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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Chris Chantler

This work investigated the gamma radiation shielding performance of different nano-composites (pure PMMA,
PMMA doped with Bi,O3, PMMA doped with MgO, and PMMA doped with BipO3-MgO) using the solution

Keywords: casting method. The experimental linear attenuation coefficients (LACs) of the samples were determined using a
PMMA sodium iodide (Nal) detector and the results were compared with Phy-X theoretical results, where better
11\3/[1283 matching was observed. At 59.5 keV, the PMMA doped with Bi;O3 sample had the largest LAC of 0.759 cm™!
L fc when compared to the PMMA doped with Bi;O3-MgO sample with a LAC of 0.695 cm™'. At the same energy
TF (59.5 keV), the radiation protection efficiency of the PMMA doped with BizO3 sample was 31.34 %, which was
RPE far greater compared to that of the PMMA doped with BizO3-MgO sample, thus confirming the PMMA doped

Gamma radiation

with BizO3 sample as the optimum candidate to be applied for protection against gamma radiation.

1. Introduction

In terms of the hazardous effect of some diagnostic tools, such as X-
ray machines and scanners, medical personnel recommend radiation
protection for patients in order to reduce direct exposure to radiological
dangers such as skin cancer, brain cancer, leukemia, mutation, and other
radiation sicknesses, with this protection acting as a barrier to reduce
scattered radiation from patients and leakages from other sources
(Mazrani et al., 2007; Klein et al., 2009; Johnson and Cember, 2017;
Charkiewicz and Backstrand, 2020; Krzywy et al., 2010; Wani et al.,
2015; Dignam et al., 2019; Adliené et al., 2020; Mittal, 2015). Other

ways of reducing exposure to radiological hazards involve reduced
exposure time and increased distance. Lead is historically known as the
primary shielding material, but it is toxic and heavy (Sayyed et al., 2022;
Li et al., 2018; AbuAlRoos et al., 2019; Wasel and Freeman, 2018).
Lead toxicity is a general environmental health problem, affecting
different systems and organs of the body. Lead ingested from food and
dust used to cause serious developmental delays in infants and other
health problems (El-Khatib et al., 2019; Li et al., 2017; Azman et al.,
2013; Abu-Saleem et al., 2021; Ravneet et al., 2020; Kucuk et al., 2013).
The Institute for Health Metrics and Evaluation reported that lead
exposure causes 900,000 deaths annually. Advanced nano-technology is
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required to produce lead-free composite materials as non-toxic alter-
natives that are safe and eco-friendly, especially in the context of radi-
ation protection (Pituru et al.,, 2020; Rilwan et al., 2024, 2025a;
Almugrin et al., 2024a, 2024b; Alasali et al., 2024). These materials can
offer enhanced mechanical stability, flexibility, and radiation absorp-
tion. Nano-fillers improve photon interactions through uniform disper-
sion and a high surface-to-volume ratio, outperforming micro-fillers
(Mostafa et al., 2022; Subedi and Lamichhane, 2023). Nano-composites
such as high-density polyethylene (HDPE)/CdO and epoxy/GayOs pro-
vide superior shielding abilities, particularly at weak photon energies. In
this manner, these materials are transforming radiation shielding in the
healthcare and industrial fields (Sayyed et al., 2024a, 2024b, 2024c;
Rotkovich et al., 2024; Ahmed et al., 2024; Yasmin et al., 2024; Alshahri
et al., 2021).

