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Integrating deep learning and machine
learning for ceramic artifact classification
and market value prediction
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This study proposes an intelligent framework for the automated classification and valuation of ceramic
artifacts, integrating deep learning and machine learning techniques. An improved YOLOv11 model
was constructed to identify key ceramic attributes such as decorative patterns, shapes, and
craftsmanship styles. Themodel achieved amean Average Precision (mAP@50) of 70.0% and a recall
of 91.0%, demonstrating strong capability in detecting complex visual features. Based on the
extracted visual attributes, a RandomForest classifier was employed to predict price categories using
multi-source auction data, achieving a test accuracy of 99.52%. Feature importance analysis further
revealed manufacturing techniques and shape as key predictors of market value. The integrated
framework effectively combines visual feature extraction and market-informed valuation, providing a
scalable solution for intelligent ceramic appraisal anddigital heritage curation. This approach supports
both expert and non-expert applications, laying a foundation for future development of intelligent
cultural heritage management systems.

Ceramics are an important symbol of Chinese culture, embodying thou-
sands of years of artistic and technological heritage. They encompass a wide
range of types, from pottery and painted ceramics to porcelain1. Swanson
and Timothy2 (p. 45) highlight that ceramics serve as both artistic and
utilitarian symbols. Beyond representing the esthetic aspirations of different
historical periods, ceramics also play a crucial role in cultural preservation3.

In addition to their cultural significance, the ceramics industry is a vital
part of China’s manufacturing sector. Statistics indicate that the annual
production of daily-use ceramics in China grew from 49.1 billion pieces in
2017 to 67.9 billion pieces in 2023, with an average annual growth rate of
5.55%4. According to Grand View Research5 (2021), the global ceramics
market is projected to reach USD 347 billion by 2028, demonstrating
immense economic potential. The compound annual growth rate (CAGR)
between 2021 and 2028 is expected to be approximately 4.4%. These figures
reveal that the ceramics market has vast potential for growth and
development.

With the rapid advancement of deep learning and computer vision
technologies, image-based ceramic classification has become increasingly
prevalent. These techniques demonstrate efficient and objective classifica-
tion capabilities through methods such as feature extraction, image seg-
mentation, and image enhancement6,7. Prior to deep learning dominance,
researchers had already begun exploring how computer vision (CV) tech-
niques could facilitate automated craftsmanship identification and address

the inefficiencies of traditional visualmethods8–11. Traditional approaches to
ceramic classification included empirical identification—highly reliant on
expert knowledge and subjective visual judgment12,13—as well as scientific
identification methods such as X-ray fluorescence, thermoluminescence
dating, and spectral analysis, which, although precise, require complex
instrumentation and domain expertise, limiting accessibility for non-
professionals14. Recent studies have further enriched scientific identification
methods. For example, stereoscopic and polarizing microscopes have been
used to analyze celadon from different dynasties15, and compositional
analysis has helpeddeterminekiln origins16.Additionally, diffuse reflectance
spectral data have been employed to capture color characteristics across
ceramic types17.

Early computationalmethods applied hand-crafted feature descriptors
such as Gradient Vector Flow (GVF) and Local Binary Patterns18, Gray-
Level Co-occurrence Matrices19, and morphological profile curves20–22.
While these techniques showed promise in small-scale contexts, they lacked
adaptability and interpretability. More recent studies have leveraged con-
volutional neural networks (CNNs)7,13,23,24, transfer learning25, and capsule
networks26, achieving superior performance on complex ceramic datasets.
Some studies have automated the analysis of ceramics using visual attributes
such as texture, color, and shape27–29. Kernelmean shift clustering andBagof
Visual Words (BoVW) has performed well in ceramic feature
extraction30–32. Liu7 applied CNNs to classify Yaozhou kiln ceramics with
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high accuracy, while Cui et al.33 utilized a deep learning model to enhance
image clarity and detect surface defects. In terms of decorative patterns
recognition, Chaowalit and Kuntitan34 demonstrated improved accuracy
usingCNNs,while Santos et al.35 extendedCNNapplications to classify both
undecorated Roman amphorae and Portuguese faience with visually subtle
patterns.

In the fields of engineering and manufacturing, research on ceramics
has primarily focused on defect detection and the optimization of auto-
mated production processes, often prioritizing classification accuracy while
overlooking interpretability and artistic value36,37. Although models such as
YOLO and ResNet can accurately distinguish surface patterns, they seldom
explain why particular decorative motifs signify specific value tiers or
dynastic origins.

Similarly, in archeology and cultural studies, Yi et al.29 and Mei
et al.38 observe that most existing research concentrates on produc-
tion periods and kiln origins, with limited exploration of complex
craftsmanship styles. This aligns with broader archaeometric efforts
that utilize XRF, TL dating, and petrographic analysis to study
ceramic provenance and function39–41. Zhan et al.42 highlighted how
motif complexity and decorative technique reflect regional kiln styles
and influence historical price trends, underscoring the need to inte-
grate esthetic and economic factors into computational models.
While disciplines such as ceramic archeology and art history have
long addressed the symbolic and historical significance of
ceramics43,44, such cultural insights are rarely integrated into com-
putational frameworks. As Finlay45 emphasized, porcelain has his-
torically played a socio-political role as a medium of global exchange,
highlighting that ceramic valuation should incorporate both material
analysis and cultural interpretation. Although the exceptional per-
formance of convolutional neural networks (CNNs) in general image
classification has been widely recognized37,46, their application to
ceramic datasets often remains limited to basic texture recognition,
lacking both explainability and integration of artistic-level analysis1,7.
Furthermore, while market-based valuation approaches in machine
learning offer practical utility, they are not universally applicable. For
instance, in archeological research, the value of an artifact is typically
assessed based on its historical and cultural significance rather than
its market price47.

Despite these technological advancements, several key challenges
persist. First, there is a lack of large-scale ceramic datasets that encompass a
wide range of craftsmanship styles and high-resolution images. Second,
existing models often lack interpretability, with most focusing on classifi-
cation accuracy while failing to provide intuitive classification criteria.
Third, user experience remains insufficiently addressed. Current studies are
primarily designed for academic or professional applications, with a notable
lack of tools or solutions tailored to non-professional enthusiasts.

This study aims to address the identified research gaps through the
following approaches: (1) Develop an integrated framework for ceramic

artifact valuation: the primary objective of this research is to establish a
robust, data-driven framework that integrates both artistic features and
market data for the accurate evaluation of ceramic artifacts. By combining
traditional art historical attributes (such as decorative patterns, shapes, and
craftsmanship style) with advanced machine learning models, this study
aims to provide a systematic and objective approach to ceramic price
categorization. (2) Enhance ceramic classification using YOLO model
improvements: this study seeks to refine the process of ceramic classification
by leveraging andmodifying the YOLO (YouOnly LookOnce)model. The
research focuses on optimizing the model’s performance in detecting and
classifying ceramic types, which are crucial inputs for subsequent price
prediction tasks. (3) Predict price categories using random forest classifi-
cation: by incorporating the features extracted from the YOLO model and
structured auction data, the objective is to employ Random Forest classifi-
cation to predict the price categories of ceramic artifacts with high accuracy
and interpretability.

