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Introduction
Microbial inoculants offer a promising solution for 
enhancing paddy growth, meeting rising demands, 
improving crop quality, and promoting sustainable agri-
culture [1, 2]. As rice fields harbour a vast number of 
microbial communities that drive key ecological pro-
cesses and biological functions influencing soil fertility 
and enhancing productivity, a molecular-level under-
standing of the paddy soil microbiome is crucial [3]. This 
could be achieved through high-throughput sequenc-
ing which also paves the path to the discovery of novel 
molecular markers, regulatory sequences and paddy-
associated microbiomes [4, 5].

Advancement in sequencing technology have driven 
meta-omics studies, including soil metagenomics and 
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Abstract
Objective  Extraction of high-quality RNA is crucial for understanding the molecular dynamics of microbiomes in 
the growth and development of paddy plants. However, paddy soil poses challenges due to contaminants such 
as humic substances and its clayish nature, which lead to RNA adsorption and reduced yield. This study aimed to 
improve existing RNA extraction methods for bulk soil samples collected from a paddy field in Perak, Malaysia. We first 
evaluated different published protocols, selected the best based on RNA yield and quality, and further optimized it for 
highly pigmented soil samples. The resulting RNA was subjected to metatranscriptome sequencing, de novo assembly 
and annotation.

Results  Upon evaluation, the RNA extraction protocol by Peng et al., 2018 (method B3) was optimized by 
incorporating 20% and 30% PEG-based precipitation to remove carry-over pigmentation. Comparative testing 
showed that 20% PEG produced the highest quality RNA, yielding pigment-free RNA (> 100 ng/µl, integrity > 7, and 
A260/A280 of 2.02 ± 0.02). Metatranscriptome sequencing and analysis with Trinity, BUSCO, and Kraken2 confirmed 
superior quality and higher bacterial read assignment for RNA extracted with 20% PEG, highlighting its effectiveness 
for downstream microbial transcriptomic applications.
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metatranscriptomics [6]. Extraction of high-quality, 
inhibitor-free RNA from soil samples remains chal-
lenging due to RNA’s instability and presence of inhibi-
tors like tannins and humic acids that complicates RNA 
recovery and can negatively impact sequencing [6, 7]. 
Unlike DNA, RNA is more prone to degradation and 
thus, there is a need to optimize existing protocols to 
not only improve the RNA yield but also to enhance the 
removal of inhibitory compounds.

Literature review shows limited studies on manual 
(phenol-chloroform-based) RNA extraction methods 
from paddy soil [8–13]. While kit-based methods are 
faster and have demonstrated the potential to yield high-
quality RNA, the proprietary components limit optimi-
zation and up-scaling. Manual methods, in contrast are 
more cost-effective, making them especially suitable for 
large-scale or resource-limited studies. Hence, this study 
aims to compare and evaluate various total RNA extrac-
tion methods from inhibitor-rich paddy bulk soil for 
metatranscriptome sequencing. It also highlights major 
challenges encountered during RNA extraction and the 
strategies used to overcome them. The optimized method 
is manual, transparent, and adaptable, allowing for step-
wise optimization as needed.

Method
Sample collection and processing
Bulk soil samples were collected during the ripening 
stage of paddy plants from a drained field in Kampung 
Gajah, Perak, Malaysia (4.1841° N, 100.9389° E). All nec-
essary permissions for sampling were obtained from the 
respective paddy field owners through the local author-
ity, Integrated Agriculture Development Area (IADA), 
Seberang Perak, Malaysia. Using a Dutch auger, soil was 
sampled at a 10 cm depth, and approximately 50 g of soil 
was transferred into a sterile 50  ml Falcon tube. Three 
volumes of RNAlater solution (Invitrogen, Thermo Fisher 
Scientific, US) were added to the soil samples, placed on 
dry ice and transported to the laboratory under the same 
conditions, where they were stored at -80 °C until further 
processing.

Total RNA extraction
Total RNA was initially extracted from paddy bulk soil 
using five different protocols, each performed with three 
independent replications. These protocols included 
Methods B1 [14], B2 [15], B3 [16], B4 (RNeasy PowerSoil 
Total RNA Kit by Qiagen, Germany), and B5 [17]. A sum-
mary of these protocols, adapted from the cited refer-
ences is provided in Supplementary Table 1. Methods B1, 
B2, B3, and B5 involved phenol-chloroform extraction 
and were classified as manual extraction methods, while 
Method B4 utilized a commercial kit and was categorized 
as a kit-based method.

