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A B S T R A C T   

Microplastics pose a significant environmental threat, with potential implications for toxic chemical release, aquatic life endangerment, and human food chain 
contamination. In Asia, rapid economic growth coupled with inadequate waste management has escalated plastic pollution in rivers, positioning them as focal points 
for environmental concern. Despite Asia’s rivers being considered the most polluted with plastics globally, scholarly attention to microplastics in the region’s 
freshwater environments is a recent development. This study undertakes a systematic review of 228 scholarly articles to map microplastic hotspots in Asian 
freshwater systems and synthesize current research trends within the continent. Findings reveal a concentration of research in China and Japan, primarily inves
tigating riverine and surface waters through net-based sampling methods. Polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) emerge as 
the predominant microplastic types, frequently observed as fibers or fragments. However, the diversity of sampling methodologies and reporting metrics complicates 
data synthesis, underscoring the need for standardized analytical frameworks to facilitate comparative analysis. This paper delineates the distribution of microplastic 
hotspots and outlines the prevailing challenges and prospects in microplastic research within Asian freshwater contexts.   

1. Introduction 

Plastics, among the most versatile materials engineered by human
ity, have significantly eased aspects of daily life, albeit with considerable 
environmental repercussions (Andrady and Neal, 2009). The misman
agement of plastic waste has emerged as a grave environmental concern, 
tarnishing natural aesthetics and bequeathing persistent pollution to 
succeeding generations (Yang et al., 2011). Misplaced plastics, 
migrating from terrestrial to aquatic realms, jeopardize essential water 
resources and amplify human exposure to pollutants, notably 

microplastics. 
Microplastics, categorized into primary and secondary types, origi

nate from various sources (UN-Water, 2018). Primary microplastics 
directly enter ecosystems through industrial and domestic activities, 
including textile and plastic production, agriculture, and personal care 
products, cumulatively releasing billions of particles annually (Tan 
et al., 2019; Praveena et al., 2018). Secondary microplastics result from 
the degradation of larger plastic items through environmental factors, 
contributing to pollution across ecosystems (Kabir et al., 2021). 

The omnipresence of microplastics in environmental 
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matrices—sediments, surface waters, and organisms—poses significant 
risks to the health of humans, animals, and ecosystems. Human exposure 
occurs via ingestion, inhalation, and dermal contact (Prata et al., 2020), 
predominantly through contaminated food (Mamun et al., 2023; 
Danopoulos et al., 2020; Rochman et al., 2015; Walkinshaw et al., 2020; 
Liao et al., 2021; Van Cauwenberghe and Janssen, 2014; Lee et al., 2019; 
ohnson et al., 2020; Pivokonsky et al., 2018; Mamun et al., 2023). The 
health implications of long-term exposure remain a concern, with po
tential for inflammation, metabolic disruptions, and compromised bar
rier functions, dependent on individual clearance rates (Yan and Peng, 
2021). 

Furthermore, direct human contact with microplastics, through skin 
(Rubio et al., 2020; Magrì et al., 2018) and respiratory systems (Enyoh 
et al., 2019; Donaldson et al., 2002), introduces additional exposure 
pathways, with certain plastics posing greater risks due to their size and 
physical properties (Flament et al., 2015; Allen et al., 2019; Rubio et al., 
2020). Despite this growing understanding, freshwater plastic pollution, 
especially in Asia, remains underexplored compared to marine envi
ronments. Recent studies in various countries have begun addressing 
this gap, highlighting the critical role of rivers in transporting plastics to 
oceans. 

Freshwater plastic pollution is a relatively new field, with most ef
forts concentrated in Europe and North America’s industrialized nations 
(Talbot and Chang, 2022). Research on microplastics was initially more 
focusing on marine areas (Collignon et al., 2012; Dubaish and Liebezeit, 
2013; Fries et al., 2013; Leslie et al., 2013). Recently, the presence of 
microplastics in rivers was rapidly investigated in some countries, such 
as England (Horton et al., 2018), Germany (Klein et al., 2015), France 
(Dris et al., 2015), Switzerland (Faure et al., 2015), USA (McCormick 
et al., 2014), Canada (Ballent et al., 2016), Austria (Lechner et al., 
2014), India (Sarkar et al., 2019; Sarkar et al., 2021a; Sarkar et al., 
2021b), South Korea (Eo et al., 2019), China (Wang et al., 2017), Japan 
(Kabir et al., 2021; Kataoka et al., 2019; Nihei et al., 2020), Vietnam 
(Lahens et al., 2018), Indonesia (Lestari et al., 2020), and Taiwan (Kunz 
et al., 2023; Wong et al., 2020a). The information of microplastics in 
rivers are necessary regarding as plastics and other debris pollution that 
ended up in the ocean (Lebreton et al., 2017; Meijer et al., 2021; Schmidt 
et al., 2017). 

