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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of degree of Doctor of Philosophy

INTEGRATED APPROACH FOR IMPROVING CROSS-PROJECT
SOFTWARE DEFECT PREDICTION PERFORMANCE

By

YAHAYA ZAKARIYAU BALA

April 2024

Chairman : Pathiah binti Abdul Samat, PhD

Faculty : Computer Science and Information Technology

This research addresses three critical challenges in cross-project defect
prediction (CPDP): distribution differences, redundant features, and model
overfitting. These issues often degrade prediction accuracy and robustness in
various domains. To tackle these challenges, this study proposes a holistic
approach named Transformation, Feature Selection, and Multi-learning
(TFSM). This research is divided into three objectives: firstly, to proposed
transformation, feature selection and multi-learning techniques that can
mitigate distribution differences between datasets, identify and eliminate
redundant features and combat model overfitting, respectively. Secondly, to
integrate these techniques into a TFSM and implement. Thirdly, to evaluate
each technique and the integrated approach. The research methodology
involves the formulation, implementation, and evaluation of each technique
individually and their integrated approach, TFSM. Experimental evaluations
are conducted using open-source software projects sourced from the open

source repository, with F1_score serving as the primary evaluation metric.



Results from the experiments demonstrate significant improvements in
predictive performance. The transformation techniques effectively reduce
distribution differences, enhancing the model's ability to generalize across
diverse datasets. Feature selection methods successfully mitigate the negative
impact of redundant features, streamlining the learning process and improving
model interpretability. Additionally, the multi-learning approach proves
effective in reducing model overfitting by aggregating diverse model outputs.
When integrated into the TFSM approach, these techniques collectively
demonstrated a marked improvement in CPDP performance. The TFSM
approach leverages the strengths of each individual technique, resulting in a
synergistic effect that enhances the model's predictive accuracy. This
approach addresses the multifaceted challenges inherent in CPDP, providing
a more reliable and effective solution for defect prediction in software projects.
This work contributes to the ongoing efforts in the software engineering
community to develop more accurate and reliable defect prediction models,
ultimately aiding in the development of higher-quality software. Future work will
focus on further refining these techniques and exploring their applicability to a

broader range of software projects and repositories.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENDEKATAN BERSEPADU UNTUK MENINGKATKAN PRESTASI
RAMALAN KECACATAN PERISIAN MERENTAS PROJEK

Oleh

YAHAYA ZAKARIYAU BALA

April 2024

Pengerusi : Pathiah binti Abdul Samat, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Penyelidikan ini menangani tiga cabaran kritikal dalam ramalan kecacatan
merentas projek (CPDP): perbezaan pengagihan, ciri-ciri berlebihan dan
model lebih muat. Isu ini sering menurunkan ketepatan ramalan dan
keteguhan dalam pelbagai domain. Untuk menangani cabaran ini, kajian ini
mencadangkan pendekatan holistik yang dinamakan Transformasi, Pemilihan
Ciri dan Pembelajaran Berbilang (TFSM). Penyelidikan ini terbahagi kepada
tiga objektif: pertama, untuk cadangan transformasi, pemilihan ciri dan teknik
pembelajaran berbilang yang boleh mengurangkan perbezaan pengagihan
antara set data, mengenal pasti dan menghapuskan ciri-ciri berlebihan dan
melawan model lebih muat, masing-masing. Kedua, untuk menyatupadukan
teknik-teknik ini ke dalam Transformasi, Pemilihan Ciri dan Pembelajaran
Berbilang (TFSM) dan dilaksanakan. Ketiga, untuk menilai setiap teknik dan
pendekatan bersepadu. Metodologi penyelidikan melibatkan perumusan,
pelaksanaan, dan penilaian setiap teknik secara individu dan pendekatan
bersepadu mereka, TFSM. Penilaian eksperimen dijalankan menggunakan

