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ABSTRACT

This study explores applying various copula models to estimate the dependencies between streamflow
and stage data for the Kahang River in Kluang, Johor. Using daily streamflow and stage data, we
compared the performance of several copula parameter estimation methods: Maximum Pseudo-
Likelihood Estimator (MPLE), Inference Functions for Margins Estimator (IFME), Method-of-
Moments Estimator (MoM), Empirical Copula Estimation, and Robust Estimation by Maximum Mean
Discrepancy Minimization (MMD). Our findings indicate that different copula performed best for
different estimation methods. Specifically, the Student t-copula best fits IFME, the Frank copula for
Kendall’s tau, Spearman’s rho, and the most recent method, MMD. Also, the Joe copula is best for the
MPLE and the empirical copula estimation method. The Jackknife interval method produced narrower
and more precise confidence intervals across multiple methods, making it the best interval estimator.
This comprehensive analysis improves hydrological modelling, facilitating effective water resource
management and flood risk assessment.

Keywords: Bivariate Copula, Maximum Pseudo-Likelihood, Inference Functions for Margins,
Method-of-Moments, Empirical Copula, Robust Estimation by Maximum Mean Discrepancy
Minimization, Streamflow

INTRODUCTION

Hydrology 1is critical in managing water resources, forecasting floods, and protecting the
environment. Accurate streamflow modelling is essential for effective water management and risk
assessment in hydrological studies. Traditional statistical methods often fail to capture the
complexities and dependencies between hydrological variables, which are crucial for predicting
extreme events. These limitations necessitate adopting advanced statistical models that can better
describe and predict the behaviour of streamflow data. Shaw and Chithra (2023) implied that
multivariate analyses of drought characteristics are limited and that this analysis can provide
important information for water management and drought mitigation.

In hydrological modelling, capturing the dependencies between variables, such as streamflow
and stage, is crucial for predicting and managing water-related events. Traditional statistical
methods often fall short when modelling these dependencies due to their reliance on assumptions
of normality and linearity, which are not always valid for hydrological data. These data often
exhibit complex, non-linear, and asymmetric relationships, especially during extreme floods.
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Copulas provide a robust framework for modelling such dependencies by separating the
marginal distributions of each variable from their joint dependency structure. This flexibility
allows for a more accurate representation of the intricate interactions between streamflow and
stage, which is essential for predicting extreme hydrological events. Copula enables researchers to
capture the nuances of tail dependencies, where extreme values in one variable, such as
streamflow, may significantly influence the stage level of a river. This capability is particularly
important for assessing flood risks and developing effective flood management strategies.

Streamflow and stage data are fundamental to understanding the dynamics of water movement
in rivers and streams. These data are essential for flood forecasting, water resource management,
and environmental protection applications. However, streamflow and stage data are inherently
complex, characterised by non-linear relationships and variability influenced by precipitation, land
use, and climate change factors. Modelling extreme streamflow and stage events, such as floods,
presents significant challenges due to their impact on infrastructure, ecosystems, and human
communities. Accurate modelling of these events is vital for designing effective flood defences
and optimising water resource management. Traditional statistical models often struggle to capture
the variability and extremes observed in streamflow and stage data, potentially leading to
underestimating extreme event probabilities. By focusing on streamflow and stage data, this
research aims to develop models that can accurately capture the complexities and risks associated
with these hydrological phenomena.

The primary objective of this research is to enhance streamflow and stage data modelling
using various copula models and parameter estimation methods. The study aims to identify the
most suitable copula models by evaluating the performance of different copula families, including
Student t, Frank, Gumbel, Clayton, and Joe copula, in capturing the dependencies between
streamflow and stage data. It also seeks to assess the effectiveness of various copula parameter
estimation methods, such as Maximum Pseudo-Likelihood Estimator (MPLE), Inference
Functions for Margins Estimator (IFME), Method-of-Moments Estimator (MoM), Empirical
Copula Estimation, and Robust Estimation by Maximum Mean Discrepancy Minimization
(MMD). Additionally, the research aims to compare goodness-of-fit tests using metrics like Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) to
evaluate and select the best-fitting models. Finally, the study will determine the best confidence
interval method by analysing the accuracy and precision of different confidence intervals
construction methods, such as Wald, Bootstrap, and Jackknife, to ensure the reliability of the
copula parameter estimates. By achieving these objectives, the research seeks to provide a
comprehensive framework for accurately modelling the complex dependencies in streamflow data,
particularly for extreme events, ultimately contributing to more effective water resource
management, improved flood forecasting, and better-informed environmental protection
strategies.

The remainder of the article is organised as follows. In the next section, we briefly review the
relative literature. The data and methods are introduced in the third section, followed by the
research findings. Finally, we will present the conclusion of this research.

LITERATURE REVIEW

Copula, introduced by Sklar in 1959, has become a cornerstone in multivariate statistical analysis,
particularly useful for modelling the dependence structure between random variables. Copulas
allow the construction of multivariate distribution functions based on one-dimensional margins,
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providing a flexible approach to capturing complex dependencies in data (Nelsen, 2006). This
flexibility is especially advantageous in fields where relationships between variables are non-linear
and intricate, such as hydrology.

