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A B S T R A C T

This work investigated the gamma radiation shielding performance of different nano-composites (pure PMMA, 
PMMA doped with Bi2O3, PMMA doped with MgO, and PMMA doped with Bi2O3–MgO) using the solution 
casting method. The experimental linear attenuation coefficients (LACs) of the samples were determined using a 
sodium iodide (NaI) detector and the results were compared with Phy-X theoretical results, where better 
matching was observed. At 59.5 keV, the PMMA doped with Bi2O3 sample had the largest LAC of 0.759 cm− 1 

when compared to the PMMA doped with Bi2O3–MgO sample with a LAC of 0.695 cm− 1. At the same energy 
(59.5 keV), the radiation protection efficiency of the PMMA doped with Bi2O3 sample was 31.34 %, which was 
far greater compared to that of the PMMA doped with Bi2O3–MgO sample, thus confirming the PMMA doped 
with Bi2O3 sample as the optimum candidate to be applied for protection against gamma radiation.

1. Introduction

In terms of the hazardous effect of some diagnostic tools, such as X- 
ray machines and scanners, medical personnel recommend radiation 
protection for patients in order to reduce direct exposure to radiological 
dangers such as skin cancer, brain cancer, leukemia, mutation, and other 
radiation sicknesses, with this protection acting as a barrier to reduce 
scattered radiation from patients and leakages from other sources 
(Mazrani et al., 2007; Klein et al., 2009; Johnson and Cember, 2017; 
Charkiewicz and Backstrand, 2020; Krzywy et al., 2010; Wani et al., 
2015; Dignam et al., 2019; Adlienė et al., 2020; Mittal, 2015). Other 

ways of reducing exposure to radiological hazards involve reduced 
exposure time and increased distance. Lead is historically known as the 
primary shielding material, but it is toxic and heavy (Sayyed et al., 2022; 
Li et al., 2018; AbuAlRoos et al., 2019; Wasel and Freeman, 2018).

Lead toxicity is a general environmental health problem, affecting 
different systems and organs of the body. Lead ingested from food and 
dust used to cause serious developmental delays in infants and other 
health problems (El-Khatib et al., 2019; Li et al., 2017; Azman et al., 
2013; Abu-Saleem et al., 2021; Ravneet et al., 2020; Kucuk et al., 2013). 
The Institute for Health Metrics and Evaluation reported that lead 
exposure causes 900,000 deaths annually. Advanced nano-technology is 
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required to produce lead-free composite materials as non-toxic alter
natives that are safe and eco-friendly, especially in the context of radi
ation protection (Pituru et al., 2020; Rilwan et al., 2024, 2025a; 
Almuqrin et al., 2024a, 2024b; Alasali et al., 2024). These materials can 
offer enhanced mechanical stability, flexibility, and radiation absorp
tion. Nano-fillers improve photon interactions through uniform disper
sion and a high surface-to-volume ratio, outperforming micro-fillers 
(Mostafa et al., 2022; Subedi and Lamichhane, 2023). Nano-composites 
such as high-density polyethylene (HDPE)/CdO and epoxy/Ga2O3 pro
vide superior shielding abilities, particularly at weak photon energies. In 
this manner, these materials are transforming radiation shielding in the 
healthcare and industrial fields (Sayyed et al., 2024a, 2024b, 2024c; 
Rotkovich et al., 2024; Ahmed et al., 2024; Yasmin et al., 2024; Alshahri 
et al., 2021).