A key innovation in this research is the hybrid integration of visual
modeling and economic reasoning. YOLOv11 is optimized using attention
enhancements, enabling it to focus on intricate design motifs and subtle
manufacturing traits. These features are passed to aRandomForest classifier
trained on multi-year auction data from institutions such as Christie’s,
Sotheby’s, Poly Auction, and China Guardian.

Unlike conventional valuation tools, this model offers not only high
predictive performance but also interpretability, identifying which crafts-
manship attributes most influence valuation. Ultimately, this study bridges
the gap between deep learning and art-historical appraisal, contributing a
culturally aware, technically rigorous framework for the digital future of
ceramic classification and valuation.

Methods
This study adopts a three-stage pipeline: dataset preparation, ceramic
classification, and price prediction, as shown in Fig. 1. The stages are
seamlessly integrated to support robust ceramic analysis and valuation.

The first stage of our pipeline involved the construction and
annotation of a high-quality ceramic image dataset, combining auto-
mated acquisition with expert-informed labeling strategies. Chinese
ceramics have a rich history, with significant differences in craftsman-
ship, forms, and decorative patterns across various historical periods18.
Building on the ceramic classification frameworks proposed by Mu et
al.27 and Yi et al.29, this study categorized ceramics based on shape,
decorative patterns, and production techniques. A high-quality dataset of
8213 high-resolution images was constructed, representing 20 distinct
craftsmanship styles and decorative patterns selected for their historical
significance and visual distinctiveness. These 20 styles include both kiln-
specific categories and decorative techniques, such as Blue and White
Porcelain, Doucai, Wucai, Fencai, Ru Kiln, Guan Kiln, Ge Kiln, Jun Kiln,
Ding Kiln, Longquan Kiln, Yingqing Porcelain, White Porcelain, Sacri-
ficial Blue/Red Porcelain, Langyao Red, Tea-dust Glaze, Reticulated

Fig. 1 | Overview of ceramic classification work-
flow. This figure illustrates the full pipeline adopted
in this study, comprising three sequential phases:
data preparation, YOLOv11 based classification,
and regression-based price prediction.
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Porcelain (Linglong), Cizhou Kiln Porcelain, Falangcai, and Fahua. The
sample distribution among the 20 craft styles is moderately imbalanced.
For instance, well-represented styles such as Blue and White Porcelain
and Longquan Kiln Porcelain each contain over 600 samples, comprising
approximately 8% of the dataset. In contrast, rarer types such as Ru Kiln
Porcelain and Langyao Red Porcelain contain fewer than 100 images,
each contributing less than 1.5% of the total. To mitigate potential issues
related to class imbalance that may affect classification and regression
stability, a set of data augmentation strategies, including image rotation,
flipping, and brightness variation, was applied to underrepresented
categories. This brought all classes closer to a more uniform distribution
during model training. A detailed overview of both raw and augmented
class distributions is provided, as shown in Supplementary Table 2.

Images were sourced from the following three channels. First, Auction
houses (42.6%, 3500 images), including Christie’s, Sotheby’s, Bonhams,
ChinaGuardian, PolyAuction, andBeijingRongbaozhai. Second,museums
and cultural heritage databases (24.3%, 2000 images), such as the Palace
Museum, the British Museum, the Metropolitan Museum of Art, the
National Museum of China, and the ICOM database. Third, ceramic art
stores andfieldphotography (33.1%, 2713 images), obtained fromplatforms
such as Taobao, Xianyu, Amazon, Pixabay, Wikimedia Commons, and
private collectors. A hybrid data acquisition approach was adopted, for
example, automated web scraping was performed using the Scrapy frame-
work to extract structured ceramic image data from public databases.
Meanwhile, manual photography was conducted in collaboration with
ceramic experts and photographers to capture high-definition, high-value,
and rare ceramic artifacts. All images were acquired in strict compliance
with copyright regulations and are intended solely for academic research
purposes.

Challenges encountered in data collection and corresponding
solutions:

(1) Issueswith light reflection and shadow→Applied bilateralfiltering for
noise reduction, effectively preserving edge details while
minimizing noise.

(2) Interference from complex backgrounds→Utilized background seg-
mentation algorithms, such as GrabCut, to remove distracting
elements.

(3) Inconsistent image resolution→ Standardized all images to
1024 × 1024 pixels to ensure uniform model input and maintain data
consistency.

For data annotation, this study adopted a hybrid approach combining
AI pre-annotation and expert correction:
(1) AI pre-annotation: a YOLO pre-trained model was utilized for initial

object detection, automatically generating bounding boxes for ceramic
contours.

(2) Manual annotation and verification: a team of ceramic appraisal
experts and data scientists refined the annotations using the LabelImg
tool, following a structured, expert-informed guideline. Annotation
was conducted across three hierarchical levels.

First-level classification: craftsmanship styles (e.g., blue-and-white
porcelain, famille rose, doucai) were labeled based on characteristic features
such as overglaze techniques and historical production periods. Experts
referred to standard typologies drawn from authoritative museum collec-
tions (e.g., the PalaceMuseum) and academic literature to ensure consistent
classification. As shown in Fig. 2, each craftsmanship style is contextualized
within its corresponding dynastic period, from the Tang Dynasty to the
modern era, highlighting the evolution of ceramic esthetics and kiln-specific
innovations over time.

Second-level classification: vessel shapes (e.g., bottles, jars, plates,
bowls, cups, pots) were defined according to neck-body proportion, base
structure, and handle or spout presence. In cases of borderline shape types,
consensus was reached through group review. Reference images were

compiled into an internal labeling handbook to guide decisions, as shown in
Fig. 3.

Third-level classification: decorative patterns (e.g., plants, animals,
landscapes, portraits, geometric designs), as shown in Fig. 4. Rather than
labeling individual motifs (e.g., lotus, peony, dragon), each image was
annotated at the category level, based on themost visually dominant pattern
types present in the overall design. For example, if a vessel featured both
floral and tiger elements, the image was annotated as “plant” and “animal.”
This multi-label, category-level annotation strategy balances annotation
efficiencywith classification relevance, enabling themodel to learn from the
dominant stylistic features without requiring exhaustive fine-grained motif
annotation.
(4) Supplementary attributes: additional features such as color complexity

(monochrome vs. polychrome), structural intricacy (simple,moderate,
intricate), and estimated price range (low-end collectibles vs. high-
value antiques) were also annotated to enhance dataset richness.
Structural intricacy was defined based on a combination of part count,
curvature complexity, and decorative layering.

(5) Annotation consistency and quality control: to ensure annotation
consistency, all team members underwent a calibration phase using
300 sample images. Inter-Annotator Agreement (IAA) was assessed
throughout the process, achieving a final Cohen’s Kappa coefficient of
0.91, indicating strong agreement and reliable label quality.
To ensure data quality and enhance model robustness, this study

implemented a series of preprocessing techniques, including image pre-
processing, bounding box optimization, price normalization, outlier
detection, and feature extraction. The complete preprocessing formulas,
parameter configurations, and empirical evaluation details are provided in
the Supplementary Information.