However, applying copula in practice comes with significant challenges despite their
potential. Tootoonchi et al. (2022) highlighted the lack of practical guidance on various critical
aspects, including exploring dependence at different scales, pre-treating data, selecting appropriate
copula models, and validating the model fit. These challenges underline the need for a more
structured approach in applying copula, particularly in hydrology, where the complexity of data
requires careful consideration of model selection and evaluation.

Copula in hydrology have gained traction due to their ability to model dependencies
independently of marginal distributions, allowing for more accurate joint distribution
constructions. For example, the Archimedean copulas have been effectively used to model the
dependence structure between flood characteristics like peak flow, volume, and duration, as
demonstrated by Karmakar and Simonovic (2009). Archimedean copula, characterised by their
simplicity and analytical tractability, have also been extensively studied. The Clayton, Gumbel,
and Frank copula are notable members of this family, each offering different dependency
structures that can be tailored to specific data characteristics (Joe, 1997).

Several methods have been explored in parameter estimation, each with advantages and
limitations. The Maximum Pseudo-Likelihood Estimator (MPLE) is favoured for its efficiency
and simplicity, operating by maximising a pseudo-likelihood function as an approximation of the
true likelihood function (Genest et al., 1995). The Inference Functions for Margins Estimator
(IFME), a two-step procedure, estimates marginal parameters before copula parameters,
simplifying the estimation process for large datasets (Joe & Xu, 1996). Other methods include the
Method-of-Moments (MoM), which matches sample moments with theoretical moments. The
MOM estimator is consistent and asymptotically normal (Oh and Patton, 2013). Empirical copula
estimation is a non-parametric approach useful when the underlying copula form is unknown
(Deheuvels, 1979). The Robust Estimation by Maximum Mean Discrepancy Minimization
(MMD) stands out for its robustness against outliers, minimising the difference between empirical
and theoretical copula distributions in a reproducing kernel Hilbert space (Gretton et al., 2005).

Recent research has delved into the effectiveness of different estimation methods under
various conditions. Lokoman and Yusof (2019) found that the IFME method excels for small
sample sizes and lower correlation levels, as demonstrated in a rainfall study from Kuala Krai and
Ulu Sekor station in Malaysia. For datasets with very strong dependence, the original MPLE is
preferred, particularly for larger samples (Joo et al., 2020). Buliah and Yie (2020) applied
Archimedean Copula with Maximum Likelihood Estimation (MLE) to model extreme rainfall in
Malaysian hydrological stations. Ko and Hjort (2019) introduced a model-robust inference
framework for the IFME of copula parameters, while Idiou and Benatia (2021) presented MLE,
IFME, and MoM for estimating the Archimedean class. Alquier et al. (2023) proposed an MMD-
based method for copula models, highlighting its robustness and consistency even in the presence
of outliers or model misspecification.

In terms of constructing confidence intervals, methods such as Wald, Bootstrap, and Jackknife
are explored for their comparative performance with hydrological data. The Wald interval is based
on the asymptotic normality of parameter estimates, requiring large sample sizes for accuracy
(Agresti, 2018). Kummaraka and Srisuradetchai (2023) provided an explicit formula for
constructing Wald Confidence intervals for the dependence parameter in a bivariate Clayton
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copula. The Percentile Bootstrap, a non-parametric alternative, resamples data to recalibrate
estimates, making it particularly useful for smaller samples (Efron & Tibshirani, 1993). The
Jackknife method, which iteratively leaves out one observation, offers robustness in the presence
of outliers (Tukey, 1958).

The growing use of copula in hydrology, especially for modelling streamflow data,
demonstrates their potential to provide a comprehensive understanding of hydrological
phenomena. Worland et al. (2019) highlighted the superior performance of copula methods in
streamflow estimation, while Sahoo et al. (2020) identified the Clayton and Frank Copula as
optimal for the Mahanadi River basin in India. In Malaysia, Latif and Mustafa (2021) utilised a
semiparametric copula-based approach to model flood characteristics, and Shiau and Lien (2021)
showed that copula-based methods effectively infill missing data in streamflow datasets from
eastern Taiwan.

Through advanced parameter estimation methods and robust goodness-of-fit evaluations,
copula-based models can significantly enhance the reliability and accuracy of hydrological
modelling, ultimately contributing to better water resource management and environmental
protection.

METHODOLOGY
Data Used

The data used in this study is the real data of the daily flow and stage of Kahang River in Kluang,
Johor, from the Department of Irrigation and Drainage Malaysia. The daily data used are in the
form of cubic meter per second (m3/s) for flow and meter (m) for stage from April 1978 to July
2009.

Copula

A copula is a multivariate probability distribution for which the marginal probability distribution
of each variable is uniform on the interval [0, 1]. Sklar’s Theorem is the cornerstone of copula
theory. It states that for any multivariate distribution function F with marginals F; ,F,, ..., F;,
there exists a copula C such that for all x € R%:

H(xy, %z, ., xq) = C(Fy(x1), Fy (%), e, F(x2)). (1)

If the marginals F; are continuous, then the copula C is unique. Conversely, given a copula C and
univariate marginal distribution functions F;, F,, ..., F;, the function H defined above is a valid
joint distribution function with the specified marginals.

