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Conventional multi-label classification methods often fail to capture the dynamic relationships 
and relative intensity shifts between labels, treating them as independent entities. This limitation 
is particularly detrimental in tasks like sentiment analysis where emotions co-occur in nuanced 
proportions. To address this, we introduce a novel Weighted Difference Loss (WDL) framework. WDL 
operates on three core principles: (1) transforming labels into a normalized distribution to model their 
relative proportions; (2) computing learnable, weighted differences across this distribution to explicitly 
capture inter-label dynamics and trends; and (3) employing a label-shuffling augmentation to ensure 
the model learns intrinsic, order-invariant relationships. Our framework not only achieves state-of-
the-art performance on four public benchmarks, but more importantly, it substantially improves the 
recognition of minority classes. This demonstrates the framework’s ability to learn from sparse data 
by effectively leveraging the underlying label structure, offering a robust, loss-driven alternative to 
complex architectural modifications.
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Multi-label sentiment classification (MLSC) is a critical task for understanding the nuanced and often complex 
emotions expressed in text, with applications ranging from market research to public opinion analysis1–4. Unlike 
single-label tasks, MLSC acknowledges that a single text can convey multiple sentiments simultaneously5. 
However, this task is impeded by two persistent challenges: severe class imbalance, where minority emotions are 
poorly learned6, and the flawed label independence assumption inherent in standard fine-tuning approaches. 
Pre-trained models like BERT7, despite their power, often inherit this limitation by using loss functions like 
Binary Cross-Entropy (BCE), which by design treats each label as a separate binary problem, thus failing to 
model the rich interdependencies between them5,8.

This failure to model label relationships is not merely a statistical issue; it represents a fundamental 
misunderstanding of sentiment. Emotions are not independent events but exist in a structured, dynamic 
relationship9. For instance, an increase in ’joy’ often corresponds to a decrease in ’sadness’10, and the co-
occurrence of ’joy’ and ’surprise’ has a different proportional intensity than ’anger’ and ’disgust’. To overcome 
these limitations, we argue for a paradigm shift: from predicting independent label probabilities to modeling a 
structured label distribution11. Our core hypothesis is that by supervising not only the presence of labels but also 
their relative proportions and their rates of change (differences), a model can learn the underlying structure of 
the label space without requiring external knowledge graphs or complex architectural changes12,13.

To operationalize this paradigm shift, we propose the Weighted Difference Loss (WDL) framework. This 
paper makes the following primary contributions:

•	 We introduce a novel ratio-to-difference mechanism that normalizes label values into a distribution of relative 
proportions and then computes higher-order differences to explicitly model the dynamic trends and interde-
pendencies between labels.

•	 We design a learnable weighting scheme that allows the model to adaptively balance the supervisory signals 
from the base classification loss, the ratio-matching loss, and the multi-order difference losses, thereby opti-
mizing the learning process.
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•	 We incorporate a label-shuffling augmentation strategy during training, which forces the model to learn in-
trinsic, order-invariant relationships between emotions, significantly enhancing its robustness and generali-
zation capabilities.

•	 We empirically demonstrate through extensive experiments on four public benchmarks that our WDL frame-
work achieves state-of-the-art performance and, most critically, substantially improves the recognition of mi-
nority classes, evidenced by a 0.90 absolute F1-score gain for the ’grief ’ category on the GoEmotions dataset.

The remainder of this paper is organized as follows: Section "Related work" reviews related work. Section "The 
WDL framework" details the proposed WDL framework. Section  "Experimental analysis" presents the 
experimental setup and results. Section "Ablation study and discussion" provides ablation studies and discussion. 
Finally, Section "Conclusion" concludes the paper.

Related work
Sentiment analysis aims to automatically extract subjective information from text14,15. Multi-label sentiment 
classification (MLSC), a subfield, addresses the realistic scenario where a text expresses multiple, intertwined 
emotions16,17. The evolution of MLSC methods reflects a continuous effort to better capture textual context and 
label relationships.

Evolution and persistent challenges in MLSC
Early approaches relied on traditional feature engineering (e.g., N-grams, TF-IDF), which required significant 
manual effort and lacked deep contextual understanding18,19. The advent of deep learning models like CNNs and 
RNNs automated feature extraction but often struggled with long-range dependencies and implicitly assumed 
label independence20,21.