Asia, with its high plastic usage and production, particularly in 
countries like China and Japan, is a major contributor to global micro
plastic pollution (Meijer et al., 2021; PlasticsEurope, 2021). Asian rivers, 
laden with plastics due to rapid industrialization and inadequate waste 
management, serve as significant conduits of marine pollution (Lebreton 
and Andrady, 2019; Jambeck et al., 2015; Vriend et al., 2021; Razeghi 
et al., 2021). While studies in marine environments predominate, the 
scarcity of research on freshwater systems, particularly in Asia, un
derscores the urgent need for comprehensive studies to inform risk as
sessments and policy formulation. 

This study aims to bridge the knowledge gap on microplastic pollu
tion in Asian inland waters, emphasizing the necessity for extensive 
research to grasp the full scope of microplastic impacts and guide 
effective mitigation strategies. 

2. Materials and methods 

To systematically investigate the prevalence of microplastics in 
Asian freshwater systems, we conducted a thorough literature search via 
the Scopus database in March 2022. Employing key phrases "micro
plastic*", "river*", and "Asia*", and subsequently substituting "Asia*" 
with names of 50 countries within the region as defined by the 2022 
Index of Economic Freedom (Miller et al., 2022). The detailed search 
strategy and results are documented in the electronic supplementary 
materials (ESM). 

From an initial totally of 457 studies, we identified 36 overlaps 
across searches. After removing duplicates, the authors reviewed the 
literature list based on their own knowledge and experience, identifying 

7 missing studies which were added to the search results. The identified 
studies were then compared against references from recent microplastics 
literature reviews, namely (Razeghi et al., 2021; Raha et al., 2021; Ouda 
et al., 2021; Weiss et al., 2021; Vriend et al., 2021; Petersen and Hub
bart, 2021), which revealed one additional study of relevance that was 
added to the search results. This process is visually summarized in Fig. 1. 

After the identification, full-text documents for all of the 429 indexed 
publications were sought (Fig. 1). While one study was not accessible 
online and could not be retrieved from its authors. The 428 publications 
were examined for eligibility, excluding 199 for reasons such as 
geographical irrelevance, focus on unrelated topics (e.g., biofilms, risk 
assessments), or methodological discrepancies. This left 228 studies for 
inclusion in our review, detailed screening criteria are available in the 
ESM. 

2.1. Data extraction and analysis 

For data extraction, we developed a Google Sheets template with 
three main sections. Initially, we documented the country, freshwater 
system type, sampling year, compartment, microplastics size range, and 
equipment used. While rivers were our primary focus, other water 
bodies like canals and lakes were also considered. Sampling methods 
varied from nets and traps for water to manual techniques for sediments, 
and the approach for biota collection ranged from fishing to direct 
purchase. 

Next, we collated river and compartment-specific data, including 
microplastics abundance, and their predominant shapes, materials, 
colors, and size classes. We also noted potential microplastic sources and 
other relevant observations. 

After data extraction, we performed a consistency check, correcting 
any discrepancies found. Microplastics concentrations were standard
ized for comparison, and the data was then used to rank freshwater 
environments by pollution levels and to categorize the most common 
microplastics characteristics (see Table 1). This analysis facilitated the 
identification of methodological and spatial trends over time. 

In the final section, we extracted geographic coordinates for each 
study’s sampling locations, enabling us to map the data and highlight 
areas with intensive or scarce research. Of the 228 studies, 117 provided 
coordinates either within the text or supplementary materials. Where 
necessary, we derived coordinates from provided figures or contacted 
authors directly. This mapping effort helped pinpoint both well-studied 
and under-researched regions. 

3. Results 

3.1. Scientific publication trends 

The volume of microplastics research in Asia has seen a significant 
increase, as depicted in Fig. 2. Starting with a single publication in 2014 
and 2015, the field witnessed a tripling of output in 2018 compared to 
the previous year. The year 2020 marked a notable surge, with 62 
publications, doubling the count from 2019. By mid-April 2022, 31 
papers had been published, indicating a continuing upward trend. 
Leading journals in this domain include Science of the Total Environ
ment, Environmental Pollution, and Marine Pollution Bulletin, collec
tively accounting for 42.8% of the total publications. Other prominent 
outlets are Chemosphere, Water Research, and Environmental Science 
and Pollution Research, alongside contributions from local journals and 
conference proceedings, underscoring the growing interest in micro
plastic research within the Asian academic community. 