Parametric Copula

Student-t Copula

The Student t-copula is derived from the multivariate Student t-distribution. It is particularly useful
for modelling dependencies with heavy tails, where extreme events in one variable are likely to be
associated with extreme events in another. The t-copula with v degrees of freedom and correlation
matrix R is defined by:
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C(uy, ., ug; V, R) = tg (b5 (), sty 1 (Ug)) (2)

where tg,, 1s the joint CDF of the multivariate Student t-distribution with v degrees of freedom
and correlation matrix R, and t; ! is the inverse CDF of the univariate Student t-distribution.

Clayton Copula
The Clayton copula is an Archimedean copula known for capturing lower tail dependence,
meaning it models scenarios where extremely low values in one variable are associated with
extremely low values in another. The Clayton copula with parameter 8 > 0 is defined by:
1 3
C(uy, uy; 0) = (max|(ur® +uz% —1),0]) @ ©)
Gumbel Copula
The Gumbel copula is another Archimedean copula that captures upper tail dependence, which is
useful for modelling situations where extremely high values in one variable are likely to be

associated with extremely high values in another. The Gumbel copula with parameter 8 > 1 is
defined by:

€ty u5;0) = exp (~[(~Togu, ) + (~ logu; )*] ) *)

Frank Copula

The Frank copula is also an Archimedean copula but is unique in that it can model both positive
and negative dependencies. It does not exhibit tail dependence. The Frank copula with parameter
0 # 0 is defined by:

C(uq,uy;0) =—=log

1 (1+e % —1)(e %2 -1) )
()

Joe Copula

The Joe copula, another Archimedean copula, captures upper tail dependence like the Gumbel
copula but has different dependency structures. The Joe copula with parameter 8 > 1 is defined
by:

Clupuz 0) =1 —[(1—up)? + (1 —up)® — (1 — )1 - uz)g]% (6)

Semi-Parametric Approach

Maximum Pseudo-Likelihood Estimator (MPLE)
The sample of pseudo-observations is defined via

Uin = (Fas(Xi), o, Faa(Xia)), £ € {1, ...},
Forany j € {1, ...d}, let R;; denotes the rank of X;; among X, ..., Xy,

Foj(Xij) = Ryj/(n+1), fori€{l,..,n}k
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Leading to the MPLE

argsup

0 g 21108 Co(Un). @

0, =
Parametric Approach
The Inference Functions for Margins Estimator (IFME)
IFME is a two-stage estimation procedure designed to reduce the computational burden of MLE

in copula models. Estimate the unknown marginal parameter vectors yq 1, ..., Yo ¢ for each margin
j by maximising the log-likelihood function:

n
arg sup

Ynj =y €T, Zlogfj,yj (Xij)
i=1

Here, fj,yj is the density function of the j-th margin with parameters y;. With the estimated
marginal parameters yy, 1, ..., ¥n g, transform the original data X;; to pseudo-observations:

Lyn (Fl ynl(Xll) Fd,yn,d(Xid)) > i € {1; ,Tl}

Estimate the copula parameter vector 8, by maximising the log-likelihood of the copula density
function:
arg sup
n_ 0eE@ ZIOgCG(Ul]/) (8)

Non-Parametric Approach

Method-of-Moments Estimator (MoM)

Method-of-moments estimators in the context of copula are extensions of traditional method-of-
moments estimators used in various statistical areas. In the copula setting, moments of random
variables are replaced by moments of the copula, such as Kendall’s tau or Spearman’s rho.

Given a copula family C = {Cy: 6 € 0}, let g, and g,,_be functions defined by:

g.(0) =1(Cy) and gps(e) = ps(Cp), B €EOCR,
where 7(Cy) and ps(Cy) are the Kendall’s tau and Spearman’s rho of Cy, respectively. Method-
of-moments estimators based on Kendall’s tau (respectively, Spearman’s rho) can be used for the

family C if the function g, (respectively, g, ) is one-to-one. In that case, the estimator 0 of 6, is
given by:

971 = g‘r_l(fn) (respectively, é\n = g;sl (ps,n))a 9

where 7, (respectively, ps ,,) is the sample version of Kendall’s tau (respectively, Spearman’s rho).
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Empirical Copula Estimation

The empirical copula method provides a non-parametric estimate of the copula function. This
method is particularly useful when estimating the copula without making strong parametric
assumptions about the underlying joint distribution. The empirical copula C,, is defined as follows:

1 1
Cnw) = =3 1(Uin < u) = =30 111 1Uijm < wp),  uw € [0,1]%, (10)

where U;;, = (Ui1n, -, Uign) are the pseudo-observations and the inequalities U; ,, < u are to be
understood component-wise.

The empirical copula is essentially the empirical distribution function of pseudo-observations. It
1s a consistent estimator of the true copula C, and its asymptotic follows from those of the so-called
empirical copula process.

