk, making restoration 
an ecological imperative and a socioeconomic necessity to support human well-being and resilience. Effective 
restoration strategies must prioritize biodiversity recovery and ecosystem functioning. Evidence suggests that 
ecological restoration enhances biodiversity by 44% and ecosystem services by 25%, though full recovery 
often lags behind undisturbed ecosystems165. Natural regeneration (passive restoration) often surpasses active 
interventions in restoring biodiversity and vegetation structure. Agroforestry and sustainable land-use practices 
also offer dual benefits, fostering biodiversity while improving soil stability and crop yields. Restoration strategies 
tailored to tropical regions’ unique ecological and socioeconomic conditions, such as Southern Thailand, are 
essential for achieving long-term impact.

Integrating monitoring frameworks into restoration efforts is critical for tracking carbon stocks and 
biodiversity recovery. Adaptive management approaches ensure restoration aligns with evolving ecological and 
socioeconomic goals, enhancing sustainability. Investments in initiatives like REDD + exemplify the broader 
benefits of restoration, contributing to climate resilience, poverty alleviation, and biodiversity conservation. 
Moreover, restored ecosystems enhance soil properties, improving agricultural productivity and forest 
regeneration potential166. Restoration efforts should integrate socioeconomic considerations to maximize 
their benefits for ecosystems and communities. By aligning restoration with sustainable development goals, 
policymakers can support climate resilience, food security, and economic stability. Proactive planning that 
bridges ecological restoration with livelihood improvement is vital for addressing the twin challenges of climate 
change and land degradation.

Strategies for Climate-Resilient vegetation management
The spatial dominance patterns of temperature, soil-moisture, precipitation, and solar-radiation stress identified 
in Fig. 8 provide the biophysical foundation for the management actions proposed below. These findings highlight 
the need for vegetation management strategies that integrate ecological and policy implications. Forested regions 
require targeted efforts to address deforestation, maintain biodiversity, and manage water stress. At the same 
time, areas with declines in VHI and TCI necessitate reforestation and sustainable land-use practices to restore 
ecosystems and support carbon sequestration. Arable lands and shrublands are vulnerable to wet season challenges 
like soil erosion and waterlogging. Adaptive water management, including drainage systems and conservation 
practices, is essential to safeguard crop productivity. While our study incorporated comprehensive preprocessing 
steps to address uncertainties in satellite-derived indices, including cloud masking using the Quality Assessment 
Band and multi-temporal compositing, certain limitations persist. Despite these measures, regions with frequent 
cloud cover may experience reduced temporal continuity. Similarly, mixed land-use areas present challenges in 
accurately isolating vegetation-specific responses despite our use of stratified analysis based on detailed land 
cover maps. Future studies should explore the integration of high-resolution satellite imagery and data fusion 
techniques to mitigate these limitations further and enhance the precision of vegetation monitoring in tropical 
ecosystems. Season-specific interventions, such as optimized irrigation, shading structures to mitigate solar 
radiation stress, and temperature-resilient crops, are critical for addressing the impacts of climate variability. 
Policy alignment with frameworks like REDD + can leverage funding for conservation and climate adaptation. 
Establishing monitoring frameworks to track vegetation health and adaptive management strategies informed 
by climate models will ensure long-term sustainability. These actionable measures provide clear pathways for 
mitigating vegetation stress and enhancing ecosystem resilience in tropical regions.

Conclusion
This study provides a comprehensive analysis of vegetation health trends across Southern Thailand from 2000 
to 2023, focusing on how seasonal and annual climate factors, particularly temperature and water availability 
shape ecosystem resilience. Findings indicate a strong sensitivity of tropical vegetation to extreme temperatures, 
with notable stress recorded in 2005 and 2016. This observed sensitivity underscores the vulnerability of 
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these ecosystems and highlights the broader challenges tropical regions face in adapting to climate variability. 
Additionally, soil moisture proved crucial during the dry season, mitigating water stress in forested and 
agricultural areas. In contrast, high solar radiation levels increased photosynthetic activity in moisture-rich 
regions but heightened stress in drier areas. These findings highlight the need for integrated water resource 
management strategies, such as efficient irrigation systems, water retention techniques, and soil conservation 
practices, to combat seasonal water stress and enhance ecosystem resilience. Forested and cultivated lands 
demonstrated considerable resilience to seasonal stressors; however, persistent drought conditions and continued 
deforestation in forested areas underscore the pressing need for adaptive management strategies. Reforestation 
programs using temperature- and drought-adaptive species and policies that curb deforestation is critical for 
maintaining ecosystem stability in these areas. Although mangrove forests have shown relative resilience to short-
term climate fluctuations, they are increasingly challenged by coastal erosion and human activities. Targeted 
conservation strategies, including mangrove restoration and coastal erosion control measures, are essential to 
protect these critical ecosystems. To address these challenges, a multifaceted approach is required that integrates 
ecosystem-specific strategies with broader adaptive management frameworks. Enhanced early warning systems 
for extreme weather events and policies promoting sustainable land use will strengthen climate resilience in 
tropical ecosystems. These findings underscore the importance of a nuanced approach to land management, 
one that adapts to the seasonal needs of Southern Thailand’s ecosystems. Effectively addressing climate stress 
will require targeted actions like enhanced irrigation systems and shade structures and a broader commitment 
to biodiversity conservation. Transformative agricultural strategies, offer practical guidance for implementing 
climate-resilient land management practices, which are vital for long-term ecosystem stability and food security 
in tropical regions. By deepening our understanding of these intricate ecological dynamics, this study lays the 
groundwork for sustainable management practices that support tropical ecosystems’ immediate and long-term 
resilience to climate change.

Data availability
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