

UNIVERSITI PUTRA MALAYSIA

PHYSICO-CHEMICAL AND SENSORY CHARACTERISTICS OF BLENDS OF PALM OLEIN AND OTHER VEGETABLE OILS AND THEIR FRYING STABILITY

MYAT MYAT WIN FSTM 2010 2

PHYSICO-CHEMICAL AND SENSORY CHARACTERISTICS OF BLENDS OF PALM OLEIN AND OTHER VEGETABLE OILS AND THEIR FRYING STABILITY

MYAT MYAT WIN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

DEDICATIONS

This work is dedicated to my parents and my country.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PHYSICO-CHEMICAL AND SENSORY CHARACTERISTICS OF BLENDS OF PALM OLEIN AND OTHER VEGETABLE OILS AND THEIR FRYING STABILITY

By

MYAT MYAT WIN

March 2010

Chairman : Abdulkarim Sabo Mohammed

Faculty : Food Science and Technology

Palm olein can easily be blended with other oils such as sesame and peanut oils. In this study, vegetable oil blends were prepared by blending, palm olein (PO) with sesame seed oil (SSO) or peanut oil (PnO) in proportions of 90:10, 80:20, 70:30 and 60:40 (v/v). The objectives of this study were to determine the physico-chemical characteristics of pure palm olein, sesame, peanut and their blends; to evaluate the sensory properties of banana chips fried in different oil blends in order to elucidate the best combination ratios to be used as frying oil; to determine the frying quality of palm olein blended with either PnO or SSO during deep fat frying; and to identify the best oil blends amongst them.

In this study, the physico-chemical properties of oil blends such as fatty acid composition (FA), color, viscosity, free fatty acid (FFA), iodine value (IV), peroxide value (PV), *p*-Anisidine value (*p*-AV), total oxidation (TOTOX) value, triacylglycerol

(TAG) profile and melting point were investigated. The results showed that blending of PO with SSO in ratios of 90:10, 80:20, 70:30 and 60:40 resulted in the reduction of palmitic acid content from 38.39% to 35.98%, 33.13%, 29.60%, and 27.03%, respectively. Whereas, for PO:PnO oil blends the palmitic acid was reduced to 35.30%, 32.58%, 28.29% and 26.39%, respectively. There was a significant (P<0.05) changes in oil blends color. The viscosity of PO:SSO oil blends were slightly higher than PO:PnO blends however, no significant (P>0.05) differences was observed among them. The increment of FFA in the blends occurs as the SSO and PnO amounts were increased. The IV of oil blends were significantly (P<0.05) increased with increasing amount of SSO and PnO from 64.38 to 77.55g $I_2/100g$ oil and from 63.75 to 74.12g $I_2/100g$ oil, respectively. The p-AV and TOTOX values of PO:SSO and PO:PnO oil blends were not significantly (P>0.05) different for all the oil blends studied. The percentage of TAG content which comprised of LLL, OLL, PLL, OOL and OOO in PO:SSO oil blends were found to increase, while in PO:PnO blends the percentage of the LLL, OLL, and PLL were found to increase compare with palm olein. Melting temperatures of PO:SSO and PO:PnO blends were significantly (P<0.05) decreased from 12.65°C to 9.74°C and 13.00°C to 10.06°C, respectively.

Sensory evaluation using quantitative descriptive analysis of banana chips fried in PO:PnO and PO:SSO oil blends by trained panelists, showed that no significant (P>0.05) different was found in terms of banana chips crispness, aroma and flavor. The nine-point hedonic scale was used to evaluate the acceptability of crispness, aroma, flavor and overall acceptability of banana chips fried in different oil blends by using 22

untrained panelists. Generally, high mean scores in acceptability of crispness, aroma and flavor were shown by banana chips fried in PO:PnO and PO:SSO oil blends of 70:30 and 90:10.

The frying quality of two types of oil blends which were, PO:SSO (90:10) and PO:PnO (70:30) after deep fat frying was based on evaluation of the FA composition, FFA, PV, *p*-AV, total polar compound (TPC), color and viscosity. Both oil blends were used for frying banana chips for six consecutive days. The frying process caused a significant (P<0.05) increase in the chemical parameters determined during frying. The melting point of PO:SSO and PO:PnO blends significantly (P<0.05) increased with increasing frying time. The aroma profiles of both oil blends were determined using zNoseTM and results of aroma evaluation showed significantly (P<0.05) different in aroma profiles from day 0 to day 6. Both PO:PnO and PO:SSO blends, contained 12 volatile compounds.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk Ijazah Master