Robust Estimation by Maximum Mean Discrepancy Minimization (MMD)

The MMD is a method proposed to address robustness issues in the presence of outliers and model
misspecifications. This method utilises the concept of MMD, which measures the distance between
two probability distributions using their embeddings in a reproducing kernel Hilbert space
(RKHS). The MMD between two probability distributions, P and Q, is defined as:

D(P,Q) = f}e‘;’deP —J fdq|,

where F is the unit ball in an RKHS with a kernel K. K is the popular Gaussian kernel K;(u, v) =
exp(llu — v|[*/y?). This can be rewritten using the kernel mean embeddings pp and :

D(P,Q) =l up — g Iz,
where pp = Ep[K(-,X)] and g = Eo[K(-,Y)] for X ~ P and Y ~ Q. When estimating copula

parameters using MMD, find the parameter 8 that minimises the distance between the empirical
mean embedding and the model mean embedding:

6 = argming Il pc, — pe, llsc » (11)
where C,, is the empirical copula, and Cy is the parametric copula with parameter 6.
Goodness-of-Fit Tests
Root Mean Squared Error (RMSE)
RMSE is the square root of the MSE. It provides a measure of the average magnitude of the error

in the same units as the observed copula values, C. RMSE is particularly useful for understanding
the scale of the errors.

n

1 2
RMSE = EZ(C(ui, v;) = Co(uy, vy))

i=1
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Mean Absolute Error (MAE)

MAE measures the average absolute difference between the observed copula values, C, and the
values predicted by the copula model, Cy. MAE is a robust metric that is less sensitive to outliers
than MSE and RMSE.

n
1
MAE = ZZ:|C(ul-, v;) — Co(uy, vy)|
i=1

Mean Relative Error (MRE)
MRE measures the average relative difference between the observed copula values, C, and the
values predicted by the copula model, Cy. MRE compares errors across scales and explains the
model’s relative performance.

n
1 z C(u;, v;) — Co(uy, v;)

MRE = —
n C(ui' vi)

i=1
Confidence Intervals
Wald Interval
The Wald interval is a common method for constructing confidence intervals based on the

asymptotic normality of estimators. Assuming @ is approximately normally distributed, the (1 —
a)% confidence interval for 6 is given by:

6 + 24/, SE(D)

where z,/, is the critical value from the standard normal distribution corresponding to the desired
confidence level.

Percentile Bootstrap Interval

The percentile bootstrap method involves resampling the data to estimate the distribution of the
estimator directly. Determine the a/2 and 1 — a/2 percentiles of the empirical distribution. The
(1 — a)% confidence interval is given by:

(9;:/2' Qf—a/z)
where 8, /2 and 0;_, /2 are the % and 1 — % percentiles of the bootstrap distribution, respectively.

Jackknife Interval

The jackknife method is a resampling technique that systematically leaves out one observation at
a time from the sample set to estimate the bias and variance of an estimator. Assuming the
jackknife estimator follows a normal distribution, the (1 — a)% confidence interval is:

0+ Zg/2" ’Var(é)},ack

where z,/, is the critical value from the standard normal distribution corresponding to the desired
confidence level.
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Simulation Studies

Simulation studies are conducted in this section to investigate the performance of estimation of
copula parameter (f) using MPLE. The simulations are conducted as follows:
1. Generate random samples for each combination of three different sample sizes (n = 100,
500, 1000) and levels of dependence parameter (t = 0.2, 0.5, 0.8).
2. Estimate the Clayton copula parameter using MPLE, IFME, Kendall’s Tau, Spearman’s
Rho, and MMD parameter estimation methods.
3. Repeat the steps above 100 times.
4. Calculate RMSE, MAE, and MRE to evaluate and compare the performance of the
methods.

RESULTS AND DISCUSSION

The study compared and evaluated the estimation performance of semi-parametric, parametric,
and non-parametric approaches based on the goodness-of-fit statistics. A simulation study using
MPLE was conducted to compare the parametric copulas’ performance before the real streamflow
data was fitted.

Data Simulation

Data simulation is a critical process in evaluating and understanding the behaviour of statistical
models under controlled conditions. This study simulated data using the Clayton copula function,
which models the dependency structure between two random variables. This approach is
particularly relevant in hydrological studies where understanding the joint behaviour of related
variables is essential. The simulation involved various methods of copula parameter estimation,
including MPLE, IFME, Kendall’s tau, Spearman’s Rho, and MMD. The simulation was
conducted across different sample sizes (n = 100, 500, 1000) and correlation values (t = 0.2, 0.5,
0.8), comprehensively evaluating each estimation method’s performance.

The performance of each estimation method was evaluated using three key metrics: RMSE,
MAE, and MRE, as shown in Table 1. These metrics assess the accuracy and reliability of the
copula parameter estimates under varying conditions. For small sample sizes (n = 100), the RMSE
and MAE values were relatively close across all correlation levels (t = 0.2, 0.5, 0.8), indicating
that the methods performed similarly regarding absolute error. However, the MMD method
consistently exhibited slightly lower RMSE and MAE values, particularly in scenarios with low
and high correlations, suggesting better performance in small samples. The IFME method
demonstrated better performance with medium correlations. The MRE values revealed greater
variability among the methods, with Kendall’s tau showing notably higher MRE, particularly at t
= 0.2 and t = 0.8, making it less reliable for parameter estimation under these conditions. In
contrast, MMD and IFME maintained relatively stable and lower MRE values, indicating better
robustness for small sample sizes.

