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ABSTRACT 
This study explores applying various copula models to estimate the dependencies between streamflow 
and stage data for the Kahang River in Kluang, Johor. Using daily streamflow and stage data, we 
compared the performance of several copula parameter estimation methods: Maximum Pseudo-
Likelihood Estimator (MPLE), Inference Functions for Margins Estimator (IFME), Method-of-
Moments Estimator (MoM), Empirical Copula Estimation, and Robust Estimation by Maximum Mean 
Discrepancy Minimization (MMD). Our findings indicate that different copula performed best for 
different estimation methods. Specifically, the Student t-copula best fits IFME, the Frank copula for 
Kendall’s tau, Spearman’s rho, and the most recent method, MMD. Also, the Joe copula is best for the 
MPLE and the empirical copula estimation method. The Jackknife interval method produced narrower 
and more precise confidence intervals across multiple methods, making it the best interval estimator. 
This comprehensive analysis improves hydrological modelling, facilitating effective water resource 
management and flood risk assessment. 

 
Keywords: Bivariate Copula, Maximum Pseudo-Likelihood, Inference Functions for Margins, 
Method-of-Moments, Empirical Copula, Robust Estimation by Maximum Mean Discrepancy 
Minimization, Streamflow 

 
 

INTRODUCTION 
 
Hydrology is critical in managing water resources, forecasting floods, and protecting the 
environment. Accurate streamflow modelling is essential for effective water management and risk 
assessment in hydrological studies. Traditional statistical methods often fail to capture the 
complexities and dependencies between hydrological variables, which are crucial for predicting 
extreme events. These limitations necessitate adopting advanced statistical models that can better 
describe and predict the behaviour of streamflow data. Shaw and Chithra (2023) implied that 
multivariate analyses of drought characteristics are limited and that this analysis can provide 
important information for water management and drought mitigation. 
 

In hydrological modelling, capturing the dependencies between variables, such as streamflow 
and stage, is crucial for predicting and managing water-related events. Traditional statistical 
methods often fall short when modelling these dependencies due to their reliance on assumptions 
of normality and linearity, which are not always valid for hydrological data. These data often 
exhibit complex, non-linear, and asymmetric relationships, especially during extreme floods. 
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Copulas provide a robust framework for modelling such dependencies by separating the 
marginal distributions of each variable from their joint dependency structure. This flexibility 
allows for a more accurate representation of the intricate interactions between streamflow and 
stage, which is essential for predicting extreme hydrological events. Copula enables researchers to 
capture the nuances of tail dependencies, where extreme values in one variable, such as 
streamflow, may significantly influence the stage level of a river. This capability is particularly 
important for assessing flood risks and developing effective flood management strategies. 
 

Streamflow and stage data are fundamental to understanding the dynamics of water movement 
in rivers and streams. These data are essential for flood forecasting, water resource management, 
and environmental protection applications. However, streamflow and stage data are inherently 
complex, characterised by non-linear relationships and variability influenced by precipitation, land 
use, and climate change factors. Modelling extreme streamflow and stage events, such as floods, 
presents significant challenges due to their impact on infrastructure, ecosystems, and human 
communities. Accurate modelling of these events is vital for designing effective flood defences 
and optimising water resource management. Traditional statistical models often struggle to capture 
the variability and extremes observed in streamflow and stage data, potentially leading to 
underestimating extreme event probabilities. By focusing on streamflow and stage data, this 
research aims to develop models that can accurately capture the complexities and risks associated 
with these hydrological phenomena.  
 

The primary objective of this research is to enhance streamflow and stage data modelling 
using various copula models and parameter estimation methods. The study aims to identify the 
most suitable copula models by evaluating the performance of different copula families, including 
Student t, Frank, Gumbel, Clayton, and Joe copula, in capturing the dependencies between 
streamflow and stage data. It also seeks to assess the effectiveness of various copula parameter 
estimation methods, such as Maximum Pseudo-Likelihood Estimator (MPLE), Inference 
Functions for Margins Estimator (IFME), Method-of-Moments Estimator (MoM), Empirical 
Copula Estimation, and Robust Estimation by Maximum Mean Discrepancy Minimization 
(MMD). Additionally, the research aims to compare goodness-of-fit tests using metrics like Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) to 
evaluate and select the best-fitting models. Finally, the study will determine the best confidence 
interval method by analysing the accuracy and precision of different confidence intervals 
construction methods, such as Wald, Bootstrap, and Jackknife, to ensure the reliability of the 
copula parameter estimates. By achieving these objectives, the research seeks to provide a 
comprehensive framework for accurately modelling the complex dependencies in streamflow data, 
particularly for extreme events, ultimately contributing to more effective water resource 
management, improved flood forecasting, and better-informed environmental protection 
strategies. 
 

The remainder of the article is organised as follows. In the next section, we briefly review the 
relative literature. The data and methods are introduced in the third section, followed by the 
research findings. Finally, we will present the conclusion of this research. 

 
 

LITERATURE REVIEW 
 

Copula, introduced by Sklar in 1959, has become a cornerstone in multivariate statistical analysis, 
particularly useful for modelling the dependence structure between random variables. Copulas 
allow the construction of multivariate distribution functions based on one-dimensional margins, 
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providing a flexible approach to capturing complex dependencies in data (Nelsen, 2006). This 
flexibility is especially advantageous in fields where relationships between variables are non-linear 
and intricate, such as hydrology. 
 

However, applying copula in practice comes with significant challenges despite their 
potential. Tootoonchi et al. (2022) highlighted the lack of practical guidance on various critical 
aspects, including exploring dependence at different scales, pre-treating data, selecting appropriate 
copula models, and validating the model fit. These challenges underline the need for a more 
structured approach in applying copula, particularly in hydrology, where the complexity of data 
requires careful consideration of model selection and evaluation. 
 

Copula in hydrology have gained traction due to their ability to model dependencies 
independently of marginal distributions, allowing for more accurate joint distribution 
constructions. For example, the Archimedean copulas have been effectively used to model the 
dependence structure between flood characteristics like peak flow, volume, and duration, as 
demonstrated by Karmakar and Simonovic (2009). Archimedean copula, characterised by their 
simplicity and analytical tractability, have also been extensively studied. The Clayton, Gumbel, 
and Frank copula are notable members of this family, each offering different dependency 
structures that can be tailored to specific data characteristics (Joe, 1997). 
 

