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ABSTRACT Controlling the power level in the TRIGA PUSPATI Reactor (RTP) is crucial for both producing accurate
power output and managing reactor activity and power distribution. Currently, the RTP uses a Feedback Controller
Algorithm (FCA) based on a Proportional-Integral (PI) controller to improve steady-state error during operation. However,
this existing model faces issues such as delays in reaching a steady state and an inability to minimize errors due to
insufficient power accuracy and an ineffective controller. To address these issues, a new structure called the Fractional
Order Lead-Lag Compensator (FOLLC) has been introduced. Traditionally, the FOLLC structure is identified through loop
shaping using Bode plots and root locus in the frequency response domain. In this study, however, the Particle Swarm
Optimization (PSO) technique has been employed to estimate the values of the compensator's poles and zeros.
Integrating the compensator with the PSO approach improved the reactor core system's ability to reach and maintain the
desired power output while minimizing deviations from the target power level, achieving Residual Mean Percentage (RMP)
values between 0.75% and 2.35%. In comparison, the model without a compensator had much higher RMP values of
3.45% to 27.48%, showing a less accurate match with the real plant. This integration enhanced the overall performance of
the reactor core system.

KEYWORDS: Proportional-Integral (PI) controller; Lead-lag compensator; Particle Swarm Optimization (PSO); System
|dentification (SI)
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INTRODUCTION

This year in 2024, RTP has achieved 42 years old in operation using its original fuel since
commissioning. The latest modernization was the Reactor Digital Instrumentation Control System
(ReDICS) replacement into digital from analogue control conducted in 2014. The replacement had
been done in controlling system part, however, the system such as the cooling system, reactor core
system and certain auxiliary systems are not replaced or substituted even though these systems are
old enough. Therefore, the parameters such as rod worth, delayed neutron, spent fuel, heat transfer
and a few more parameters were not in the initial state and have become less significant compared
to early installation. Few studies had been showed that the performance of the RTP had been
degraded (Ghazali et al., 2016; Minhat et al., 2018; Minhat et al., 2020) from the real data of output
power level and power demand.

The accuracy of power control is crucial for optimizing fuel consumption, reducing heat and
safety issues, especially when operating at a power demand of 1000 kW. When the goal is to
produce a specific isotope or element, the operator of the RTP will adjust the power to a lower level
for a longer period or vice versa. If a low power level is insufficient to produce the target element,
the controller will extend the time and exposure accordingly. To ensure extended fuel consumption
and minimize heat generation, the reactor system must precisely control the time, power demand
level, and exposure. Currently, the existing model at RTP faces issues such as delays in achieving a
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steady state and an inability to minimize errors due to inadequate power accuracy and an ineffective
controller. Effective power control in RTP is essential not only for producing accurate power output
but also for managing activity and power distribution. Despite addressing factors like aging, and
implementing preventive and corrective maintenance, as well as any necessary amendments, the
model's accuracy has not significantly improved, with steady-state errors ranging between 0.235 and
0.7 (Ghazali et al., 2016; Minhat et al., 2018). Therefore, this study will introduce a new structure with
an optimized compensator using PSO to estimate the poles and zeros, aiming to further enhance the
reactor core system's performance.

METHODOLOGY

The project begins with data collection from the real plant at RTP. Using the collected input and
output data, a model of the RTP plant is developed through a System Identification (SI) approach.
Next, a compensator is designed and integrated into the RTP controller to enhance performance
accuracy, with its parameters estimated using PSO to minimize error. Finally, the model is evaluated
against performance metrics to ensure an accurate representation of the RTP.

Datasets

All parameters of the core reactor system were collected by the Wide Range Nuclear Monitoring
System (WRNMS) and stored in a computer. According to the ReDICS in the RTP system, the data
acquisition system encompasses a total of 342 parameters. However, for this study, the parameters
considered are fuel temperature, coolant temperature, reactivity, and core power. Real input and
output data were gathered at four different power levels 250 kW, 500 kW, 750 kW, and 1000 kW for
each power level. The data collection was limited to 10,000 samples with a sampling time of 0.5
seconds, which was considered sufficient to complete the RTP system within the required
timeframe.