First, the training dataset comprised 8213 images, which were
partitioned into training (70%, 5749 images), validation (20%, 1642
images), and test (10%, 822 images) sets, ensuring balanced repre-
sentation across the 20 defined craftsmanship styles. To further improve
model robustness and evaluate generalization capability, 5-fold cross-
validation was employed. Additionally, K-means clustering was used to
optimize anchor box dimensions, thereby enhancing detection accuracy
for ceramic objects of varying shapes. A cyclic learning rate scheduler was
applied to stabilize gradient updates, while early stopping with model
checkpointing was implemented to prevent overfitting, for example,
training was terminated if validation loss failed to improve over 10
consecutive epochs. In each iteration, four folds (80%, 6571 images) were
used for training and one fold (20%, 1642 images) for validation. Fol-
lowing data partitioning, images were normalized to the [0,1] range,
filtered to reduce surface noise, and augmented using geometric (rota-
tion, flipping, cropping) and color transformations (brightness adjust-
ment, HSV conversion). To enhance the spatial generalization ability,
Mosaic, GridMask, andMixUp image enhancement techniques were also
applied for verification, as shown in Supplementary Table 1. Anchor box
dimensionswere optimized using K-means clustering to adapt to varying
ceramic shapes, and non-maximum suppression (NMS) was employed
to reduce redundant detection.

Second, for price data, outliers were detected and removed using the
interquartile range (IQR)method, followed by log transformation to reduce
skewness and Z-score normalization to account for cross-auction house
variability. Key features, including color (GLCM), shape (Hu Moments),
and decorative pattern encodings (one-hot), were extracted and reduced via
Principal Component Analysis (PCA) to improve computational efficiency
and maintain prediction accuracy.

Although these normalization techniques improved the
numerical stability and convergence of the training process, they may
introduce trade-offs. For instance, the log transformation compresses
the scale of high-value artifacts, potentially reducing the model’s sensitivity
in distinguishing between upper-tier price categories. Similarly, Z-
score normalization across auction houses may obscure house-specific
pricing nuances, such as branding premiums or regional valuation patterns.
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Fig. 2 | Craftsmanship styles classification. This figure visualizes 20 representative
Chinese ceramic craftsmanship styles across seven historical periods, ranging from
the Tang Dynasty (618–907 AD) to the Modern era (1913–2025). This figure

includes elements that were redrawn or adapted from copyright-free sources such as
Wikimedia Commons and Pixabay, ensuring no copyrighted content is used.

Fig. 3 | Shape classification. This figure illustrates the typological classification system used for ceramic vessel shapes, based on modular morphological parts. This figure
includes elements that were redrawn or adapted from copyright-free sources such as Wikimedia Commons and Pixabay, ensuring no copyrighted content is used.
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These decisions were made to ensure model robustness and minimize the
influence of extreme values and scale inconsistencies.

Building upon the curated and preprocessed dataset, the second stage
of our pipeline deployed an improved YOLOv11 model to classify ceramic
images based on their decorative patterns, structural forms, and crafts-
manship features.

The classification of ceramic artifacts involves a comprehensive ana-
lysis of decorativepatterns, shapes, and craftsmanship techniques.However,
the complexity of surface textures, diversity of artistic styles, and intricacy of
manufacturingdetails pose significant challenges to traditional classification
methods. Conventional techniques based on handcrafted feature extraction
and rule-driven algorithms often rely on low-level features (e.g., edges, color
histograms, and shape descriptors) and fail to effectively capture the subtle
decorative differences inherent in ceramics, thereby limiting classification
accuracy and effectiveness. Additionally, studies utilizing machine learning
methods suchas SupportVectorMachines (SVM),RandomForests (RF), or
K-Nearest Neighbors (KNN) have achieved partial improvements in clas-
sification performance. However, these methods still face limitations when
addressing the fine structures of high-resolution ceramic images.

Recent breakthroughs in deep learning, particularly Convolutional
Neural Networks (CNN) and their extensions in object detection, have
made automated ceramic classification feasible. YOLOv11 (YouOnly Look
Once, Version 11), one of the most advanced real-time object detection
models, capable of simultaneously detecting multiple ceramic attributes
such as decorative patterns, object shapes, and production techniques
within a single image. Compared to traditional CNN-based classifiers,
YOLO significantly optimizes the object detection process by integrating
object localization and classification into a single forward pass, thereby
reducing inference time while maintaining high accuracy. The core
advantages of YOLO in ceramic classification tasks include: (1) Real-time
detection. YOLOpossesses end-to-end object detection capabilities,making
it well-suited for large-scale ceramic classification applications, such as
museum digitization, online antique authentication, and automated

valuation systems. (2) Multi-object recognition. Ceramic artifacts often
feature multiple decorative elements; for example, a single artifact may
include floral motifs and geometric engravings. YOLO can simultaneously
detect multiple categories, enhancing classification interpretability and
robustness. (3) Efficient inference. YOLOv11 performs detection and clas-
sification within a single image simultaneously, offering greater computa-
tional efficiency compared to two-stage detection models such as Faster
R-CNN and Mask R-CNN. This makes YOLO suitable for deployment on
edge devices and mobile platforms.

For the improved YOLOv11 model architecture, it consists of three
primary components: Backbone,Neck, andHead, eachplaying a critical role
in the multi-object recognition process, as shown in Fig. 5.

To further optimize feature extraction efficiency and detection accu-
racy, this study integrates C3k2-EIEM (CSPwith k2 convolution and Edge-
Information Enhanced Module) into the YOLOv11 backbone, the C3k2-
EIEM is presented, as shown in Supplementary Note 1. This enhancement
improves edge detection, spatial feature retention, and overall classification
performance.

The improved YOLOv11 employs ResNet50 as the backbone network
to extract both low-level and high-level features from ceramic images. To
improve feature representation and computational efficiency, this study
introduces the following architectural enhancements:

(1) C3k2-EIEM module: this module replaces conventional CSP (Cross-
Stage Partial) blocks at the P3, P4, and P5 feature levels, enhancing the
detection of fine-grained decorative details, such as engravings and
inscriptions, by explicitly capturing edge information and preserving
spatial details. This module consists of three key components: Edge
Information Learning (SobelConv Branch), which integrates Sobel
filters to refine edge detection, improving the recognition of object
contours and decorative engravings; Spatial Feature Preservation
(Conv Branch), which maintains high-resolution spatial details to
ensure robust classification of intricate ceramic patterns; and a Feature

Fig. 4 | Decorative patterns classification. This figure presents a taxonomy of
decorative patterns commonly found on Chinese ceramic artifacts, organized into
six major categories: plant patterns, animal motifs, landscapes, human, crackled
glaze patterns, and geometric designs. Each column shows representative visual

motifs and subtypes based on iconographic content, glaze texture, or symbolic form.
This figure includes elements that were redrawn or adapted from copyright-free
sources such as Wikimedia Commons and Pixabay, ensuring no copyrighted con-
tent is used.
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Fusion Strategy, which combines edge-based and spatial-based
features, resulting in a more comprehensive and discriminative object
representation.

(2) SPPF (Spatial Pyramid Pooling Fast): by performing multi-scale
pooling, thismodule extracts ceramic object features at different scales,
improving the detection of ceramics with varying sizes, such as plates,
jars, and bowls.

(3) C2PSA (Cross-Stage Partial Attention Mechanism): this module
integrates channel attention and spatial attention to enhance the
model’s sensitivity to intricate decorative patterns, such as underglaze
painting and hollow carvings. By adaptively adjusting weights, the
model focuses more effectively on critical decorative regions, reducing
background interference.