3.2. Investigated systems 

A variety of freshwater systems have been explored for microplastics 
research in Asia, with rivers accounting for 70% of the studies, followed 
by estuaries (21%), lakes (10%), and smaller fractions examining 
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reservoirs (2.6%), canals (2.6%), wetlands (1.8%), lagoons (0.9%), and 
ditches (0.4%). Analysis predominantly focused on surface water (68%) 
and sediments (49%), with lesser attention to biota, water column, and 
bottom water samples. 

3.3. Sampling methodologies 

Diverse approaches have been employed to sample microplastics 
across different freshwater ecosystems, involving both bulk and volume- 
reduced strategies (Hidalgo-Ruz et al., 2012; Wang and Wang, 2018). 
The sampling methodologies are revealed in Fig. 3 and the range of 
sampling sizes are shown in Fig. 4. 

3.3.1. Water sampling methodologies 
Non-discrete sampling devices were utilized by 38% of studies on 

water systems, including nets such as neuston, plankton, and manta nets 
with varying mesh sizes, followed by pumps (12%), traps (3%), and 
autosamplers (3%), for collecting surface water, water column, and 

bottom water in freshwater systems. In contrast, 32% of microplastics in 
Asian freshwater studies have focused on surface water sampling using 
discrete sampling devices like buckets and bottles. Additionally, 7% of 
microplastics in Asian freshwater studies have employed alternative 
sampling approaches, such as hand sorting in quadrates (Battulga et al., 
2020) and the use of water samplers with manual filtration through 
stainless steel sieves, stainless steel drums (Huang et al., 2021; Wang 
et al., 2020a). In 5% of the studies the sampling methodologies were not 
described or unclear. 

Discrete sampling devices like buckets, bottles, stainless steel drums, 
and water samplers, along with manual filtration through stainless steel 
sieves, are straightforward for collecting river samples at different 
depths and suitable for smaller microplastics (Campanale et al., 2020). 
However, they collect limited water samples and require boats (Cam
panale et al., 2020). Nets and traps with mesh sizes of 100–500 μm allow 
sampling large-volumes but cannot capture particles smaller than 100 
μm and may clog in freshwater (Campanale et al., 2020; Karlsson et al., 
2020). Pump devices enable large volume water sampling at various 
depths, effectively trapping smaller microplastics like fibers (Cutroneo 
et al., 2020). Studies by Eo et al. (2019), He et al. (2021), Liu et al. 
(2020), Zhang et al. (2021) combined discrete and non-discrete devices 
to capture smaller microplastics in water samples. 

The combination of both discrete and non-discrete sampling devices 
in these studies has facilitated the identification of microplastic particles 
ranging in size from 20 μm to 5 mm in freshwater samples (Fig. 4). 
Additionally, the autosampler device has been utilized primarily for 
water sampling in freshwater systems and has proven effective in 
capturing smaller microplastic samples measuring less than 45 μm 
(Jiang et al., 2019; Liu et al., 2020; Zhou et al., 2020a; Zhou et al., 
2020b). This device offers on-site particle filtration separation, 

Fig. 1. Literature identification and screening approach used in this study.  

Table 1 
Different categories used in this study to describe microplastics in Asian rivers.  

Category Description 

Shape Fibers (Filament), Fragments (Flake), Film (Sheet), Foam, Line, 
Pellets (Spheres, Granules, Polyhedral), Not mentioned 

Color Transparent (Colorless), Colored (mixed), White, Blue (Purple, 
pigment blue), Black (Gray), Red, Green, Yellow, Not mentioned 

Polymer 
type 

PP, PE (LDPE, HDPE), PET, PVC, PS, PES, Nylon, Rayon, Other, 
Not mentioned 

Size (μm) <50, <100, <150, <250, <333, <500, <900, <1000, <2000, 
<3000, <5000  

Fig. 2. Journal and publication year recordings of microplastics sampling studies in Asian freshwater environments.  
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minimizing the risk of contamination (Zhou et al., 2020b). However, the 
autosampler device is the least commonly employed in freshwater 
sampling in Asian countries due to logistical challenges, including 
transportation and deployment difficulties, the need for electricity 

supply, and high costs (Campanale et al., 2020). 