The introduction of Transformer-based Pre-trained Language Models (PLMs), particularly BERT7, 
revolutionized the field with powerful contextual representations22. However, even when fine-tuned, PLMs still 
face two core MLSC challenges: (1) Class Imbalance, where models become biased towards frequent emotions23, 
and (2) the Label Independence Assumption, where standard loss functions like BCE neglect the rich, natural 
correlations between emotions24.

Modern strategies for enhanced MLSC
Contemporary research has explored various strategies to overcome these limitations, as summarized in Table 1. 
Our work primarily contributes to the “Loss Function Modification” category, but its prompt-based input 
formulation also connects it to “Advanced Representation” techniques.

Innovations in loss functions directly steer model training. Focal Loss25 and ASL26 address class imbalance 
by re-weighting examples. LDL27 learns a probability distribution over labels, implicitly modeling relationships. 
While effective, these methods may not fully capture the relative proportional strength or dynamic shifts between 
co-occurring emotions.

Explicit modeling of label dependencies directly represents label relationships. GNNs31 are a dominant 
paradigm, constructing a label graph (from co-occurrence statistics or external knowledge) and propagating 
information to learn correlation-aware predictions. While powerful, GNN-based methods introduce significant 
overheads: they require the pre-construction of a label graph, which may be suboptimal or unavailable, and 
add notable computational complexity35. To circumvent these issues, we propose an alternative, loss-driven 
approach. Instead of encoding label relationships into a fixed graph structure, our method forces the model to 
learn these relationships dynamically from the data itself, guided purely by the loss function.

Advanced representation learning techniques, such as contrastive learning33 and prompt-based learning34, 
aim to improve the underlying features. Contrastive methods learn more discriminative embeddings by pushing 
dissimilar samples apart in the feature space. Prompting reformulates the task to better align with the PLM’s pre-
training objectives. Our work incorporates a prompt-inspired input formulation but focuses its core innovation 
on the loss function, making it complementary to these representation-focused methods.

Motivation for weighted difference loss
Existing approaches often specialize in either class imbalance or label dependency, introduce significant 
architectural complexity, or fail to model the nuanced, relative proportional strengths of emotions. Our proposed 
WDL offers a unified, lightweight solution that operates directly on the model’s output distribution. By focusing 
on the learnable, weighted differences in normalized label proportions, WDL provides a computationally 
tractable method to simultaneously mitigate class imbalance and model label interdependencies, aiming to 
improve performance, particularly for minority classes.

Approach Category Representative Methods / Key Papers Core Strategy Keywords for Imbalance / Dependencies

Loss Function Modification Focal Loss25, Asymmetric Loss (ASL)26, Label Distribution Learning (LDL)27, Label 
Correlation Losses28

Re-weighting, Decoupling, Distribution Learning, Direct 
Correlation Terms.

Explicit Dependency Modeling CRFs29, Label Embeddings (LEAM30), Graph Neural Networks (GNNs) (Structure-
based31, KG-enhanced32)

Graphical Models, Semantic Embeddings, Graph 
Propagation, Knowledge Infusion.

Advanced Representation Contrastive Learning (Label-aware33), Prompt-based Learning (PLM/LLM Prompts34) Discriminative Features, Text-Label Alignment, Task 
Reformulation, In-context Learning.

Table 1.  High-level overview of modern approaches in multi-label sentiment classification.
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The WDL framework
Framework overview
The WDL framework enhances a standard BERT model by introducing a multi-component loss function that 
supervises the model on label presence, relative proportions, and inter-label trends. Figure  1 illustrates the 
overall workflow. Given an input text and a set of labels, the framework proceeds in three steps: 1. Prediction: 
A prompt-based BERT model with a feature refinement module generates predicted logits ŷl for each label. 2. 
Transformation: Both predicted logits and true labels y are transformed into normalized ratio vectors, r̂ and r, 
respectively. Higher-order differences (∆dr̂, ∆dr) are then computed from these ratio vectors. 3. Weighted Loss 
Calculation: A final loss, LWDL, is computed as a dynamically weighted sum of the binary classification loss, the 
ratio-matching loss, and the difference losses.