FIZIKO-KIMIA DAN CIRI-CIRI SENSORI BAGI CAMPURAN MINYAK OLEIN KELAPA SAWIT DENGAN MINYAK SAYURAN LAIN DAN KESTABILAN PENGGORENGAN

Oleh

MYAT MYAT WIN

Mac 2010

Pengerusi : Abdulkarim Sabo Mohammed

Fakulti : Sains dan Teknologi Makanan

Minyak olein kelapa sawit mudah untuk dicampurkan dengan minyak lain seperti minyak bijan dan minyak kacang tanah. Di dalam kajian ini campuran minyak sayuran dihasilkan melalui pencampuran minyak olein kelapa sawit (PO) dengan minyak bijan (SSO) dan minyak kacang tanah (PnO) dengan nisbah 90:10, 80:20, 70:30 dan 60:40. Objektif kajian ini adalah untuk menentukan ciri-ciri fiziko-kimia minyak olein kelapa sawit tulen, minyak bijan tulen, minyak kacang tanah tulen dan pencampurannya; untuk menilai sifat sensori kerepek pisang yang digoieng menggunakan campuran minyak berbeza bagi memperolehi kombinasi minyak goreng yang terbaik; untuk menentukan kualiti penggorengan minyak olein kelapa sawit campuran dengan minyak kacang tanah ataupun minyak bijan untuk penggorengan secara minyak-banyak; dan untuk mengenalpasti campuran minyak yang terbaik.

Di dalam kajian ini, ciri-ciri fiziko-kimia campuran minyak seperti komposisi asid lemak (FA), warna, kelikatan, asid lemak bebas (FFA), nilai iodin (IV), nilai peroksida (PV), nilai *p*-anisidin (*p*-AV), nilai pengoksidaan total (TOTOX), profil triasilgliserol (TAG) dan takat peleburan bagi campuran minyak telah dikaji. Keputusan menunjukkan bahawa pencampuran PO:SSO pada nisbah 90:10, 80:20, 70:30 dan 60:40 menyebabkan pengurangan dalam kandungan asid palmitik masing-masing kepada 35.98%, 33.13%, 29.60% dan 27.03 % daripade 38.39%. Manakala bagi campuran PO:PnO, kandungan asid palmitik mengurang masing-masing kepada 35.30%, 32.58%, 28.29% dan 26.39% daripade 38.39%. Terdapat perubahan warna yang signifikan (P<0.05) dalam campuran minyak dengan peningkatan nisbah SSO dan PnO. Pada umumnya, kelikatan campuran PO:SSO adalah lebih tinggi daripada campuran Pn:PnO, walau bagaimanapun, tiada perbezaan yang signifikan (P<00.5) didapati dikalangan minyak tersebut. Kandungan asid lemak bebas meningkat apabila jumlah SSO dan PnO bertambah. Nilai iodin meningkat secara signifikan (P<0.05) dengan peningkatan nisbah SSO dan PnO iaitu masing-masing daripada 64.38 kepada 77.55g I₂ /100g minyak dan daripada 63.75 kepada 74.12g I₂ /100g minyak. Nilai *p*-anisidin dan TOTOX dalam campuran PO:SSO dan PO:PnO adalah tidak berbeza secara signifikan (P<0.05) untuk kesemua minyak campuran. Peratus kandungan TAG termasuk LLL, OLL, PLL, OOL dan OOO di dalam campuran minyak PO:SSO didapati telah meningkat, manakala dalam campuran PO:PnO hanya peratusan LLL, OLL dan PLL sahaja yang meningkat berbanding dengan minyak olein kelapa sawit. Suhu peleburan bagi campuran PO:SSO dan PO:PnO didapati menurun dengan signifikan (P<0.05) masing-masing daripada 12.65 kepada 9.74°C dan 13.00 kepada 10.06°C.

Penilaian sensori terhadap campuran minyak PO:PnO dan PO:SSO dijalankan menggunakan analisis deskriptif kuantitatif dimana ahli panel terlatih menunjukkan tiada perbezaan yang signifikan (P>0.05) terhadap kerangupan, aroma dan perisa dalam kerepek pisang. Skala hedonik 9-poin telah digunakan untuk menganalisis tahap penerimaan terhadap kerangupan, aroma, perisa dan penerimaan keseluruhan kerepek pisang goreng oleh 22 ahli panel tidak terlatih. Umumnya, skor tertinggi dalam penerimaan diperolehi pada kerepek pisang yang digoreng di dalam campuran minyak PO:PnO dan PO:SSO pada nisbah 70:30 dan 90:10.