Nano-fillers incorporated into polymer materials and polycarbonate
are used in radiation protection applications. The increase in the density
of fillers like Bi;O3 improves the absorption coefficient, particularly at
weak-to-medium photon energies; for example, low-density poly-
ethylene (LDPE)/Bi;O3 composites with 15 % filler obstructed 80 % of
X-rays at 47.9 keV effective (Ambika et al., 2017a, 2017b; Rilwan et al.,
2025b, 2025¢; Mehrara et al., 2021; Cao et al., 2020). Due to the small
size and uniform distribution of nano-fillers, they significantly improve
radiation protection by enhancing photon interactions and electron
density (Abbas et al., 2022; Pavlenko et al., 2019; More et al., 2021;
Berger et al., 2010; Idris et al., 2025; Rilwan et al., 2025d; Khalid et al.,
2025). The comparison of micro- and nano-composites consistently
shows higher absorption coefficients; for example, styrene-butadiene
(SR)/Bi20O3 nano-composites outperformed their micro-counterparts
across various energies, demonstrating the pivotal function of filler
size and distribution in optimizing protection effectiveness (Tokar et al.,
2013; Shahzad et al., 2022; Saleh et al., 2024; Alresheedi et al., 2023).

Bismuth oxide is an alternative to lead due to its shielding properties
and non-toxicity. Various polymer materials, such as epoxy and silicon
resin, confirm the efficacy of bismuth oxide nano-composites in
absorbing gamma- and X-rays across the different energy ranges used in
radiation shielding (Alsafi et al., 2024; Hannachi et al., 2024; Adaikalam
et al., 2024; Alothman et al., 2021; Aloraini et al., 2023).

Advanced production processes, such as melt-mixing and solution
casting, help in the preparation of polymer nano-composites with
optimal characteristics. These methods, combined with characteriza-
tions like SEM and XRD, also improve the development of morphological
and crystalline features, representing a potential innovative approach in
materials improvement. These techniques explain the potential in ra-
diation shielding (Muthamma et al., 2021; Khrenov et al., 2007; Stelzig
et al., 2008; Demirbay et al., 2019; Alkan et al., 2018).

In the current research, we delved in to the fabrication of PMMA-
Bi03-MgO thin films using the solution casting technique. The radia-
tion shielding ability of the fabricated samples was evaluated with the
aid of gamma spectrometric analysis with the Co-60, Cs-137, and Am-
241 radiation sources, which are important in radiation therapy as
well as medical imaging. The present study also investigated the
morphology and crystal integrity of the samples via scanning electron
microscopy (SEM) and X-ray diffraction (XRD) techniques in order to
provide additional knowledge on the structural characteristics of the
fabricated PMMA-Bi203-MgO thin-film samples, which brings out the
potentiality of the PMMA-Bi,O3-MgO thin films in resolving the prob-
lem of lead toxicity in terms of radiation shielding applications.

2. Material and methods
2.1. Preparation of the PMMA /nano-composites

The preparation of transparent poly (methyl methacrylate) (PMMA)
entailed dissolving 20 g of PMMA (with the chemical formula CsHgO3)

in 160 cm® of chloroform (CHCl3) using a magnetic stirrer for one day,
while gradually adding 0.01 g of bismuth and magnesium oxides in 5
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em? of chloroform. The nanoparticle-impregnated PMMA polymer was
poured into an aluminum dish and allowed to remain at room temper-
ature for approximately four days for the solvent to slowly cool in order
to ensure thin-film formation (Alkan et al., 2018). The masses of the
fabricated circular samples were individually measured with the aid of a
digital weighing balance (SF-400) which has a precision of +0.1. the
volume of the circular samples was calculated using the formula for
volume of circle as described in Eq. (1) (Rilwan et al., 2025c). The
measured masses and the calculated volumes were then utilized to
calculate the densities (in g/cm3) of the samples as described in Eq. (2)
(Rilwan et al., 2025a). The sample’s chemical compositions in wt.%, as
well as the density of the fabricated PMMA nano-composites in g/cm>
are presented in Table 1.

V:(%)xnxrs &)

p= 2)

<|=

where the mass of each sample is represented by M, the volume denoted
by V, and r stands for radius of the circle.