The complete loss function is defined as:

	
LWDL = wl · BCE(ŷl, ybin) +

D∑
d=0

wd · MSE(∆dr̂, ∆dr)� (1)

where w = [wl, w0, . . . , wD] are learnable weights, ŷl are the predicted logits, ybin are the true binary labels, 
and ∆dr̂ and ∆dr are the d-th order differences of the predicted and true ratios, respectively.

Prompt-based input and feature refinement
Inspired by prompt-based learning36, we construct inputs by prepending emotion labels with [MASK] tokens to 
the text: "e1[MASK]…eM[MASK]. ti". After extracting the final-layer representations for each [MASK] token 
from BERT, we hypothesize that these initial representations can be further refined to be more discriminative. 
To this end, we employ a Self-Attention Network (SAN) module to act as a feature refiner. Each [MASK] token’s 
representation is independently processed by the SAN to enhance its contextual features before being passed to 
the classifiers. As our ablation study confirms (Section Component effectiveness analysis), this refinement step 
creates a higher-quality substrate for the WDL and is crucial for overall performance.

Ratio and difference formulation
From a theoretical standpoint, we posit that the set of co-occurring emotions in a text can be viewed as a discrete 
signal over the label space. The value at each point corresponds to the intensity of an emotion. The first-order 
difference (∆1) of this signal approximates its derivative-the rate of change in intensity from one emotion to 
the next. The second-order difference (∆2) approximates the second derivative, or the “acceleration” of this 
change. By supervising these derivatives, we compel the model to learn not just the static presence of emotions 
(the “position” of the signal), but also their dynamic relationships and trends (the “velocity” and “acceleration”).

To operationalize this, we first transform both true labels and predicted logits into ratio vectors. For a 
given instance with a multi-hot true label vector ybin ∈ {0, 1}M , the true ratio vector r is computed by L1 
normalization:

Fig. 1.  The Bert-WDL architecture. An input text is prepended with emotion-guided [MASK] prompts. BERT 
generates representations, which are refined by a Self-Attention Network (SAN) module. The final logits are 
supervised by the multi-component WDL, which includes losses on labels, ratios, and their differences (2nd-
order shown).
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r = ybin

||ybin||1 � (2)

If an instance has no positive labels (||ybin||1 = 0), r is a zero vector. The predicted logits ŷl are passed through 
a softmax activation to produce a probability distribution ̂r, ensuring it is also L1-normalized.

To explicitly model label dependencies, we then compute the d-th order forward difference ∆dr recursively:

	 ∆dr[i] = ∆d−1r[i + 1] − ∆d−1r[i]� (3)

where ∆0r ≜ r. The 1st-order difference captures intensity transitions between adjacent labels, while higher 
orders encode more complex, non-local dependencies.

Order-invariant learning via label shuffling
Since the difference calculation is sensitive to label order, we introduce a crucial augmentation step. During 
each training iteration, the original batch is expanded by creating K random permutations of the emotion label 
sequence for each sample. The input prompts, true labels, and true ratios are re-constructed according to these 
permutations, forming an augmented batch of size K × batch_size. The WDL loss is computed over this entire 
augmented batch in a single forward and backward pass. This procedure forces the model to learn true semantic 
correlations between emotions (e.g., ’joy’ and ’excitement’) rather than spurious positional artifacts (e.g., ’the 5th 
label is always higher than the 4th’), thereby improving model robustness and generalization. During inference, 
predictions from shuffled sequences are re-ordered back to their original label sequence before evaluation.

Learnable multi-component loss
The final WDL (Eq. 1) combines the losses from the binary classification task (BCE) and D + 1 orders of ratio/
difference matching (MSE). The weights w are not fixed hyperparameters but are learned dynamically. They 
are parameterized by a vector of logits u ∈ RD+2, such that w = softmax(u). Both the model parameters θ 
and the weight logits u are updated via gradient descent, allowing the framework to adaptively determine the 
importance of each loss component. The complete training process is detailed in Algorithm 1.