projek perisian sumber terbuka yang diperoleh daripada repositori sumber



terbuka, dengan F1_score berfungsi sebagai metrik penilaian utama. Hasil
eksperimen menunjukkan peningkatan yang ketara dalam prestasi ramalan.
Teknik transformasi secara berkesan mengurangkan perbezaan pengagihan,
meningkatkan keupayaan model untuk membuat generalisasi merentas set
data yang pelbagai. Kaedah pemilihan ciri berjaya mengurangkan kesan
negatif ciri-ciri berlebihan, memperkemas proses pembelajaran dan
meningkatkan kebolehtafsiran model. Selain itu, pendekatan multi-
pembelajaran terbukti berkesan dalam mengurangkan model lebih muat
dengan mengagregatkan output model yang pelbagai. Apabila disepadukan
ke dalam pendekatan TFSM, teknik ini secara kolektif menunjukkan
peningkatan yang ketara dalam prestasi CPDP. Pendekatan TFSM
memanfaatkan kekuatan setiap teknik individu, menghasilkan kesan
sinergistik yang meningkatkan ketepatan ramalan model. Pendekatan ini
menangani pelbagai cabaran yang wujud dalam CPDP, menyediakan
penyelesaian yang lebih dipercayai dan berkesan untuk ramalan kecacatan
dalam projek perisian. Kerja ini menyumbang kepada usaha berterusan dalam
komuniti kejuruteraan perisian untuk membangunkan model ramalan
kecacatan yang lebih tepat dan boleh dipercayai, akhirnya membantu dalam
pembangunan perisian berkualiti tinggi. Kerja akan datang, akan
menumpukan pada memperhalusi lagi teknik ini dan meneroka
kebolehgunaannya pada rangkaian projek perisian dan repositori yang lebih

luas.

Kata kunci: Kecacatan, Perisian, Projek Silang, Pembelajaran Mesin,
Ramalan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Due to the expansion of software size and complexity, modern software
programs are increasingly vulnerable to defects during the release or update
of their versions. To ensure their corrective and developing maintenance,
developers should frequently update these software applications by adding
new functions or fixing bugs (Zhao et al., 2021). However, these updates can
result in the introduction of new defects. Defects arising from particular
software have a significant impact on business credibility and may result in
fatal consequences such as loss of time and additional costs, and in the case
of critical software, even health issues. According to the CISQ Consortium for
Information & Software Quality 2022 report, the cost of poor software quality
in the US has grown to at least $2.41 trillion (Herb Krasner, 2022). They,
therefore, suggested that enhancing the testing activities can save more than

a third of such an amount.

All these reported statistics showed the importance of software maintenance
and software testing. Inspection of the entire code source is always difficult
due to either limited resources or tight release schedules. Software testing is
quite expensive (Rahmann and Ansari, 2021). Predicting defects in software

development is a crucial task that allows organizations to proactively allocate



resources and reduces the cost of software maintenance (Bejjanki et al.,

2020).

A software defect prediction (SDP) model is used to track the most defective
part of a software product before testing activities. Traditionally, software
defect prediction models are built using historical data from a single project.
These models employ various machine learning techniques to identify patterns
and relationships within the code and project-specific data to predict where
defects are likely to occur. However, these models tend to perform optimally
within the context of the project from which the data was collected, known as
within-project defect prediction (WPDP). Applying these models to a new
project with different characteristics and codebases often results in reduced

prediction accuracy (Li et al 2022).

Using historical records in the WPDP methodology demands an organization-
wide effort to gather them for a long time. Because it requires the defect data
up front, the first category of WPDP (as described above) is not helpful in
practice. The second category typically yields only positive results in software
projects that are equivalent in terms of software development, team
experience, programming language, and application domain (Shao et al.,
2021); Chen and Dai, 2021). In general, the WPDP methodology cannot be
used for newly released software products because of a lack of historical

records (Zhao et al., 2021; Tang et al., 2021).



Considering the challenges of obtaining historical records in WPDP
methodology, a cross-project defect prediction (CPDP) technique was
introduced (Amasaki, 2020; Luo et al, 2021). In the CPDP technique, the defect
datasets of one software project (source) accessible in the repository are
utilized to predict defects in another software project in progress (target) (Chen
et al., 2020). CPDP is of great significance in the software development
industry. It can help organizations make informed decisions about resource
allocation, code review prioritization, and quality assurance strategies for
projects that lack sufficient historical defect data. This is especially valuable for
new or small-scale projects where defect prediction based on historical data is

limited.