As the sample size increased to n = 500, the MMD method showed competitive performance,
with the lowest RMSE and slightly lower MAE at © = 0.2, while MPLE exhibited better
performance with low to medium correlations. Kendall’s tau showed better performance with
medium to high correlations, while IFME demonstrated superior performance with high
correlations. However, Kendall’s tau and Spearman’s Rho exhibited increased MRE at t = 0.5,
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suggesting that these rank-based methods may introduce bias or variability in moderate sample
sizes.

For large sample sizes (n = 1000), Kendall’s tau exhibited the lowest RMSE and MAE values,
suggesting better performance with low correlations. Spearman’s Rho and MMD demonstrated
better performance with medium correlations, while IFME performed well in large samples with
high correlations. The MRE values stabilized across all methods, although IFME showed some
variability at lower correlation levels (t = 0.2). The consistent performance of all methods across
all sample sizes suggests that they offer a balanced trade-off between bias and variance, making
them reliable choices for large datasets.

Table 1: RMSE, MAE, and MRE of Clayton Copula Parameter Estimation

Sample

size Method =02 =05 7=0.8
n RMSE MAE MRE RMSE MAE MRE RMSE MAE MRE
MPLE 0.4059 03321 6.3066 0.4084 0.3342 42488 0.4053 0.3320 4.7344
IFME 0.4086 03336 4.0332 0.4040 0.3299 43302 0.4077 0.3344 44162
100 Kendall’s Tau 0.4073 03327 16.196 0.4108 0.3357 49864 0.4091 0.3348 96.518
Spearman’s Rho  0.4082  0.3342  6.1060 0.4088 0.3348 4.5137 0.4084 0.3347 5.6167
MMD 0.4038 03305 4.6484 0.4091 0.3350 53321 0.4033 0.3296 6.0673
MPLE 0.4073 03323 5.6694 0.4084 0.3338 53980 0.4102 0.3355 6.6567
IFME 0.4079 03329 49585 0.4085 0.3339 6.5974 0.4066 0.3323  4.9293
500 Kendall’s Tau 0.4082 03333 5.1594 0.4084 0.3333 7.5461 0.4071 0.3318 4.9466
Spearman’s Rho  0.4082  0.3333  5.4183 0.4094 0.3345 7.9069 0.4085 0.3339 5.2393
MMD 0.4072 03324 59619 0.4091 0.3345 52426 0.4072 0.3326 5.3119
MPLE 0.4088 03337 4.5178 0.4083 0.3336 4.5274 0.4083 0.3334 5.5505
IFME 0.4080 0.3334 43466 0.4088 0.3336 6.3033 0.4069 0.3323  6.3528
1000  Kendall’s Tau 0.4079 03330 7.1222 0.4085 0.3337 57323 0.4074 0.3326 6.0825
Spearman’s Rho  0.4090 0.3341 6.9499 0.4080 0.3331 5.2929 0.4077 0.3325 7.6419
MMD 0.4094 03342 57488 0.4080 0.3331 5.1138 0.4085 0.3337 4.8699

The data simulation analysis shows that the performance of copula parameter estimation
methods varies depending on sample size and correlation levels. The MMD method consistently
provides the most accurate estimates for small sample sizes, particularly in low and high-
correlation scenarios, while IFME performs well with medium-correlation data. As sample sizes
increase to a medium range, MPLE is the most reliable method for low to medium correlations.
Kendall’s tau performs well for medium to high correlations, while MMD is also effective for low
correlations. Additionally, IFME shows strong performance in high-correlation data within
medium-sized samples. For large sample sizes, the accuracy of all methods becomes more
comparable, with Kendall’s tau slightly better for low correlations and Spearman’s Rho and MMD
preferred for medium correlations. IFME remains a robust choice for high-correlation data in large
samples. Overall, IFME and MMD are recommended for small datasets, MPLE, IFME, Kendall’s
tau, and MMD for medium datasets, and IFME, Kendall’s tau, Spearman’s Rho or MMD for large
datasets, depending on the correlation level.

Modelling of Streamflow using Copula
The application of copula modelling on the streamflow data of Kahang River (flow and stage)
involves different estimation methods: semi-parametric, parametric, and non-parametric. This

section evaluates the performance of these methods using various statistical metrics and
confidence intervals.
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Data and Descriptive Analysis

This research uses the daily flow and stage of the Kahang River. The data is sourced from the
Department of Irrigation and Drainage Malaysia. The 95 percentile method is used to extract
heavy or extreme streamflow, which results in 571 observations. Descriptive statistics provide the
measures and the summaries of streamflow data; hence, they play an important role in describing
the fundamental features of the data used in research. The descriptive statistics of the daily flow
and stage of Kahang River are shown in Table 2.