RNA quality and quantity analysis
The purity of the RNA was measured based on A260/
A280 nm and A260/A230 nm absorbance ratios using a 
UV-Vis spectrophotometer (Implen NanoPhotometer), 
while the RNA yield and integrity were quantified using 
a Qubit 4 fluorometer and Qubit RNA HS Assay Kit 
(Thermo Scientific, USA). RNA integrity was assessed 
based on the presence of 23 S and 16 S bands on 1% aga-
rose gel electrophoresis stained with ViSafe red gel stain 
(Vivantis, USA) using a 1 kb Vivantis ladder. Upon quan-
tification, all the data are expressed as mean ± SD values 
unless otherwise stated. All statistical analysis was con-
ducted using IBM SPSS Statistics 22.

Optimized method for total RNA extraction from paddy 
bulk soil
Upon evaluating five RNA extraction methods, Method 
B3 showed relatively better performance by showing dis-
tinct intact band on gel electrophoresis, indicating satis-
factory RNA integrity. Therefore, several modifications 
were made to Method B3, detailed in Supplementary 
Data S1. For the precipitation step, the following combi-
nations were tested; 2.5 volumes of pre-cooled absolute 
ethanol with 1/10 volume of 3 M sodium acetate [18, 19], 
30% PEG (Polyethylene glycol 6000) with 5 M NaCl, and 
20% PEG with 5 M NaCl [20, 21].

RNA sequencing
RNA extracts were treated with DNase I and 1  µl of 
SUPERase RNase Inhibitor (Thermo Scientific, USA) 
and purified using the RNA Clean & Concentrator-5 
kit (Zymo Research) according to manufacturer’s pro-
tocol. The cDNA libraries were then constructed using 
the NEBNext Ultra II RNA Library Prep kit for Illumina 
(NEB, USA) and sequenced on the Illumina NovaSeq 
6000 platform (2 × 150  bp) by Nanjing Novogene Bio-
Technology Co., Ltd.

Bioinformatic analysis
The Illumina paired-end reads were quality filtered again 
by trimming off low-quality bases using Trimmomatic 
v0.38, with a sliding window of 4:25 and a minimum 
sequence length of 80 bp [22]. The quality of the trimmed 
sequences was assessed using FastQC v0.11.9 through 
visual inspection [23]. Trinity (v2.13.2) was then used 
to perform de novo metatranscriptome assembly of all 
individual clean reads [24]. Assembly and contig quality 
analysis was performed using the built-in Trinity script to 
assess the Gene contig Nx statistics [25]. The assembled 
sequences were then analyzed with BUSCOv5.2.2 using 
the lineage dataset bacteria_odb10 dataset (prokaryota, 
2020-03-06) to evaluate the genome completion by 
identifying the number of markers that mapped against 
the bacteria_odb10 database [26]. Following that, the 
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assembled sequences were also subjected to taxonomic 
classification using Kraken2 v2.0.8 (PlusPF database, 
2023-03-14) to identify the proportion of reads classified 
as Bacteria at the domain level [27].

Results
Evaluation of RNA quality and quantity across existing 
extraction methods
The RNA extracted using previously published protocols 
was evaluated and deemed suitable for sequencing based 
on four quality criteria: RNA concentration ≥ 50 ng/µL, 
A260/A280 ratio of 1.8–2.0, A260/A230 ratio of 1.8–2.2, 
and RNA integrity number (RIN) of ≥ 6 [28–32]. Results 
indicated that all the tested methods did not result in sat-
isfactory output (Table 1; Fig. 1).

The evaluated methods yielded low RNA concentra-
tions, with some methods below the Qubit detection 
limit (≤ 4 ng) and failing to produce bands during gel 
electrophoresis [23]. Method B4 (RNeasy PowerSoil 
Total RNA Kit, Qiagen) gave the highest RNA concen-
tration but showed inconsistent results across replicates. 
Manual extraction methods (B1, B2, B3, B5) produced 
highly pigmented RNA (brown to black), severely affect-
ing purity, as indicated by absorbance readings [24, 25] 
(Fig. 2). Interestingly, despite method B3’s RNA concen-
tration being undetectable by Qubit, distinct ribosomal 
bands appeared on gel electrophoresis, suggesting con-
taminants including pigmentation may have interfered 
with quantification.

Further optimization for total RNA extraction from paddy 
bulk soil
Overall, RNA recovery was poor across all methods, 
with severe pigmentation observed in manual extrac-
tions. Method B3 showed clear rRNA bands but exhib-
ited severe pigmentation, while Method B4 produced 
pigment-free RNA but with low yield and purity, despite 
using 2 g of starting material. Additionally, B4, a spin-col-
umn kit, incurred higher costs compared to traditional 
phenol-chloroform methods, making it less cost-effective 
for routine use. Therefore, Method B3 was selected for 
further optimization. Originally employing isopropanol 
for precipitation, Method B3 was subsequently tested 
with a combination of different precipitating reagents 

to identify the most effective approach for removing the 
carry-over pigmentation (Table 2; Fig. 3).