3.3.2. Sediment sampling methodologies 
Sediment sampling in freshwater environments, including rivers, 

canals, lakes, reservoirs, estuaries, and wetlands, has predominantly 
relied on grab samplers. Among the studies, 41% utilized grab samplers 
to collect sediment samples, acknowledging the potential accumulation 
of microplastics over time in these environments. Alternatively, 31% of 
the studies opted for manual collection of bulk sediment samples from 
riverbanks, lakeshores, and estuary shorelines using tools such as 
shovels, spatulas, or trowels (Hu et al., 2018; Kumkar et al., 2021; Li 
et al., 2021a; Xiong et al., 2018). To understand the vertical distribution 
of microplastics, 10% of the studies collected sediment core samples 
with corer or drills at depths ranging from 0 cm to 80 cm (Abbasi and 
Turner, 2022; Fraser et al., 2020; Li et al., 2020; Sarijan et al., 2019; 
Wicaksono et al., 2021; Wu et al., 2020; Xia et al., 2021). One study (1%) 
adopted flotation techniques. 17% of the studies did not clearly specify 
the sampling devices used for sediment sampling. 

Sediment sampling methods offer different advantages and limita
tions in capturing microplastics. Grab samplers are commonly used to 
collect sediment samples and effectively capture smaller microplastics. 
However, their effectiveness is influenced by variables such as sediment 
composition, unpredictable penetration, and riverbed agitation caused 
by the opening and closing of grab sampler jaws (Hastuti et al., 2019). 

Alternatively, manual sediment sampling using tools like shovels, 
spatulas, or trowels is a cost-effective method for collecting bulk sam
ples. However, this method lacks consistency in sampling depth or 
sediment volume and may exclude smaller plastics (Wang and Wang, 
2018). Another approach is the core sampler, which is a handheld device 
designed for collecting deeper samples at specific points and depths. 
Nevertheless, it is crucial to carefully manage potential sediment 
distortion when inserting the tube into high-velocity locations (Adomat 
and Grischek, 2021; Brander et al., 2020). 

3.3.3. Biota sampling methodologies 
A total of 43 studies have included biota (fish, wild fish, mudskipper 

fish, shellfish, oyster, blood cockle, tadpoles) sampling in Asian fresh
water environments. Fish nets were the most commonly utilized sam
pling method (49%) for biota sampling in rivers, lakes, and estuaries. 
Biota samples were also obtained through purchasing from local fish
ermen (14%), manual collection by hand (2%), and the use of fishing 
rods (9%) (Frank et al., 2020a; Heshmati et al., 2021; Karaoglu and Gul, 
2020; Makhdoumi et al., 2021; Sembiring et al., 2020; Wang et al., 
2020b; Xiong et al., 2018; Yuliati et al., 2021; Zhu et al., 2019). Only one 
study by Lin et al. (2021) used the Surber sampler, placed on a 

Fig. 3. Sampling methodologies adopted for microplastics analysis in Asian freshwater studies (a) water, (b) sediment and (c) biota samples in Asian fresh
water systems. 

Fig. 4. Size ranges of microplastic particles from analyzed studies, with the 
number of studies in parentheses. Top five frequently reported size ranges are 
shaded darker. 
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stone-based riverbed, for biota sampling in freshwater systems. In 23% 
of the studies, there was unclear information about the biota sampling 
method employed. 

Fish nets are commonly used for aquatic biota sampling in various 
aquatic environments. However, they are not suitable for collecting 
macroinvertebrates above the sampler’s height (around 40 cm) and can 
allow free-floating biota to escape (Di Sabatino et al., 2018; Guild et al., 
2014; Shull and Lookenbill, 2017). Efficiency in sampling is influenced 
by the time taken to obtain biota samples, as longer durations are less 
preferred due to increased costs, labor, and predator exposure (Ghani 
et al., 2016). In Asian freshwater studies, there is no universally 
accepted standard for sampling procedures, leading to variations in 
equipment, sample volume, size, and depth. These differences result in 
inconsistencies in reporting units, hindering findings comparison and 
assessing microplastics extraction methods’ sensitivity (Peller et al., 
2019; Talbot and Chang, 2022; Yang et al., 2021). 

3.4. Microplastic size ranges and concentrations 

From the analysis of 228 studies in this review, a diverse range of 
reported size ranges and concentrations emerged. The majority of 
studies (44%) presented size ranges with both upper and lower bound
aries, while a smaller fraction (27%) reported only upper size bound
aries. A few studies (7%) indicated different size ranges due to various 
sample types, and surprisingly, a significant number (21%) provided no 
information about the size range. In Fig. 4, the summarized size ranges 
illustrate their wide spectrum. The analyses revealed a predominant use 
of the large microplastics range (1–5 mm) by 37 of the examined studies. 
Other frequently reported size ranges include 0.5–1 mm, 0.1–1 mm, 
0.1–0.5 mm, and 0.05–0.1 mm. 