Nano-fillers incorporated into polymer materials and polycarbonate 
are used in radiation protection applications. The increase in the density 
of fillers like Bi2O3 improves the absorption coefficient, particularly at 
weak-to-medium photon energies; for example, low-density poly
ethylene (LDPE)/Bi2O3 composites with 15 % filler obstructed 80 % of 
X-rays at 47.9 keV effective (Ambika et al., 2017a, 2017b; Rilwan et al., 
2025b, 2025c; Mehrara et al., 2021; Cao et al., 2020). Due to the small 
size and uniform distribution of nano-fillers, they significantly improve 
radiation protection by enhancing photon interactions and electron 
density (Abbas et al., 2022; Pavlenko et al., 2019; More et al., 2021; 
Berger et al., 2010; Idris et al., 2025; Rilwan et al., 2025d; Khalid et al., 
2025). The comparison of micro- and nano-composites consistently 
shows higher absorption coefficients; for example, styrene-butadiene 
(SR)/Bi2O3 nano-composites outperformed their micro-counterparts 
across various energies, demonstrating the pivotal function of filler 
size and distribution in optimizing protection effectiveness (Tokar et al., 
2013; Shahzad et al., 2022; Saleh et al., 2024; Alresheedi et al., 2023).

Bismuth oxide is an alternative to lead due to its shielding properties 
and non-toxicity. Various polymer materials, such as epoxy and silicon 
resin, confirm the efficacy of bismuth oxide nano-composites in 
absorbing gamma- and X-rays across the different energy ranges used in 
radiation shielding (Alsafi et al., 2024; Hannachi et al., 2024; Adaikalam 
et al., 2024; Alothman et al., 2021; Aloraini et al., 2023).

Advanced production processes, such as melt-mixing and solution 
casting, help in the preparation of polymer nano-composites with 
optimal characteristics. These methods, combined with characteriza
tions like SEM and XRD, also improve the development of morphological 
and crystalline features, representing a potential innovative approach in 
materials improvement. These techniques explain the potential in ra
diation shielding (Muthamma et al., 2021; Khrenov et al., 2007; Stelzig 
et al., 2008; Demirbay et al., 2019; Alkan et al., 2018).

In the current research, we delved in to the fabrication of PMMA- 
Bi2O3–MgO thin films using the solution casting technique. The radia
tion shielding ability of the fabricated samples was evaluated with the 
aid of gamma spectrometric analysis with the Co-60, Cs-137, and Am- 
241 radiation sources, which are important in radiation therapy as 
well as medical imaging. The present study also investigated the 
morphology and crystal integrity of the samples via scanning electron 
microscopy (SEM) and X-ray diffraction (XRD) techniques in order to 
provide additional knowledge on the structural characteristics of the 
fabricated PMMA-Bi2O3–MgO thin-film samples, which brings out the 
potentiality of the PMMA-Bi2O3–MgO thin films in resolving the prob
lem of lead toxicity in terms of radiation shielding applications.

2. Material and methods

2.1. Preparation of the PMMA/nano-composites

The preparation of transparent poly (methyl methacrylate) (PMMA) 
entailed dissolving 20 g of PMMA (with the chemical formula C5H8O2) 
in 160 cm3 of chloroform (CHCl3) using a magnetic stirrer for one day, 
while gradually adding 0.01 g of bismuth and magnesium oxides in 5 

cm3 of chloroform. The nanoparticle-impregnated PMMA polymer was 
poured into an aluminum dish and allowed to remain at room temper
ature for approximately four days for the solvent to slowly cool in order 
to ensure thin-film formation (Alkan et al., 2018). The masses of the 
fabricated circular samples were individually measured with the aid of a 
digital weighing balance (SF-400) which has a precision of ±0.1. the 
volume of the circular samples was calculated using the formula for 
volume of circle as described in Eq. (1) (Rilwan et al., 2025c). The 
measured masses and the calculated volumes were then utilized to 
calculate the densities (in g/cm3) of the samples as described in Eq. (2)
(Rilwan et al., 2025a). The sample’s chemical compositions in wt.%, as 
well as the density of the fabricated PMMA nano-composites in g/cm3 

are presented in Table 1. 

V =

(
4
3

)

× π × r3 (1) 

ρ=M
V

(2) 

where the mass of each sample is represented by M, the volume denoted 
by V, and r stands for radius of the circle.