Several methods have been explored in parameter estimation, each with advantages and 
limitations. The Maximum Pseudo-Likelihood Estimator (MPLE) is favoured for its efficiency 
and simplicity, operating by maximising a pseudo-likelihood function as an approximation of the 
true likelihood function (Genest et al., 1995). The Inference Functions for Margins Estimator 
(IFME), a two-step procedure, estimates marginal parameters before copula parameters, 
simplifying the estimation process for large datasets (Joe & Xu, 1996). Other methods include the 
Method-of-Moments (MoM), which matches sample moments with theoretical moments. The 
MOM estimator is consistent and asymptotically normal (Oh and Patton, 2013). Empirical copula 
estimation is a non-parametric approach useful when the underlying copula form is unknown 
(Deheuvels, 1979). The Robust Estimation by Maximum Mean Discrepancy Minimization 
(MMD) stands out for its robustness against outliers, minimising the difference between empirical 
and theoretical copula distributions in a reproducing kernel Hilbert space (Gretton et al., 2005). 
 

Recent research has delved into the effectiveness of different estimation methods under 
various conditions. Lokoman and Yusof (2019) found that the IFME method excels for small 
sample sizes and lower correlation levels, as demonstrated in a rainfall study from Kuala Krai and 
Ulu Sekor station in Malaysia. For datasets with very strong dependence, the original MPLE is 
preferred, particularly for larger samples (Joo et al., 2020). Buliah and Yie (2020) applied 
Archimedean Copula with Maximum Likelihood Estimation (MLE) to model extreme rainfall in 
Malaysian hydrological stations. Ko and Hjort (2019) introduced a model-robust inference 
framework for the IFME of copula parameters, while Idiou and Benatia (2021) presented MLE, 
IFME, and MoM for estimating the Archimedean class. Alquier et al. (2023) proposed an MMD-
based method for copula models, highlighting its robustness and consistency even in the presence 
of outliers or model misspecification. 
 

In terms of constructing confidence intervals, methods such as Wald, Bootstrap, and Jackknife 
are explored for their comparative performance with hydrological data. The Wald interval is based 
on the asymptotic normality of parameter estimates, requiring large sample sizes for accuracy 
(Agresti, 2018). Kummaraka and Srisuradetchai (2023) provided an explicit formula for 
constructing Wald Confidence intervals for the dependence parameter in a bivariate Clayton 
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copula. The Percentile Bootstrap, a non-parametric alternative, resamples data to recalibrate 
estimates, making it particularly useful for smaller samples (Efron & Tibshirani, 1993). The 
Jackknife method, which iteratively leaves out one observation, offers robustness in the presence 
of outliers (Tukey, 1958). 
 

The growing use of copula in hydrology, especially for modelling streamflow data, 
demonstrates their potential to provide a comprehensive understanding of hydrological 
phenomena. Worland et al. (2019) highlighted the superior performance of copula methods in 
streamflow estimation, while Sahoo et al. (2020) identified the Clayton and Frank Copula as 
optimal for the Mahanadi River basin in India. In Malaysia, Latif and Mustafa (2021) utilised a 
semiparametric copula-based approach to model flood characteristics, and Shiau and Lien (2021) 
showed that copula-based methods effectively infill missing data in streamflow datasets from 
eastern Taiwan. 
 

Through advanced parameter estimation methods and robust goodness-of-fit evaluations, 
copula-based models can significantly enhance the reliability and accuracy of hydrological 
modelling, ultimately contributing to better water resource management and environmental 
protection. 

 
 

METHODOLOGY 
 

Data Used 
 
The data used in this study is the real data of the daily flow and stage of Kahang River in Kluang, 
Johor, from the Department of Irrigation and Drainage Malaysia. The daily data used are in the 
form of cubic meter per second (𝑚𝑚3/𝑠𝑠) for flow and meter (𝑚𝑚) for stage from April 1978 to July 
2009. 
 
Copula 
 
A copula is a multivariate probability distribution for which the marginal probability distribution 
of each variable is uniform on the interval [0, 1]. Sklar’s Theorem is the cornerstone of copula 
theory. It states that for any multivariate distribution function 𝐹𝐹 with marginals 𝐹𝐹1 ,𝐹𝐹2 , … ,𝐹𝐹𝑑𝑑  , 
there exists a copula 𝐶𝐶 such that for all 𝑥𝑥 ∈ ℝ𝑑𝑑: 
 

𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) = 𝐶𝐶�𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2), … ,𝐹𝐹𝑑𝑑(𝑥𝑥𝑑𝑑)�. (1) 
 
If the marginals 𝐹𝐹𝑖𝑖 are continuous, then the copula C is unique. Conversely, given a copula C and 
univariate marginal distribution functions 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑑𝑑 , the function H defined above is a valid 
joint distribution function with the specified marginals. 
 
Parametric Copula 
 
Student-t Copula 
The Student t-copula is derived from the multivariate Student t-distribution. It is particularly useful 
for modelling dependencies with heavy tails, where extreme events in one variable are likely to be 
associated with extreme events in another. The t-copula with ν degrees of freedom and correlation 
matrix R is defined by: 
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𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑑𝑑; 𝜈𝜈,𝑅𝑅) = 𝑡𝑡𝑅𝑅,𝑣𝑣(𝑡𝑡𝜈𝜈−1(𝑢𝑢1), … , 𝑡𝑡𝜈𝜈−1(𝑢𝑢𝑑𝑑)) (2) 
 
where 𝑡𝑡𝑅𝑅,𝜈𝜈 is the joint CDF of the multivariate Student t-distribution with ν degrees of freedom 
and correlation matrix R, and 𝑡𝑡𝜈𝜈−1 is the inverse CDF of the univariate Student t-distribution. 
 