2.2. Characterization

In this research, XRD (Bruker AXS Germany Brand and D8 advance
Model) was utilized to investigate the structural characteristics of the
fabricated samples. ICDD standards (the reference diffraction pattern
often utilized during the XRD analysis of samples in order to identify the
phases of the crystalline materials) were maintained in the XRD device
(using Cu-Ka radiation) with a wavelength of 1.54 A°, step size of 0.02°,
and scan speed of 1°/min under ambient temperature, where a 2 h
spectrum was used between 10 and 80° (©) for the thin films. SEM with
5-20 kV accelerating potential, high-vacuum mode, secondary electron
detector, and a gold sputter coating for the non-conductive samples was
employed to check the surface morphology of the fabricated samples.
The molecular structure and composition of the samples were analyzed
using Fourier transform infrared (FITR) spectroscopy (PerkinElmer
Brand and FTIR Spectrum-400 Model) at the wavelength spectrum of
400-4000 cm !, with a resolution of 4/cm and utilizing the attenuated
total reflectance (ATR) pellet technique at normal (room) temperature
(Alkan et al., 2018).

2.3. Radiation attenuation evaluation

A sodium iodide (Nal) detector was employed, having an efficiency
of 10-20 % for the identification of the y-spectrum emitted from the Am-
241 (59.5 keV) y-sources, 5-15 % for the identification of the y-spectrum
emitted from the Co-60 (1173.2 and 1332.5 keV) y-sources, and 10-25
% for the identification of the y-spectrum emitted from the Cs-137
(661.6 keV) y-sources (Rilwan et al.,, 2025b). The narrow beam
method was employed in the experimental measurements, where a lead
collimator was placed between the source and the detector, as shown in
Fig. 1. The PMMA/nano-composite sample was placed in a measured
position between the detector and the source, with the gamma intensity
taken in the absence (Ip) and presence (Iy) of the sample. The data for the

Table 1
Chemical compositions of the developed nano-composites in wt.%.

Sample Code CHCl3 CsHgO, Bi203 MgO Density (g/cm3)
Pure PMMA 0.920 0.0777 0.0000  0.0000  1.837
PMMA/Bi»,03 0.920 0.07757 0.0021 0.0000 1.836
PMMA/MgO 0.920 0.07757  0.0000  0.0021 1.772
PMMA/Bi,03:MgO  0.920 0.0774 0.0021 0.0021 1.698

CHCl3 = chemical formula for chloroform; CsHgO, = chemical formula for poly
(methyl methacrylate) (PMMA).
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Fig. 1. Setup for the experimental measurement.

intensity was used with the aid of Eq. (3) (Aloraini et al., 2023, Caglar
et al.,, 2019; Yousefi et al., 2023) to evaluate the experimental linear
attenuation coefficient (LAC) in cm’l, as presented in Table 2.

1 I
LAC7)—(ln (7) 3

where x is the thickness of the thin films in cm, I is the intensity in count
per seconds (cps) with the presence of the PMMA nano-composite, and
Io the is intensity also in cps but without the presence of the PMMA
nano-composite. Moreover, the mass attenuation coefficients (MACs) of
our samples in cmz/g were examine using Eq. (4) (Aloraini et al., 2023;
Krishnamoorthy et al., 2012; Boubeta et al., 2010; Chalkidou et al.,
2011; Di et al., 2012).

=t S w() @

where, w; represents the weight fraction, and (’;) i stands for the MAC for

an individual element in the compound. The half value layer (HVL, cm),
as determined in Eq. (5), indicates the shield thickness required to
reduce the radiation beam intensity to one-half, while the tenth value
layer (TVL, cm) computed from Eq. (6) denotes the shield layer needed
to minimize the radiation beam intensity to one-tenth of the initial level
(Muthamma et al., 2021; Demirbay et al., 2019; Saudi et al., 2021; Gohil
et al., 2017; Miiller et al., 2017; Deka et al., 2022).

HvL =22 ®)
u
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The mean free path (MFP, cm), given by Eq. (7), shows the average
distance at which a photon travels through the medium of a given
sample before interacting with its material (Alkan et al., 2018; Bawazeer
et al., 2023; Ali et al., 2015a; Agar, 2018; Eke et al., 2017; Kavun et al.,
2019).