2.2. Characterization

In this research, XRD (Bruker AXS Germany Brand and D8 advance 
Model) was utilized to investigate the structural characteristics of the 
fabricated samples. ICDD standards (the reference diffraction pattern 
often utilized during the XRD analysis of samples in order to identify the 
phases of the crystalline materials) were maintained in the XRD device 
(using Cu-Kα radiation) with a wavelength of 1.54 Ao, step size of 0.02◦, 
and scan speed of 1◦/min under ambient temperature, where a 2 h 
spectrum was used between 10 and 80◦ (0) for the thin films. SEM with 
5–20 kV accelerating potential, high-vacuum mode, secondary electron 
detector, and a gold sputter coating for the non-conductive samples was 
employed to check the surface morphology of the fabricated samples. 
The molecular structure and composition of the samples were analyzed 
using Fourier transform infrared (FITR) spectroscopy (PerkinElmer 
Brand and FTIR Spectrum-400 Model) at the wavelength spectrum of 
400–4000 cm− 1, with a resolution of 4/cm and utilizing the attenuated 
total reflectance (ATR) pellet technique at normal (room) temperature 
(Alkan et al., 2018).

2.3. Radiation attenuation evaluation

A sodium iodide (NaI) detector was employed, having an efficiency 
of 10–20 % for the identification of the γ-spectrum emitted from the Am- 
241 (59.5 keV) γ-sources, 5–15 % for the identification of the γ-spectrum 
emitted from the Co-60 (1173.2 and 1332.5 keV) γ-sources, and 10–25 
% for the identification of the γ-spectrum emitted from the Cs-137 
(661.6 keV) γ-sources (Rilwan et al., 2025b). The narrow beam 
method was employed in the experimental measurements, where a lead 
collimator was placed between the source and the detector, as shown in 
Fig. 1. The PMMA/nano-composite sample was placed in a measured 
position between the detector and the source, with the gamma intensity 
taken in the absence (I0) and presence (Ix) of the sample. The data for the 

Table 1 
Chemical compositions of the developed nano-composites in wt.%.

Sample Code CHCl3 C5H8O2 Bi2O3 MgO Density (g/cm3)

Pure PMMA 0.920 0.0777 0.0000 0.0000 1.837
PMMA/Bi2O3 0.920 0.07757 0.0021 0.0000 1.836
PMMA/MgO 0.920 0.07757 0.0000 0.0021 1.772
PMMA/Bi2O3:MgO 0.920 0.0774 0.0021 0.0021 1.698

CHCl3 = chemical formula for chloroform; C5H8O2 = chemical formula for poly 
(methyl methacrylate) (PMMA).
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intensity was used with the aid of Eq. (3) (Aloraini et al., 2023, Cağlar 
et al., 2019; Yousefi et al., 2023) to evaluate the experimental linear 
attenuation coefficient (LAC) in cm− 1, as presented in Table 2. 

LAC=
1
X

ln
(

I0

I

)

(3) 

where x is the thickness of the thin films in cm, I is the intensity in count 
per seconds (cps) with the presence of the PMMA nano-composite, and 
Io the is intensity also in cps but without the presence of the PMMA 
nano-composite. Moreover, the mass attenuation coefficients (MACs) of 
our samples in cm2/g were examine using Eq. (4) (Aloraini et al., 2023; 
Krishnamoorthy et al., 2012; Boubeta et al., 2010; Chalkidou et al., 
2011; Di et al., 2012). 

μm =
μ
ρ=

∑
wᵢ
(μ

ρ

)
ᵢ (4) 

where, wi represents the weight fraction, and 
(

μ
ρ

)
ᵢ stands for the MAC for 

an individual element in the compound. The half value layer (HVL, cm), 
as determined in Eq. (5), indicates the shield thickness required to 
reduce the radiation beam intensity to one-half, while the tenth value 
layer (TVL, cm) computed from Eq. (6) denotes the shield layer needed 
to minimize the radiation beam intensity to one-tenth of the initial level 
(Muthamma et al., 2021; Demirbay et al., 2019; Saudi et al., 2021; Gohil 
et al., 2017; Müller et al., 2017; Deka et al., 2022). 

HVL=
ln 2

μ (5) 

TVL=
ln 10

μ (6) 

The mean free path (MFP, cm), given by Eq. (7), shows the average 
distance at which a photon travels through the medium of a given 
sample before interacting with its material (Alkan et al., 2018; Bawazeer 
et al., 2023; Ali et al., 2015a; Agar, 2018; Eke et al., 2017; Kavun et al., 
2019). 