 
Clayton Copula 
The Clayton copula is an Archimedean copula known for capturing lower tail dependence, 
meaning it models scenarios where extremely low values in one variable are associated with 
extremely low values in another. The Clayton copula with parameter 𝜃𝜃 > 0 is defined by: 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = �max��𝑢𝑢1−𝜃𝜃 + 𝑢𝑢2−𝜃𝜃 − 1�, 0��
−1𝜃𝜃 

(3) 

 
Gumbel Copula 
The Gumbel copula is another Archimedean copula that captures upper tail dependence, which is 
useful for modelling situations where extremely high values in one variable are likely to be 
associated with extremely high values in another. The Gumbel copula with parameter 𝜃𝜃 ≥ 1 is 
defined by: 
 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = exp �−�(− log 𝑢𝑢1 )𝜃𝜃 + (− log 𝑢𝑢2 )𝜃𝜃� 
1
𝜃𝜃� (4) 

Frank Copula 
The Frank copula is also an Archimedean copula but is unique in that it can model both positive 
and negative dependencies. It does not exhibit tail dependence. The Frank copula with parameter 
𝜃𝜃 ≠ 0 is defined by: 
 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = −
1
𝜃𝜃

log�
�1 + 𝑒𝑒−𝜃𝜃𝑢𝑢1 − 1��𝑒𝑒−𝜃𝜃𝑢𝑢2 − 1�

𝑒𝑒−𝜃𝜃 − 1
� 

(5) 

 
Joe Copula 
The Joe copula, another Archimedean copula, captures upper tail dependence like the Gumbel 
copula but has different dependency structures. The Joe copula with parameter 𝜃𝜃 > 1 is defined 
by: 
 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = 1 − �(1 − 𝑢𝑢1)𝜃𝜃 + (1 − 𝑢𝑢2)𝜃𝜃 − (1 − 𝑢𝑢1)𝜃𝜃(1 − 𝑢𝑢2)𝜃𝜃�
1
𝜃𝜃 

(6) 

 
Semi-Parametric Approach 
 
Maximum Pseudo-Likelihood Estimator (MPLE) 
The sample of pseudo-observations is defined via 
 

𝑈𝑈𝑖𝑖,𝑛𝑛 = �𝐹𝐹𝑛𝑛,1(𝑋𝑋𝑖𝑖1), … ,𝐹𝐹𝑛𝑛,𝑑𝑑(𝑋𝑋𝑖𝑖𝑖𝑖)�,     𝑖𝑖 ∈ {1, … ,𝑛𝑛}.  

 
For any 𝑗𝑗 ∈ {1, …𝑑𝑑}, let 𝑅𝑅𝑖𝑖𝑖𝑖 denotes the rank of 𝑋𝑋𝑖𝑖𝑖𝑖 among 𝑋𝑋1𝑗𝑗, … ,𝑋𝑋𝑛𝑛𝑛𝑛,    
 

𝐹𝐹𝑛𝑛,𝑗𝑗�𝑋𝑋𝑖𝑖𝑖𝑖� = 𝑅𝑅𝑖𝑖𝑖𝑖/(𝑛𝑛 + 1),     for 𝑖𝑖 ∈ {1, … ,𝑛𝑛}.  
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Leading to the MPLE 
 

𝜃𝜃𝑛𝑛 = argsup
𝜃𝜃 ∈ 𝛩𝛩 ∑ log𝐶𝐶𝜃𝜃(𝑈𝑈𝑖𝑖,𝑛𝑛)𝑛𝑛

𝑖𝑖=1 . (7) 

 
 
Parametric Approach 
 
The Inference Functions for Margins Estimator (IFME) 
IFME is a two-stage estimation procedure designed to reduce the computational burden of MLE 
in copula models. Estimate the unknown marginal parameter vectors 𝛾𝛾0,1, … , 𝛾𝛾0,𝑑𝑑 for each margin 
j by maximising the log-likelihood function: 
 

𝛾𝛾𝑛𝑛,𝑗𝑗 =
arg sup
𝛾𝛾𝑗𝑗 ∈ Γ𝑗𝑗 � log 𝑓𝑓𝑗𝑗,𝛾𝛾𝑗𝑗 (𝑋𝑋𝑖𝑖𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 
 

 
Here, 𝑓𝑓𝑗𝑗,𝛾𝛾𝑗𝑗 is the density function of the j-th margin with parameters 𝛾𝛾𝑗𝑗. With the estimated 
marginal parameters 𝛾𝛾𝑛𝑛,1, … , 𝛾𝛾𝑛𝑛,𝑑𝑑, transform the original data 𝑋𝑋𝑖𝑖𝑖𝑖 to pseudo-observations: 
 

𝑈𝑈𝑖𝑖,𝛾𝛾𝑛𝑛 = (𝐹𝐹1,𝛾𝛾𝑛𝑛,1(𝑋𝑋𝑖𝑖1), … ,𝐹𝐹𝑑𝑑,𝛾𝛾𝑛𝑛,𝑑𝑑
(𝑋𝑋𝑖𝑖𝑖𝑖)) ,     𝑖𝑖 ∈ {1, … ,𝑛𝑛}.  

 
Estimate the copula parameter vector 𝜃𝜃0 by maximising the log-likelihood of the copula density 
function: 

𝜃𝜃𝑛𝑛 = arg sup
𝜃𝜃 ∈ 𝛩𝛩 � log 𝑐𝑐𝜃𝜃 (𝑈𝑈𝑖𝑖,𝛾𝛾𝑛𝑛)

𝑛𝑛

𝑖𝑖=1

 (8) 

 
Non-Parametric Approach 
 
Method-of-Moments Estimator (MoM) 
Method-of-moments estimators in the context of copula are extensions of traditional method-of-
moments estimators used in various statistical areas. In the copula setting, moments of random 
variables are replaced by moments of the copula, such as Kendall’s tau or Spearman’s rho. 
Given a copula family 𝐶𝐶 = {𝐶𝐶𝜃𝜃:𝜃𝜃 ∈ 𝛩𝛩}, let 𝑔𝑔𝜏𝜏 and 𝑔𝑔𝜌𝜌𝑠𝑠 be functions defined by: 

 
𝑔𝑔𝜏𝜏(𝜃𝜃) = 𝜏𝜏(𝐶𝐶𝜃𝜃)     and     𝑔𝑔𝜌𝜌𝑠𝑠(𝜃𝜃) = 𝜌𝜌𝑠𝑠(𝐶𝐶𝜃𝜃),     𝜃𝜃 ∈ 𝛩𝛩 ⊆ ℝ,  

 
where 𝜏𝜏(𝐶𝐶𝜃𝜃) and 𝜌𝜌𝑠𝑠(𝐶𝐶𝜃𝜃) are the Kendall’s tau and Spearman’s rho of 𝐶𝐶𝜃𝜃, respectively. Method-
of-moments estimators based on Kendall’s tau (respectively, Spearman’s rho) can be used for the 
family C if the function 𝑔𝑔𝜏𝜏 (respectively, 𝑔𝑔𝜌𝜌𝑠𝑠) is one-to-one. In that case, the estimator 𝜃𝜃� of 𝜃𝜃0 is 
given by: 