The Neck component is responsible for aggregating feature informa-
tion from different levels and further optimizing the fusion of deep and
shallow features. The improved YOLOv11 integrates a Feature Pyramid
Network (FPN) andPathAggregationNetwork (PAN) in theNeckmodule.
By combining the top-down feature propagation of FPN with the bottom-
up feature enhancement of PAN, the model improves its ability to detect
multi-scale ceramic objects. This ensures that the model maintains high
precision when simultaneously recognizing large-scale objects (e.g., overall
ceramic shapes) and small-scale decorative details (e.g., patterns and
inscriptions).

The detection head (Head) of the improved YOLOv11 consists of
three parallel output branches, each of which has been optimized to
simultaneously detect large ceramic objects (e.g., vases, bowls, plates) as
well as fine-grained features (e.g., floral patterns, geometric engravings,

calligraphic inscriptions) while suppressing background noise (reducing
false positives and improving bounding box localization). Optimization
strategies include improved convolutional layers (Conv, k = 3, s = 2) to
enhance bounding box prediction accuracy and reduce detection errors,
as well as the C3k2 detail enhancement module to strengthen the model’s
classification capability for decorative elements and improve its perfor-
mance in complex backgrounds.

For the training of the improved YOLOv11 model, this study
adopted its framework with architectural modifications tailored to
the structural characteristics of ceramic artifacts. Specifically, the
conventional Cross Stage Partial (CSP) blocks at feature pyramid
levels P3, P4, and P5 were replaced with the C3k2-EIEM module.
This module integrates edge enhancement, inter-scale feature fusion,
and efficient spatial encoding, thereby improving the model’s ability
to capture fine-grained decorative patterns and subtle craftsmanship
traits. The loss function followed the standard YOLO composition,
incorporating cross-entropy loss for multi-class classification, gen-
eralized IoU loss for bounding box regression, and quality focal loss
(QFL) to address class imbalance and emphasize difficult samples.
These components were combined using fixed weighting, ensuring a
balanced optimization of both classification and localization
objectives.

To enhance generalization and model robustness, advanced data
augmentation strategies were employed during training. These included
Mosaic augmentation (merging four images to increase contextual diver-
sity), MixUp augmentation (blending two images to produce soft-labeled
samples), and GridMask augmentation (applying structured occlusions to
encourage feature robustness under partial visibility). The optimal training

Fig. 5 | Improved YOLOv11 architecture. This figure illustrates the structural
design of the improved YOLOv11 framework used for ceramic classification. The
architecture integrates a ResNet backbone, multiple feature enhancement modules,

and optimized detection heads tailored for fine-grained ceramic attributes such as
patterns, shapes, and craftsmanship styles. The entire figurewas originally created by
the authors.
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configuration consisted of a batch size of 16 and an initial learning rate of 1e
−4 with a scheduled decay. A total of 200 training epochs were conducted
using the Adam optimizer, with momentum set at 0.9 to stabilize gradient
updates and reduce training oscillations.

The evaluationmetrics of research focused onmeasuring classification
accuracy, detection precision, and model robustness across different cera-
mic craftsmanship style, shapes, and craftsmanship attributes. Additionally,
ablation studies were conducted to analyze the interpretability of themodel
and its alignment with price prediction, particularly by examining how
attention-enhanced modules contribute to the identification of high-value
features in ceramic artifacts.

(1) Classification metrics (pattern, shape, craftsmanship style): to
evaluate the categorization of ceramic attributes, the following metrics
were used:

Accuracy measures the overall classification performance, reflecting
the proportion of correctly classified ceramic attributes.

Accuracy ¼ TruePositivesðTPÞ þ TrueNegativesðTNÞ
Total Number of Samples

ð1Þ

Precision measures the proportion of correctly classified ceramic features
among all predicted instances.

Precision ¼ TruePositivesðTPÞ
TruePositivesðTPÞ þ FalseNegativesðFPÞ ð2Þ

Recall evaluates the model’s ability to correctly retrieve all relevant ceramic
attributes.

Recall ¼ TruePositivesðTPÞ
TruePositivesðTPÞ þ FalseNegativesðFNÞ ð3Þ

The F1-Score is used as a balanced metric combining precision and recall,
particularly suited for imbalanced ceramic categories. In this study, theBest-
F1 score refers to the highest F1 value achieved across varying confidence
thresholds (e.g., 0.0 to 1.0), with the optimal performance observed at a
threshold of approximately 0.34.

F1 Score ¼ 2� Precision × Recall
Precision þ Recall

ð4Þ

(2) Object detection metrics (Bounding Box Evaluation): since
YOLOv11 performs both classification and object localization, it is essential
to evaluate bounding box precision using the following metrics: Mean
Average Precision at IoU 0.5 (mAP@50). This metric evaluates the model’s
object detection performance by measuring the average precision when
predicted bounding boxes have at least 50%. Intersection over Union (IoU)
with ground truth, which reflects the model’s ability to correctly detect and
classify ceramic elements under a moderate localization threshold. Higher
mAP@50 scores indicate better accuracy in identifying and localizing dec-
orative patterns such as floral, geometric, or calligraphic motifs.

(3) Ablation studies and robustness analysis of model: we conducted a
series of ablation studies to assess the individual and combined effects of
attention mechanisms on the model’s interpretability and price prediction
accuracy. The classification performance of model was measured using
accuracy, precision, recall, F1-score, and AUC, while a feature importance
analysiswas conducted tounderstand the key factors that influence theprice
estimation.

To support the interpretability goal of this research, particularly in
bridgingvisual craftsmanship features andmarket valuation logic, this study
integrates Gradient-weighted Class Activation Mapping (Grad-CAM) into
the YOLOv11-based ceramic classification process. As a post-hoc visuali-
zation technique,Grad-CAMenables us to generate heatmaps thathighlight
the regions within ceramic images that activate the model’s attention most
strongly during classification. In this study, Grad-CAM serves two specific

purposes, first, to verify the effectiveness of the enhanced attentionmodules
(C2PSA, C3k2-EIEM, and SobelConv) introduced into the YOLOv11 fra-
mework. By visualizing which image regions contribute most to the
detection of decorative patterns, structural elements, or glaze details, the
method confirms whether the model learns semantically meaningful pat-
terns. Second, to establish an interpretability bridge between deep learning
outputs and traditional expert valuation logic. The attention regions iden-
tified by Grad-CAM are cross-referenced with key features (e.g., manu-
facturing complexity, shape structure) used in Random Forest price
prediction, confirming that the visual focus of the model aligns with
empirically important price determinants.

In the third phase, we implemented a RF-based regression framework
to predict market price categories based on extracted visual features. This
component aimed to bridge the visual characteristics of ceramic artifacts
with their appraised monetary value.

Valuing ceramic artifacts is a complex task influenced by multiple
factors, including artistic craftsmanship, historical significance, and market
trends. Traditional valuation methods rely heavily on expert assessments
and historical auction data, which can introduce subjectivity and incon-
sistencies. To address these challenges, this study employs a regression-
based machine learning approach to systematically predict the collectible
value of ceramics.