MFP=
1
μ (7) 

The transmission factor (TF, %), the radiation protection efficiency 
(RPE, %), and the effective atomic number (Zeff) in this work were 
calculated via Eqs. (8)–(10), respectively (Surung et al., 2016). 

TF=
I
I0

= e− μx (8) 

RPE=1 − TF (9) 

Zeff =
δa

δe
×

Qa

σ (10) 

The electronic and atomic cross-sections (cm2/g) are given as δe and 
δa, the mass number of the atom (g/mol) is denoted by Qa, while the 
density is represented by σ. The values for δe and δa were obtained from 
Eqs. (11) and (12), respectively (Rilwan et al., 2025c). 

δa =
δt × Pa

Qa × σ (11) 

δe =
δt × Pe

Qe × σ (12) 

where δt represents the overall cross-section (cm2), Pa stands for Avo
gadro’s number (6.02 x1023 mol-1), Pe indicates the number of electrons 
per unit atom, and Qe is the electron mass (g).

3. Results and discussion

The XRD of the pure PMMA, PMMA/Bi2O3, PMMA/MgO, and 
PMMA/Bi2O3:MgO samples are depicted in Fig. 2. An amorphous 
character with a large diffraction peak of 2θ = 30◦ was observed from 
the PMMA samples in the XRD pattern, and particularly in the pure 
PMMA sample (see Fig. 2). There are no distinct and sharp peaks 
observed in the PMMA samples, which resulted in poor arrangement of 

Fig. 1. Setup for the experimental measurement.

Table 2 
Linear attenuation coefficient for experimental and theoretical data.

Energy (keV) Pure PMMA PMMA/Bi2O3 PMMA/MgO PMMA/Bi2O3:MgO

Exp (cm− 1) The (cm− 1) Exp (cm− 1) The (cm− 1) Exp (cm− 1) The (cm− 1) Exp (cm− 1) The (cm− 1)

59.5 0.701 0.734 0.744 0.752 0.703 0.709 0.688 0.695
661.6 0.112 0.139 0.131 0.140 0.132 0.135 0.125 0.129
1173.2 0.103 0.106 0.100 0.106 0.103 0.102 0.094 0.098
1332.5 0.091 0.099 0.095 0.099 0.092 0.096 0.090 0.092
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the atoms in the sample and in turn could affect the crystal structure of 
the material. A long-ranged pattern was noticed in the samples due to 
the wide halo centered at 2θ = 27–33◦, signifying the lack of long-range 
order as documented in Mazrani et al. (2007) and Klein et al. (2009). 
The peaks at 40–45◦ correspond to MgO and Bi2O3 crystalline phases, 

which indicates their existence in the fabricated PMMA composite. The 
XRD pattern of PMMA dopped with 2.5 wt% of Bi2O3, 2.5 wt% of MgO, 
and 5 wt% of Bi2O3:MgO nanoparticles were observed to match with the 
ICDD PDF card number of #00-045-0566 corresponding to Bi2O3 and 
#00-045-0946 corresponding to MgO. The presence of Bi

2
O
3
, MgO, and Bi
2
O
3
:MgO nanoparticles 

show that apparently no strong chemical reaction took place between the Bi2O3, 
MgO, and the PMMA, but rather the metal oxides maintained their 
crystal structures, confirming the nanoparticles’ uniform dispersion 
within the PMMA matrix. Moreover, such characteristic is evidence that 
the interaction is restricted to physical dispersion as well as possibly 
Lewis’s acid-base interaction at the PMMA–oxide interface. The varia
tion of diffraction patterns is in line with those reported in studies on 
PMMA application (Surung et al., 2016).