However, the prediction performance of CPDP is poor (Zhao et al, 2021). This
is because projects differ in terms of programming languages, development
methodologies, and team dynamics. Therefore, the data from one project may
not be directly applicable to another. In addition, identifying the most relevant
features for defect prediction becomes more complex when applying models
across projects. In addition, in CPDP, the identification and handling of feature
redundancy is crucial for improving model efficiency and effectiveness.
Feature redundancy occurs when two or more features in a predictive model
convey similar or redundant information. This redundancy can lead to
suboptimal model performance, increased computational costs, and potential

overfitting.



Furthermore, model overfitting is a significant concern in cross-project defect
prediction, as it can lead to reduced generalization performance when applying
predictive models to new and unseen projects. Overfitting occurs when a
model learns the training data too well, capturing noise or random fluctuations
that do not represent true patterns. In the context of cross-project defect
prediction, overfitting can hinder the model's ability to adapt to the unique

characteristics of different projects.

These challenges ignite a series of questions on how to handle the challenges
faced by CPDP and improve its prediction performance. Recommended
solutions included a data transformation technique in which any available
source projects can be transformed to minimize the data distribution difference
between the source and target projects, as well as selecting relevant features
and improving the classifier used for building the prediction model. However,

the existing CPDP models do not provide optimum performance.

1.2 Problem Statement

Cross-project defect prediction has gained a lot of attention and has been
considered particularly important in the field of software engineering. However,
poor prediction performance is a challenge for CPDP. In general, the prediction
performance of all the existing techniques is still low (Abdu et al., 2023).
Improving the prediction performance of cross-project defect prediction,
particularly aiming for a minimum F1_score of 0.75, is essential for several

reasons, including that achieving a high F1_score ensures that the model



strikes a balance between precision and recall. This is crucial in real-world
scenarios, where reliable defect prediction is necessary for effective decision-
making in software development. The F1_score accounts for both false
positives and false negatives. By targeting a threshold of 0.75, the model aims
to minimize these errors, enhancing its ability to accurately identify defects and
reduce the risk of overlooking or misclassifying issues, and this model is more

likely to generalize well across diverse software development environments.

One of the major factors affecting the prediction performance of CPDP is the
data distribution difference (Zhao et al., 2022). Example of a particular real-
world scenario where the difficulties associated with distribution differences in
CPDP have become visible in software development companies that work on
numerous projects concurrently. Within this company, any project could have
distinctive characteristics of its own, including technologies, development
teams, programming languages, and customer needs. It is challenging to
transfer defect prediction models that have been learned on one project to
another because of this variability. Assuming this software development
company used past data from one of its projects to build a defect prediction

model. They now wish to use the same model for a new project.

On the other hand, the new project might use a different coding standard, a
different programming language, and team members with different
backgrounds. The prediction performance of the defect prediction model may
be greatly impacted by these variations since the model might not be able to
accurately represent the unique characteristics and peculiarities of the new

project.



To address these challenges, researchers have proposed a number of
techniques, including training data selection (Yuan et al., 2020) and data
transformation (Zhao et al., 2021). However, existing techniques ignored the
most important statistical distribution characteristic (mean and mode). The
mean and mode, which stand for the average values and most frequent,
respectively, are indicators of central tendency in a distribution (Condon et al.,
2023). If these measures are ignored, significant information regarding the
usual behavior of defects in different projects may be lost. Mean and mode are
less affected by extreme values compared to other measures like median or
percentile, making them suitable choices for datasets with varying distribution
characteristics across projects. Mean and mode transformations help mitigate
the impact of distribution differences on the predictive model's performance. In
addition, mean and mode transformations retain essential information about
the data distribution, ensuring that valuable insights are not lost during the

transformation process.

