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ABSTRACT Controlling the power level in the TRIGA PUSPATI Reactor (RTP) is crucial for both producing accurate 
power output and managing reactor activity and power distribution. Currently, the RTP uses a Feedback Controller 
Algorithm (FCA) based on a Proportional-Integral (PI) controller to improve steady-state error during operation. However, 
this existing model faces issues such as delays in reaching a steady state and an inability to minimize errors due to 
insufficient power accuracy and an ineffective controller. To address these issues, a new structure called the Fractional 
Order Lead-Lag Compensator (FOLLC) has been introduced. Traditionally, the FOLLC structure is identified through loop 
shaping using Bode plots and root locus in the frequency response domain. In this study, however, the Particle Swarm 
Optimization (PSO) technique has been employed to estimate the values of the compensator’s poles and zeros. 
Integrating the compensator with the PSO approach improved the reactor core system's ability to reach and maintain the 
desired power output while minimizing deviations from the target power level, achieving Residual Mean Percentage (RMP) 
values between 0.75% and 2.35%. In comparison, the model without a compensator had much higher RMP values of 
3.45% to 27.48%, showing a less accurate match with the real plant. This integration enhanced the overall performance of 
the reactor core system. 
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Identification (SI) 
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INTRODUCTION 

This year in 2024, RTP has achieved 42 years old in operation using its original fuel since 

commissioning. The latest modernization was the Reactor Digital Instrumentation Control System 

(ReDICS) replacement into digital from analogue control conducted in 2014. The replacement had 

been done in controlling system part, however, the system such as the cooling system, reactor core 

system and certain auxiliary systems are not replaced or substituted even though these systems are 

old enough. Therefore, the parameters such as rod worth, delayed neutron, spent fuel, heat transfer 

and a few more parameters were not in the initial state and have become less significant compared 

to early installation. Few studies had been showed that the performance of the RTP had been 

degraded (Ghazali et al., 2016; Minhat et al., 2018; Minhat et al., 2020) from the real data of output 

power level and power demand.  

 

The accuracy of power control is crucial for optimizing fuel consumption, reducing heat and 

safety issues, especially when operating at a power demand of 1000 kW. When the goal is to 

produce a specific isotope or element, the operator of the RTP will adjust the power to a lower level 

for a longer period or vice versa. If a low power level is insufficient to produce the target element, 

the controller will extend the time and exposure accordingly. To ensure extended fuel consumption 

and minimize heat generation, the reactor system must precisely control the time, power demand 

level, and exposure. Currently, the existing model at RTP faces issues such as delays in achieving a 
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steady state and an inability to minimize errors due to inadequate power accuracy and an ineffective 

controller. Effective power control in RTP is essential not only for producing accurate power output 

but also for managing activity and power distribution. Despite addressing factors like aging, and 

implementing preventive and corrective maintenance, as well as any necessary amendments, the 

model's accuracy has not significantly improved, with steady-state errors ranging between 0.235 and 

0.7 (Ghazali et al., 2016; Minhat et al., 2018). Therefore, this study will introduce a new structure with 

an optimized compensator using PSO to estimate the poles and zeros, aiming to further enhance the 

reactor core system's performance. 
 
 

METHODOLOGY 

The project begins with data collection from the real plant at RTP. Using the collected input and 

output data, a model of the RTP plant is developed through a System Identification (SI) approach. 

Next, a compensator is designed and integrated into the RTP controller to enhance performance 

accuracy, with its parameters estimated using PSO to minimize error. Finally, the model is evaluated 

against performance metrics to ensure an accurate representation of the RTP. 

 

Datasets 

All parameters of the core reactor system were collected by the Wide Range Nuclear Monitoring 

System (WRNMS) and stored in a computer. According to the ReDICS in the RTP system, the data 

acquisition system encompasses a total of 342 parameters. However, for this study, the parameters 

considered are fuel temperature, coolant temperature, reactivity, and core power. Real input and 

output data were gathered at four different power levels 250 kW, 500 kW, 750 kW, and 1000 kW for 

each power level. The data collection was limited to 10,000 samples with a sampling time of 0.5 

seconds, which was considered sufficient to complete the RTP system within the required 

timeframe. 