Based on the SEM analysis of the synthesized samples, a smooth 
distribution of the Bi2O3 and MgO nanoparticles was observed in all 
samples, as presented in Fig. 3(a–d). The surfaces in Fig. 3a, b, and 3c 
indicate that the protrusions from the implanted nanoparticles in the 
composite material are distinctly visible, whereas the image in Fig. 3d 
displays flat surfaces for the PMMA/Bi2O3:MgO sample. The smooth 
surface morphology seen in Fig. 3d indicates that the Bi2O3:MgO are 
well-accelerated within the PMMA matrix, which reduces the agglom
eration of nanoparticles (Krzywy et al., 2010; Wani et al., 2015; Zhou 
and Shang, 2023) due to the firm interfacial interactions (Dignam et al., 
2019; Ali et al., 2015b).

Base on the EDX results in Fig. 3(a–d), the concentration of Mg and Bi 
are found to be high, donating to the density of the nano-particle in all 
samples, with MgO causing the uniform dispersion while Bi2O3 
improving the contrast at the surface because of its superior proton 
number. This tells the reason why the sample’s SEM images exhibited 

Fig. 2. The XRD spectra of pristine PMMA and the produced PMMA/Bi2O3, 
PMMA/MgO, and PMMA/Bi2O3:MgO nano-composites at filler loadings of 0 %, 
2.5 %, 2.5 %, and 5 %, respectively.

Fig. 3. SEM images of undoped PMMA and doped with nano-composites before exposure to gamma radiation: (a) pure PMMA at 500 × , (b) PMMA/Bi2O3 nano- 
composite sample, (c) PMMA/MgO nano-composite sample, (d) PMMA/Bi2O3:MgO nano-composite sample.
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smooth surfaces and less agglomeration (Rilwan et al., 2025c).
Figs. 4, 5, 6, and 7 respectively present the FTIR spectra of pure 

PMMA, PMMA doped with Bi2O3, PMMA doped with MgO, and PMMA 
co-doped with Bi2O3–MgO, which give a specific peak that represents 
the functional grouping similar to PMMA. At 1720 cm− 1, the prominent 
peak of pure PMMA matches the ester grouping stretching vibrations 
(C––O), whereas the peaks that fall within 2950–3000 cm− 1 show 
stretching vibrations (C–H). The stretching, C–O–C, closely corresponds 
to the absorption peak at 1150–1250 cm− 1. Fig. 4 demonstrates the 
absence of additional peaks, indicating the lack of doping, which em
phasizes the structural baseline of pure PMMA based on the report of 
Bijanu et al. (2022). The PMMA doped with Bi2O3 sample in Fig. 5 shows 
an appreciable peak at 17200 cm− 1, which confirms the interaction of 
the ester group of PMMA with Bi2O3, with a slight drift observed in the 
wavenumber, confirming modification in the bond due to the high 
proton number of the Bi2O3, in agreement with the results of Mehrara 
et al. (2021). The PMMA doped with MgO reveals a maximum peak 
value around 1142 cm− 1, as seen in Fig. 6, indicating a shift in the C––O 
and C–H bonds, which could enhance the molecular interactions of the 
tested materials, aligning with the results reported by Mehrara et al. 
(2021) and Park and Hwang (2017). The Bi2O3–MgO co-doped PMMA, 
as shown in Fig. 7, indicates a drifted absorption peak, specifically in 
C––O stretching, with prominent peaks resulting from Bi2O3 and MgO, in 
alignment with the report of Hashem et al. (2017). For example, in 
Fig. 6, some prominent peaks occur at 1723 and 752 cm− 1, while the 
same peaks in Fig. 7 occur at 1725 and 748 cm− 1, respectively, indi
cating a slight drift.

Based on Fig. 8, the LACs for the pure PMMA determined theoreti
cally and experimentally show extremely high values (0.734 cm− 1 