Similarly, there was a broad spectrum of ways to report microplastic 
quantities, with 30 different methods identified (Fig. 5). These units fall 

into four main categories: by volume (e.g., pcs/m3, used by 61% of the 
studies), by weight (e.g., pcs/kg, 26%), by individual (e.g., pcs/fish, 
7%), and by area (e.g., pcs/km2, 3%). A small percentage of studies (3%) 
reported findings in absolute numbers, concentration (mg/g), or fre
quency of occurrence. However, even within each of these main cate
gories, there exist a wide range of different units. For example, various 
terms are used to represent the amount, such as item/items, mg, MP/ 
MPs, n, part. P/Particles, and pcs/pieces. When it comes to weight, some 
studies specify the use of dry weight (e.g., Eo et al. (2019), Gupta et al. 
(2021), while others do not mention it (e.g., Jian et al. (2020); Li et al. 
(2019)). In certain studies, authors indicate that the number of particles 
is related to wet weight (e.g., Su et al. (2016); Zhao et al. (2020)). The 
lack of clarification regarding the relationship between mass and dry or 
wet weight poses a challenge when interpreting the data without 
context. In some cases, highly specific units are used, such as n/10 g dry 
mud (Nakao et al., 2019); n/piece of polystyrene foam (Battulga et al., 
2020); or n x 1000/kg (Xia et al., 2021). While these specific units may 
be suitable for the particular study, they make it nearly impossible to 
compare data across different studies. In such cases, authors are 
encouraged to convert their units into a more standardized format for 
better comparability. Overall, it would be preferable for authors to 
employ commonly used and easily convertible units in their reporting. 

Ideally, microplastics concentrations should be reported based on 
mass for samples collected from solids (e.g., particles/g dry weight) or 
on volume for samples taken from liquids (e.g., particles/m3). Addi
tionally, it is preferable to report size ranges using the actual particle 
sizes rather than relying on a hypothetical range based on the sampling 
equipment or filters used during sample preparation. Kunz et al. (2023) 
demonstrated that true particle sizes may deviate from the expected 
range due to the use of a manta net. This is particularly crucial for the 
upper size range. In many instances, the upper size limit is conven
tionally set at 5 mm according to the standard definition of 

Fig. 5. Unit and occurrence of the unit used from analyzed studies.  
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microplastics. However, as evidenced by Kunz et al. (2023), the actual 
maximum particle size can be lower. 

3.5. Sampling points 

The distribution of sampling locations shows that the largest number 
of samples was collected in China followed by Indonesia, Japan and 
India (Fig. 6). Regional clusters are apparent. Clustering follows two 
patterns. Either a certain region is intensively studied or river sections 
are sampled in great detail. Regions with large clusters of sampling lo
cations can be lakes (e.g., Qinghai Lake in China), large urban ag
glomerations (e.g., Shanghai in China or Tokyo in Japan), and the mouth 
of large river systems, e.g., the Pearl River and the Yangtze River. River 
sections that have been intensively studied are mainly the Yangtze River 
in China and southern Japan. Other rivers have been sampled multiple 
times, but mostly in limited areas or only once. The map also reveals that 
data from freshwater reservoirs of certain countries or regions are 
largely missing. 

3.6. Concentration of microplastics 

Fig. 7 illustrates the concentration of microplastics in Asian rivers. 
Due to the variety of concentration reporting methods, only the results 
from surface water, water column, and bottom water reporting by n/m3 

are illustrated here. Rivers reported with microplastic concentration 
exceeding 100,000 n/m3 include Krukut River (Azizi et al., 2022) and 

Deli River (Harpah et al., 2021) in Indonesia, Yellow River (Han et al., 
2020), Cao’e River (Zhou et al., 2020b), Pearl River (Li et al., 2021b), 
and Yangtze River (Zhang et al., 2015; Zhang et al., 2017) in China, 
Saigon River (Lahens et al., 2018; Strady et al., 2020) in Vietnam, and 
Majime River, Awano River, Asa River, and Ayaragi River in Japan 
(Kabir et al., 2020; Kabir et al., 2021). The highest concentration of 
microplastics was found in the Krukut River in Indonesia, followed by 
the Yellow River in China and the Cao’e River in China. It should be 
noted that the concentrations presented in this review, as illustrated in 
Fig. 7, exhibit a certain degree of bias. While it may appear that China 
and Japan exhibit the highest concentrations of microplastics in fresh
water systems, this does not necessarily imply that these regions are the 
most polluted in Asia. The over-representation of research from China 
and Japan can be attributed to a scarcity of studies and data from other 
Asian countries. 

Table 2 shows the list of Asia’s 20 longest river systems and the 
number of review studies and surface water MPs number. Although 
Yangtze, Ganges, and Pearl River are intensively studied, most major 
rivers in Asia have not yet been studied. This result also shown a 
knowledge gap in many areas. 