 
𝜃𝜃�𝑛𝑛 = 𝑔𝑔𝜏𝜏−1(𝜏𝜏𝑛𝑛)     (respectively, 𝜃𝜃�𝑛𝑛 = 𝑔𝑔𝜌𝜌𝑠𝑠

−1(𝜌𝜌𝑠𝑠,𝑛𝑛)), (9) 
 
where 𝜏𝜏𝑛𝑛 (respectively, 𝜌𝜌𝑠𝑠,𝑛𝑛) is the sample version of Kendall’s tau (respectively, Spearman’s rho). 
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Empirical Copula Estimation 
The empirical copula method provides a non-parametric estimate of the copula function. This 
method is particularly useful when estimating the copula without making strong parametric 
assumptions about the underlying joint distribution. The empirical copula 𝐶𝐶𝑛𝑛 is defined as follows: 

 
𝐶𝐶𝑛𝑛(𝑢𝑢) = 1

𝑛𝑛
∑ 1�𝑈𝑈𝑖𝑖,𝑛𝑛 ≤ 𝑢𝑢�𝑛𝑛
𝑖𝑖=1 = 1

𝑛𝑛
∑ ∏ 1(𝑈𝑈𝑖𝑖𝑖𝑖,𝑛𝑛 ≤ 𝑢𝑢𝑗𝑗)𝑑𝑑

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 ,     𝑢𝑢 ∈ [0,1]𝑑𝑑, (10) 

 
where 𝑈𝑈𝑖𝑖,𝑛𝑛 = (𝑈𝑈𝑖𝑖1,𝑛𝑛, … ,𝑈𝑈𝑖𝑖𝑖𝑖,𝑛𝑛) are the pseudo-observations and the inequalities 𝑈𝑈𝑖𝑖,𝑛𝑛 ≤ 𝑢𝑢 are to be 
understood component-wise. 
 
The empirical copula is essentially the empirical distribution function of pseudo-observations. It 
is a consistent estimator of the true copula C, and its asymptotic follows from those of the so-called 
empirical copula process. 
 
Robust Estimation by Maximum Mean Discrepancy Minimization (MMD) 
The MMD is a method proposed to address robustness issues in the presence of outliers and model 
misspecifications. This method utilises the concept of MMD, which measures the distance between 
two probability distributions using their embeddings in a reproducing kernel Hilbert space 
(RKHS). The MMD between two probability distributions, P and Q, is defined as: 

 
𝐷𝐷(𝑃𝑃,𝑄𝑄) = sup

𝑓𝑓∈ℱ
�∫ 𝑓𝑓𝑓𝑓𝑓𝑓 − ∫ 𝑓𝑓𝑓𝑓𝑓𝑓� ,  

 
where ℱ is the unit ball in an RKHS with a kernel K. K is the popular Gaussian kernel 𝐾𝐾𝐺𝐺(𝑢𝑢, 𝑣𝑣)  =
 exp(‖𝑢𝑢 −  𝑣𝑣‖2/𝛾𝛾2). This can be rewritten using the kernel mean embeddings 𝜇𝜇𝑃𝑃 and 𝜇𝜇𝑄𝑄: 

 
𝐷𝐷(𝑃𝑃,𝑄𝑄) =∥ 𝜇𝜇𝑃𝑃 − 𝜇𝜇𝑄𝑄 ∥ℋ ,  

 
where 𝜇𝜇𝑃𝑃 = 𝐸𝐸𝑃𝑃[𝐾𝐾(⋅,𝑋𝑋)] and 𝜇𝜇𝑄𝑄 = 𝐸𝐸𝑄𝑄[𝐾𝐾(⋅,𝑌𝑌)] for 𝑋𝑋 ∼ 𝑃𝑃 and 𝑌𝑌 ∼ 𝑄𝑄. When estimating copula 
parameters using MMD, find the parameter 𝜃𝜃 that minimises the distance between the empirical 
mean embedding and the model mean embedding: 

 
𝜃𝜃� = arg min𝜃𝜃 ∥ 𝜇𝜇𝐶𝐶𝑛𝑛 − 𝜇𝜇𝐶𝐶𝜃𝜃 ∥ℋ , (11) 

 
where 𝐶𝐶𝑛𝑛 is the empirical copula, and 𝐶𝐶𝜃𝜃 is the parametric copula with parameter θ. 
 
Goodness-of-Fit Tests 
 
Root Mean Squared Error (RMSE) 
RMSE is the square root of the MSE. It provides a measure of the average magnitude of the error 
in the same units as the observed copula values, C. RMSE is particularly useful for understanding 
the scale of the errors. 
 

RMSE = �
1
𝑛𝑛
��𝐶𝐶(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) − 𝐶𝐶𝜃𝜃(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)�

2
𝑛𝑛

𝑖𝑖=1
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Mean Absolute Error (MAE) 
MAE measures the average absolute difference between the observed copula values, C, and the 
values predicted by the copula model, 𝐶𝐶𝜃𝜃. MAE is a robust metric that is less sensitive to outliers 
than MSE and RMSE. 
 

MAE =
1
𝑛𝑛
�|𝐶𝐶(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) − 𝐶𝐶𝜃𝜃(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)|
𝑛𝑛

𝑖𝑖=1

 
 

 
Mean Relative Error (MRE) 
MRE measures the average relative difference between the observed copula values, C, and the 
values predicted by the copula model, 𝐶𝐶𝜃𝜃. MRE compares errors across scales and explains the 
model’s relative performance. 
 

MRE =
1
𝑛𝑛
�

𝐶𝐶(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) − 𝐶𝐶𝜃𝜃(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)
𝐶𝐶(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)

 
𝑛𝑛

𝑖𝑖=1

 
 

 
Confidence Intervals 
 
Wald Interval 
The Wald interval is a common method for constructing confidence intervals based on the 
asymptotic normality of estimators. Assuming 𝜃𝜃� is approximately normally distributed, the (1 −
𝛼𝛼)% confidence interval for θ is given by: 
 

𝜃𝜃� ± 𝑧𝑧𝛼𝛼/2 ∙ 𝑆𝑆𝑆𝑆(𝜃𝜃�)  
 
where 𝑧𝑧𝛼𝛼/2 is the critical value from the standard normal distribution corresponding to the desired 
confidence level. 
 