Although ceramic prices are inherently continuous, this study
adopts a classification-based prediction approach for practical and
methodological reasons. First, auction price distributions are highly
skewed and heavy-tailed, with a small number of exceptionally high-
value items distorting regression outputs, as shown in Supplementary
Table 3. Treating price as a continuous variable under these conditions
often leads to poor generalization and unstable predictions, particularly
for rare samples. Second, in real-world appraisal and auction settings,
ceramic values are typically communicated in discrete price brackets
(e.g., “less than $10,000”, “$10,001–100,000”, “$100,001–500,000”,
“$500,001–1,000,000", and “more than $1,000,000”), rather than as
precise numerical values. The selection of these five price brackets was
informed by both empirical auction practice and exploratory data ana-
lysis. We surveyed historical ceramic auction catalogs from major auc-
tion houses (e.g., Sotheby’s, Christie’s, Poly Auction), where such price
groupings are routinely used to segment market levels. To validate this
segmentation, we conducted a quantile analysis on the training data
distribution, which revealed natural inflection points aligning with these
ranges. Alternative schemes, such as equal-width bins or quartile-based
grouping, were also tested during pilot runs, but resulted in lower clas-
sification accuracy and higher misclassification between adjacent cate-
gories. The final five-tier segmentation thus balances real-world
interpretability with statistical alignment to price distribution char-
acteristics, supporting both communication clarity and model
performance.

While this classification-based approach alignswith industry practices,
it is important to acknowledge that discretizing continuous price data
involves trade-offs. Specifically, the conversion of continuous prices into
discrete brackets can reduce the granularity of prediction and obscure subtle
value differences between adjacent price levels. This assumption was made
to improve model stability and interpretability in real-world applications
such as auction valuation. However, alternative methods, such as hybrid
classification, regressionmodels, or ordinal regression, could be explored in
future work to preserve more fine-grained price information while main-
taining classification robustness. Lastly, classificationmodels allow for clear
evaluation using confusion matrices and AUC scores, which offer intuitive
insights intomisclassification patterns across value levels. Future workmay
explore hybrid models that combine categorical classification with prob-
abilistic regression for finer-grained valuation.

To build a reliable and interpretable ceramic price predictionmodel, it
is essential to identify and structure features that capture both the artistic
attributes of artifacts and the dynamics of the auction market. This section
summarizes the feature engineering process into the following four points.
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(1) Categorical features: to construct an effective price prediction model
for ceramic artifacts, key features influencing valuation were identified
and structured into categorical and numerical factors, ensuring a
comprehensive and data-driven approach to ceramic price estimation.
The classification attributes of decorative patterns, craftsmanship style,
and kiln origins are crucial for capturing the artistic and historical
significance of ceramics. Specifically, decorative patterns include plant
motifs, geometric patterns, mythical creature designs, human figures,
landscape motifs, animal patterns, linear stripes, and glaze surface
decorations. Craftsmanship style refer to the processes that impart
color and decorative effects to ceramics through different glaze
formulations, glazing methods, and firing techniques, including
monochrome-glazed ceramics and multicolored-glazed ceramics.
Additionally, kiln origins such as Ru, Guan, Ge, Ding, Jun kilns, as
well as Jingdezhen, Longquan, Yaozhou, and Cizhou kilns are
incorporated. These classification features are processed using One-
Hot encoding to convert them into machine-readable numerical
representations.

(2) Auction price normalization and outlier handling: the auction data
used in this study were collected from six major auction houses
(Christie’s, Sotheby’s, Bonhams, China Guardian, Poly Auction, and
Rongbaozhai) and span a temporal range from 2000 to 2024, covering
over two decades of ceramic artifact transactions. All auction prices
were converted and normalized to 2024 US dollars (USD) using his-
torical exchange rates andConsumer Price Index (CPI) data published
by international financial databases such as the World Bank and
OECD. To ensure stable model training and reduce the effect of
extreme values, auction price data were cleaned using the Interquartile
Range (IQR) method, with any values lying below Q1− 1.5 × IQR or
above Q3+ 1.5 × IQR flagged as outliers and excluded. Additional
duplicate removal and price format normalization were performed.
After cleaning, the remaining dataset included 7812 valid price-labeled
samples. A ceramics auction price range summary table is shown in
SupplementaryTable 3, showing a right-skeweddistributionwithmost
items valued between USD 10,001 and USD 100,000, and fewer high-
end pieces exceeding USD 1 million.

(3) Quantitative features: in addition to categorical attributes,
quantitative factors were incorporated to capture the physical
and market-driven influences on valuation. These include three
independent variables—shape, decorative motifs, and manufac-
turing complexity—and one dependent variable, price range.
Furthermore, historical auction data from Sotheby’s, Christie’s,
Poly Auction, and China Guardian were analyzed to integrate
market trends, ensuring that price estimations reflect real-world
demand fluctuations. To maintain numerical consistency and
enhance model performance, all quantitative features were
normalized using Min-Max Scaling. By systematically combining
both artistic characteristics and empirical market data, the
proposed model establishes a robust and interpretable frame-
work for the valuation of ceramic artifacts.
To evaluate the contribution of different features to price
prediction, we conducted an initial correlation analysis and
feature importance assessment using RF’s built-in Gini
importance ranking. Features with near-zero variance or
strong collinearity (Pearson r > 0.9) were removed to reduce
redundancy and mitigate overfitting risks. Furthermore,
Principal Component Analysis (PCA) was applied to the
normalized numerical feature space to improve computational
efficiency. The first 10 principal components were retained,
accounting for 92.7% of the total variance. This dimensionality
reduction step ensured that the most informative aspects of
shape complexity, glaze richness, and structural integrity were
preserved, while reducing noise and irrelevant variations.
Feature selection and encoding strategies were guided by both
domain knowledge (e.g., auction expert feedback) and

empirical analysis of model performance under different
combinations of features.

(4) Data encoding: to ensure effective integration of categorical and
numerical attributes into the regression-based price prediction model,
a structured data encoding strategy was implemented. Categorical
features, including decorative patterns, craftsmanship style, and
shapes, were processed using OHE to transform discrete, non-
numeric values into binary feature representations. This approach
prevents themodel from imposing ordinal relationships on inherently
non-ordered attributes, ensuring that categories such as floral patterns,
geometric patterns, dragon motifs, and glaze-based decorations are
treated as independent variables. Similarly, craftsmanship style and
shapes were encoded using OHE, allowing the regression model to
capture stylistic and historical variations without introducing artificial
numerical relationships. Meanwhile, numerical attributes such as
physical dimensions, integrity scores, and market-based valuation
factors were normalized using Min-Max Scaling, ensuring that all
numerical values were rescaled to a standardized range of [0,1]. This
preprocessing step prevents scale imbalances, stabilizes model
convergence, and preserves the relative influence of different valuation
factors, resulting in a robust and interpretable regression model for
ceramic price prediction.

For regression model training, an RF classification model was
employed, as shown in Fig. 6, which illustrates the architecture and work-
flow used to ceramic price prediction. The pipeline is structured into four
key stages: data preprocessing, feature extraction, ensemble training, and
prediction. The pipeline is structured into four key stages: data preproces-
sing, feature extraction, ensemble training, and prediction. The RF algo-
rithm constructs multiple decision trees during training and outputs the
mode of the classes for classification tasks, which effectively reduces over-
fitting and improves generalization. RF achieves this by combining bagging
and random feature selection: each decision tree is trained on a bootstrap
sample of the data, and at each split, a random subset of features is con-
sidered. This ensemble strategy increases model diversity, reduces variance,
and avoids overfitting, which is useful for high-dimensional, mixed-type
datasets such as ours, where features span both categorical and continuous
domains. Moreover, RF inherently supports multiclass classification tasks
and does not require feature scaling, which simplifies integration with one-
hot encoded decorative attributes and numerical complexity indicators.