 

System Identification (SI) Modelling 

Since the model is a black-box model structure, no previous knowledge is required. The approach 

of transfer function model had been employed in this research to represent all subsystem models by 

using SI approach technique. The output of the SI modelling is in the form of a transfer function or 

called model for each subsystem which represents the relationships between real input and output 

data which is unique for each model. The subsystem model of RTP reactor system is depicted in 

Figure 1. 

 

 
Figure 1. The block diagram of the subsystem model of the RTP reactor system 

      

All the models are above 95% best fit except for the thermal-hydraulics model's coolant 

temperature, 92.79%. It was hard for the coolant temperature to get the higher best fit since the 

actual coolant temperatures were fluctuating along the process. However, the models with above 

90% best fit show that the model can be accepted and considered as almost identical to the real plant. 

The transfer functions are presented as 
  



T
R

A
N

S
A

C
T

IO
N

S
 O

N
 S

C
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 
Abdullah et al., 2024. Transactions on Science and Technology. 10(4), 207 - 213                                                                 209 

E-ISSN 2289-8786. http://tost.unise.org/ 

 
(1) 

 
(2) 

  

where Tf is the transfer function for fuel temperature and Tc is the transfer function for coolant 

temperature. 

 

The reactivity model generates the total reactivity from insertion reactivity and feedback 

reactivity due to fuel and coolant temperatures. The transfer functions are presented as 
  

 
(3) 

  

 
(4) 

  

 
(5) 

  

where Pext is the transfer function for insertion reactivity due to control rod motion, Pf is the transfer 

function for feedback reactivity due to fuel and PC is the transfer function for feedback reactivity due 

to coolant. 

 

For nominal core power due to neutron from neutronics model, the input-output were reactivity 

value and nominal core power, respectively. Based on rods movement, the reactivity model 

produced the reactivity value and was utilized in the neutronics model to form the nominal core 

power before converted into actual core power. The model of nominal core power due to neutron 

from SI technique is defined as 
  

 
(6) 

  

P0 is the transfer function for nominal core power due to neutrons. 

 

Design of Fractional Order Lead-Lag Compensator 

The reactor system models alone could not generate power demand with high accuracy. 

Therefore, adding a compensator was crucial to improve accuracy, increase stability, and enhance 

the steady-state and transient response of the closed-loop control system. The feedback and cascade 

configuration are used as compensators in the structure, as shown in Figure 2. Before applying the 

compensator to control the reactor system, its parameters needed to be estimated. This process 

began with the lowest-order FOLLC, with parameters estimated based on real input and output 

data. The transfer function of the classical lead-lag compensator is defined as (Tavazoei & Tavakoli-

Kakhki, 2013) 
  

 
(7) 

  

where j ∊ (0, ∞), K  is a low-frequency gain of the compensator with λ > 0 is the associated time-

constant and x > 0 is the scaling factor of the time constant and j is the order number. The pole and 

zero are associated with λ  and are defined as p = 1/xλ and z = 1/λ (Memlikai et al., 2021).  
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According to Equation (7), the structure of the compensator in this study starts with the lowest 

order which is j=1, therefore the equation for denominator and numerator is in the form of a 

continuous s-domain as 

 
(8) 

  

For cascade structure, the input is a set point in term of nominal neutron power which is fed into the 

compensator and a summation function to yield an error. This error is the difference between the 

actual/real data and the predicted output. The error in cascade compensator can be expressed as 
 

 (9) 
  

where, R(t) is reactor system output and CC(t) is cascade compensator output. Meanwhile in 

feedback compensator, the difference is the reactor system output is being fed into the compensator 

while the feedback error is the same as in cascade compensator i.e. the error is the difference 

between the actual/real data and the predicted output. The error in feedback compensator can be 

expressed as 

 (10) 
 

where, R(t)  is reactor system output and Cf(t) is feedback compensator output.  