Percentile Bootstrap Interval 
The percentile bootstrap method involves resampling the data to estimate the distribution of the 
estimator directly. Determine the 𝛼𝛼/2 and 1 − 𝛼𝛼/2 percentiles of the empirical distribution. The 
(1 − 𝛼𝛼)% confidence interval is given by: 
 

(𝜃𝜃�𝛼𝛼/2
∗ ,𝜃𝜃�1−𝛼𝛼/2

∗ )  
 
where 𝜃𝜃�𝛼𝛼/2

∗  and 𝜃𝜃�1−𝛼𝛼/2
∗  are the 𝛼𝛼

2
 and 1 − 𝛼𝛼

2
 percentiles of the bootstrap distribution, respectively. 

 
Jackknife Interval 
The jackknife method is a resampling technique that systematically leaves out one observation at 
a time from the sample set to estimate the bias and variance of an estimator. Assuming the 
jackknife estimator follows a normal distribution, the (1 − 𝛼𝛼)% confidence interval is: 
 

𝜃𝜃� ± 𝑧𝑧𝛼𝛼/2 ∙ �Var�𝜃𝜃��
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

   

 
where 𝑧𝑧𝛼𝛼/2 is the critical value from the standard normal distribution corresponding to the desired 
confidence level. 
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Simulation Studies 
 
Simulation studies are conducted in this section to investigate the performance of estimation of 
copula parameter (𝜃𝜃�) using MPLE. The simulations are conducted as follows: 

1. Generate random samples for each combination of three different sample sizes (n = 100, 
500, 1000) and levels of dependence parameter (τ = 0.2, 0.5, 0.8). 

2. Estimate the Clayton copula parameter using MPLE, IFME, Kendall’s Tau, Spearman’s 
Rho, and MMD parameter estimation methods. 

3. Repeat the steps above 100 times. 
4. Calculate RMSE, MAE, and MRE to evaluate and compare the performance of the 

methods. 
 
 

RESULTS AND DISCUSSION 
 

The study compared and evaluated the estimation performance of semi-parametric, parametric, 
and non-parametric approaches based on the goodness-of-fit statistics. A simulation study using 
MPLE was conducted to compare the parametric copulas’ performance before the real streamflow 
data was fitted. 
 
Data Simulation 
Data simulation is a critical process in evaluating and understanding the behaviour of statistical 
models under controlled conditions. This study simulated data using the Clayton copula function, 
which models the dependency structure between two random variables. This approach is 
particularly relevant in hydrological studies where understanding the joint behaviour of related 
variables is essential. The simulation involved various methods of copula parameter estimation, 
including MPLE, IFME, Kendall’s tau, Spearman’s Rho, and MMD. The simulation was 
conducted across different sample sizes (n = 100, 500, 1000) and correlation values (τ = 0.2, 0.5, 
0.8), comprehensively evaluating each estimation method’s performance.  
 

The performance of each estimation method was evaluated using three key metrics: RMSE, 
MAE, and MRE, as shown in Table 1. These metrics assess the accuracy and reliability of the 
copula parameter estimates under varying conditions. For small sample sizes (𝑛𝑛 = 100), the RMSE 
and MAE values were relatively close across all correlation levels (τ = 0.2, 0.5, 0.8), indicating 
that the methods performed similarly regarding absolute error. However, the MMD method 
consistently exhibited slightly lower RMSE and MAE values, particularly in scenarios with low 
and high correlations, suggesting better performance in small samples. The IFME method 
demonstrated better performance with medium correlations. The MRE values revealed greater 
variability among the methods, with Kendall’s tau showing notably higher MRE, particularly at τ 
= 0.2 and τ = 0.8, making it less reliable for parameter estimation under these conditions. In 
contrast, MMD and IFME maintained relatively stable and lower MRE values, indicating better 
robustness for small sample sizes. 
 

As the sample size increased to 𝑛𝑛 = 500, the MMD method showed competitive performance, 
with the lowest RMSE and slightly lower MAE at τ = 0.2, while MPLE exhibited better 
performance with low to medium correlations. Kendall’s tau showed better performance with 
medium to high correlations, while IFME demonstrated superior performance with high 
correlations. However, Kendall’s tau and Spearman’s Rho exhibited increased MRE at τ = 0.5, 
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suggesting that these rank-based methods may introduce bias or variability in moderate sample 
sizes. 
 

For large sample sizes (𝑛𝑛 = 1000), Kendall’s tau exhibited the lowest RMSE and MAE values, 
suggesting better performance with low correlations. Spearman’s Rho and MMD demonstrated 
better performance with medium correlations, while IFME performed well in large samples with 
high correlations. The MRE values stabilized across all methods, although IFME showed some 
variability at lower correlation levels (τ = 0.2). The consistent performance of all methods across 
all sample sizes suggests that they offer a balanced trade-off between bias and variance, making 
them reliable choices for large datasets. 
 

Table 1: RMSE, MAE, and MRE of Clayton Copula Parameter Estimation 
Sample 

size Method 𝜏𝜏 = 0.2 𝜏𝜏 = 0.5 𝜏𝜏 = 0.8 

n  RMSE MAE MRE RMSE MAE MRE RMSE MAE MRE 

100 

MPLE  0.4059 0.3321 6.3066 0.4084 0.3342 4.2488 0.4053 0.3320 4.7344 
IFME 0.4086 0.3336 4.0332 0.4040 0.3299 4.3302 0.4077 0.3344 4.4162 
Kendall’s Tau 0.4073 0.3327 16.196 0.4108 0.3357 4.9864 0.4091 0.3348 96.518 
Spearman’s Rho 0.4082 0.3342 6.1060 0.4088 0.3348 4.5137 0.4084 0.3347 5.6167 
MMD 0.4038 0.3305 4.6484 0.4091 0.3350 5.3321 0.4033 0.3296 6.0673 

500 

MPLE 0.4073 0.3323 5.6694 0.4084 0.3338 5.3980 0.4102 0.3355 6.6567 
IFME 0.4079 0.3329 4.9585 0.4085 0.3339 6.5974 0.4066 0.3323 4.9293 
Kendall’s Tau 0.4082 0.3333 5.1594 0.4084 0.3333 7.5461 0.4071 0.3318 4.9466 
Spearman’s Rho 0.4082 0.3333 5.4183 0.4094 0.3345 7.9069 0.4085 0.3339 5.2393 
MMD 0.4072 0.3324 5.9619 0.4091 0.3345 5.2426 0.4072 0.3326 5.3119 