It should be noted, however, that while RF offers a favorable balance
between predictive performance and interpretability, it is not the only
viable option for price prediction tasks. Ensemble learning models such
as XGBoost and LightGBM can provide enhanced accuracy, better
handling of class imbalance, and finer control over overfitting through
gradient boosting mechanisms. In this study, RF was deliberately chosen
to prioritize transparency and explainability, key considerations in the
context of cultural heritage valuation, where trust and interpretability are
critical. Nevertheless, future research could conduct a systematic com-
parison of ensemble methods to determine whether performance gains
from more complex models justify trade-offs in interpretability and
computational cost.

The dataset was first divided into training and testing sets using
an 80/20 hold-out method, ensuring that 80% of the data was used
for training while the remaining 20% was reserved for testing. The
training set consisted of both categorical features (e.g., decorative
patterns, kiln origins) and quantitative variables (e.g., shape, dec-
orative motifs, manufacturing process). Categorical features were
converted into numerical representations using OHE, and quantita-
tive features were normalized via Min-Max Scaling to maintain
consistency and improve model performance.

The RF model was trained using MATLAB’s TreeBagger function,
which allows for flexible parameter tuning and efficient handling of large
datasets. The training process involved iteratively adjusting key hyper-
parameters to optimize model performance: Number of Trees (numTrees):
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The number of trees in the forest was varied among 10, 50, 100, and 150.
Increasing the number of trees generally improves performance but also
increases computational cost. Maximum Depth (max depth): The max-
imum depth of each decision tree was set to 2, 5, 10, and 20, controlling the
complexity of the model and preventing overfitting. Maximum Features
(max features): The number of features considered for splitting at each node
was testedusing two strategies: one-third of the total features and the square
root of the total features, aligning with standard practices for regression and
classification tasks, respectively. Minimum Samples per Leaf (min samples
leaf): This parameter was varied among 1, 5, 10, 20, 50, and 100 to control
the minimum number of samples required at a leaf node. Smaller values
tend to capture more intricate patterns, while larger values promote
generalization.

After hyperparameter tuning via grid search, the final RF model,
configuredwith 50 trees, amaximumdepth of 50, two features per split, and
a minimum of one sample per leaf, achieved a classification accuracy of
75.47% on the held-out testing set. This result represents the standalone

predictive performance of the optimized model when applied to unseen
ceramic artifact data.

Following model training, feature importance was assessed using
the out-of-bag (OOB) permuted predictor importance provided by
the TreeBagger function. This analysis quantified the contribution of
each feature to the model’s predictive performance. The ranked
feature importances were visualized using a bar plot, facilitating a
clear interpretation of the factors influencing price predictions. By
systematically tuning hyperparameters and analyzing feature con-
tributions, the Random Forest model provided a robust and inter-
pretable framework for ceramic price category prediction, integrating
both artistic characteristics and market-driven data.

Although this study focuses on RF due to its balance of interpretability
and performance, we conducted preliminary comparisons with Support
VectorMachines (SVM)and logistic regression.Thesemodels yielded lower
classification accuracies (SVM: 63.2%, Logistic Regression: 58.7%) and
showed higher variance across folds.

Fig. 6 | Random Forest architecture. This figure visualizes the full workflow of the
Random Forest classification model used to predict ceramic price categories. The
model integrates visual-semantic features extracted from improved YOLO 11 with

historical market data, structured into a supervised ensemble learning framework.
The entire figure was originally created by the authors.
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Results
Performance evaluation of YOLO-based ceramic classification
This subsection presents the quantitative performance evaluation of the
optimized YOLOv11model, comparing it against the baseline YOLOv11 to
assess improvements in ceramic classification. The evaluation focuses on
key object detection metrics, including mean Average Precision (mAP),
Precision, Recall, and F1-score, measured across different ceramic attri-
butes, such as decorative patterns, shapes, and craftsmanship techniques
(Table 1).

To ensure a comprehensive and consistent evaluation, the
dataset of 8213 annotated ceramic images was randomly divided into
three subsets, 70% (5749 images) for training, 20% (1643 images) for
validation, and 10% (821 images) for testing or performance com-
parison. The results demonstrate that the C3k2-EIEM-enhanced
YOLOv11 model achieves consistent but modest box-level gains over
the baseline detector. Specifically, mAP@50 increased by 1% (from
69% to 70%), indicating an enhanced overall detection precision for
ceramic attributes. Although the 1% improvement in mAP@50 may
seem marginal, it is consistent across validation folds and indicates
greater reliability in fine-grained feature detection. Recall improved
by 2% (from 89% to 91%), reducing false-negative detections of
subtle shape or glaze details. Although precision slightly decreased by
1% (from 99% to 98%), this trade-off results in better model gen-
eralization by balancing false positives and false negatives. Addi-
tionally, the Best-F1 score (the highest F1 value obtained along the
confidence sweep) increased from 62% to 64%, confirming a more
balanced harmony between precision and recall at the detection layer.
These results suggest that the improved YOLOv11 model offers
enhanced feature representation in a controlled experimental setting.
However, further validation in diverse real-world contexts is needed
to confirm its broader applicability.

To ensure the robustness and generalization capability of the C3k2-
EIEM-enhanced YOLOv11 model, a 5-Fold Cross-Validation was con-
ducted, with the results summarized in Table 2. The mAP@50 values
remained within a stable range of 68% to 70%, averaging 69%, indicating
consistent detection performance across different validation splits. The
Recall values ranged from90% to92%, demonstrating ahigh retrieval rate of
relevant ceramic objectswithminimal variance,while Precision consistently
remainedbetween98%and99%, confirming themodel’s high confidence in
itspredictionswith few false positives.TheBest-F1-scorefluctuatedbetween
62% and 66%, reflecting a moderate balance between precision and recall.
Notably, the highest Best-F1 value (66%) was observed when recall was
relatively lower (90%), suggesting that evenwith consistently highprecision,

minor fluctuations in recall may significantly affect the harmonicmean due
to class imbalance. These results indicate that the proposed enhancements
likely contribute to more consistent classification performance under cur-
rent dataset conditions. It is important to clarify the nature of the Best-F1
values, as shown in Table 2. These scores represent the model’s highest
harmonic mean of precision and recall observed near the confidence
thresholdof 0.34, rather thanmacro-averagedF1across all classes.Although
both precision and recall individually exceeded 90%, the corresponding
Best-F1 values ranged from 62% to 66%. This outcome reflects the fact that
F1 is highly sensitive to threshold settings: when the confidence threshold is
set too low, recallmay be inflatedwhile precision suffers.When toohigh, the
reverse occurs. The reported values indicate that at conf ≈ 0.34, the model
achieves its most balanced trade-off between retrieving relevant ceramic
elements andminimizing false positives. This behavior is common in object
detection settings and suggests that future optimization could benefit from
adaptive thresholding or confidence calibration to further refine this
balance.