Table 2: Descriptive Statistics of Daily Flow and Stage for Kahang River
Streamflow Mean  Median Standard Skewness Kurtosis Minimum Maximum

Variable Deviation
Flow (m3/s) 193.699 145.690 138.422 3.171 15.362 97.860 1,152.430
Stage (m) 6.408 6.320 1.153 0.409 2.982 3.700 10.610

From Table 2, the minimum daily flow and stage during heavy streamflow recorded for Kahang
River is 97.860 m3/s and 3.700 m respectively. The maximum daily flow and stage recorded is
1,152.430 m3/s and 10.610 m respectively. This flow level is quite high, typically seen in large
rivers or during extreme weather events like heavy rainfall. The flow data is averaged at
193.699 m3 /s with a standard deviation of 138.422 m?3/s. Meanwhile, the stage data is averaged
at 6.408 m with a standard deviation of 1.153 m.

The Dependence Level Between the Streamflow Data

The dependence between the streamflow data was measured first using Kendall’s tau and
Spearman’s rho method. The dependence of flow and stage is shown in Table 3.

Table 3: The Dependence Level between Flow and Stage

Correlation p-value
Kendall’s tau 0.4624 0.0000
Spearman’s rho 0.6129 0.0000

From Table 3, the flow is positively associated with the stage. The dependence level of the
streamflow data using Kendall’s tau and Spearman’s rho is 0.4624 and 0.6129, respectively, which
is moderate in the association. The p-values for both methods are 0.0000 at the significance level
of a = 0.05. Since the p-value is less than 0.05, the correlation for the streamflow data is
significant.

Semi-Parametric Approach

The semi-parametric approach presents and discusses the results of applying the MPLE method to
estimate the copula parameters.

Maximum Pseudo-Likelihood Estimator (MPLE)
MPLE method was employed to estimate the parameters of various copula families (9) These
estimates, their corresponding standard errors (SE), and GOF statistics are presented in Table 4.

The performance of these copulas was further evaluated using error metrics such as RMSE,
MAE, and MRE for the copula, as shown in Table 4. The Clayton copula exhibited the lowest
RMSE at 0.4033, suggesting it provides the best fit by minimising the overall prediction error.
Regarding MAE and MRE, the Joe copula outperformed the others with a value of 0.3288 and -
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2.0411, indicating that it offers the most accurate predictions on average and effectively minimises
relative errors, although it may not be the best performer in RMSE.

Table 4: Copula Parameter Estimation using MPLE and GOF statistics

Copula 6 SE MLE RMSE MAE MRE
Student t (’li)f 108.61309700 0'0_230 146.8000 0.4081 0.3345 -2.1805
Clayton 1.7210  0.0910  98.4800 0.4033 0.3293 -2.3128
Gumbel 1.6660  0.0710 135.1000 0.4147 0.3384 -2.4140
Frank 4.4460 0.4260 129.3000 0.4142 0.3396 -2.6825
Joe 1.8920  0.1010 114.1000 0.4052 0.3288 -2.0411
Table 5: MPLE Interval
Copula Wald Bootstrap Jackknife
Studentt P (0.5939,0.6841)  (0.5964, 0.6839) (0.6220, 0.6560)
df - (12.7903, 23.3023) (15.5677,20.6464)

Clayton (1.5415, 1.8996)  (1.4818,2.0441) (1.7087, 1.7333)

Gumbel (1.5278, 1.8046)  (1.5615, 1.8041) (1.6628, 1.6692)

Frank (3.6114,5.2798)  (3.8761, 5.1787) (4.4280, 4.4640)

Joe (1.6929,2.0904) (1.6897,2.0850) (1.8876, 1.8964)

Confidence intervals for the copula parameter estimates were calculated using Wald,
Bootstrap, and Jackknife methods, as presented in Table 5. These intervals are consistent across
the different methods, reinforcing the reliability of the estimates. Notably, the Student t-copula
showed wider intervals for the degrees of freedom, indicating greater variability and uncertainty
in this parameter. The Clayton copula’s intervals were narrow and consistent, emphasizing the
stability of its parameter estimates. The Gumbel, Frank, and Joe copula also demonstrated
consistent intervals, supporting the robustness of their estimates.

In conclusion, the Joe copula is the best-fitting model under the MPLE method because of its
lowest MAE and MRE values. While the Clayton copula has the lowest RMSE, the Joe copula
offers the most balanced and accurate fit across the key error metrics. Therefore, the Joe copula is
recommended as the optimal model for the dataset when using the MPLE method.

Parametric Approach

The parametric approach presents and discusses the results of applying the IFME method to
estimate the copula parameters.

The Inference Functions for Margins Estimator (IFME)

Fitting Data to Marginal Distributions

The parametric approach in the analysis utilizes the IFME method to estimate the copula
parameters, requiring the determination of the marginal distributions first. The goodness-of-fit
(GOF) statistics for different distributions—Lognormal, Gamma, and Weibull—fitted to the flow
and stage data of the Kahang River are presented in Table 6.