Table 2
Linear attenuation coefficient for experimental and theoretical data.

1
MFP=— 7)
H"

The transmission factor (TF, %), the radiation protection efficiency
(RPE, %), and the effective atomic number (Z.g) in this work were
calculated via Egs. (8)-(10), respectively (Surung et al., 2016).

TF=L _em ®)
Iy

RPE=1-TF 9
b0 Qa

Zofp =— X — 10

ff 5EX p (10)

The electronic and atomic cross-sections (cmz/g) are given as 5, and
8q, the mass number of the atom (g/mol) is denoted by Qa, while the
density is represented by c. The values for §, and §, were obtained from
Egs. (11) and (12), respectively (Rilwan et al., 2025c).

6 X Py

e an
&:&22 12

where &t represents the overall cross-section (cmz), Pa stands for Avo-
gadro’s number (6.02 x1 023 rnol'l), Pe indicates the number of electrons
per unit atom, and Qe is the electron mass (g).

3. Results and discussion

The XRD of the pure PMMA, PMMA/Bi,O3, PMMA/MgO, and
PMMA/Biy03:MgO samples are depicted in Fig. 2. An amorphous
character with a large diffraction peak of 260 = 30° was observed from
the PMMA samples in the XRD pattern, and particularly in the pure
PMMA sample (see Fig. 2). There are no distinct and sharp peaks
observed in the PMMA samples, which resulted in poor arrangement of

Energy (keV) Pure PMMA PMMA/Bi,03 PMMA/MgO PMMA/Bi;03:MgO

Exp (cm’l) The (cm’l) Exp (em™) The (cm’l) Exp (cm’l) The (cm™ %) Exp (em™) The (cm’l)
59.5 0.701 0.734 0.744 0.752 0.703 0.709 0.688 0.695
661.6 0.112 0.139 0.131 0.140 0.132 0.135 0.125 0.129
1173.2 0.103 0.106 0.100 0.106 0.103 0.102 0.094 0.098
1332.5 0.091 0.099 0.095 0.099 0.092 0.096 0.090 0.092
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Fig. 2. The XRD spectra of pristine PMMA and the produced PMMA/Bi,0s3,
PMMA/MgO, and PMMA/Bi,03:MgO nano-composites at filler loadings of 0 %,
2.5 %, 2.5 %, and 5 %, respectively.

the atoms in the sample and in turn could affect the crystal structure of
the material. A long-ranged pattern was noticed in the samples due to
the wide halo centered at 20 = 27-33°, signifying the lack of long-range
order as documented in Mazrani et al. (2007) and Klein et al. (2009).
The peaks at 40-45° correspond to MgO and Bi;Oj3 crystalline phases,
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which indicates their existence in the fabricated PMMA composite. The
XRD pattern of PMMA dopped with 2.5 wt% of BizOs3, 2.5 wt% of MgO,
and 5 wt% of Biy03:MgO nanoparticles were observed to match with the
ICDD PDF card number of #00-045-0566 corresponding to BipO3 and
#00-045-0946 corresponding to MgO. The presence of JregPnandpiticles
show that apparently no strong chemical reaction took place between the BiyO3,
MgO, and the PMMA, but rather the metal oxides maintained their
crystal structures, confirming the nanoparticles’ uniform dispersion
within the PMMA matrix. Moreover, such characteristic is evidence that
the interaction is restricted to physical dispersion as well as possibly
Lewis’s acid-base interaction at the PMMA-oxide interface. The varia-
tion of diffraction patterns is in line with those reported in studies on
PMMA application (Surung et al., 2016).