Require: Pre-trained BERT, difference order D, permutations K, learning rates
αθ, αw, patience P

1: Initialize model parameters θ, weight logits u ∈ RD+2, best val loss L∗ ← ∞, wait
p ← 0

2: for epoch = 1, . . . , Emax do
3: for each batch B do
4: � Augment batch via label shuffling
5: Baug ← ∅
6: for each sample si ∈ B do
7: for k = 1, . . . ,K do
8: Generate a random permutation Pk of labels
9: Create augmented sample s′

ik based on Pk

10: Baug ← Baug ∪ {s′
ik}

11: end for
12: end for
13: � Single forward pass on augmented batch
14: Compute predicted logits ŷl = fθ(Baug)
15: Normalize predictions and targets to ratios (r̂, r), then compute differences

(∆dr̂,∆dr)
16: Compute LWDL using Equation 1 with weights w = softmax(u)
17: Update model parameters: θ ← θ − αθ∇θLWDL
18: Update weight logits: u ← u − αw∇uLWDL
19: end for
20: Evaluate validation loss Lval
21: if Lval < L∗ then
22: Save best θ, L∗ ← Lval, p ← 0
23: else
24: p ← p + 1;
25: if p ≥ P thenbreak
26: end if
27: end if
28: end for  
Algorithm 1.  Training the WDL framework.

Scientific Reports |        (2025) 15:25052 4| https://doi.org/10.1038/s41598-025-09883-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Implementation details
Our framework was implemented in PyTorch 2.0.0 and run on an Ubuntu 20.04 system with a 48GB vGPU. 
We fine-tuned bert-base-uncased and bert-base-chinese models from Hugging Face. The architecture includes a 
single-layer SAN for feature refinement and employs a dedicated SGD optimizer for the loss weight logits. All 
experiments were conducted using the comprehensive set of hyperparameters detailed in Table 2, with early 
stopping based on validation loss to prevent overfitting.

Experimental analysis
Datasets
We evaluated our method on four public multi-label emotion datasets: two Chinese (NLPCC 2018 Task 1 with 
5 emotion labels and Ren-CECPs with 8 labels) and two English (GoEmotions with 28 labels and SemEval 2018 
Task 1, E-c with 11 labels). For NLPCC, GoEmotions, and SemEval, we used the official train/validation/test 
splits. For datasets lacking official splits, such as Ren-CECPs, we randomly partitioned the data into training 
(70%), validation (15%), and test (15%) sets. To ensure reproducibility, all random partitioning was performed 
using a fixed random seed (42).

Evaluation metrics
We use a comprehensive suite of metrics: Macro-F1 (MF1) and Micro-F1 (mF1) to assess classification 
performance, with MF1 being particularly sensitive to minority class performance. We also report Average 
Precision (AP), Hamming Loss (HL), Coverage Error (CE), and Ranking Loss (RL). Arrows (↑ / ↓) indicate the 
desired direction for each metric.

Baseline methods
We compare Bert-WDL against state-of-the-art models including prompt-based (PC-MTED37), capsule network 
(CapsLDM38), neural architecture (MEDA-FS39, LEM40, EduEmo41), and hybrid methods (Hybrid HEF-DLF42, 
Seq2Emo43). All baseline results are sourced from their original publications. In the following tables, a dash (-) 
indicates that a specific metric was not provided in the source paper.

Experimental results
Cross-dataset performance
Table 3 and Table 4 show that the WDL framework consistently delivers top-tier performance across all four 
datasets, demonstrating its robustness and generalizability. Unlike baseline methods that excel on one dataset 
but falter on another, WDL variants consistently rank among the top performers. For example, WDL2 achieves 
the best MF1 and mF1 on NLPCC, while WDL1 is highly competitive on Ren-CECPs and SemEval, and secures 
the best MF1 and mF1 on GoEmotions. This stability highlights the effectiveness of modeling label dynamics as 
a general principle.

Effectiveness on minority classes
The primary strength of WDL lies in its ability to mitigate class imbalance. The heatmap in Fig. 2 provides a clear 
visual proof of this effect on the 28-category GoEmotions dataset. In the figure, emotions are sorted by their 
training sample count, from the least frequent at the top to the most frequent at the bottom. This arrangement 
vividly illustrates that the most significant performance gains, indicated in green, occur on minority classes.