1000 

MPLE 0.4088 0.3337 4.5178 0.4083 0.3336 4.5274 0.4083 0.3334 5.5505 
IFME 0.4080 0.3334 43.466 0.4088 0.3336 6.3033 0.4069 0.3323 6.3528 
Kendall’s Tau 0.4079 0.3330 7.1222 0.4085 0.3337 5.7323 0.4074 0.3326 6.0825 
Spearman’s Rho 0.4090 0.3341 6.9499 0.4080 0.3331 5.2929 0.4077 0.3325 7.6419 
MMD 0.4094 0.3342 5.7488 0.4080 0.3331 5.1138 0.4085 0.3337 4.8699 

 
The data simulation analysis shows that the performance of copula parameter estimation 

methods varies depending on sample size and correlation levels. The MMD method consistently 
provides the most accurate estimates for small sample sizes, particularly in low and high-
correlation scenarios, while IFME performs well with medium-correlation data. As sample sizes 
increase to a medium range, MPLE is the most reliable method for low to medium correlations. 
Kendall’s tau performs well for medium to high correlations, while MMD is also effective for low 
correlations. Additionally, IFME shows strong performance in high-correlation data within 
medium-sized samples. For large sample sizes, the accuracy of all methods becomes more 
comparable, with Kendall’s tau slightly better for low correlations and Spearman’s Rho and MMD 
preferred for medium correlations. IFME remains a robust choice for high-correlation data in large 
samples. Overall, IFME and MMD are recommended for small datasets, MPLE, IFME, Kendall’s 
tau, and MMD for medium datasets, and IFME, Kendall’s tau, Spearman’s Rho or MMD for large 
datasets, depending on the correlation level. 
 
Modelling of Streamflow using Copula 
 
The application of copula modelling on the streamflow data of Kahang River (flow and stage) 
involves different estimation methods: semi-parametric, parametric, and non-parametric. This 
section evaluates the performance of these methods using various statistical metrics and 
confidence intervals. 
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Data and Descriptive Analysis 
This research uses the daily flow and stage of the Kahang River. The data is sourced from the 
Department of Irrigation and Drainage Malaysia. The 95𝑡𝑡ℎ percentile method is used to extract 
heavy or extreme streamflow, which results in 571 observations. Descriptive statistics provide the 
measures and the summaries of streamflow data; hence, they play an important role in describing 
the fundamental features of the data used in research. The descriptive statistics of the daily flow 
and stage of Kahang River are shown in Table 2. 
 

Table 2: Descriptive Statistics of Daily Flow and Stage for Kahang River 
Streamflow 

Variable 
Mean Median Standard 

Deviation 
Skewness Kurtosis Minimum Maximum 

Flow (𝒎𝒎𝟑𝟑/𝒔𝒔) 193.699 145.690 138.422 3.171 15.362 97.860 1,152.430 
Stage (𝒎𝒎) 6.408 6.320 1.153 0.409 2.982 3.700 10.610 

 
From Table 2, the minimum daily flow and stage during heavy streamflow recorded for Kahang 
River is 97.860 𝑚𝑚3/𝑠𝑠 and 3.700 𝑚𝑚 respectively. The maximum daily flow and stage recorded is 
1,152.430 𝑚𝑚3/𝑠𝑠 and 10.610 𝑚𝑚 respectively. This flow level is quite high, typically seen in large 
rivers or during extreme weather events like heavy rainfall. The flow data is averaged at         
193.699 𝑚𝑚3/𝑠𝑠 with a standard deviation of 138.422 𝑚𝑚3/𝑠𝑠. Meanwhile, the stage data is averaged 
at 6.408 𝑚𝑚 with a standard deviation of 1.153 𝑚𝑚. 
 
The Dependence Level Between the Streamflow Data 
 
The dependence between the streamflow data was measured first using Kendall’s tau and 
Spearman’s rho method. The dependence of flow and stage is shown in Table 3. 
 

Table 3: The Dependence Level between Flow and Stage 
 Correlation p-value 
Kendall’s tau 0.4624 0.0000 
Spearman’s rho 0.6129 0.0000 

 
From Table 3, the flow is positively associated with the stage. The dependence level of the 
streamflow data using Kendall’s tau and Spearman’s rho is 0.4624 and 0.6129, respectively, which 
is moderate in the association. The p-values for both methods are 0.0000 at the significance level 
of 𝛼𝛼 = 0.05. Since the p-value is less than 0.05, the correlation for the streamflow data is 
significant. 
 
Semi-Parametric Approach 
 
The semi-parametric approach presents and discusses the results of applying the MPLE method to 
estimate the copula parameters. 
 
Maximum Pseudo-Likelihood Estimator (MPLE) 
MPLE method was employed to estimate the parameters of various copula families �𝜃𝜃��. These 
estimates, their corresponding standard errors (SE), and GOF statistics are presented in Table 4.  
 

The performance of these copulas was further evaluated using error metrics such as RMSE, 
MAE, and MRE for the copula, as shown in Table 4. The Clayton copula exhibited the lowest 
RMSE at 0.4033, suggesting it provides the best fit by minimising the overall prediction error. 
Regarding MAE and MRE, the Joe copula outperformed the others with a value of 0.3288 and -
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2.0411, indicating that it offers the most accurate predictions on average and effectively minimises 
relative errors, although it may not be the best performer in RMSE. 
 

Table 4: Copula Parameter Estimation using MPLE and GOF statistics 
Copula  𝜃𝜃� SE MLE  RMSE MAE MRE 

Student t 𝜌𝜌 
df 

0.6390 
18.1070  

0.0230 
- 146.8000  0.4081 0.3345 -2.1805 

Clayton  1.7210 0.0910 98.4800  0.4033 0.3293 -2.3128 
Gumbel  1.6660 0.0710 135.1000  0.4147 0.3384 -2.4140 
Frank  4.4460 0.4260 129.3000  0.4142 0.3396 -2.6825 
Joe  1.8920 0.1010 114.1000  0.4052 0.3288 -2.0411 

 
Table 5: MPLE Interval 

Copula  Wald Bootstrap Jackknife 

Student t 𝜌𝜌 
df 

(0.5939, 0.6841) 
- 

(0.5964, 0.6839) 
(12.7903, 23.3023) 

(0.6220, 0.6560) 
(15.5677, 20.6464) 

Clayton  (1.5415, 1.8996) (1.4818, 2.0441) (1.7087, 1.7333) 
Gumbel  (1.5278, 1.8046) (1.5615, 1.8041) (1.6628, 1.6692) 
Frank  (3.6114, 5.2798) (3.8761, 5.1787) (4.4280, 4.4640) 
Joe  (1.6929, 2.0904) (1.6897, 2.0850) (1.8876, 1.8964) 

 
Confidence intervals for the copula parameter estimates were calculated using Wald, 

Bootstrap, and Jackknife methods, as presented in Table 5. These intervals are consistent across 
the different methods, reinforcing the reliability of the estimates. Notably, the Student t-copula 
showed wider intervals for the degrees of freedom, indicating greater variability and uncertainty 
in this parameter. The Clayton copula’s intervals were narrow and consistent, emphasizing the 
stability of its parameter estimates. The Gumbel, Frank, and Joe copula also demonstrated 
consistent intervals, supporting the robustness of their estimates. 
 