Another challenge that affects the prediction performance of CPDP is feature
redundancy (Saeed, 2023). The majority of software projects exhibit redundant
features, and the set of features used to train the model has a significant
impact on the prediction performance of CPDP (Li et al., 2021). Required
feature sets for CPDP may vary throughout projects. It might not be the best
idea to use the same set of features for all projects because some features
might be more useful in one project but less so in another. It is crucial to
automatically choose and extract the best features for every project. To

address these challenges, various feature selection techniques have been



proposed. However, existing feature selection techniques for CPDP do not
account for outliers. Excluding outlier consideration may result in potential

model poor prediction performance across diverse projects.

Moreover, another challenge with CPDP is overfitting that arose from utilizing
individual classifiers to construct CPDP models (Javed et al., 2024). When a
single classifier is used, overfitting may occur as a result of the model
becoming too complicated and specialized for the source project, which would
lead to poor results on the target project. As such, it is critical to address the
overfitting problem. None of the existing techniques explored stacking

ensemble to mitigate overfitting in CPDP.

1.3 Research Questions

To effectively evaluate the experimental results of the proposed techniques
based on the heighted problems, four research questions (RQ1 to RQ4) were

established as follows.

RQ1: Does the proposed transformation techniques reduce the impact of
distribution difference and redundant features on the prediction performance

of CPDP?

RQ2: Does feature selection reduce the impact of redundant features on the

prediction performance of CPDP?

RQ3: Does the proposed Multi-learning technique reduce the negative impact

7



of model overfitting on the prediction performance of CPDP?

RQ4: Does the integration of transformation, feature selection and multi-

learning techniques improved the prediction performance of CPDP?

1.4 Research Objective

The aim of this work is to propose an integrated approach to solving the three
problems (distribution difference, high dimensional features, and overfitting)
and improving the prediction performance of cross-project defect prediction
(CPDP). To achieve this objective, the following three sub-objectives were
outlined:
i. To propose Transformation, Feature selection and multi-learning for
reducing distribution difference, redundant features and model
overfitting.

ii. To integrate the proposed transformation, feature selection and multi-
learning and implement.

iii.  To evaluate the proposed transformation, Feature selection and multi-
learning and integrated approach in order to assess their effectiveness
in improving performance of CPDP.

1.5 Significant of the Study

This research is significant in the context of improving cross-project defect
prediction models by addressing critical limitations in existing techniques. The
study successfully proposed and implement transformation technique based
on mean and mode distribution. This is significant for normalizing and adapting

the data to mitigate the impact of variations in data distributions across

8



projects, promoting a more standardized representation and generalization of

models in cross-project defect prediction

The study also successfully proposed and implement feature selection. This is
significant for identifying and prioritizing the most relevant features that
influence the occurrence of defects. It helps in reducing the dimensionality of
the data, focusing the model on the critical factors, thereby enhancing the

efficiency of the defect prediction process.

In addition, the study successfully proposed and implement multi-Learning
technique. This is significant for leveraging knowledge gained from multiple
models to enhance the performance of defect prediction of CPDP.
Furthermore, the study successfully implements the integration of
transformation, feature selection and multi-learning techniques can lead to
improved prediction performance, ultimately aiding in more effective software

testing and maintenance efforts.

1.6 Scope of the Study

This study aims to enhance the performance of cross-project defect prediction
by integrating transformation, feature selection, and multi-learning. The focus
is on addressing the challenges posed by distribution differences, redundant
features, and model overfitting in predicting software defects across diverse
projects. The aim of transformation is to reduce distribution differences using

mean and mode transformations. Feature selection is to identify and select the



most relevant features that significantly contribute to defect prediction
accuracy. Multi-learning is to enhance model accuracy using the stacking
ensemble method. Defect datasets from various open-source software
projects were collected. Model performance was measured using the F1-Score
to balance precision and recall. Statistical analysis was conducted using the
Wilcoxon signed-rank test and CIiff delta to evaluate the significance of
performance differences and the effect size and quantify the practical

significance of performance improvements.

1.7 Thesis Organization

Chapter 2 disused literature review. Chapter 3 outlines the research
methodology used in the study. Chapter 4 discussed proposed transformation,
feature selection, multi-learning, and integration of all three techniques.
Chapter 5: Result. This chapter presents a thorough evaluation of the
proposed integrated technique, providing detailed results and analysis. Finally,

chapter 6 presented a conclusion and future work.
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