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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of degree of Doctor of Philosophy 

INTEGRATED APPROACH FOR IMPROVING CROSS-PROJECT 
SOFTWARE DEFECT PREDICTION PERFORMANCE 

By 

YAHAYA ZAKARIYAU BALA 

April 2024 

Chairman : Pathiah binti Abdul Samat, PhD  
Faculty : Computer Science and Information Technology 

This research addresses three critical challenges in cross-project defect 

prediction (CPDP): distribution differences, redundant features, and model 

overfitting. These issues often degrade prediction accuracy and robustness in

various domains. To tackle these challenges, this study proposes a holistic 

approach named Transformation, Feature Selection, and Multi-learning 

(TFSM). This research is divided into three objectives: firstly, to proposed 

transformation, feature selection and multi-learning techniques that can 

mitigate distribution differences between datasets, identify and eliminate

redundant features and combat model overfitting, respectively. Secondly, to 

integrate these techniques into a TFSM and implement. Thirdly, to evaluate

each technique and the integrated approach. The research methodology 

involves the formulation, implementation, and evaluation of each technique 

individually and their integrated approach, TFSM. Experimental evaluations

are conducted using open-source software projects sourced from the open 

source repository, with F1_score serving as the primary evaluation metric. 
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Results from the experiments demonstrate significant improvements in 

predictive performance. The transformation techniques effectively reduce 

distribution differences, enhancing the model's ability to generalize across 

diverse datasets. Feature selection methods successfully mitigate the negative

impact of redundant features, streamlining the learning process and improving 

model interpretability. Additionally, the multi-learning approach proves 

effective in reducing model overfitting by aggregating diverse model outputs. 

When integrated into the TFSM approach, these techniques collectively 

demonstrated a marked improvement in CPDP performance. The TFSM

approach leverages the strengths of each individual technique, resulting in a 

synergistic effect that enhances the model’s predictive accuracy. This 

approach addresses the multifaceted challenges inherent in CPDP, providing 

a more reliable and effective solution for defect prediction in software projects. 

This work contributes to the ongoing efforts in the software engineering 

community to develop more accurate and reliable defect prediction models, 

ultimately aiding in the development of higher-quality software. Future work will 

focus on further refining these techniques and exploring their applicability to a 

broader range of software projects and repositories. 

Keywords: Cross-Project, Defect, Machine Learning, Prediction, Software. 

SDG: GOAL 9: Industry, Innovation and Infrastructure 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PENDEKATAN BERSEPADU UNTUK MENINGKATKAN PRESTASI 
RAMALAN KECACATAN PERISIAN MERENTAS PROJEK 

Oleh 

YAHAYA ZAKARIYAU BALA 

April 2024 

Pengerusi : Pathiah binti Abdul Samat, PhD 
Fakulti : Sains Komputer dan Teknologi Maklumat 

Penyelidikan ini menangani tiga cabaran kritikal dalam ramalan kecacatan 

merentas projek (CPDP): perbezaan pengagihan, ciri-ciri berlebihan dan 

model lebih muat. Isu ini sering menurunkan ketepatan ramalan dan 

keteguhan dalam pelbagai domain. Untuk menangani cabaran ini, kajian ini 

mencadangkan pendekatan holistik yang dinamakan Transformasi, Pemilihan

Ciri dan Pembelajaran Berbilang (TFSM). Penyelidikan ini terbahagi kepada 

tiga objektif: pertama, untuk cadangan transformasi, pemilihan ciri dan teknik

pembelajaran berbilang yang boleh mengurangkan perbezaan pengagihan

antara set data, mengenal pasti dan menghapuskan ciri-ciri berlebihan dan 

melawan model lebih muat, masing-masing. Kedua, untuk menyatupadukan 

teknik-teknik ini ke dalam Transformasi, Pemilihan Ciri dan Pembelajaran

Berbilang (TFSM) dan dilaksanakan. Ketiga, untuk menilai setiap teknik dan 

pendekatan bersepadu. Metodologi penyelidikan melibatkan perumusan, 

pelaksanaan, dan penilaian setiap teknik secara individu dan pendekatan 

bersepadu mereka, TFSM. Penilaian eksperimen dijalankan menggunakan 

projek perisian sumber terbuka yang diperoleh daripada repositori sumber 
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terbuka, dengan F1_score berfungsi sebagai metrik penilaian utama. Hasil 

eksperimen menunjukkan peningkatan yang ketara dalam prestasi ramalan. 