Table 6: Fitting Flow and Stage to Marginal Distributions
Flow Stage
Distribution ~ y? AD R? X’ AD R?
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Lognormal  0.0000 21.2966 0.8663 0.0408 1.1952 0.9926
Gamma 0.0000 33.2456 0.8383 0.0149 1.2489 0.9909
Weibull 0.0000 43.3446 0.6790 0.0000 5.0552 0.9391

Based on the analysis of the GOF statistics, the Lognormal distribution is identified as the
best-fitting model for both the flow and stage data of the Kahang River. The Lognormal
distribution consistently shows superior performance across the Chi-square, Anderson-Darling,
and R-squared tests, particularly excelling in the AD and R? metrics, which are crucial for
assessing the distribution’s fit to the data. Therefore, the lognormal distribution is recommended
as the optimal choice for modelling flow and stage variables using the IFME method.
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Figure 1: Comparison Between the Distributions Fitted to the Flow of the Kahang River
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Figure 2: Comparison Between the Distributions Fitted to the Stage of the Kahang River

Figures 1 and 2 support the statistical findings, with the lognormal distribution closely matching
the empirical data for both flow and stage. The Weibull distribution shows the least fit, particularly

for the stage data.
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Copula Parameter Estimation using IFME

The IFME method was employed to estimate the parameters of various copula families. These
copula parameter estimates (@), their corresponding standard errors (SE), and GOF statistics are
presented in Table 7.

Table 7: Copula Parameter Estimation using IFME and GOF statistics

Copula 0 SE MLE RMSE MAE MRE
p 05878 0.0260

Student t If 125961 24780 119.8000 0.4000 0.3280 -2.5402

Clayton 1.7210  0.0970 75.1200 0.4076 0.3340 -2.2449

Gumbel 1.4260 0.0440 80.7600 0.4105 0.3394 -2.1041

Frank 4.3030 0.4310 121.3000 0.4120 0.3397 -2.3587

Joe 1.4620 0.0560 58.8000 0.4072 0.3367 -2.5541

Table 8: IFME Interval
Copula Wald Bootstrap Jackknife
p (0.5376,0.6379) (0.5438, 0.6466)  (0.5859, 0.5897)

Studentt 4e 77301, 17.4532) (8.9444, 17.7623) (11.4717, 13.7205)
Clayton (1.5309,1.9103)  (1.4396, 1.9541)  (1.7087, 1.7333)
Gumbel (1.3384,1.5126)  (1.3235,1.5381)  (1.4228, 1.4292)
Frank (3.4587,5.1466)  (3.8500, 4.8894)  (4.2850, 4.3210)
Joe (1.3526,1.5724)  (1.3203, 1.6081)  (1.4576, 1.4664)

Confidence intervals for the copula parameter estimates were calculated using Wald,
Bootstrap, and Jackknife methods, as presented in Table 8. These intervals are consistent across
the different methods, reinforcing the reliability of the estimates.

The Student t-copula emerges as the best-fitting model under the IFME method. Its lowest
RMSE value indicates that it effectively minimizes squared prediction errors, making it a reliable
choice for data modelling. The Student t-copula minimises absolute errors, and the Gumbel copula
in relative errors. The Student t-copula offers the most balanced and accurate fit across the key
error metrics. Therefore, the Student t-copula is recommended as the optimal model for the dataset
when using the IFME method, particularly when overall prediction accuracy is a priority.

Non-Parametric Approach

The non-parametric approach presents and discusses the results obtained from applying the MoM,
empirical copula estimation, and MMD method to estimate the copula parameters.

Method-of-Moments Estimator (MoM)
Kendall’s Tau Estimation

The copula parameter estimation using Kendall’s Tau is provided in Table 9. The estimated copula
parameters (@), their standard errors (SE) and GOF statistics for different copula families are:
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Table 9: Copula Parameter Estimation using Kendall’s Tau

~

Copula 0 SE RMSE MAE MRE

Student t (l],)f 28833 0'0_250 0.4096 0.3323 -2.0538
Clayton 1.7210 0.1490 0.4117 0.3367 -2.2175
Gumbel 1.8600 0.0750 0.4102 0.3357 -2.9027
Frank 5.0920 0.1440 0.3972 0.3203 -2.6896
Joe 2.5880 - 0.3971 0.3245 -2.2507

Table 10: Kendall’s Tau Interval

Copula Wald Bootstrap Jackknife

Studentt p (0.6145,0.7139) (0.6177,0.7209) (0.6621, 0.6663)
Clayton (1.4278,2.0133) (1.4717,2.0792) (1.7087,1.7333)
Gumbel (1.7139,2.0067) (1.7275,2.0121) (1.8538, 1.8662)
Frank (4.8095, 5.3752) (4.5612,5.5983) (5.0631,5.1209)
Joe - (2.3213,2.8919) (2.5762,2.5998)

The intervals from the Wald and bootstrap method shown in Table 10 are generally wider,
suggesting more variability in the estimates compared to the jackknife methods. While the Joe
copula has the lowest RMSE, indicating a better fit in terms of prediction error, the Frank copula
has the lowest MAE, and the Student t-copula has the lowest MRE. Considering all metrics, the
Frank copula appears to be the best copula estimated for Kendall’s Tau Estimation method due to
its lowest MAE, and the Frank copula offers the most balanced and accurate fit across the key
error metrics.