The exceptional performance on ’grief ’ (F1-score of 0.91 vs. a baseline of 0.01), despite only 6 training samples, 
strongly validates our core hypothesis. A standard BCE loss struggles with such extreme sparsity. However, 
WDL forces the model to consider ’grief ’ in relation to other emotions. By learning the difference patterns-how 
the presence of ’grief ’ alters the proportions of ’sadness’ or ’disappointment’-the model can effectively infer its 
presence even from minimal direct evidence. This pattern of significant gains is consistent across most low-
to-mid frequency emotions. While some high-frequency emotions like ’gratitude’ and ’remorse’ show a trade-
off, indicated in red, the overall 17.4% improvement in MF1 (0.46-0.54) confirms a more balanced and robust 
predictive capability across the entire emotion spectrum. This is further detailed in Table 5.

Comparison of loss functions
To isolate the effect of our loss design, we compared WDL1 against standard multi-label loss functions on 
GoEmotions, keeping the model architecture fixed. As shown in Table 6 and the conceptual gain plot in Fig. 3, 
WDL1 consistently outperforms BCE, ASL, and Focal Loss in terms of both MF1 and mF1. While ASL achieves 
higher recall and Focal Loss higher precision, WDL1 provides the best balance, validating that explicitly modeling 
label dynamics is more effective than only re-weighting for class imbalance. Wasserstein loss performed poorly, 
suggesting it is ill-suited for this classification task without significant tuning.

Computational cost analysis
To assess the practical viability of our framework, we analyze its computational cost relative to a standard 
BERT baseline on the GoEmotions dataset (Table 7). Our Bert-WDL model introduces a modest increase 
in parameters (from 110M to 112.4M) due to the SAN module. The primary overhead comes from the label 
shuffling strategy (K = 3), which triples the number of forward passes per batch. This results in a reduction in 
training throughput (from 158.4 to 53.1 samples/sec) and a corresponding increase in training time per epoch. 
However, this is a direct and worthwhile trade-off for the substantial gains in minority class recognition and 
overall robustness. In contrast, the inference cost remains comparable to a standard BERT model, as shuffling is 
not required during evaluation. The theoretical complexity is dominated by the Transformer’s O(NL2D), with 
the WDL component adding a negligible O(NKDdiff ) term.
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Ablation study and discussion
Component effectiveness analysis
We conducted extensive ablation studies on the GoEmotions dataset to dissect the WDL framework and validate 
the contribution of each component. The results, detailed in Table 8, systematically compare variants by removing 
or altering key elements: the SAN for feature refinement, the learnable weights (WDL vs. D series), and the 
difference order. The base ‘Bert‘ model (BERT-base with a simple classifier) serves as the fundamental baseline.

The results reveal a clear synergistic effect. First, comparing the learnable weight models (e.g., ‘WDL1‘) against 
their unweighted counterparts (‘D1‘) shows that the adaptive weighting is critical. ‘WDL1‘ (MF1=52.18%) 
outperforms ‘D1‘ (MF1=50.27%) by 1.91 absolute points, demonstrating that allowing the model to balance loss 
components is superior to a fixed combination.

Second, the SAN module for feature refinement provides a significant boost. ‘SAN + WDL1‘ (MF1=53.55%) 
outperforms ‘WDL1‘ without the SAN (MF1=52.18%) by 1.37 absolute MF1 points. This supports our 

Baseline Methods Bert-WDL Variants

 Dataset Metric 39 37 40 41 WDL0 WDL1 WDL2 WDL3

 NLPCC

mF1 (% ↑) 63.32 64.01 - - 66.30 66.83 67.39 65.70

MF1 (% ↑) 49.23 52.69 - - 62.67 63.12 63.32 62.34

AP (% ↑) 77.19 87.55 - - 73.06 72.97 73.19 62.05

HL (↓) 0.18 - - - 0.13 0.13 0.12 0.13

CE (↓) 1.73 1.23 - - 0.73 0.74 0.75 0.78

Ren-CECPs

mF1 (% ↑) 60.76 66.27 50.10 62.40 62.79 62.93 62.73 62.95

MF1 (% ↑) 48.31 54.32 44.80 56.60 57.20 57.11 57.04 56.69

AP (% ↑) 76.51 82.33 75.10 - 66.00 66.16 66.07 65.96

HL (↓) 0.12 - 0.15 - 0.14 0.14 0.13 0.13

CE (↓) 2.22 1.89 - - 1.41 1.40 1.40 1.42

Semeval

mF1 (% ↑) - - 67.50 71.70 71.07 71.11 70.24 70.77

MF1 (% ↑) - - 56.70 58.80 57.17 59.12 58.25 56.40

Jaccard (% ↑) - - - 60.60 60.51 60.66 59.84 60.35

Table 3.  Performance comparison across various difference orders.