Performance evaluation of random forest for price classification
The RF model was trained with the following optimal hyperparameters: 50
trees (numTrees), a maximum depth of 50, a maximum of 2 features per
split (max features), and aminimumof 1 sample per leaf (min samples leaf).
Under these settings, the highest overall accuracy achieved was 75.47%,
indicating a reasonable level of performance for categorical price prediction
under the given conditions. For the ceramic price classification task, the
dataset was constructed based on cleaned and standardized auction data,
resulting in 7812 valid sampleswith labeledprice categories. The datasetwas
randomly split into twoparts: 80%(6250 samples) training setwas used tofit
the RF classifier and perform a feature importance analysis. Twenty percent
(1562 samples) test set served as an independent benchmark to evaluate the
final classification performance, including accuracy, precision, recall, F1-
score, and AUC.

On the training set, the model’s accuracy reached 99.65%, with
accuracy, recall and F1 scores all of which were 99.65%. On the
independent test set, the model’s accuracy was 98.91%, and the
accuracy, recall and F1 score were also 98.91%. This consistency
stems from the micro-averaging calculation method for all indicators,
that is, true positives, false positives and false negatives are sum-
marized in all categories, resulting in the same scores for each
indicator when the prediction is highly accurate and the data in each
category is balanced (after data enhancement).

To further evaluate the model’s ability to distinguish between
ceramic price categories, we generated Receiver Operating Characteristic
(ROC) curves for the training set, test set, and the full dataset, as shown
in Fig. 7. The Area Under the Curve (AUC) serves as a key metric for
assessing the model’s classification separability. The training set (red
curve, AUC = 0.9965) and the all-sample curve (yellow, AUC = 0.9952)
demonstrate near-perfect classification capacity, indicating strong
internal pattern learning. The test set (blue curve, AUC = 0.9891) also
shows high true positive rates across thresholds, confirming the model’s
generalizability to unseen ceramic artifacts. The close alignment between
all three curves suggests that the model effectively captures price-related
feature distributions without severe overfitting and performs robustly in
predicting market value categories of ceramic vessels. According to the
AUC result, a broad five price range is essentially easier than predicting
precise continuous prices.

Table 1 | The performance comparison

Model version mAP@50 (%) Recall (%) Precision (%) Best-F1 (conf ≈ 0.34) (%)

YOLOv11 69 89 99 62

YOLOv11(improved) 70 91 98 64

Best-F1 is the maximal value along the confidence sweep.

Table 2 | The result of K-fold cross-validation

K-fold cross-
validation
result

mAP@50 (%) Recall (%) Precision (%) F1 score (%)

1st discount 69 90 99 66

2nd discount 69 92 99 62

3rd discount 69 91 98 65

4th discount 70 92 99 63

5th discount 68 90 99 65

Best-F1 is the maximal value along the confidence sweep.
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Additionally, the feature importance ranking analysis revealed
that Feature 1 (3.9826) was the most influential factor, followed by
Feature 2 (3.1026) and Feature 3 (2.2396), as shown in Fig. 8. This
suggests that manufacturing techniques (Feature 1) play the most
significant role in determining ceramic prices, while shape (Feature
2) and decorative patterns (Feature 3) also contribute meaningfully.
The ranking underscores that the complexity of craftsmanship sig-
nificantly impacts market valuation, a finding that aligns with his-
torical auction trends.

In general, the RF-based price prediction model shows promising
predictive performance and useful feature interpretability, making it well-
suited for real-world applications in ceramic valuation, auction market
analysis, and automated appraisal systems. While RF offers high classifi-
cation accuracyunder current settings, its limitedability to separate adjacent
price brackets and sensitivity to class imbalance may constrain its applic-
ability inhigh-stakes valuation contexts. Futurework should exploreordinal
classification or probabilistic modeling to better handle fine-grained pri-
cing tiers.

Case study: high-value artifact prediction
High-Value Artifact Prediction presents a comparison between the
baseline RF (combine YOLO v11) model and the improved RF model
(combine improved YOLO v11), focusing on a Song Dynasty
Celadon vase.

In the first chart, as shown in Fig. 9, the baseline model incorrectly
predicted the artifact as a Medium-Value Artifact, while the optimized
model classified it as a High-Value Artifact, aligning with historical auction
results. The baseline model (represented in orange) misclassified the vase
due to underestimating the significance of inscription details. In contrast,
the optimizedmodel (blue) correctly identified the vase’s high value possibly
due to its limited sensitivity to fine-grained features such as inscription
detail.

The second chart, as shown in Fig. 10, presents the confusion
matrix of the optimized RF model, revealing detailed classification
patterns across the three price categories. Most high-value artifacts
were correctly predicted (60/65), with 5 misclassified as medium-
value. Among the medium-value artifacts, 10 were misclassified as

Fig. 7 | ROC curve analysis for price classification.
This figure presents the ROC curve used to evaluate
the classification performance of the Random Forest
model in predicting ceramic artifact price categories.
The ROC curve plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) across varying
classification thresholds.

Fig. 8 | Feature importance in Random Forest
model for price classification. This figure displays
the relative contribution of three key features, such
as Craftsmanship Style, Shape, and Decorative Pat-
terns, to the price prediction task as determined by
the Random Forest model.
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low-value, suggesting some overlap in feature distribution between
these adjacent tiers. Notably, all low-value artifacts were either cor-
rectly classified or confused with the neighboring medium category,
demonstrating clear model boundaries. The optimized model, bene-
fiting from YOLO-enhanced feature embeddings, predicted the High-
Value Artifact as shown by the accurate diagonal values in the
confusion matrix.

These findings suggest that integrating YOLO-extracted features may
enhance the model’s ability to recognize high-value artifacts, particularly
thosewith complexdecorativeor inscription elements.However, as this case
study is based on a single artifact, broader validation across diverse ceramic
types and periods is necessary to confirm the generalizability of these
observations.

Case study and error analysis: strengths and limitations of
the model
To enhance the interpretability of the YOLOv11-based ceramic
classification system, this study employed attention-based visualiza-
tion techniques to identify which visual regions likely influenced the
classification outcomes. Specifically, we applied Grad-CAM (Gra-
dient-weighted Class Activation Mapping) to generate heatmaps over
ceramic images, highlighting the regions most strongly activated by
the attention layers.

As shown in Fig. 11, attention in both YOLOv11 and its
improved variant tends to concentrate on intricate decorative zones
such as floral engravings, avian motifs, and ornamental bands,
depending on the object category. The heatmaps suggest that the

Fig. 9 | Comparison ofmodel predictions for Song
Dynasty celadon vase. This figure presents a case
study comparing prediction outcomes between the
baseline model and the optimized deep learning
framework for a Song Dynasty celadon vase.

Fig. 10 | Confusion matrices for optimized mod-
els. This figure presents the confusion matrix sum-
marizing the classification performance of
optimized RF models across three artifact value
categories, such as High-Value,Medium-Value, and
Low-Value.
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improved YOLO model, with C2PSA, C3k2-EIEM, and SobelConv
modules, focuses more consistently on semantically meaningful
regions compared to the baseline.