System Identification (SI) Modelling

Since the model is a black-box model structure, no previous knowledge is required. The approach
of transfer function model had been employed in this research to represent all subsystem models by
using SI approach technique. The output of the SI modelling is in the form of a transfer function or
called model for each subsystem which represents the relationships between real input and output
data which is unique for each model. The subsystem model of RTP reactor system is depicted in

Figure 1.
Thermal- Reactivi [ i Actual core
hydraulics eactivity Neutronics Relative
model model model factor Power

Insertion
reactivity

Figure 1. The block diagram of the subsystem model of the RTP reactor system

All the models are above 95% best fit except for the thermal-hydraulics model's coolant
temperature, 92.79%. It was hard for the coolant temperature to get the higher best fit since the
actual coolant temperatures were fluctuating along the process. However, the models with above
90% best fit show that the model can be accepted and considered as almost identical to the real plant.
The transfer functions are presented as
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where Ty is the transfer function for fuel temperature and T: is the transfer function for coolant
temperature.

The reactivity model generates the total reactivity from insertion reactivity and feedback
reactivity due to fuel and coolant temperatures. The transfer functions are presented as

2.409s + 8.816e~*
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ext(S) = 37757495 1 8.9703 )
—8.08e7°s — 5.092¢~*
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where Pext is the transfer function for insertion reactivity due to control rod motion, Psis the transfer
function for feedback reactivity due to fuel and Pc is the transfer function for feedback reactivity due
to coolant.

For nominal core power due to neutron from neutronics model, the input-output were reactivity
value and nominal core power, respectively. Based on rods movement, the reactivity model
produced the reactivity value and was utilized in the neutronics model to form the nominal core
power before converted into actual core power. The model of nominal core power due to neutron
from SI technique is defined as

b () _ 1485452 4 64.667075s + 21.75
o(9) = 153752 + 15425 + 5

(6)
Po is the transfer function for nominal core power due to neutrons.

Design of Fractional Order Lead-Lag Compensator

The reactor system models alone could not generate power demand with high accuracy.
Therefore, adding a compensator was crucial to improve accuracy, increase stability, and enhance
the steady-state and transient response of the closed-loop control system. The feedback and cascade
configuration are used as compensators in the structure, as shown in Figure 2. Before applying the
compensator to control the reactor system, its parameters needed to be estimated. This process
began with the lowest-order FOLLC, with parameters estimated based on real input and output
data. The transfer function of the classical lead-lag compensator is defined as (Tavazoei & Tavakoli-
Kakhki, 2013)

/L<_:+1)j

xAs +1 @)

cs) =k (
where j € (0, ), K is a low-frequency gain of the compensator with A > 0 is the associated time-
constant and x > 0 is the scaling factor of the time constant and j is the order number. The pole and
zero are associated with A and are defined as p = 1/xA and z = 1/A (Memlikai ef al., 2021).
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According to Equation (7), the structure of the compensator in this study starts with the lowest
order which is j=1, therefore the equation for denominator and numerator is in the form of a
continuous s-domain as

s+z)

C(s) =K (s +p (8)

For cascade structure, the input is a set point in term of nominal neutron power which is fed into the
compensator and a summation function to yield an error. This error is the difference between the
actual/real data and the predicted output. The error in cascade compensator can be expressed as

ec = u(t)(1 - R(t)Cc(t)) ©)

where, R(t) is reactor system output and Cc(t) is cascade compensator output. Meanwhile in
feedback compensator, the difference is the reactor system output is being fed into the compensator
while the feedback error is the same as in cascade compensator i.e. the error is the difference
between the actual/real data and the predicted output. The error in feedback compensator can be
expressed as

er = u(t)(1—R(t)) + R(t)Cs(2) (10)

where, R(t) is reactor system output and Cft) is feedback compensator output.