 

Parameter Value

General Hyperparameters

Batch size 16

Patience (P) 5

Model learning rate (αθ) 3 × 10−5

Weight learning rate (αw) 0.01

Maximum sequence length 512

Maximum training epochs 100

Warmup proportion 0.1

Weight decay 0.01

Adam β1 0.9

Adam β2 0.98

Adam ϵ 1 × 10−8

Random seed 42

WDL Framework Hyperparameters

Label permutations (K) 3

Max difference order (D) Varied in {0, 1, 2, 3}

Weight optimizer SGD (momentum=0.9)

SAN Module Hyperparameters

Hidden dimension (dmodel) 768

Attention heads 12

Dropout rate 0.1

Table 2.  Training hyperparameters.

 

Scientific Reports |        (2025) 15:25052 6| https://doi.org/10.1038/s41598-025-09883-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  Heatmap illustrating the F1-score gain of Bert-WDL1 over the baseline on the GoEmotions 
dataset. Emotions are sorted by their training sample count (from lowest to highest) to visualize the strong 
performance gains on minority classes (green) and the trade-offs on some majority classes (red).

 

Baseline Methods Bert-WDL1

 Dataset Metric 42 38 43

 Semeval

mF1 (% ↑) 78.55 70.7 70.02 71.11

MF1 (% ↑) 65.77 59.4 51.91 59.12

Jaccard (% ↑) 68.4 - - 60.66

GoEmotions

mF1 (% ↑) - 59.3 59.57 60.58

MF1 (% ↑) 49 52.7 47.28 53.55

Precision (% ↑) 54 - - 53.57

Recall (% ↑) - - - 58.07

Jaccard (% ↑) 53.45 - - 57.45

Table 4.  Performance comparison with 1st-order difference model.
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hypothesis that the SAN creates richer, more discriminative emotion representations, which in turn provides 
a higher-quality substrate for the WDL to operate on. Without well-defined features, calculating differences 
might be noisy; the SAN sharpens these features, allowing the difference loss to capture meaningful trends more 
effectively. The full model (‘SAN + WDL1‘) achieves the best Macro F1, showcasing the importance of both 
feature refinement and learnable difference loss.

Impact of backbone model scale
To assess the scalability of our WDL framework and understand its interaction with more powerful encoders, we 
conducted an additional set of experiments replacing the bert-base-uncased backbone with its larger counterpart, 
bert-large-uncased. The results, presented in Fig.  4, reveal a nuanced relationship between model scale and 
performance, rather than a simple monotonic improvement.

As shown in Fig. 4, employing BERT-Large can lead to a higher peak performance. For instance, on the 
SemEval dataset, the BERT-Large model achieves a significantly higher peak MF1 score (approx. 59.1%) 
compared to the relatively flat performance of the BERT-Base model. This suggests that a larger model has 
the capacity to better leverage the WDL framework to capture more complex label dynamics under certain 
configurations.

Fig. 3.  Bar chart showing the relative percentage improvement in Macro-F1 score of WDL1 compared to other 
loss functions (BCE, ASL, Focal) on the GoEmotions dataset.

 

Loss Function MF1 (%) ↑ mF1 (%) ↑ Precision (%) ↑ Recall (%) ↑

BCE 51.59 59.93 49.73 56.57

ASL 52.31 58.42 50.04 70.19

Focal 51.38 58.03 57.63 58.43

Wasserstein 7.56 8.07 4.20 1.00

WDL1 53.55 60.58 53.57 58.07

Table 6.  Performance comparison of different loss functions on emotion recognition (GoEmotions dataset).

 

Train Count Emotion Baseline44 Bert-WDL1

6 grief 0.01 0.91

7 relief 0.15 0.26

8 pride 0.36 0.58

504 admiration 0.65 0.71

288 gratitude 0.86 0.50

252 remorse 0.66 0.29

1604 sadness 0.49 0.70

Table 5.  Performance comparison of Bert-WDL1 and baseline on different emotions (GoEmotions Dataset). 
The table showcases results for a selection of emotions, focusing on the least frequent categories to highlight 
improvements on minority classes.
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However, the performance gains are not consistent. On the SemEval mF1 metric, the BERT-Base model 
consistently outperforms BERT-Large in three out of four configurations. Similarly, on the GoEmotions MF1 
metric, the performance of BERT-Large is more volatile and is surpassed by BERT-Base at one of the configuration 
points. This indicates that simply increasing the model size does not guarantee superior performance and may 
even introduce instability, possibly due to overfitting or a more challenging optimization landscape.