Based on the SEM analysis of the synthesized samples, a smooth
distribution of the Bi,O3 and MgO nanoparticles was observed in all
samples, as presented in Fig. 3(a—d). The surfaces in Fig. 3a, b, and 3c
indicate that the protrusions from the implanted nanoparticles in the
composite material are distinctly visible, whereas the image in Fig. 3d
displays flat surfaces for the PMMA/Bi;O3:MgO sample. The smooth
surface morphology seen in Fig. 3d indicates that the BizO3:MgO are
well-accelerated within the PMMA matrix, which reduces the agglom-
eration of nanoparticles (Krzywy et al., 2010; Wani et al., 2015; Zhou
and Shang, 2023) due to the firm interfacial interactions (Dignam et al.,
2019; Ali et al., 2015b).

Base on the EDX results in Fig. 3(a—d), the concentration of Mg and Bi
are found to be high, donating to the density of the nano-particle in all
samples, with MgO causing the uniform dispersion while BiO3
improving the contrast at the surface because of its superior proton
number. This tells the reason why the sample’s SEM images exhibited

]

PMMA/ BizO3:MgO

Fig. 3. SEM images of undoped PMMA and doped with nano-composites before exposure to gamma radiation: (a) pure PMMA at 500 x , (b) PMMA/Bi,O3 nano-
composite sample, (¢) PMMA/MgO nano-composite sample, (d) PMMA/Bi;03:MgO nano-composite sample.
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smooth surfaces and less agglomeration (Rilwan et al., 2025c).

Figs. 4, 5, 6, and 7 respectively present the FTIR spectra of pure
PMMA, PMMA doped with Bi;O3, PMMA doped with MgO, and PMMA
co-doped with Bi;O3-MgO, which give a specific peak that represents
the functional grouping similar to PMMA. At 1720 cm ™", the prominent
peak of pure PMMA matches the ester grouping stretching vibrations
(C=0), whereas the peaks that fall within 2950-3000 cm~! show
stretching vibrations (C-H). The stretching, C~-O-C, closely corresponds
to the absorption peak at 1150-1250 em L. Fig. 4 demonstrates the
absence of additional peaks, indicating the lack of doping, which em-
phasizes the structural baseline of pure PMMA based on the report of
Bijanu et al. (2022). The PMMA doped with Bi;O3 sample in Fig. 5 shows
an appreciable peak at 17200 cm™!, which confirms the interaction of
the ester group of PMMA with Bi»Os, with a slight drift observed in the
wavenumber, confirming modification in the bond due to the high
proton number of the BiyOs, in agreement with the results of Mehrara
et al. (2021). The PMMA doped with MgO reveals a maximum peak
value around 1142 cm ™}, as seen in Fig. 6, indicating a shift in the C=0
and C-H bonds, which could enhance the molecular interactions of the
tested materials, aligning with the results reported by Mehrara et al.
(2021) and Park and Hwang (2017). The BisO3-MgO co-doped PMMA,
as shown in Fig. 7, indicates a drifted absorption peak, specifically in
C=—O stretching, with prominent peaks resulting from Bi,O3 and MgO, in
alignment with the report of Hashem et al. (2017). For example, in
Fig. 6, some prominent peaks occur at 1723 and 752 cm™!, while the
same peaks in Fig. 7 occur at 1725 and 748 em ™}, respectively, indi-
cating a slight drift.