theoretically and 0.701 cm− 1 experimentally) at the lowest energy level 
considered in this research (59.50 keV). This considerable attenuation at 
the least energy could be due to the photoelectric interaction being the 
predominant interaction at lower energy levels where the tendency of 
interaction is higher. There is a sharp drop in the LAC values (0.099 
cm− 1 theoretically and 0.091 cm− 1 for the experimental data) as the 
energy reaches 1332.5 keV, which could be associated with the Comp
ton scattering influence, since at regions where Compton scattering is 
dominant, the interaction between the incoming photons and the 
absorbing samples is reduced. Based on the results, a strong agreement 
exists between the experimental and theoretical values; for example, at 
1173.20 keV the experimental LAC value is 0.103 cm− 1 while the 
theoretical LAC shows a value of 0.106 cm− 1. This result agrees with that 
of Hashem et al. (2017). The LAC falls as the energy raises in the 
59.5–1332.5 keV range, with the PMMA/Bi2O3 sample consistently 
retaining the highest attenuation coefficient due to the presence of Bi2O3 
(Bijanu et al., 2022). The LAC values of the pure PMMA, PMMA/MgO, 

Fig. 4. FTIR spectra for pure poly (methyl methacrylate) (PMMA).

Fig. 5. FTIR spectra for PMMA doped with Bi2O3.

Fig. 6. FTIR spectra for PMMA doped with MgO.

Fig. 7. FTIR spectra for PMMA doped with Bi2O3 and MgO.
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PMMA/Bi2O3, and PMMA/Bi2O3:MgO samples respectively drop from 
0.701 to 0.091, 0.744 to 0.095, 0.703 to 0.092, and 0.688 to 0.09 cm− 1, 
indicating a similar percentage decrease of 13 %, 12.76 %, 13.09 %, and 
13.09 %, respectively, and thus confirming the PMMA/Bi2O3 and 
PMMA/Bi2O3:MgO samples as promising candidates for radiation 
shielding applications.

Fig. 9 presents a chart showing (a) the MACs for all the studied 
samples against energy (E) in keV, and (b) a chart of the MACs of all the 
samples at 59.5 keV. In Fig. 9a, the pure PMMA and PMMA/MgO 
samples show extremely low MACs at 59.50 keV with respective values 
of 0.3996 and 0.4001 cm2/g, compared to the PMMA/Bi2O3:MgO and 
PMMA/Bi2O3 samples that exhibit high respective values at 0.4001 and 

0.4096 cm2/g. The raise in MAC values for the PMMA/Bi2O3:MgO and 
PMMA/Bi2O3 samples could be as a result of the presence of Bi2O3. As 
the energy increases from 59.5 to 1332.5 keV for the pure PMMA, 
PMMA/MgO, PMMA/Bi2O3, and PMMA/Bi2O3:MgO samples, the MAC 
experiences a significant average drop by 82.6 %, 85.9 %, and 87.075 %, 
respectively, at 661.6, 1173.2, and 1332.5 keV, as shown in Table 3. 
Since the drop is the maximum at 1332.5 keV and the minimum at 59.5 
keV, it is confirmed that the superiority of the studied composite is 
significant at the low energy of 59.5 keV, while negligible at the high 
energies of 661.6, 1173.2, and 1332.5 keV. Similar MAC values were 
observed across the pure PMMA and PMMA/MgO samples, as well as the 
PMMA/Bi2O3 and PMMA/Bi2O3:MgO samples, as presented in Fig. 9b. 

Fig. 8. A comparison chart showing the linear attenuation coefficient (LAC) for pure PMMA determined theoretically and experimentally as a function of the ra
diation’s energy (E) in keV.

Fig. 9. A chart showing (A) the mass attenuation coefficient (MAC) for all the studied samples against energy (E) in keV, and (b) a chart of the MACs of all samples at 
59.5 MeV.
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Even though the PMMA/Bi2O3 and PMMA/Bi2O3:MgO samples show an 
equal percentage decrease, the reduction in MAC values observed as the 
energy raised could be attributed to a reduction in the probability of 
interaction as the energy leaves the photoelectric region towards the 
Compton scattering region (Rilwan et al., 2025e) (see Fig. 10).

At the 661.6 keV energy level, the HVL, TVL, and MFP are the least in 
the PMMA/Bi2O3 sample with respective values of 4.95, 16.44, and 7.14 
cm, as shown in Fig. 11, while the PMMA/Bi2O3:MgO sample respec
tively has values of 5.37, 17.85, and 7.75 cm for the HVL, TVL, and MFP. 
The least HVL, TVL, and MFP values at 661.6 keV energy seen in the 
PMMA/Bi2O3 sample could be due to the presence of Bi2O3, which im
proves the sample’s density, while the high values of the radiation 

Fig. 10. A comparison chart showing the LAC for all the studied samples as a function of energy (E) in keV.