Spearman’s Rho Estimation
The copula parameter estimation using Spearman’s Rho is provided in Table 11. The estimated

copula parameters (@), their standard errors (SE), and GOF statistics for different copula families
are:

Table 11: Copula Parameter Estimation using Spearman’s Rho
Copula 0 SE RMSE MAE MRE
Clayton 1.5740 0.1490 0.4147 0.3362 -2.3417
Gumbel 1.7900 0.0730 0.4160 0.3374 -2.6109
Frank 4.6170 0.3370 0.4117 0.3364 -2.2312

Table 12: Spearman’s Rho Interval
Copula Wald Bootstrap Jackknife
Clayton (1.2816, 1.8655) (1.3271, 1.9446) (1.5616, 1.5864)
Gumbel (1.6461, 1.9342) (1.6736, 1.9368) (1.7839, 1.7961)
Frank (3.9572,5.2767) (4.0629, 5.2941) (4.5891, 4.6449)

The intervals from the Wald and bootstrap method presented in Table 12 are generally wider,
suggesting more variability in the estimates compared to the jackknife methods. While the Frank
copula has the lowest RMSE and MRE, indicating a better fit for prediction error and relative error,
the Clayton copula has the lowest MAE.
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Considering all metrics, the Frank copula appears to be the best copula estimated for
Spearman’s Rho Estimation method due to its lowest RMSE and MRE. The Frank copula offers
the most balanced and accurate fit across the key error metrics.

Empirical Copula Estimation
The GOF statistics for empirical copula estimation are provided in Table 13. The GOF statistics
for different copula families are:

Table 13: GOF statistics for Empirical copula Estimation
Copula RMSE MAE MRE
Clayton 0.0069 0.0054 0.0812
Gumbel 0.0058 0.0043 0.0484
Frank  0.0065 0.0054 0.0670
Joe 0.0047 0.0039 0.0954

While the Joe copula has the lowest RMSE and MAE, indicating it best fits the copula, the
Gumbel copula has the lowest MRE. The MRE for the Joe copula is the highest among the copula,
suggesting it might have more relative error than others.

Considering all metrics, the Joe copula appears to be the best copula estimated for the
empirical copula estimation due to its lowest RMSE and MAE despite having a higher MRE. The
fit for prediction and absolute errors are more favourable with the Joe copula.

Robust Estimation by Maximum Mean Discrepancy Minimization (MMD)
The copula parameter estimation using the MMD method is provided in Table 14. The estimated

copula parameters (9) and GOF statistics for different copula families are:

Table 14: Copula Parameter Estimation using MMD

Copula 0 RMSE MAE MRE
Studentt P 0.6100 0.4138 0.3402 -2.5992
df 15.8300
Clayton 1.0500 0.4163 0.3408 -2.8218
Gumbel 1.5600 0.4381 0.3623 -2.8294
Frank 3.6400 0.4047 0.3299 -1.9657
Joe 1.8200 0.4049 0.3271 -2.9226
Table 15: MMD Interval
Copula Bootstrap Jackknife
p (0.5319,0.6606) (0.6084,0.6116)
Studentt ; (15.7937, 15.8664)
Clayton (0.7536, 1.1850)  (0.7457, 1.3543)
Gumbel (1.4423,1.6785) (1.4851, 1.6349)
Frank (3.0681, 4.1531)  (2.9693, 4.3107)
Joe (1.6607,1.9166)  (1.8188, 1.8212)

The intervals from the bootstrap method shown in Table 15 are generally wider, suggesting
more variability in the estimates compared to the jackknife method. The error measures show that
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the Frank copula has the lowest RMSE and MRE, suggesting a better fit than the others. The Joe
copula has the lowest MAE. Given these criteria, the Frank copula appears to be the best copula
estimated for the MMD method, as it has the lowest RMSE, MRE, and one of the lowest MAE
values.

CONCLUSION

The research contributes significantly to the field of hydrology by advancing the application of
copula in modelling streamflow data. It introduces a comparative analysis of different copula
models—such as the Student t-copula, Clayton copula, Gumbel copula, Frank copula, and Joe
copula—across multiple estimation methods, including Maximum Pseudo-Likelihood Estimator
(MPLE), Inference Functions for Margins Estimator (IFME), the Method-of-Moments Estimator
(MoM), empirical copula estimation and Maximum Mean Discrepancy Minimization (MMD). The
study comprehensively evaluates these copula models by considering three performance metrics—
RMSE, MAE, and MRE.

One of the key contributions is identifying different copula best suited to specific estimation
methods. For instance, the Student t-copula performed exceptionally well with the IFME. The
Frank copula was the best for Kendall’s tau, Spearman’s Rho, and MMD estimation. The Joe
copula was identified as the most suitable for the MPLE and the empirical copula estimation
method.

Furthermore, the study makes a notable contribution by evaluating the precision of confidence
intervals using various methods, concluding that the Jackknife method provides the most precise
intervals, while the Wald and Bootstrap methods effectively capture variability and robustness.
Overall, the research supports using copula, particularly the Frank and Joe copula, for effective
hydrological modelling and accurate dependency estimation.
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