Kualiti penggorengan dua jenis campuran minyak, iaitu PO:SSO (90:10) dan PO:PnO (70:30) selepas penggorengan minyak-banyak adalah berdasarkan komposisi asid lemak, asid lemak bebas, nilai peroksida, nilai p-anisidin, jumlah komponen polar dan kelikatan. Kedua-dua jenis minyak campuran ini telah digunakan untuk menggoreng kerepek pisang selama 6 hari berturut-turut. Proses penggorengan menyebabkan peningkatan secara signifikan (P<0.05) bagi kesemua parameter kimia yang dikaji. Takat peleburan bagi campuran PO:PnO dan PO:SSO telah meningkat secara signifikan (P<0.05) dengan peningkatan masa penggorengan. Profil aroma bagi kedua-dua campuran minyak ditentukan menggunakan zNoseTM. Keputusan analisis aroma menunjukkan perubahan yang signifikan (P<0.05) pada profil aroma bermula dari hari 0 ke hari 6. zNoseTM merekodkan kehadiran 12 sebatian meruap di dalam kedua-dua campuran minyak sayuran.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Associate Professor Dr. Abdulkarim Sabo Mohammed, the chairman of my supervisory committee for his kind assistant, advice, invaluable discussions, supports and comments during my study. Thank you very much for being my supervisor, always have time for any help and constant encouragement. I am indeed very grateful to my supervisory committee members, Professor Dr. Hasanah Mohd Ghazali, Department of Food Science, Faculty of Food Science and Technology for her advice, kind assistant during this research. I am so grateful to another member of the supervisory committee, Dr. Roselina Karim, Department of Food Technology, Faculty of Food Science and Technology for her advice and support during this research.

I would like to thank the staffs of food engineering, sensory and biochemistry laboratory, Faculty of Food Science and Technology. I would also like to thank the panelists who performed the sensory evaluation test on banana chips. I am very thankful to my fellow graduate students in food biotechnology and functional food 1 laboratory. It was such a pleasure to work with you all, thanks a lot for support and being always helpful during my study.

Last but not least, I wish to acknowledge the Managing Director, Myanma Perennial Crops Enterprise, Ministry of Agriculture and Irrigation, Union of Myanmar for giving me the official leave. I gratefully acknowledge the Oil Crops Development Project (FAO) in Myanmar to provide financial support and the opportunity to study for the Master degree.

I certify that a Thesis Examination Committee has met on 2nd March 2010 to conduct the final examination of **Myat Myat Win** on her thesis entitled **"PHYSICO-CHEMICAL AND SENSORY CHARACTERISTICS OF BLENDS OF PALM OLEIN AND OTHER VEGETABLE OILS AND THEIR FRYING STABILITY"** in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of Examination Committee were as follows:

Associate Professor Badlishah Sham Baharin

Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Associate Professor Dr. Lasekan Olusegun Olaniyi, PhD

Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Associate Professor Dr. Tan Chin Ping, PhD

Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Associate Professor Dr. Irwandi Jaswir, PhD

Department of Biotechnology Engineering Faculty of Engineering International Islamic University of Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12 April 2010

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdulkarim Sabo Mohammed, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Hasanah Mohd Ghazali, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Roselina Karim, PhD

Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 13 May 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MYAT MYAT WIN

Date: 6.4.2010

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	5
	Vegetable oils	5
	Palm olein	10
	Peanut oil	11
	Oil uses	11
	Composition of peanut oil	12
	Chemical and physical characteristics of peanut oil	15
	Sesame seed oil	17
	World seed production	19
	Oil composition	20
	The frying oil	23
	Deep-fat frying	26
	Oil and food quality	27
	Oil flavors	29
	Oil blending	30
	Quality properties of fried product	33
3	PHYSICO-CHEMICAL CHARACTERISTICS OF	
	BLENDS OF PALM OLEIN WITH EITHER SESAME	35
	SEED OR PEANUT OIL	
	Introduction	35
	Materials and Methods	36
	Sample preparation	37
	Preparation of oil blends	37
	Determination of color	37