Teknik transformasi secara berkesan mengurangkan perbezaan pengagihan, 

meningkatkan keupayaan model untuk membuat generalisasi merentas set 

data yang pelbagai. Kaedah pemilihan ciri berjaya mengurangkan kesan 

negatif ciri-ciri berlebihan, memperkemas proses pembelajaran dan 

meningkatkan kebolehtafsiran model. Selain itu, pendekatan multi-

pembelajaran terbukti berkesan dalam mengurangkan model lebih muat 

dengan mengagregatkan output model yang pelbagai. Apabila disepadukan 

ke dalam pendekatan TFSM, teknik ini secara kolektif menunjukkan 

peningkatan yang ketara dalam prestasi CPDP. Pendekatan TFSM 

memanfaatkan kekuatan setiap teknik individu, menghasilkan kesan 

sinergistik yang meningkatkan ketepatan ramalan model. Pendekatan ini 

menangani pelbagai cabaran yang wujud dalam CPDP, menyediakan 

penyelesaian yang lebih dipercayai dan berkesan untuk ramalan kecacatan 

dalam projek perisian. Kerja ini menyumbang kepada usaha berterusan dalam 

komuniti kejuruteraan perisian untuk membangunkan model ramalan 

kecacatan yang lebih tepat dan boleh dipercayai, akhirnya membantu dalam 

pembangunan perisian berkualiti tinggi. Kerja akan datang, akan 

menumpukan pada memperhalusi lagi teknik ini dan meneroka 

kebolehgunaannya pada rangkaian projek perisian dan repositori yang lebih 

luas. 

 

Kata kunci: Kecacatan, Perisian, Projek Silang, Pembelajaran Mesin, 
Ramalan. 
 
SDG: MATLAMAT 9: Industri, Inovasi dan Infrastruktur 
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CHAPTER 1  

 

1 INTRODUCTION 

 

1.1 Background 

 

Due to the expansion of software size and complexity, modern software 

programs are increasingly vulnerable to defects during the release or update 

of their versions. To ensure their corrective and developing maintenance, 

developers should frequently update these software applications by adding 

new functions or fixing bugs (Zhao et al., 2021). However, these updates can 

result in the introduction of new defects. Defects arising from particular 

software have a significant impact on business credibility and may result in 

fatal consequences such as loss of time and additional costs, and in the case 

of critical software, even health issues. According to the CISQ Consortium for 

Information & Software Quality 2022 report, the cost of poor software quality 

in the US has grown to at least $2.41 trillion (Herb Krasner, 2022). They, 

therefore, suggested that enhancing the testing activities can save more than 

a third of such an amount. 

 

All these reported statistics showed the importance of software maintenance 

and software testing. Inspection of the entire code source is always difficult 

due to either limited resources or tight release schedules. Software testing is 

quite expensive (Rahmann and Ansari, 2021). Predicting defects in software 

development is a crucial task that allows organizations to proactively allocate 
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resources and reduces the cost of software maintenance (Bejjanki et al., 

2020). 

 

A software defect prediction (SDP) model is used to track the most defective 

part of a software product before testing activities. Traditionally, software 

defect prediction models are built using historical data from a single project. 

These models employ various machine learning techniques to identify patterns 

and relationships within the code and project-specific data to predict where 

defects are likely to occur. However, these models tend to perform optimally 

within the context of the project from which the data was collected, known as 

within-project defect prediction (WPDP). Applying these models to a new 

project with different characteristics and codebases often results in reduced 

prediction accuracy (Li et al 2022). 

 

Using historical records in the WPDP methodology demands an organization-

wide effort to gather them for a long time. Because it requires the defect data 

up front, the first category of WPDP (as described above) is not helpful in 

practice. The second category typically yields only positive results in software 

projects that are equivalent in terms of software development, team 

experience, programming language, and application domain (Shao et al., 

2021); Chen and Dai, 2021). In general, the WPDP methodology cannot be 

used for newly released software products because of a lack of historical 

records (Zhao et al., 2021; Tang et al., 2021). 
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Considering the challenges of obtaining historical records in WPDP 

methodology, a cross-project defect prediction (CPDP) technique was 

introduced (Amasaki, 2020; Luo et al, 2021). In the CPDP technique, the defect 

datasets of one software project (source) accessible in the repository are 

utilized to predict defects in another software project in progress (target) (Chen 

et al., 2020). CPDP is of great significance in the software development 

industry. It can help organizations make informed decisions about resource 

allocation, code review prioritization, and quality assurance strategies for 

projects that lack sufficient historical defect data. This is especially valuable for 

new or small-scale projects where defect prediction based on historical data is 

limited. 