Replacing isopropanol with PEG-based precipitation in 
method B3 improved RNA recovery, yielding high-purity 
RNA without carry-over pigmentation (Table  2; Fig.  3). 
Both 30% and 20% PEG removed pigmentation, but 
20% PEG yielded higher RIN values and concentration. 
RNA extracted using method mB3a and mB3b met the 
predefined quality criteria for sequencing and thus, was 
subsequently subjected to further purification and meta-
transcriptome sequencing.

Post-sequencing quality check and assembly statistics
Upon sequencing, the paired-end raw reads were pre-
processed by removing the adapters, reads containing 
N > 10% (N represents the base cannot be determined) 
and reads containing low quality (Qscore < = 5) base. 
After pre-processing, 28,832,018 and 55,210,358 clean 
reads were obtained from the sequenced library of total 
RNA extracted using methods mB3a and mB3b, respec-
tively. A quality assessment of the resulting assemblies 
was performed following de novo assembly with Trinity. 
The Nx gene statistics were computed using the longest 
isoform per gene, showing higher total transcripts, genes, 
and assembled bases for the modified method with 20% 
PEG (mB3b) compared to 30% PEG (mB3a). (Table 3).

A higher percentage of complete BUSCOs were iden-
tified for the assembled sequence obtained from modi-
fied methods mB3b, indicating superior assembly quality 
based on the percentage of sequences that mapped to the 
bacteria_odb10 dataset (Seppey et al., 2019) (Table 4). As 
expected, a higher duplication rate was detected, which 
can be attributed to the inclusion of all transcripts gener-
ated by Trinity in the analysis, rather than limiting it to 
unigenes (i.e., the longest isoform per gene) [33].

In addition, to get a better idea of the taxonomic com-
positions associated with the bacterial domain, the 
assembled sequences were also subjected to a fast taxo-
nomic application using Kraken2 which quickly deter-
mines the number of reads assigned to the domain 
Bacteria [27]. The analysis indicated that a total of 36.31% 
and 38.20% of the assembled reads from methods mB3a 
and mB3b, respectively, were assigned to Bacteria, indi-
cating slightly higher bacterial representation in mB3b.

Table 1  Average RNA concentration and purity from paddy bulk soil samples using five published methods
Extraction method Concentration (ng/µl) A260/A280 A260/A230
B1 N/A 1.64 ± 0.07 0.78 ± 0.02
B2 5.34 ± 0.14 1.33 ± 0.07 0.83 ± 0.01
B3 N/A 1.55 ± 0.08 0.99 ± 0.08
B4 30.6M 1.70 ± 0.03 0.89 ± 0.45
B5 N/A 1.50 ± 0.05 0.77 ± 0.03
N/A indicates RNA concentration that is below the detection limit of the Qubit fluorometer. “M” corresponds to the RNA concentration obtained from a single 
replicate out of the three. RIN was not reported in the table as all methods had values below the detection limit of 4 ng
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Discussion
This study evaluated existing RNA extraction methods 
to obtain high-quality RNA from paddy bulk soil for 
metatranscriptome sequencing. Paddy bulk soil was col-
lected from a drained paddy field at a depth of 10 cm. The 
sample was clay-rich with high organic matter and humic 
substances, which contributed to the dark brown to black 
pigmentation observed during RNA extraction. After 
testing 5 different existing methods, method B3, a phe-
nol-chloroform-based method, was chosen for optimiza-
tion due to its consistent, intact rRNA band visibility in 
gel electrophoresis. A major challenge in RNA extraction 
from bulk soil samples was the low RNA yield and carry-
over pigmentation leading to dark-coloured eluates that 
negatively impacted RNA recovery. Low RNA yields from 

soil are commonly reported, with only tens of nanograms 
to a few micrograms recovered per gram of soil [11, 34]. 
RNA extraction from soil is more challenging than from 
pure cultures due to strong RNA adsorption to soil par-
ticles, especially in clay-rich soils which are common in 
paddy fields. Additionally, humic substances, which are 
dark-coloured heterogeneous organic compounds often 
co-extract with RNA, interfering with enzymatic reac-
tions and further complicating the recovery of high-qual-
ity RNA [25].