 

 
 

 

 

(a) (b) 
 

 

 

Figure 2. Block diagram for (a) cascade compensator and (b)feedback compensator  
 

Parameter Estimation using Particle Swarm Optimization  

Generally, after designing and structuring both compensators, the PSO take place to optimize the 

poles and zeros. Followed by performances test of the pole and zero in the subsystem, the decision 

of the optimum pole and zero for each model were determined. The determination is based on the 

final output for each model which is nearer to the real plant. To begin with, the PSO was specified 

with the setting of variables search space size within [0 200], dimension =2, swarm =10, and iteration 

number = 5. Then PSO started to initialize the population randomly and generated the position and 

velocity within the range.  
 

In every iteration, each particle will be updated to get personal best value (pbest) and global best 

value (gbest). While the particles were moving in search space, they remember the position and 

memorize the location of their best result so far. At the same time, the velocity of the particle 

movement was measured. The velocity is affected by weight value besides prior weight value as 

well as cognitive and social components. Then, the fitness evaluation was done after the position of 

the particle had been assigned into objective function. Then after both pbest and gbest values were 

attained, the position and the velocity of particle were updated to a new position. The updated 

position and velocity of the particle are expressed as Equation (11) and Equation (12) 

correspondingly. 
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 (11) 
  

 
(12) 

where  and  are position vector and velocity of the i-th particle in the dimensional search space 

in previous step, respectively. The parameter and , are acceleration coefficient for cognitive and 

both values are constant and equal to 2 as suggested by Kennedy & Eberhart (1997). The social 

component,  and  are two different random numbers between [0 1] and  is inertia weight. 

While  and  are personal best position and global best position in the D-dimensional search 

space. The inertia weight (also called momentum) was integrated to influence the velocity at 

previous step and to improve the performance of basic PSO subsequently. For standard PSO in this 

study, the inertia weight was defined as (Latiff & Tokhi, 2009) 

 
(13) 

where i is iteration number and imax the maximum number of iterations. The flow of the PSO was 

carried on until the maximum number of iterations was met. Finally, the best result for pole and zero 

with the lowest MSE together with best fitness and mean fitness was achieved. 
 

Model Evaluation  

The accuracy of the models was evaluated using three metrics: Mean Squared Error (MSE), Root 

Mean Square Error (RMSE), and Residual Mean Percentage (RMP). MSE measures the average 

squared difference between predicted and actual values, while RMSE, similar to MSE, provides the 

error in the same units as the data by taking the square root of MSE. RMP evaluates the model's 

accuracy in percentage terms, indicating how well the predictions align with actual values. These 

metrics are defined as (Pan et al., 2021; Saini et al., 2021) 
 

 

(14) 

  

 

(15) 

  

 
(16) 

 

 is real plant data set or actual value and  is prediction data set and  is the numbers of data until 

 the total number of samples. 
 

 

RESULT AND DISCUSSION 

     The models were improved by adding the compensator method to achieve a better power level as 

required up to. These two types of the compensator, i.e. cascade and feedback compensator, were 

applied to the system depending on the formation of the compensator type. Then, optimization 

techniques were applied to each compensator type to improve poles and zeros for each model as 

shown in Table 1.  
 

Table 1.  Poles and Zeros for Compensator 

Cascade compensator Feedback compensator 
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Four performance indices were used to assess the values of poles and zeros for each compensator, as 

shown in Table 2. The goal of this analysis is to create a reactor core system model that closely 

resembles the real plant. To achieve this, it is crucial to minimize the error between the real plant 

and the optimized reactor core system model. This involves optimizing the poles and zeros using 

PSO to minimize the MSE and RMSE values. Consequently, the objective function aims to minimize 

the MSE and RMSE to generate optimal pole and zero values. In PSO, fitness measures how closely 

the obtained result aligns with the target or objective function. In this study, fitness is determined by 

evaluating the error between the MSE and RMSE after applying them to the reactor core system 

model. The best fitness represents the particle within the population that converges to the best 

solution. A lower best fitness indicates lower MSE and RMSE values, suggesting a closer 

resemblance between the reactor core system model and the real plant. 