f u(t)
Reactor Reactor
Compensator | —»| system model system model
/
7 ec P r
/
/ Optimization | ¢ Compensator

technique

u(t)

PSO technique

@) (b)

Figure 2. Block diagram for (a) cascade compensator and (b)feedback compensator

Parameter Estimation using Particle Swarm Optimization

Generally, after designing and structuring both compensators, the PSO take place to optimize the
poles and zeros. Followed by performances test of the pole and zero in the subsystem, the decision
of the optimum pole and zero for each model were determined. The determination is based on the
final output for each model which is nearer to the real plant. To begin with, the PSO was specified
with the setting of variables search space size within [0 200], dimension =2, swarm =10, and iteration
number = 5. Then PSO started to initialize the population randomly and generated the position and
velocity within the range.

In every iteration, each particle will be updated to get personal best value (pbest) and global best
value (gbest). While the particles were moving in search space, they remember the position and
memorize the location of their best result so far. At the same time, the velocity of the particle
movement was measured. The velocity is affected by weight value besides prior weight value as
well as cognitive and social components. Then, the fitness evaluation was done after the position of
the particle had been assigned into objective function. Then after both pbest and gbest values were
attained, the position and the velocity of particle were updated to a new position. The updated
position and velocity of the particle are expressed as Equation (11) and Equation (12)
correspondingly.
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péinew — plgi + 1/_}idm".rv (11)
vAEW — (W x vl + ¢ (?"1 (pld - pld)) + ¢ (?‘2 (p.g - pld)) (12)

d d
where Pi and Vi are position vector and velocity of the i-th particle in the dimensional search space

in previous step, respectively. The parameter “ and 2, are acceleration coefficient for cognitive and
both values are constant and equal to 2 as suggested by Kennedy & Eberhart (1997). The social

component, 't and 2 are two different random numbers between [0 1] and "o is inertia weight.

While pf and Py are personal best position and global best position in the D-dimensional search
space. The inertia weight (also called momentum) was integrated to influence the velocity at
previous step and to improve the performance of basic PSO subsequently. For standard PSO in this
study, the inertia weight was defined as (Latiff & Tokhi, 2009)

W0:1—0.9x(_i ) (13)

lmax
where 1 is iteration number and im the maximum number of iterations. The flow of the PSO was
carried on until the maximum number of iterations was met. Finally, the best result for pole and zero
with the lowest MSE together with best fitness and mean fitness was achieved.

Model Evaluation

The accuracy of the models was evaluated using three metrics: Mean Squared Error (MSE), Root
Mean Square Error (RMSE), and Residual Mean Percentage (RMP). MSE measures the average
squared difference between predicted and actual values, while RMSE, similar to MSE, provides the
error in the same units as the data by taking the square root of MSE. RMP evaluates the model's
accuracy in percentage terms, indicating how well the predictions align with actual values. These
metrics are defined as (Pan et al., 2021; Saini et al., 2021)

1% A
MSE = ;Z(}’i —9i)? (14)
i=1
1% .
RMSE = |~ (3~ 5:) (15)
i=1
RMP = (?) x 100% (16)
i

y is real plant data set or actual value and y is prediction data set and i is the numbers of data until
# the total number of samples.

RESULT AND DISCUSSION

The models were improved by adding the compensator method to achieve a better power level as
required up to. These two types of the compensator, i.e. cascade and feedback compensator, were
applied to the system depending on the formation of the compensator type. Then, optimization
techniques were applied to each compensator type to improve poles and zeros for each model as
shown in Table 1.