3.7. Microplastic shape, type, color, and size in Asian rivers 

The concentration of microplastics, the size, shape, color, and type of 
polymer were further explored and analyzed based on the 228 articles 
on the existence of microplastics in Asian freshwater bodies (Fig. 8). The 

Fig. 6. Sampling location for microplastic in freshwater environments throughout Asia for each compartment. Some locations have been sampled for surface water, 
sediment or biota simultaneously and hence appear multiple times in this map. 
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most common microplastic sizes reported by Asian countries were 500 
μm, 1000 μm, and 5000 μm (Fig. 8a). Fibers were the predominant shape 
in all three river samples, followed by fragments (Fig. 8b). Freshwater 
systems typically contain a higher number of microplastic fragments/ 
flakes due to their ease of separation by filtration. This disparity may 
also result from variations in study regions, sampling methods, and 
microplastic emission sources. Domestic sewage has been identified as a 
major source of fiber and particle release into the environment (De Falco 
et al., 2018; Hernandez et al., 2017). Additionally, river washing prac
tices in some regions release clothing fibers and fragments directly into 
the river water. 

The majority of microplastics observed in river water, sediment, and 
biota samples were colored (Fig. 8b). Transparent microplastics were 
dominant in water and sediment samples. In contrast, Asian river studies 
reported the highest percentage of black and blue biota samples. It’s 
important to note that the color of microplastics is not permanent, and 
bleaching into the environment may occur (Stolte et al., 2015). The use 

of a wide range of colored plastics in plastic production contributes to 
the diversity of colors observed. The attractive colors of microplastics 
may entice plankton, fish, and other organisms to consume them, 
potentially leading to toxic effects across multiple trophic levels in food 
chains. However, reporting colors is a new trend, so 44% of micro
plastics studies in rivers of Asian nations did not include information 
about the colors of microplastics. 

Microplastics found in Asia’s rivers encompass various polymer 
types, including nylon, rayon, polyethylene (PE), polypropylene (PP), 
polyethylene terephthalate (PET), polyvinyl chloride (PVC), polystyrene 
(PS), polyether sulfone (PES), and polyethylene (PE) (Fig. 8d). However, 
in some reports, the identification of polymer types is vaguely described, 
likely due to limitations in the testing apparatus. 

3.8. The microplastic studies in Asian countries 

An overview of available microplastics in Asian freshwater systems is 

Fig. 7. The water bodies and the concentration of plastic particles per m3 water.  

Table 2 
Microplastics studies that cover Asia’s 20 longest river systems.  

River name Length [km] Basin area [km2] Countries Reviewed studies [number] Surface water MPs [n/m3] 

Yangtze 6,300 1,722,193 China 17 129–125,350 
Yellow River 5,464 832,238 China 3 886,000 
Mekong 4,909 805,604 China, Myanmar, Laos, Thailand, Cambodia, Vietnam 0 – 
Lena 4,294 2,306,743 Russia 0 – 
Irtysh 4,248 1,673,470 Mongolia, China, Kazakhstan, Russia 0 – 
Brahmaputra River 3,969 1,999,000 China, India, Bangladesh 1 – 
Ob 3,650 2,982,493 Russia 1 51.2 
Indus River 3,610 1,081,718 China, India, Pakistan 1 – 
Yenisey 3,487 2.554,388 Mongolia, Russia 0 – 
Nizhnyaya Tunguska 2,989 473,000 Russia 0 – 
Ganges 2,900 1,200,000 India, Bangladesh 5 0.5–1,111 
Yarlung Tsangpo 2,840 241,691 China, India, Bangladesh 0 – 
Amur 2,824 1,929,955 Russia, China 0 – 
Salween River 2,800 271,888 China, Myanmar, Thailand 0 – 
Euphrates 2,760 532,739 Iraq, Syria, Turkey 1 – 
Vilyuy 2,650 454,000 Russia 0 – 
Amu Darya 2,500 534,739 Afghanistan, Tajikistan, 

Turkmenistan, Uzbekistan 
0 – 

Ishim 2,450 189,000 Kazakhstan, Russia 0 – 
Ural 2,428 231,000 Kazakhstan, Russia 0 – 
Pearl River 2,320 453,700 China, Vietnam 18 0.028–135,100  
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given in Table 3. 
Rivers represent the majority of the ecosystems studied for micro

plastics, followed by lakes, estuaries, some lagoons, and wetland areas. 
China (261 studies) is the top-ranking country in terms of microplastics 
research, accounts for more than 50% of the reported studies coming 
from Asia. The rivers Yangtze, Pearl (China), Brantas, Citarum 
(Indonesia), and Ganges (India & Bangladesh) as well as Pangong Lake 
and Dongting Lake have all been the subject of extensive research. Most 
other regions have only reported studies on one or two freshwater 
ecosystems. 