In conclusion, the Joe copula is the best-fitting model under the MPLE method because of its 
lowest MAE and MRE values. While the Clayton copula has the lowest RMSE, the Joe copula 
offers the most balanced and accurate fit across the key error metrics. Therefore, the Joe copula is 
recommended as the optimal model for the dataset when using the MPLE method. 
 
Parametric Approach 
 
The parametric approach presents and discusses the results of applying the IFME method to 
estimate the copula parameters. 
 
The Inference Functions for Margins Estimator (IFME) 
 
Fitting Data to Marginal Distributions 
The parametric approach in the analysis utilizes the IFME method to estimate the copula 
parameters, requiring the determination of the marginal distributions first. The goodness-of-fit 
(GOF) statistics for different distributions—Lognormal, Gamma, and Weibull—fitted to the flow 
and stage data of the Kahang River are presented in Table 6.  
 

Table 6: Fitting Flow and Stage to Marginal Distributions  
 Flow  Stage 
Distribution 𝝌𝝌² AD R²  𝝌𝝌² AD  R² 
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Lognormal 0.0000 21.2966 0.8663  0.0408 1.1952  0.9926 
Gamma 0.0000 33.2456 0.8383  0.0149 1.2489  0.9909 
Weibull 0.0000 43.3446 0.6790  0.0000 5.0552  0.9391 

 
Based on the analysis of the GOF statistics, the Lognormal distribution is identified as the 

best-fitting model for both the flow and stage data of the Kahang River. The Lognormal 
distribution consistently shows superior performance across the Chi-square, Anderson-Darling, 
and R-squared tests, particularly excelling in the AD and R² metrics, which are crucial for 
assessing the distribution’s fit to the data. Therefore, the lognormal distribution is recommended 
as the optimal choice for modelling flow and stage variables using the IFME method. 

 

 
Figure 1: Comparison Between the Distributions Fitted to the Flow of the Kahang River 

 
 

 
Figure 2: Comparison Between the Distributions Fitted to the Stage of the Kahang River 

 
Figures 1 and 2 support the statistical findings, with the lognormal distribution closely matching 
the empirical data for both flow and stage. The Weibull distribution shows the least fit, particularly 
for the stage data. 
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Copula Parameter Estimation using IFME 
The IFME method was employed to estimate the parameters of various copula families. These 
copula parameter estimates �𝜃𝜃��, their corresponding standard errors (SE), and GOF statistics are 
presented in Table 7. 

 
Table 7: Copula Parameter Estimation using IFME and GOF statistics  

Copula  𝜃𝜃� SE MLE  RMSE MAE MRE 

Student t 𝜌𝜌 
df 

0.5878 
12.5961  

0.0260 
2.4780 119.8000  0.4000 0.3280 -2.5402 

Clayton  1.7210 0.0970 75.1200  0.4076 0.3340 -2.2449 
Gumbel  1.4260 0.0440 80.7600  0.4105 0.3394 -2.1041 
Frank  4.3030 0.4310 121.3000  0.4120 0.3397 -2.3587 
Joe  1.4620 0.0560 58.8000  0.4072 0.3367 -2.5541 

 
Table 8: IFME Interval 

Copula  Wald Bootstrap Jackknife 

Student t 𝜌𝜌 
df 

(0.5376, 0.6379) 
(7.7391, 17.4532) 

(0.5438, 0.6466)  
(8.9444, 17.7623) 

(0.5859, 0.5897) 
(11.4717, 13.7205) 

Clayton  (1.5309, 1.9103) (1.4396, 1.9541) (1.7087, 1.7333) 
Gumbel  (1.3384, 1.5126) (1.3235, 1.5381) (1.4228, 1.4292) 
Frank  (3.4587, 5.1466) (3.8500, 4.8894) (4.2850, 4.3210) 
Joe  (1.3526, 1.5724) (1.3203, 1.6081) (1.4576, 1.4664) 

 
Confidence intervals for the copula parameter estimates were calculated using Wald, 

Bootstrap, and Jackknife methods, as presented in Table 8. These intervals are consistent across 
the different methods, reinforcing the reliability of the estimates. 
 

The Student t-copula emerges as the best-fitting model under the IFME method. Its lowest 
RMSE value indicates that it effectively minimizes squared prediction errors, making it a reliable 
choice for data modelling. The Student t-copula minimises absolute errors, and the Gumbel copula 
in relative errors. The Student t-copula offers the most balanced and accurate fit across the key 
error metrics. Therefore, the Student t-copula is recommended as the optimal model for the dataset 
when using the IFME method, particularly when overall prediction accuracy is a priority. 
 
Non-Parametric Approach 
 
The non-parametric approach presents and discusses the results obtained from applying the MoM, 
empirical copula estimation, and MMD method to estimate the copula parameters. 

 
Method-of-Moments Estimator (MoM) 
 
Kendall’s Tau Estimation 
The copula parameter estimation using Kendall’s Tau is provided in Table 9. The estimated copula 
parameters �𝜃𝜃��, their standard errors (SE) and GOF statistics for different copula families are: 
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Table 9: Copula Parameter Estimation using Kendall’s Tau  
Copula  𝜃𝜃� SE RMSE MAE MRE 

Student t 𝜌𝜌 
df 

0.6642 
4.0000  

0.0250 
- 0.4096 0.3323 -2.0538 

Clayton  1.7210 0.1490 0.4117 0.3367 -2.2175 
Gumbel  1.8600 0.0750 0.4102 0.3357 -2.9027 
Frank  5.0920 0.1440 0.3972 0.3203 -2.6896 
Joe  2.5880 - 0.3971 0.3245 -2.2507 

 
Table 10: Kendall’s Tau Interval 

Copula  Wald Bootstrap Jackknife 
Student t 𝜌𝜌 (0.6145, 0.7139) (0.6177, 0.7209) (0.6621, 0.6663) 
Clayton  (1.4278, 2.0133) (1.4717, 2.0792) (1.7087, 1.7333) 
Gumbel  (1.7139, 2.0067) (1.7275, 2.0121) (1.8538, 1.8662) 
Frank  (4.8095, 5.3752) (4.5612, 5.5983) (5.0631, 5.1209) 
Joe  - (2.3213, 2.8919) (2.5762, 2.5998) 

 
The intervals from the Wald and bootstrap method shown in Table 10 are generally wider, 

suggesting more variability in the estimates compared to the jackknife methods. While the Joe 
copula has the lowest RMSE, indicating a better fit in terms of prediction error, the Frank copula 
has the lowest MAE, and the Student t-copula has the lowest MRE. Considering all metrics, the 
Frank copula appears to be the best copula estimated for Kendall’s Tau Estimation method due to 
its lowest MAE, and the Frank copula offers the most balanced and accurate fit across the key 
error metrics. 
 