 

However, the prediction performance of CPDP is poor (Zhao et al, 2021). This 

is because projects differ in terms of programming languages, development 

methodologies, and team dynamics. Therefore, the data from one project may 

not be directly applicable to another. In addition, identifying the most relevant 

features for defect prediction becomes more complex when applying models 

across projects. In addition, in CPDP, the identification and handling of feature 

redundancy is crucial for improving model efficiency and effectiveness. 

Feature redundancy occurs when two or more features in a predictive model 

convey similar or redundant information. This redundancy can lead to 

suboptimal model performance, increased computational costs, and potential 

overfitting. 
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Furthermore, model overfitting is a significant concern in cross-project defect 

prediction, as it can lead to reduced generalization performance when applying 

predictive models to new and unseen projects. Overfitting occurs when a 

model learns the training data too well, capturing noise or random fluctuations 

that do not represent true patterns. In the context of cross-project defect 

prediction, overfitting can hinder the model's ability to adapt to the unique 

characteristics of different projects. 

 

These challenges ignite a series of questions on how to handle the challenges 

faced by CPDP and improve its prediction performance. Recommended 

solutions included a data transformation technique in which any available 

source projects can be transformed to minimize the data distribution difference 

between the source and target projects, as well as selecting relevant features 

and improving the classifier used for building the prediction model. However, 

the existing CPDP models do not provide optimum performance. 

 

1.2 Problem Statement 

 

Cross-project defect prediction has gained a lot of attention and has been 

considered particularly important in the field of software engineering. However, 

poor prediction performance is a challenge for CPDP. In general, the prediction 

performance of all the existing techniques is still low (Abdu et al., 2023). 

Improving the prediction performance of cross-project defect prediction, 

particularly aiming for a minimum F1_score of 0.75, is essential for several 

reasons, including that achieving a high F1_score ensures that the model 
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strikes a balance between precision and recall. This is crucial in real-world 

scenarios, where reliable defect prediction is necessary for effective decision-

making in software development. The F1_score accounts for both false 

positives and false negatives. By targeting a threshold of 0.75, the model aims 

to minimize these errors, enhancing its ability to accurately identify defects and 

reduce the risk of overlooking or misclassifying issues, and this model is more 

likely to generalize well across diverse software development environments. 

 

One of the major factors affecting the prediction performance of CPDP is the 

data distribution difference (Zhao et al., 2022). Example of a particular real-

world scenario where the difficulties associated with distribution differences in 

CPDP have become visible in software development companies that work on 

numerous projects concurrently. Within this company, any project could have 

distinctive characteristics of its own, including technologies, development 

teams, programming languages, and customer needs. It is challenging to 

transfer defect prediction models that have been learned on one project to 

another because of this variability. Assuming this software development 

company used past data from one of its projects to build a defect prediction 

model. They now wish to use the same model for a new project. 

 

On the other hand, the new project might use a different coding standard, a 

different programming language, and team members with different 

backgrounds. The prediction performance of the defect prediction model may 

be greatly impacted by these variations since the model might not be able to 

accurately represent the unique characteristics and peculiarities of the new 

project. 
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To address these challenges, researchers have proposed a number of 

techniques, including training data selection (Yuan et al., 2020) and data 

transformation (Zhao et al., 2021). However, existing techniques ignored the 

most important statistical distribution characteristic (mean and mode). The 

mean and mode, which stand for the average values and most frequent, 

respectively, are indicators of central tendency in a distribution (Condon et al., 

2023). If these measures are ignored, significant information regarding the 

usual behavior of defects in different projects may be lost. Mean and mode are 

less affected by extreme values compared to other measures like median or 

percentile, making them suitable choices for datasets with varying distribution 

characteristics across projects. Mean and mode transformations help mitigate 

the impact of distribution differences on the predictive model's performance. In 

addition, mean and mode transformations retain essential information about 

the data distribution, ensuring that valuable insights are not lost during the 

transformation process. 