Apparent viscosity	2
Determination of refractive index	
Determination of fatty acid composition	
Determination of chemical properties of oils	
Determination of triacylglycerol (TAG) profile	2
Thermal analysis	4
Statistical analysis	2
Results and Discussion	2
Color	4
Viscosity	4
Refractive index (RI)	4
Fatty acid (FA) composition	2
Free fatty acids content (FFA)	2
Iodine value (IV)	4
Peroxide value (PV)	4
<i>p</i> -Anisidine value (<i>p</i> -AV)	4
TOTOX value (TV)	4
Triacylglycerol (TAG) profile	4
Melting and crystallization behavior	(
Conclusion	
SENSORY EVALUATION OF BANANA CHIPS FRIEI IN DIFFERENT OIL BLENDS	(
SENSORY EVALUATION OF BANANA CHIPS FRIEI IN DIFFERENT OIL BLENDS)
SENSORY EVALUATION OF BANANA CHIPS FRIEI	(
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA)	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA) Hedonic scale	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA) Hedonic scale Statistical analysis	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA) Hedonic scale Statistical analysis Results and Discussion	
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA) Hedonic scale Statistical analysis Results and Discussion Quantitative descriptive analysis (QDA) Quantitative descriptive analysis of banana chips fried in PO:PnO oil blends Quantitative descriptive analysis of banana chips fried in	L
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA) Hedonic scale Statistical analysis Results and Discussion Quantitative descriptive analysis (QDA) Quantitative descriptive analysis of banana chips fried in PO:PnO oil blends	L
SENSORY EVALUATION OF BANANA CHIPS FRIED IN DIFFERENT OIL BLENDS Introduction Materials and Methods Preparation of oil blends Preparation of banana chips Pre-screening of panelists Selection and training of panelists Quantitative Descriptive Analysis (QDA) Hedonic scale Statistical analysis Results and Discussion Quantitative descriptive analysis (QDA) Quantitative descriptive analysis of banana chips fried in PO:PnO oil blends Quantitative descriptive analysis of banana chips fried in PO:SSO oil blends Hedonic scale of banana chips fried in PO:PnO oil	L

4

5 FRYING STABILITY OF BLENDS OF PALM OLEIN WITH EITHER PEANUT OIL OR SESAME SEED OIL Introduction

84

Materials and Methods		8
Preparation of oil blends		8
Preparation of fresh banana chips		8
Measurement of frying stability of oils		8
Sampling of oil for analysis		8
Analyses of oil		8
Determination of total polar compound (TPC)		8
Flavor evaluation		90
Statistical analysis		9
Results and Discussion		92
Changes in color		92
Changes in viscosity		94
Changes in Fatty acid composition (FA)		94
Changes in free fatty acids content (FFA)		9
Changes in peroxide value (PV)		9
Changes in p-Anisidine value (p-AV)		10
Changes in TOTOX value (TV)		10
Changes in total polar compound (TPC)		10
Changes in melting behavior of oil blends		10
Electronic nose analysis		10
Conclusion		11
GENERAL CONCLUSION	AND	11

REFERENCES	119
APPENDICES	131
BIODATA OF STUDENT	141
LIST OF PUBLICATIONS	142

LIST OF TABLES

Table		Page
1.1	World oils and fats production	6
1.2	World oils and fats export	6
1.3	World's major vegetable oils production (Million Metric Tons)	8
1.4	World's major vegetable oils imports (Million Metric Tons)	8
1.5	World's major vegetable oils exports (Million Metric Tons)	9
1.6	Total world consumption of major vegetable oils in 2007/2008	9
2.1	Top ten producers of peanuts (with shell)- June 2008	14
2.2	Major fatty acids in groundnut oil (wt)	14
2.3	Chemical and physical characteristics of peanut oil	17
3.1	Typical fatty acid composition and Codex ranges of some parameters of sesame seed oil	21
3.2	Important physico-chemical characteristics of sesame oil	22
4	World production of major vegetable oils (Million Metric Tons), 2004-2005/ 2009/2010	25
5	Color, viscosity and refractive index of original and blended oils	43
6	Fatty acid composition of original and blended oils	46
7	Chemical properties of original and blended oils	50
8	Area percent of TAG peaks (PO:SSO)	58
9	Area percent of TAG peaks (PO:PnO)	59
10	Thermal properties of blended oils	62
11	Definitions of attributes used by trained panelist to describe the attributes of banana chips fried in palm olein and peanut oil blends, palm olein and sesame oil	72

12	Changes in color and viscosity during frying	92
13	Fatty acid composition and FA ratio	95
14	Changes in FFA, PV, <i>p</i> -AV, TOTOX value and TPC% of oil blends during frying	97
15	Melting and crystallizing temperature of oil blends	103
16.1	Electronic nose data of PO:PnO oil blend during frying period	111
16.2	Electronic nose data of PO:SSO oil blend during frying period	112