 

Table 2.  Comparison between Cascade and Feedback Compensator 

Performance Cascade compensator Feedback compensator 

MSE  0.0873 0.0708 

RMSE 4.179E-3 3.9268E-3 

Best fitness   270.7149 190.0434 

Mean fitness  772.4379 375.7147 

 

      From Table 2, it is observed that the feedback compensator achieved the smallest best fitness 

value of 190.0434 and a lower mean fitness of 375.7147 compared to the cascade compensator. This 

suggests that the feedback compensator enhances control performance by adapting the controller 

output to minimize errors. Its adaptability allows the feedback compensator to effectively handle 

and mitigate external disturbances, making it the most robust compensator among those evaluated. 

The lower mean fitness value further indicates the feedback compensator's superior performance in 

maintaining stability and reducing the impact of disturbances on the system. Therefore, the feedback 

compensator proves to be an effective solution for improving control in the presence of external 

disturbances. In contrast, the cascade compensator exhibited the highest best fitness and mean 

fitness values, at 270.7149 and 772.4379, respectively. 

 

     Table 3 shows the mean power and RMP for data from the real plant, the SI model with a PI 

controller, and the SI model with a PI controller optimized with feedback and cascade compensators. 

Overall, both compensators demonstrate a trend of increasing mean power and decreasing RMP, 

indicating that the models are becoming more refined and closely aligned with the real plant's core 

reactor system. The RMP values for the SI model ranged from 3.45% to 27.48% for the PI controller, 

1.70% to 2.35% for the PI with cascade compensator, and 0.75% to 1.43% for the PI with feedback 

compensator. While the feedback compensator shows slightly better performance and lower error 

compared to the cascade compensator, the difference is minimal. Therefore, both compensators 

provide good performance, enhanced accuracy, and results that are closely aligned with the real 

plant 
 

Table 3. Comparison between Mean Power and RMP of Each Power Level for Compensators 

Power level 

(kW) 

Mean Power(kW) RMP (%) 

Real 

Plant 
PI 

PI+ 

Cascade 

PI+ 

Feedback 
PI 

PI+ 

Cascade 

PI+ 

Feedback 

250 240.64 232.33 236.53 238.74 3.45 1.70 0.75 

500 481.43 394.76 471.20 475.60 18.00 2.12 1.21 

750 714.69 605.34 697.96 704.49 15.30 2.34 1.43 

1000 942.05 683.21 919.88 928.87 27.48 2.35 1.40 
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CONCLUSION 

     In conclusion, the modelling approach for all subsystems in the reactor core system focused on 

developing thermal-hydraulics, reactivity, and neutronics models. These models were evaluated 

based on the highest best fit and the lowest FPE and MSE values to ensure they closely resembled 

the real plant. Most models achieved a best fit of over 95%, except for the thermal-hydraulics 

model's coolant temperature, which had a 92.79% fit due to fluctuations in actual coolant 

temperatures. Nevertheless, models with a best fit above 90% are considered nearly identical to the 

real plant and acceptable for use. To further improve the models, compensators were introduced by 

embedding poles and zeros, which were estimated using PSO in both cascade and feedback 

compensator structures. With the same parameter settings in PSO, the accuracy of the poles and 

zeros estimation, as well as all the subsystem models, was evaluated. Starting with the lowest order, 

both compensators successfully improved the accuracy of the models. The evaluation of each model 

through RMP demonstrated that the proposed compensators, using the PSO approach to estimate 

poles and zeros, enhanced the accuracy of all models and improved the overall performance of the 

RTP. 
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