4. Discussion 

4.1. Sources of microplastic in Asian rivers 

4.1.1. Population density and industrial activities 
In general, the presence of microplastics pollution in rivers and other 

freshwater bodies is closely tied to human activities. Rivers in areas with 
higher population density, increased urbanization, and elevated levels 
of industrial and agricultural activities tend to exhibit higher concen
trations of microplastics pollution (Talbot and Chang, 2022). This 
pattern is also evident in numerous Asian countries, as reflected in the 
studies reviewed in this analysis. For instance, the extensive study of the 
Yangtze River in China revealed a significant increase in microplastics 
concentrations near large cities (Xiong et al., 2019; Yuan et al., 2022). 
Similarly, lakes in China, particularly in the Wuhan region, displayed a 
comparable trend, with microplastics concentrations rising in lakes 

closer to the city center (Wang et al., 2017). In India, (Amrutha and 
Warrier, 2020) demonstrated an increase in microplastics concentra
tions in the Netravathi River in southern Karnataka near urban areas. 
Similar trends were observed in the Surabaya River in Indonesia (Lestari 
et al., 2020), the Nakdong River in South Korea (Eo et al., 2019), the 
Saigon River in Vietnam (Lahens et al., 2018), the Wu River in Taiwan 
(Kunz et al., 2023), and in a comprehensive investigation of 29 rivers in 
Japan (Kataoka et al., 2019). However, not all reviewed studies were 
able to identify a clear correlation between microplastics concentration 
and factors such as population density or industrial activities. For 
instance, Wang et al. (2021) did not observe a relationship between 
microplastics concentration and land use patterns and human activities 
in the river network in Shanghai, China. Similarly, results from Wong 
et al. (2020a) could not establish a correlation between population 
density and microplastics concentrations in the Tamsui River in Taipei, 
Taiwan. 

It is crucial to note that, even though some studies show associations 
between microplastics concentrations and population density or indus
trial activities, the majority of the analyzed studies in this review did not 
focus on studying relationships between microplastics abundances and 
anthropogenic factors. Most studies provided information solely about 
regional microplastics concentrations and particle characteristics in 
different compartments. Only a few studies, such as Chen et al. (2020b), 
Kunz et al. (2023), Lahens et al. (2018), Wang et al. (2021), actually 
focused on investigating the relationship between anthropogenic ac
tivities, such as population density, urbanization, land use patterns, and 
microplastics concentrations in rivers and other freshwater bodies. For 

Fig. 8. The most common detected top (a) size, (b) shape, (c) color, and (d) type of microplastics in Asian freshwater bodies. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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future research, there is a need to shift the focus from merely reporting 
microplastics concentrations towards investigating the relationships 
between anthropogenic factors and microplastics concentrations in 
rivers and other freshwater bodies in Asia. 

4.1.2. Textile and apparel industries 
From our review, the most found microplastics in the freshwater are 

PE, PP, and PET and they were mostly found in fibers or fragment shape 
as shown in Fig. 8. In Saigon River canal system in Southern Vietnam, 
92% synthetic fibers such as PET, PE, PP, rayon, PP-vistalon, viscose and 
acrylic were found among the anthropogenic fibers. This is closely 
related to the presence of many textile and apparel industries in Ho Chi 
Minh City with large amounts of polyester production. On the other 
hand, the high population density nearby Lich River, Hanoi (Northern 
Vietnam) where the high release of fibers was noticed, was due to the 
release of fibers from washing machines. An earlier study by Napper 
et al. (2021) reported that up to 728,789 fibers could be released from 
laundering of 6 kg clothes. Interestingly, the release of fibers from 
synthetic materials (PE and acrylic) was found significantly higher than 
the PE-cotton blended material. 

4.1.3. Plastic packaging and consumer goods 
Fragment is the second most abundant shape of microplastic found in 

the freshwater (Fig. 8). In the Philippines, Limbago et al. (2021) also 
identified a large portion of fragments of PE at the banks and channels of 
Molawins River. Similar findings were reported in rivers in northern 
(Wong et al., 2020a) and southern (Chen et al., 2020a) Taiwan. These 
studies suggested that these fragments originated from the PE plastic 
bags, degraded from larger plastic materials. According to PlasticsEu
rope (2021), the plastic demand is the highest in the packaging sector 
(39.6%). Furthermore, among the plastics, PE consisted of 29.8%, fol
lowed by PP with 19.4%. In Pakistan, 250–500 kg of plastic bags are 
produced daily, and the majority are from the cottage industry. From the 

country’s statistics, around 55 billion plastic shopping bags are 
consumed every year with a 15% increment per annum (Alvi, 2018). As 
PE bags are commonly used in the country to carry materials in the 
market, the inappropriate disposal of the bags will end up in the envi
ronment as reported by (Irfan et al., 2020) in their sampling research on 
Ravi River, Pakistan. For microspheres, they are believed to originate 
from personal care products such as facial cleaners or body scrubs 
(Wong et al., 2020b). 