LIST OF FIGURES

Figure		Page
1	Gas chromatogram showing the fatty acid profile of palm olein	47
2	Gas chromatogram showing the fatty acid profile of sesame oil	47
3	Gas chromatogram showing the fatty acid profile of peanut oil	48
4a	HPLC chromatogram of palm olein	54
4b	HPLC chromatogram of sesame oil	54
4c	HPLC chromatogram of peanut oil	54
4d	HPLC chromatogram of 90PO:10SSO	55
4e	HPLC chromatogram of 80PO:20SSO	55
4f	HPLC chromatogram of 70PO:30SSO	55
4g	HPLC chromatogram of 60PO:40SSO	56
4h	HPLC chromatogram of 90PO:10PnO	56
4i	HPLC chromatogram of 80PO:20PnO	56
4j	HPLC chromatogram of 70PO:30PnO	57
4k	HPLC chromatogram of 60PO:40PnO	57
5a	Heating profile of PO and SSO blends	63
5b	Cooling profile of PO and SSO blends	63
5c	Heating profile of PO and PnO blends	64
5d	Cooling profile of PO and PnO blends	64
6	Mean scores of banana chips fried in PO:PnO oil blends using QDA	74
7	Mean scores of banana chips fried in PO:SSO oil blends using QDA	76
8	Mean scores of sensory attributes of banana chips fried in PO:PnO oil blends using hedonic scale	77

9	Biplot of (PO: PnO) vs sensory evaluation	78
10	Mean scores of sensory attributes of banana chips fried in PO:SSO oil blends using hedonic scale	79
11	Biplot of (PO: SSO) vs sensory evaluation	81
12a	Heating thermogram of frying oil blend (PO:PnO)	102
12b	Heating thermogram of frying oil blend (PO:SSO)	102
13a	Vapor Print of PO:PnO oil blends during frying period	106
13b	Vapor Print of PO:SSO oil blends during frying period	109
14a	Electronic nose variables (loading plot) in principal component analysis of the electronic data (PO:PnO)	112
14b	Electronic nose variables (loading plot) in principal component analysis of the electronic data (PO:SSO)	112

LIST OF ABBREVIATIONS

ACP	Africa, Caribbean and Pacific
ANOVA	Analysis of variance
AOCS	American Oil Chemists' Society
CIE	Commission International del' Eclairage
CLO	canola oil
CSO	cotton seed oil
C12:0	lauric acid
C14:0	myristic acid
C16:0	palmitic acid
C18:0	stearic acid
C18:1	oleic acid
C18:2	linoleic acid
C18:3	linolenic acid
C20:0	arachidic acid
C22:0	behenic acid
C24:0	lignoceric acid
DAG	diacylglycerol
DSC	differential scanning calorimetry
EU	European countries
FA	fatty acid
FAO	Food and Agricultural Organization

FFA	free fatty acids
HDL	high density lipoprotine
HPLC	high performance liquidchromatography
IF	intermediate frequency
IUPAC	International union of pure and applied chemists
IV	iodine value
LDL	low density lipoprotine
LLL	linoleic-linoleic
МРОВ	Malaysian Palm Oil Board
MPOC	Malaysian Palm Oil Council
MAG	monoacylglycerol
mL	milliliter
MMT	million metric tones
MoO	moringa oleifera seed oil
MUFA	monounsaturated fatty acid
OLL	olein-2,3 dilinoleoyl glycerol
000	trioleoyl glycerol
OOL	dioleoyl-3-linoleoyl glycerol
p-AV	<i>p</i> -anisidine value
PCA	principle component analysis
PLL	palmitoyl-2,3 dilinoleoyl glycerol
РО	palm olein
POL	palmitoyl-oleoyl-linoleoyl glycerol

РОО	1-palmitoyl-dioleoyl glycerol
PPL	dipalmitoyl-3-linoleoyl glycerol
PPO	dipalmitoyl-3-oleoyl glycerol
PORIM	Palm Oil Research Institute Malaysia
PnO	peanut oil
PSO	palmitoyl-stearoyl-oleoyl glycerol
PUFA	polyunsaturated fatty acid
PV	peroxide value
RBD	refined bleached and deodorized
RBDPO	refined bleached and deodorized palm olein
RI	refractive index
SAS	statistical analysis system
SAW	surface acoustic wave
SBO	soy bean oil
SFO	sunflower oil
SSO	sesame seed oil
TAG	triacylglycerol
ΤΟΤΟΧ	total oxidation
TPC	total polar compound
TV	TOTOX value
UK	United Kingdom
USA	United State of America
USDA	United State Department of Agriculture