Based on Fig. 8, the LACs for the pure PMMA determined theoreti-
cally and experimentally show extremely high values (0.734 cm™!
theoretically and 0.701 cm ™! experimentally) at the lowest energy level
considered in this research (59.50 keV). This considerable attenuation at
the least energy could be due to the photoelectric interaction being the
predominant interaction at lower energy levels where the tendency of
interaction is higher. There is a sharp drop in the LAC values (0.099
em™! theoretically and 0.091 cm™! for the experimental data) as the
energy reaches 1332.5 keV, which could be associated with the Comp-
ton scattering influence, since at regions where Compton scattering is
dominant, the interaction between the incoming photons and the
absorbing samples is reduced. Based on the results, a strong agreement
exists between the experimental and theoretical values; for example, at
1173.20 keV the experimental LAC value is 0.103 cm ! while the
theoretical LAC shows a value of 0.106 cm L. This result agrees with that
of Hashem et al. (2017). The LAC falls as the energy raises in the
59.5-1332.5 keV range, with the PMMA/Bi,O3 sample consistently
retaining the highest attenuation coefficient due to the presence of Bi;O3
(Bijanu et al., 2022). The LAC values of the pure PMMA, PMMA/MgO,
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Fig. 4. FTIR spectra for pure poly (methyl methacrylate) (PMMA).
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Fig. 8. A comparison chart showing the linear attenuation coefficient (LAC) for pure PMMA determined theoretically and experimentally as a function of the ra-

diation’s energy (E) in keV.

PMMA/Biy03, and PMMA/Bi»03:MgO samples respectively drop from
0.701 to 0.091, 0.744 to 0.095, 0.703 to 0.092, and 0.688 to 0.09 cm !,
indicating a similar percentage decrease of 13 %, 12.76 %, 13.09 %, and
13.09 %, respectively, and thus confirming the PMMA/Bi»O3 and
PMMA/Biy03:MgO samples as promising candidates for radiation
shielding applications.

Fig. 9 presents a chart showing (a) the MACs for all the studied
samples against energy (E) in keV, and (b) a chart of the MACs of all the
samples at 59.5 keV. In Fig. 9a, the pure PMMA and PMMA/MgO
samples show extremely low MACs at 59.50 keV with respective values
of 0.3996 and 0.4001 cmz/g, compared to the PMMA/Bis03:MgO and
PMMA/Bi,03 samples that exhibit high respective values at 0.4001 and

0.4096 crnz/g. The raise in MAC values for the PMMA/Bi>03:MgO and
PMMA/Biy03 samples could be as a result of the presence of BizOs. As
the energy increases from 59.5 to 1332.5 keV for the pure PMMA,
PMMA/MgO, PMMA/Biy03, and PMMA/Bi203:MgO samples, the MAC
experiences a significant average drop by 82.6 %, 85.9 %, and 87.075 %,
respectively, at 661.6, 1173.2, and 1332.5 keV, as shown in Table 3.
Since the drop is the maximum at 1332.5 keV and the minimum at 59.5
keV, it is confirmed that the superiority of the studied composite is
significant at the low energy of 59.5 keV, while negligible at the high
energies of 661.6, 1173.2, and 1332.5 keV. Similar MAC values were
observed across the pure PMMA and PMMA/MgO samples, as well as the
PMMA/Biy03 and PMMA/Bi;03:MgO samples, as presented in Fig. 9b.
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Fig. 9. A chart showing (A) the mass attenuation coefficient (MAC) for all the studied samples against energy (E) in keV, and (b) a chart of the MACs of all samples at

59.5 MeV.
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Table 3

0.8

Radiation Physics and Chemistry 237 (2025) 113070

0.7 =

0.6 =

0.5 =

04 =

LAC, cm’

0.3 =

0.2 =

0.1 =

—&— Pure PMMA
—o— PMMAIBi203
—a&— PMMA/MgO
—v— PMMA/Bi, O, :MgO

L
100

1 0.00
Energy, keV

Fig. 10. A comparison chart showing the LAC for all the studied samples as a function of energy (E) in keV.

The percentage drop in MAC (%).

Even though the PMMA/Bi»O3 and PMMA/Bi;03:MgO samples show an
equal percentage decrease, the reduction in MAC values observed as the

energy raised could be attributed to a reduction in the probability of
interaction as the energy leaves the photoelectric region towards the

Compton scattering region (Rilwan et al., 2025e) (see Fig. 10).