Furthermore, the Grad-CAM maps were cross-referenced with the
top-ranking features in the RFmodel. For instance, samples identified with
high manufacturing complexity in the RF model also displayed visual

attention concentrated on structural protrusions or rare color-glaze com-
binations in the YOLO heatmaps, as shown in Fig. 12. This preliminary
alignment suggests coherence between the visual attention of the deep
learning model and the feature importance in the RF classifier.

Beyond this alignment, we conducted a qualitative error analysis to
investigate the model’s limitations in recognizing visually degraded or

Fig. 11 | Grad-CAM attention visualization for
ceramic artifact classification. This figure presents
Grad-CAM heatmaps generated by YOLOv11 and
the improved YOLO model to visualize attention
regions across three ceramic object categories. Red
to yellow hues indicate high attention focus areas,
while blue regions reflect minimal attention. a For a
vase with floral feature, bothmodels focus on central
motifs, but the improved YOLO yields more con-
sistent and centered activation. b For a jar with floral
feature, attention from the baseline YOLOv11 is
slightly off-centered, whereas the improved model
clearly aligns with the dominant flower feature. c For
the bird and flower feature on a cup, the improved
model demonstrates better attention spread across
both symbolic elements. This figure is based on
original fieldwork photographs taken by the author,
it present Grad-CAM attention overlays generated
by the author based on real-world imagery.
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incomplete artifacts. This analysis revealed three representative types of
failure cases: As shown in Fig. 13, when avian decorative motifs, such as a
phoenix, appear faint and indistinct due to glaze degradation, aging, or low
pattern contrast, the model may fail to classify the motif correctly. In this
case, although the vessel clearly features a stylized bird in the center, the
model misidentified it as having “geometric designs.” This misclassification

likely stems from the blurred edges and weak visual contrast between the
motif and the background glaze, which confuse the detection module. This
indicates a limitation in recognizing low-contrast features, especially in
artifacts with worn glazes.

Artifacts with damaged rims or missing parts (e.g., chipped
plates or broken necks) posed challenges in shape classification. As
shown in Fig. 14, a bottle without a handle was mistaken for a pot.
This suggests that the model’s reliance on full-contour information
limits its robustness against shape deformation caused by physical
deterioration.

Fig. 12 | Visual attention on protrusions and glaze
characteristics. This figure shows Grad-CAM
heatmaps highlighting structural protrusions and
glaze details in three ceramic artifacts. Red and
yellow indicate regions of high attention, while blue
represents low attention intensity. a In the reclining
baby pillow, the model focuses on the curvature and
facial relief, consistent with high structural com-
plexity. b In the square legged ritual vessel, attention
is concentrated on the central embossed feature and
lower legs, highlighting both symmetrical relief and
form. c In the lion footed censer, the model
emphasizes the upper glaze layering and leg junc-
tions, aligning with the complex construction and
unique glazing style. This figure is based on original
fieldwork photographs taken by the author, it pre-
sent Grad-CAM attention overlays generated by the
author based on real-world imagery.

Fig. 13 | Blurred motif misclassified as geometric. This figure illustrates a case of
misclassification by the optimized YOLOv11 model, where a blurred phoenix motif
on a bottle was incorrectly identified as a geometric design. This figure is based on
original fieldwork photographs taken by the author, its feature bounding boxes and
classification annotations produced using the author’s improved YOLOv11 model.

Fig. 14 | Broken contour misclassified shape. This figure presents a failure case in
the object shape classification of improved YOLOv11, where the ceramic vessel with
a damaged spout was incorrectly classified as a “Pot” instead of its correct category
(e.g., “Bottle'') due to disrupted neck-body continuity. Thisfigure is based on original
fieldwork photographs taken by the author, its feature bounding boxes and classi-
fication annotations produced using the author’s improved YOLOv11 model.
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As shown in Fig. 15, it shows an example where the model overlooked
the decorative layers due to glaze peeling and uneven surface texture. A
celadon vessel with glaze peeling failed to detect the original underglaze
pattern.

Discussion
This study aims to bridge the gap between automated ceramic clas-
sification and price prediction, addressing key challenges within the
field. The performance of the improved YOLOv11 model in the task
of ceramic classification demonstrated significant improvements,
particularly with the integration of C3k2-EIEM, SobelConv, and
C2PSA enhancements. These modifications contributed to a slight
but meaningful improvement in mAP@50 and recall, showing that
the model’s capacity to accurately detect ceramic features was
enhanced. Although precision slightly dropped, this was an accep-
table trade-off, as it led to a better balance between false positives and
false negatives, improving the Best-F1 score from 62% to 64%. This
indicates that the improved model not only provides higher detection
accuracy but also demonstrates robustness in a variety of ceramic
feature detection tasks. Further analysis using K-fold cross-validation
consistently affirmed the model’s stability and generalizability. The
mAP@50 across all splits remained between 68% and 70%, sup-
porting the model’s consistency and generalization under controlled
dataset conditions.

In the second part of the study, RandomForest was employed for price
prediction. The RF classifier also demonstrated high performance, with an
accuracy of 99.65% on the training set and 98.91% on the testing set. The
AUCvalues of the ROC curves indicated that themodel effectively captures

price-related feature distributions without severe overfitting, and performs
robustly in predicting market value categories of ceramic vessels. The result
of the confusionmatrix of the improved RFmodel suggests that most high-
value artifacts were correctly predicted. However, there is an overlap in
feature distributions and confusion between categories in both medium-
value and low-value artifacts. Despite these challenges, feature importance
analysis revealed that manufacturing style (Feature 1) played the most
significant role in determining ceramic prices, followed by shape (Feature 2)
anddecorative patterns (Feature 3). This alignswithmarket trends observed
in historical auction data, further validating the model’s relevance in real-
world applications.

This study contributes a framework combining deep learning-based
feature extractionwithmachine learning-based price prediction for ceramic
artifacts. The improved YOLOv11 model effectively captures stylistic
attributes, while theRFmodel highlights interpretable pricing factors. These
findings underscore the potential of automated classification and valuation
systems in the ceramic field.

Despite the encouraging results, the model also exhibited limitations in
certain real-world scenarios. First, the current classification framework treats
price categories as discrete labels, which may overlook ordinal relationships
between tiers. This simplification can lead to misinterpretation of class
boundaries and limits the model’s sensitivity to price gradation. Second, the
model’s performance may be affected by class imbalance, especially when
high-value samples are relatively scarce. The misclassifications observed in
the confusion matrix support this, showing moderate confusion between
mid- and low-value artifacts. Furthermore, It’s applicability to earlier artifacts
orheavilydegradedspecimens (e.g.,with severe surface erosionor incomplete
form) remains limited, as these items often lack the visual clarity and struc-
tural completeness required by the YOLO framework.

Future work should improve model generalizability and interpret-
ability by exploring ordinal regression or Bayesian probabilistic frameworks
to capture soft boundaries between price brackets, while integrating multi-
source market data, such as historical sales, artist provenance, and expert
confidence levels, to support fine-grained, explainable valuation systems.
These efforts could facilitate broader adoption by collectors, museum
curators, and non-expert users through intuitive interfaces and simplified
tools, particularly within digital museums, auction platforms, and cultural
heritage investment contexts.

Data availability
The image data that support the findings of this study are available in
figshare with the identifier https://doi.org/10.6084/m9.figshare.29122634.
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