Table 3 
The percentage drop in MAC (%).

Energy 
(keV)

Percentage Drop in MAC (%) Average % 
Drop

Pure 
PMMA

PMMA/ 
Bi2O3

PMMA/ 
MgO

PMMA/ 
Bi2O3:MgO

59.5 0.00 0.00 0.00 0.00 0.0000
661.6 84.0 83.4 81.2 81.8 82.600
1173.2 85.3 86.7 85.3 86.3 85.900
1332.5 87.0 87.4 87.0 86.9 87.075

Fig. 11. A comparison chart showing the results of the radiation shielding layers for all the samples at energy (E) of 661.6 keV.
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shielding layers seen in the PMMA/Bi2O3:MgO sample could be related 
to the presence of MgO which has a low atomic number, thus reducing 
the density of the resulting sample. Since materials with high values for 
the radiation shielding layers exhibit poorer attenuation, it is confirmed 
that the PMMA/Bi2O3 sample possesses the optimum shielding perfor
mance compared to the other examined samples in this study. This result 
agrees with the report of Bijanu et al. (2022).

As seen in Fig. 12, the RPE of the PMMA/Bi2O3, pure PMMA, PMMA/ 
MgO, and PMMA/Bi2O3:MgO samples respectively reduce from 0.3134 
to 0.0676 %, 0.3072 to 0.0671 %, 0.2985 to 0.0653 %, and 0.2935 to 
0.0625 % as the energy decreases from 59.5 to 1332.5 keV, with the 
PMMA/Bi2O3 sample maintaining the highest RPE throughout the tested 
energy range. The reduction observed in RPE as the energy increases 
could be due to the decrease in the number of interactions at the higher 
energy range. This shows a similar trend to the one reported by Bijanu 
et al. (2022).

In Fig. 13, the Zeff also shows a similar trend to the LAC, as it also 
decreases with increased energy, showing that the Compton scattering 
interaction is the dominant interaction that takes place at the higher 
energy range. The PMMA/Bi2O3 sample shows the highest Zeff values 
due to the presence of Bi2O3, while the PMMA/Bi2O3:MgO sample ex
hibits the least Zeff value due to the presence of MgO, confirming the 
PMMA/Bi2O3 sample as the preferred candidate for the attenuation of 
gamma radiation. This result agrees with that reported in Yousefi et al. 
(2023).

4. Conclusion

In the current study, all the fabricated samples were found to be 
amorphous in nature, which suggests that there was no structural 
change as the dopants (Bi2O3, MgO, and Bi2O3:MgO) were added to the 
PMMA matrix. This is an indication that, even with the physical mixing, 
there was no observed alteration in the chemical reaction of all the 
samples. Based on the SEM results, there was an even-spreading of the 
nanoparticle (Bi2O3) within the PMMA matrix, resulting in a smooth 
surface morphology. Great C––O stretching peaks of PMMA doped with 
Bi2O3 up to 17200 cm− 1 were reported by the FTIR analysis, confirming 
a rise in the interactions. At 59.5 keV, the PMMA doped with Bi2O3 
sample had the largest LAC of 0.759 cm− 1 and a MAC of 0.4096 cm2/g, 

when compared to the PMMA doped with Bi2O3–MgO sample with a 
LAC 0.695 cm− 1. The PMMA doped with Bi2O3 sample had the least HVL 
and TVL of 4.95 and 16.44 cm, respectively, thus evidencing its radia
tion shielding superiority. The PMMA doped with Bi2O3 sample hence 
stands out as the optimum candidate for gamma radiation protection 
among the remaining tested samples.
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Çağlar, M., Kayacık, H., Karabul, Y., Kılıç, M., Özdemir, Z.G., İçelli, O., 2019. Na2Si3O7/ 
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