At the 661.6 keV energy level, the HVL, TVL, and MFP are the least in
the PMMA/Bi»03 sample with respective values of 4.95, 16.44, and 7.14
cm, as shown in Fig. 11, while the PMMA/Bi;03:MgO sample respec-
tively has values of 5.37, 17.85, and 7.75 cm for the HVL, TVL, and MFP.
The least HVL, TVL, and MFP values at 661.6 keV energy seen in the

PMMA/Bi;03 sample could be due to the presence of Bi;O3, which im-
proves the sample’s density, while the high values of the radiation

Energy Percentage Drop in MAC (%) Average %
keV D
tkew) Pure PMMA/  PMMA/  PMMA/ rop
PMMA Biy03 MgO Bi,03:MgO
59.5 0.00 0.00 0.00 0.00 0.0000
661.6 84.0 83.4 81.2 81.8 82.600
1173.2 85.3 86.7 85.3 86.3 85.900
1332.5 87.0 87.4 87.0 86.9 87.075
32
30
28

Radiation Shielding Layers, cm

o N b~ O

Pure PMMA

PMMA/Bi203

PMMA/MgO PMMA/Bi203:MgO
Sample Code

Fig. 11. A comparison chart showing the results of the radiation shielding layers for all the samples at energy (E) of 661.6 keV.
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shielding layers seen in the PMMA/Bi»03:MgO sample could be related
to the presence of MgO which has a low atomic number, thus reducing
the density of the resulting sample. Since materials with high values for
the radiation shielding layers exhibit poorer attenuation, it is confirmed
that the PMMA/Bi;O3 sample possesses the optimum shielding perfor-
mance compared to the other examined samples in this study. This result
agrees with the report of Bijanu et al. (2022).

As seen in Fig. 12, the RPE of the PMMA/Bi>Og, pure PMMA, PMMA/
MgO, and PMMA/Bi203:MgO samples respectively reduce from 0.3134
to 0.0676 %, 0.3072 to 0.0671 %, 0.2985 to 0.0653 %, and 0.2935 to
0.0625 % as the energy decreases from 59.5 to 1332.5 keV, with the
PMMA/Bi;O3 sample maintaining the highest RPE throughout the tested
energy range. The reduction observed in RPE as the energy increases
could be due to the decrease in the number of interactions at the higher
energy range. This shows a similar trend to the one reported by Bijanu
et al. (2022).

In Fig. 13, the Z. also shows a similar trend to the LAC, as it also
decreases with increased energy, showing that the Compton scattering
interaction is the dominant interaction that takes place at the higher
energy range. The PMMA/Bi»O3 sample shows the highest Z.¢ values
due to the presence of BizOs, while the PMMA/Bi203:MgO sample ex-
hibits the least Z¢¢ value due to the presence of MgO, confirming the
PMMA/Bi203 sample as the preferred candidate for the attenuation of
gamma radiation. This result agrees with that reported in Yousefi et al.
(2023).

4. Conclusion

In the current study, all the fabricated samples were found to be
amorphous in nature, which suggests that there was no structural
change as the dopants (Bi2O3, MgO, and BizO3:MgO) were added to the
PMMA matrix. This is an indication that, even with the physical mixing,
there was no observed alteration in the chemical reaction of all the
samples. Based on the SEM results, there was an even-spreading of the
nanoparticle (BipO3) within the PMMA matrix, resulting in a smooth
surface morphology. Great C=O0 stretching peaks of PMMA doped with
BiyO3 up to 17200 cm ™! were reported by the FTIR analysis, confirming
a rise in the interactions. At 59.5 keV, the PMMA doped with BiyO3
sample had the largest LAC of 0.759 cm ™! and a MAC of 0.4096 cm?/g,
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when compared to the PMMA doped with BipO3-MgO sample with a
LAC 0.695 cm™'. The PMMA doped with BiyO3 sample had the least HVL
and TVL of 4.95 and 16.44 cm, respectively, thus evidencing its radia-
tion shielding superiority. The PMMA doped with Bi;O3 sample hence
stands out as the optimum candidate for gamma radiation protection
among the remaining tested samples.
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