This analysis underscores an important trade-off: while a larger backbone offers the potential for higher peak 
performance, it comes at a significant computational cost and without a guarantee of consistent improvement 
across all metrics and datasets. The choice of backbone model should therefore be considered in the context 
of the specific application’s requirements for both performance and efficiency. This finding suggests that the 
primary benefits observed in our study stem from the WDL framework itself, which proves effective on both 
base and large model scales, rather than from simply using a larger model.

Weight dynamics and order effects
Figure 5 visualizes the learned weight distributions, revealing two key patterns. First, the weight for the ’label’ 
component remains remarkably stable across all configurations, acting as a prediction anchor. Second, our weight 
parameterization scheme is designed to impose a structural prior where weights for higher-order differences 
decay monotonically. This design choice reflects the hypothesis that lower-order differences (e.g., ’d1’) contain 
the most valuable signal for capturing label dynamics, while complex, higher-order interactions are progressively 
down-weighted to prevent the amplification of noise. As Fig. 5 confirms, the first-order difference (’d1’) in the 
WDL1 model consequently receives a significant weight, which correlates with its strong performance on several 
benchmarks.

Analysis of performance trade-offs and limitations
Despite its strong performance, particularly on minority classes, our analysis reveals an important performance 
trade-off. As seen in Table 5, while WDL significantly boosts F1 scores for rare emotions like ’grief ’, it can lead 
to a performance decrease for some high-frequency, semantically distinct emotions like ’gratitude’ and ’remorse’. 
We posit that this is a consequence of WDL’s implicit attention re-allocation. By forcing the model to learn the 
relationships and relative proportions across all labels, WDL effectively redistributes the model’s capacity from 
“over-learned” majority classes to under-represented minority classes. This is beneficial for overall balanced 
accuracy (MF1) but can come at the cost of peak performance on specific, well-represented labels. This trade-off 
highlights a key challenge for future work: developing more dynamic weighting schemes that can adapt at an 
instance level.

Furthermore, our experiments indicate a performance plateau or even degradation with higher-order 
differences (D > 2). We hypothesize this is due to two factors: 1) a noise amplification effect, where higher-
order derivatives become overly sensitive to small perturbations in the predicted ratios, and 2) semantic sparsity, 
where meaningful third-order or higher emotional dependencies are rare in natural language and thus difficult 
to learn from limited data. This suggests that simply increasing the order is not a viable path for improvement. 
Future research could explore adaptive order selection mechanisms or apply regularization techniques to 
stabilize the learning of higher-order differences.

Model MF1 (%) ↑ mF1 (%) ↑ Precision (%) ↑ Recall (%) ↑

SAN + WDL3 51.56 60.63 54.14 65.51

SAN + WDL2 52.13 60.63 58.18 53.32

SAN + WDL1 53.55 60.58 53.57 58.07

SAN + WDL0 53.08 59.96 51.14 60.16

WDL2 51.68 61.58 57.05 51.33

WDL1 52.18 60.98 52.30 55.12

WDL0 51.80 60.85 50.69 55.65

D2 48.37 59.54 48.00 53.64

D1 50.27 59.50 48.84 55.78

D0 (label + ratio) 51.59 59.93 49.73 56.57

Bert 44.81 59.22 56.46 39.84

Table 8.  Ablation study on GoEmotions dataset.

 

Model Parameters Train Samples/sec Inference ms/batch

BERT-base + BCE 110 M 158.4 101.0

Bert-WDL 112.4 M 53.1 105.2

Table 7.  Computational cost analysis.
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Extensibility and future work
The WDL framework is designed as a model-agnostic loss function. Although this paper implements it on 
BERT, its principles can be extended to other architectures. For instance, in a GNN-based model, WDL could 
be applied to the final node-level predictions to further refine label relationships beyond what is captured by the 
graph structure. However, extending WDL to new domains requires careful consideration.