Spearman’s Rho Estimation 
The copula parameter estimation using Spearman’s Rho is provided in Table 11. The estimated 
copula parameters �𝜃𝜃��, their standard errors (SE), and GOF statistics for different copula families 
are: 

 
Table 11: Copula Parameter Estimation using Spearman’s Rho 

Copula  𝜃𝜃� SE RMSE MAE MRE 
Clayton  1.5740 0.1490 0.4147 0.3362 -2.3417 
Gumbel  1.7900 0.0730 0.4160 0.3374 -2.6109 
Frank  4.6170 0.3370 0.4117 0.3364 -2.2312 

 
Table 12: Spearman’s Rho Interval 

Copula  Wald Bootstrap Jackknife 
Clayton  (1.2816, 1.8655) (1.3271, 1.9446) (1.5616, 1.5864) 
Gumbel  (1.6461, 1.9342) (1.6736, 1.9368) (1.7839, 1.7961) 
Frank  (3.9572, 5.2767) (4.0629, 5.2941) (4.5891, 4.6449) 

  
The intervals from the Wald and bootstrap method presented in Table 12 are generally wider, 

suggesting more variability in the estimates compared to the jackknife methods. While the Frank 
copula has the lowest RMSE and MRE, indicating a better fit for prediction error and relative error, 
the Clayton copula has the lowest MAE. 
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Considering all metrics, the Frank copula appears to be the best copula estimated for 
Spearman’s Rho Estimation method due to its lowest RMSE and MRE. The Frank copula offers 
the most balanced and accurate fit across the key error metrics. 
 
Empirical Copula Estimation 
The GOF statistics for empirical copula estimation are provided in Table 13. The GOF statistics 
for different copula families are: 

 
Table 13: GOF statistics for Empirical copula Estimation 

Copula RMSE MAE MRE 
Clayton 0.0069 0.0054 0.0812 
Gumbel 0.0058 0.0043 0.0484 
Frank 0.0065 0.0054 0.0670 
Joe 0.0047 0.0039 0.0954 

 
While the Joe copula has the lowest RMSE and MAE, indicating it best fits the copula, the 

Gumbel copula has the lowest MRE. The MRE for the Joe copula is the highest among the copula, 
suggesting it might have more relative error than others. 
 

Considering all metrics, the Joe copula appears to be the best copula estimated for the 
empirical copula estimation due to its lowest RMSE and MAE despite having a higher MRE. The 
fit for prediction and absolute errors are more favourable with the Joe copula. 
 
Robust Estimation by Maximum Mean Discrepancy Minimization (MMD) 
The copula parameter estimation using the MMD method is provided in Table 14. The estimated 
copula parameters �𝜃𝜃�� and GOF statistics for different copula families are: 
 

Table 14: Copula Parameter Estimation using MMD 
Copula  𝜃𝜃� RMSE MAE MRE 

Student t 𝜌𝜌 
df 

0.6100 
15.8300  

0.4138 0.3402 -2.5992 

Clayton  1.0500 0.4163 0.3408 -2.8218 
Gumbel  1.5600 0.4381 0.3623 -2.8294 
Frank  3.6400 0.4047 0.3299 -1.9657 
Joe  1.8200 0.4049 0.3271 -2.9226 

 
Table 15: MMD Interval 

Copula  Bootstrap Jackknife 

Student t 𝜌𝜌 
df 

(0.5319, 0.6606) 
- 

(0.6084, 0.6116) 
(15.7937, 15.8664) 

Clayton  (0.7536, 1.1850) (0.7457, 1.3543) 
Gumbel  (1.4423, 1.6785) (1.4851, 1.6349) 
Frank  (3.0681, 4.1531) (2.9693, 4.3107) 
Joe  (1.6607, 1.9166) (1.8188, 1.8212) 

 
The intervals from the bootstrap method shown in Table 15 are generally wider, suggesting 

more variability in the estimates compared to the jackknife method. The error measures show that 
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the Frank copula has the lowest RMSE and MRE, suggesting a better fit than the others. The Joe 
copula has the lowest MAE. Given these criteria, the Frank copula appears to be the best copula 
estimated for the MMD method, as it has the lowest RMSE, MRE, and one of the lowest MAE 
values. 
 

CONCLUSION 
 
The research contributes significantly to the field of hydrology by advancing the application of 
copula in modelling streamflow data. It introduces a comparative analysis of different copula 
models—such as the Student t-copula, Clayton copula, Gumbel copula, Frank copula, and Joe 
copula—across multiple estimation methods, including Maximum Pseudo-Likelihood Estimator 
(MPLE), Inference Functions for Margins Estimator (IFME), the Method-of-Moments Estimator 
(MoM), empirical copula estimation and Maximum Mean Discrepancy Minimization (MMD). The 
study comprehensively evaluates these copula models by considering three performance metrics—
RMSE, MAE, and MRE. 
 

One of the key contributions is identifying different copula best suited to specific estimation 
methods. For instance, the Student t-copula performed exceptionally well with the IFME. The 
Frank copula was the best for Kendall’s tau, Spearman’s Rho, and MMD estimation. The Joe 
copula was identified as the most suitable for the MPLE and the empirical copula estimation 
method. 
 

Furthermore, the study makes a notable contribution by evaluating the precision of confidence 
intervals using various methods, concluding that the Jackknife method provides the most precise 
intervals, while the Wald and Bootstrap methods effectively capture variability and robustness. 
Overall, the research supports using copula, particularly the Frank and Joe copula, for effective 
hydrological modelling and accurate dependency estimation. 
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