Dark pellets and eluates formed during RNA extrac-
tion from bulk soil samples (Fig.  2) indicated the pres-
ence of humic substances, known to interfere with RNA 
purity and downstream applications [11, 35–37]. To 
address this, several modifications were made to Method 

Fig. 1  Agarose gel electrophoresis of total RNA extracted from paddy bulk soil samples using published methods. M is VC 1 kb DNA ladder (Vivantis). 
Lanes 1–3 represent the triplicates of Method B1, lanes 4–6 represent method B2, lanes 7–9 represent method B3, lanes 10–12 represent method B4 and 
lanes 13–15 represent method B5. Full-length gel is presented in Supplementary Fig. 1
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B3. The addition of BME to the lysis buffer was essential 
for removal of polyphenolic compounds and inhibition 
of RNase activity that compromise the quality and yield 
of RNA [38–40]. Thorough physical lysis and the use of 
lysozyme were also incorporated to enhance the bacterial 
cell lysis. Samples were subsequently subjected to two 
rounds of Phenol: Chloroform: Isoamyl alcohol (P: C:I) 
treatment with higher ratio of phenol content to purify 
RNA from the contaminants [11]. An additional chloro-
form: isoamyl alcohol extraction step was performed to 
remove residual phenol, ensuring RNA of high purity 
[41]. Additionally, PEG-based precipitation was intro-
duced to deal with residual pigments. Although both 20% 
and 30% PEG effectively removed pigmentation, RNA 
extracted with 20% PEG showed higher RIN values and 
overall better quality. Subsequent ethanol washing and 
column-based purification are still recommended to 
remove residual PEG and other inhibitors.

Due to financial constraints, sequencing was lim-
ited to one sample per method without biological repli-
cates. Despite this limitation, comparative evaluation of 
sequencing outputs including assembled read counts, 
gene Nx statistics, BUSCO analysis, and taxonomic clas-
sification indicated that mB3b (20% PEG) outperformed 
mB3a (30% PEG). While these differences cannot be sta-
tistically validated, the results highlight mB3b’s overall 
improved RNA quality, supported by gel electrophoresis 
profiles, higher RNA yield, and integrity. Based on these 
findings, mB3b was selected for large-scale RNA extrac-
tion from 32 bulk paddy soil samples, representing 80% 
of all collected samples. These samples were collected 
from multiple paddy plots in Kampung Gajah, Perak, 
across three growing seasons (March 2021–June 2022) 
and successfully sequenced on the Illumina NovaSeq 
6000 platform, with data deposited in NCBI SRA (Bio-
Project PRJNA770166) (Supplementary Table 2).

Table 2  RNA purity and concentration using optimized method B3 with different precipitating agents
Precipitation method Concentration (ng/µl) A260/A280 A260/A230 RIN
mB3a (30% PEG + 5 M NaCl) 36.9 ± 1.5 1.84 ± 0.03 1.89 ± 0.18 6.0
mB3b (20% PEG + 5 M NaCl) 104.5 ± 0.5 2.02 ± 0.02 2.14 ± 0.04 7.55 ± 0.25
mB3c (Sodium acetate + Abs Ethanol). N/A 1.70 ± 0.04 0.79 ± 0.03 N/A
The A260/A280 and A260/A230 absorbance ratios reflect the RNA purity. N/A indicates that the RNA concentration is below the detection limit of the Qubit 
fluorometer

Fig. 2  Pigmented RNA extracted from soil samples from methods B2 and B5. (a) The pigmented pellet obtained from method B2 after the precipita-
tion step. (b) Pigmented elute obtained from method B2 after eluting the pellet into 50 µl of TE buffer. (c) Pigmented and gel-like sediment in the elute 
obtained from method B5
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Table 3  Summary of post-assembly statistics
Method Total Trinity genes Total Trinity transcripts Total assembled bases
mB3b 616,740 691,902 225,083,288
mB3a 553,743 577,531 185,313,454

Fig. 3  Gel electrophoresis of total RNA extracts using optimized B3 methods with different precipitation reagents. Lanes 1–2 represent the duplicates 
of method mB3a (30% PEG and 5 M NaCl), lanes 3–4 represent method mB3b (20% PEG and 5 M NaCl), and lanes 5–6 represent method mB3c (Sodium 
acetate and absolute ethanol). Full-length gel is presented in Supplementary Fig. 2
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Limitations
This study is limited by its small sample size and its focus 
on paddy soil from one geographical region. Due to bud-
get constraints, sequencing was performed on only one 
sample per method, preventing statistical validation of 
differences between methods. While method mB3b dem-
onstrated better RNA quality and sequencing output, 
further studies with biological replicates are needed to 
confirm its reproducibility and applicability. Nonetheless, 
the successful sequencing of 32 paddy bulk soil samples 
using the optimized protocol (mB3b) highlights its effi-
ciency for metatranscriptomic applications.
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