Table 1. Poles and Zeros for Compensator

Cascade compensator Feedback compensator
s +198.96 s 4+ 6.5202
s +197.87 s +128.9529
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Four performance indices were used to assess the values of poles and zeros for each compensator, as
shown in Table 2. The goal of this analysis is to create a reactor core system model that closely
resembles the real plant. To achieve this, it is crucial to minimize the error between the real plant
and the optimized reactor core system model. This involves optimizing the poles and zeros using
PSO to minimize the MSE and RMSE values. Consequently, the objective function aims to minimize
the MSE and RMSE to generate optimal pole and zero values. In PSO, fitness measures how closely
the obtained result aligns with the target or objective function. In this study, fitness is determined by
evaluating the error between the MSE and RMSE after applying them to the reactor core system
model. The best fitness represents the particle within the population that converges to the best
solution. A lower best fitness indicates lower MSE and RMSE values, suggesting a closer
resemblance between the reactor core system model and the real plant.

Table 2. Comparison between Cascade and Feedback Compensator

Performance Cascade compensator Feedback compensator
MSE 0.0873 0.0708
RMSE 4.179E-3 3.9268E-3
Best fitness 270.7149 190.0434
Mean fitness 772.4379 375.7147

From Table 2, it is observed that the feedback compensator achieved the smallest best fitness
value of 190.0434 and a lower mean fitness of 375.7147 compared to the cascade compensator. This
suggests that the feedback compensator enhances control performance by adapting the controller
output to minimize errors. Its adaptability allows the feedback compensator to effectively handle
and mitigate external disturbances, making it the most robust compensator among those evaluated.
The lower mean fitness value further indicates the feedback compensator's superior performance in
maintaining stability and reducing the impact of disturbances on the system. Therefore, the feedback
compensator proves to be an effective solution for improving control in the presence of external
disturbances. In contrast, the cascade compensator exhibited the highest best fithess and mean
fitness values, at 270.7149 and 772.4379, respectively.

Table 3 shows the mean power and RMP for data from the real plant, the SI model with a PI
controller, and the SI model with a PI controller optimized with feedback and cascade compensators.
Overall, both compensators demonstrate a trend of increasing mean power and decreasing RMP,
indicating that the models are becoming more refined and closely aligned with the real plant's core
reactor system. The RMP values for the SI model ranged from 3.45% to 27.48% for the PI controller,
1.70% to 2.35% for the PI with cascade compensator, and 0.75% to 1.43% for the PI with feedback
compensator. While the feedback compensator shows slightly better performance and lower error
compared to the cascade compensator, the difference is minimal. Therefore, both compensators
provide good performance, enhanced accuracy, and results that are closely aligned with the real
plant

Table 3. Comparison between Mean Power and RMP of Each Power Level for Compensators

Power level Mean Power(kW) RMP (%)
(kW) Real = PI+ PI+ - PI+ PI+
Plant Cascade Feedback Cascade Feedback
250 240.64 232.33 236.53 238.74 3.45 1.70 0.75
500 481.43 394.76 471.20 475.60 18.00 2.12 1.21
750 714.69 605.34 697.96 704.49 15.30 2.34 1.43
1000 942.05 683.21 919.88 928.87 27.48 2.35 1.40
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CONCLUSION

In conclusion, the modelling approach for all subsystems in the reactor core system focused on
developing thermal-hydraulics, reactivity, and neutronics models. These models were evaluated
based on the highest best fit and the lowest FPE and MSE values to ensure they closely resembled
the real plant. Most models achieved a best fit of over 95%, except for the thermal-hydraulics
model's coolant temperature, which had a 92.79% fit due to fluctuations in actual coolant
temperatures. Nevertheless, models with a best fit above 90% are considered nearly identical to the
real plant and acceptable for use. To further improve the models, compensators were introduced by
embedding poles and zeros, which were estimated using PSO in both cascade and feedback
compensator structures. With the same parameter settings in PSO, the accuracy of the poles and
zeros estimation, as well as all the subsystem models, was evaluated. Starting with the lowest order,
both compensators successfully improved the accuracy of the models. The evaluation of each model
through RMP demonstrated that the proposed compensators, using the PSO approach to estimate
poles and zeros, enhanced the accuracy of all models and improved the overall performance of the
RTP.
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