In Extreme Multi-Label Classification (XMLC), where the number of labels can be in the thousands, the 
direct application of WDL with prompt-based inputs becomes computationally infeasible. A potential solution 
is a two-stage approach: first, use a candidate-sampling model to retrieve a smaller, relevant subset of labels, 
then apply WDL to this subset for fine-grained ranking and classification. This would leverage WDL’s strength 
in modeling local dependencies without incurring prohibitive costs.

In Hierarchical Multi-Label Classification (HMLC), the difference calculation could be adapted to respect the 
hierarchy. For example, differences could be computed primarily among sibling nodes at each level, and perhaps 
between parent-child nodes, rather than across a flat list. This would allow WDL to model dependencies that 
are consistent with the predefined label structure. These adaptations, while promising, require substantial future 
work to validate and implement effectively.

Conclusion
This research introduces the WDL, a novel framework that fundamentally reframes the multi-label classification 
task from predicting independent probabilities to modeling a dynamic label distribution. By supervising not 
only label presence but also their relative proportions and rates of change, WDL effectively captures inter-label 
dependencies without requiring complex architectural modifications or external knowledge graphs.

Our extensive experiments across four diverse datasets demonstrate three key advantages of the WDL 
framework: 

	1.	 Dynamic Relationship Modeling: WDL successfully captures the nuanced, dynamic trends between emotion 
labels, leading to more robust and accurate predictions, especially in complex scenarios.

Fig. 5.  Weight distribution across difference orders.

 

Fig. 4.  Performance comparison of Bert-WDL using BERT-Base (orange line) and BERT-Large (blue line) 
backbones. The plots show mF1 and MF1 scores across different WDL difference orders (0 to 3 on the x-axis) 
for the GoEmotions (top row) and SemEval (bottom row) datasets.
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	2.	 Implicit Minority Class Boosting: The focus on relative proportions naturally re-allocates model attention 
to under-represented classes, yielding substantial improvements in minority class F1-scores and overall bal-
anced accuracy.

	3.	 Architecture-Agnostic Simplicity: As a loss-driven innovation, WDL is a lightweight, plug-and-play module 
that can be easily integrated with various pre-trained models to enhance their performance with minimal 
overhead.

Our analysis also shows that while the WDL framework can leverage larger backbone models like BERT-Large 
for potential peak performance gains, this does not guarantee consistent improvement, highlighting that the 
core benefits stem from the loss design itself. Despite these strengths, our work also highlights areas for future 
research, including the development of instance-level adaptive weighting to manage performance trade-offs on 
high-frequency classes and exploring regularization techniques for stable high-order difference learning. The 
promising results presented here establish WDL as a potent and flexible tool for a wide range of multi-label 
classification tasks, paving the way for future explorations into more sophisticated dynamic label modeling.

Data availability
The datasets analyzed during the current study are publicly available and can be accessed as described below: • 
GoEmotions Dataset: Available at: ​h​t​t​p​s​:​​/​/​h​u​g​g​​i​n​g​f​a​c​​e​.​c​o​/​d​​a​t​a​s​e​​t​s​/​g​o​o​​g​l​e​-​r​e​​s​e​a​r​c​h​​-​d​a​t​a​​s​e​t​s​/​g​​o​_​e​m​o​t​​i​o​n​s​/​t​​r​e​e​/​
m​a​i​n​/​s​i​m​p​l​i​f​i​e​d• NLPCC 2018 Task 1 Dataset: Available at: ​h​t​t​p​:​/​​/​t​c​c​i​.​​c​c​f​.​o​r​​g​.​c​n​/​c​​o​n​f​e​r​​e​n​c​e​/​2​​0​1​8​/​t​a​​s​k​d​a​t​a​​.​p​h​
p• SemEval Task E-c Dataset: Available at: ​h​t​t​p​s​:​​​/​​/​c​o​m​p​e​t​i​t​i​o​n​​s​.​c​o​​d​a​l​a​​b​​.​o​​r​g​/​c​​o​m​p​e​t​i​​t​i​o​​n​s​​/​1​7​7​5​1• Ren-CECPS 
Dataset: Access to the Ren-CECPS dataset requires contacting the author, Dr. Kang-Xin, at kang-xin@is.tokus-
hima-u.ac.jp.
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