 

Another challenge that affects the prediction performance of CPDP is feature 

redundancy (Saeed, 2023). The majority of software projects exhibit redundant 

features, and the set of features used to train the model has a significant 

impact on the prediction performance of CPDP (Li et al., 2021). Required 

feature sets for CPDP may vary throughout projects. It might not be the best 

idea to use the same set of features for all projects because some features 

might be more useful in one project but less so in another. It is crucial to 

automatically choose and extract the best features for every project. To 

address these challenges, various feature selection techniques have been 
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proposed. However, existing feature selection techniques for CPDP do not 

account for outliers. Excluding outlier consideration may result in potential 

model poor prediction performance across diverse projects. 

 

Moreover, another challenge with CPDP is overfitting that arose from utilizing 

individual classifiers to construct CPDP models (Javed et al., 2024). When a 

single classifier is used, overfitting may occur as a result of the model 

becoming too complicated and specialized for the source project, which would 

lead to poor results on the target project. As such, it is critical to address the 

overfitting problem. None of the existing techniques explored stacking 

ensemble to mitigate overfitting in CPDP. 

 

1.3 Research Questions 

 

To effectively evaluate the experimental results of the proposed techniques 

based on the heighted problems, four research questions (RQ1 to RQ4) were 

established as follows.  

 
RQ1: Does the proposed transformation techniques reduce the impact of 

distribution difference and redundant features on the prediction performance 

of CPDP?  

 

RQ2: Does feature selection reduce the impact of redundant features on the 

prediction performance of CPDP? 

 

RQ3: Does the proposed Multi-learning technique reduce the negative impact 
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of model overfitting on the prediction performance of CPDP? 

RQ4: Does the integration of transformation, feature selection and multi-

learning techniques improved the prediction performance of CPDP? 

1.4  Research Objective 

The aim of this work is to propose an integrated approach to solving the three 

problems (distribution difference, high dimensional features, and overfitting) 

and improving the prediction performance of cross-project defect prediction 

(CPDP). To achieve this objective, the following three sub-objectives were 

outlined: 

i. To propose Transformation, Feature selection and multi-learning for 
reducing distribution difference, redundant features and model 
overfitting. 

ii. To integrate the proposed transformation, feature selection and multi-
learning and implement. 

iii. To evaluate the proposed transformation, Feature selection and multi-
learning and integrated approach in order to assess their effectiveness 
in improving performance of CPDP.  

1.5  Significant of the Study 

This research is significant in the context of improving cross-project defect 

prediction models by addressing critical limitations in existing techniques. The 

study successfully proposed and implement transformation technique based 

on mean and mode distribution. This is significant for normalizing and adapting 

the data to mitigate the impact of variations in data distributions across 



© C
OPYRIG

HT U
PM

9 

projects, promoting a more standardized representation and generalization of 

models in cross-project defect prediction 

 

The study also successfully proposed and implement feature selection. This is 

significant for identifying and prioritizing the most relevant features that 

influence the occurrence of defects. It helps in reducing the dimensionality of 

the data, focusing the model on the critical factors, thereby enhancing the 

efficiency of the defect prediction process. 

 

In addition, the study successfully proposed and implement multi-Learning 

technique. This is significant for leveraging knowledge gained from multiple 

models to enhance the performance of defect prediction of CPDP. 

Furthermore, the study successfully implements the integration of 

transformation, feature selection and multi-learning techniques can lead to 

improved prediction performance, ultimately aiding in more effective software 

testing and maintenance efforts. 

 

1.6 Scope of the Study 

 

This study aims to enhance the performance of cross-project defect prediction 

by integrating transformation, feature selection, and multi-learning. The focus 

is on addressing the challenges posed by distribution differences, redundant 

features, and model overfitting in predicting software defects across diverse 

projects. The aim of transformation is to reduce distribution differences using 

mean and mode transformations. Feature selection is to identify and select the 
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most relevant features that significantly contribute to defect prediction 

accuracy. Multi-learning is to enhance model accuracy using the stacking 

ensemble method. Defect datasets from various open-source software 

projects were collected. Model performance was measured using the F1-Score 

to balance precision and recall. Statistical analysis was conducted using the 

Wilcoxon signed-rank test and Cliff delta to evaluate the significance of 

performance differences and the effect size and quantify the practical 

significance of performance improvements. 

 

1.7 Thesis Organization 

 

Chapter 2 disused literature review. Chapter 3 outlines the research 

methodology used in the study. Chapter 4 discussed proposed transformation, 

feature selection, multi-learning, and integration of all three techniques. 

Chapter 5: Result. This chapter presents a thorough evaluation of the 

proposed integrated technique, providing detailed results and analysis. Finally, 

chapter 6 presented a conclusion and future work. 
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