4.1.4. Fishing activities 
In some studies, the number of microplastic fragments was higher 

than fibers. In the samplings performed in Ob River and Tom River in 
western Siberia by Frank et al. (2020b), microplastic fragments with 
irregular shapes consisted of 45.5% of the total plastic counts. The au
thors believed that the sources of the fragments in Kargasok and Kol
pashevo came from fishing activities as the main industry in the areas. A 
similar assumption was made in another study by Lahens et al. (2018) 
where intense maritime and boat habitation had imported a significant 
amount of microplastic fragments into Kenh Te canal in Ho Chi Minh 
City, Vietnam. Nylon and polyethylene terephthalate (PET) were widely 
used in the fishing and agricultural industries. They can be released from 
the fishing activities when fixing fishing tools or from the abandoned 
nets (Amin et al., 2020). Among the 11 polymers identified by Karaoglu 
and Gul (2020), nylon and PET were mostly found in the surface water 
and tadpoles in the Rize province, Turkey. (Kabir et al., 2021) also 
identified an abundance of nylon 6 fibers in Awano River and they were 
suspected to originate from ropes used by the agricultural firms in the 
area. Other than that, microplastics in foam shape are mainly broken 
from expandable polystyrene products which are normally used in 
aquaculture industry and disposable tableware (Chen et al., 2020a). 

4.1.5. Wastewater treatment plants 
About 80% of the plastics present in the oceans originates from the 

Table 3 
Microplastics studies in various countries and their characterization. 
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terrestrial areas and then makes their ways into the aquatic environment 
(Li et al., 2018). Other than discharge from the industries, the presence 
of microplastics in the catchment area and freshwater system also 
originate from wastewater treatment plants (WWTPs). (Boucher and 
Friot, 2017) reported that the major land-based source of primary 
microplastics in marine water was road runoff (66%), followed by 
treated effluent from WWTPs (25%) and wind transfer (7%). Many 
studies revealed that discharge from WWTP contained more fiber sha
ped microplastics, probably originating from the washing machines (Liu 
et al., 2021). Furthermore, the removed fibers will accumulate in the 
sludge and end up released into the environment (Cao et al., 2021). On 
the other hand, without the WWTP facility, large amount of untreated 
wastewater was discharged, and floating debris was highly visible as 
noticed in the Kenh Te and Lo Gom canals in the Ho Chi Minh City of 
Vietnam. Significant reduction of microplastic was observed in Nhieu 
Loc and Tau Hu canals after rehabilitation, indicating mitigation of 
microplastic pollution in freshwater systems is possible with proper 
design of sanitation systems and WWTP (Lahens et al., 2018). 

4.1.6. Municipal solid waste 
Plastic wastes from municipal solid waste from landfill and unin

tentional disposal of plastic waste are also sources of microplastics in the 
freshwater environment. Sarijan et al. (2019) revealed that the presence 
of rubbish piles near the riverbank contributed to the amount of film and 
fragment microplastics in Skudai River. Besides, plastic wastes were 
observed to be discarded from vehicles on the bridge across the river 
(Sarijan et al., 2019). Eroded tires, fragmented road paint and other 
plastic wastes are also flushed into gutters from the street (Cheng et al., 
2021; Wong et al., 2020a; Zhang et al., 2018). The plastic wastes un
dergo mechanical abrasion and degradation from weather will break 
into smaller fragments. These fragments will then release into the 
leachates or be washed away by rain runoff, and make their ways into 
the canals, drains or rivers. In South Korea, the highest number of 
microplastics was noticed during the wet season due to runoff from 
adjacent areas into Nakdong River. As microplastics are light, they are 
easily transported and deposited into the catchment areas or freshwater 
system easily via atmospheric fallout (Cheng et al., 2021). Dris et al. 
(2015) reported that the atmospheric fallout sampled in Parisian 
agglomeration mainly consisted of fibres with 29% of synthetic fibres. 
Similar findings were reported by Cai et al. (2017) that fibre was the 
dominant shape with 175–313 particles/m2/day of microplastics were 
found in the atmospheric fallout in Dongguan city, China. 

4.2. Contributions of this study 

This review paper was done comprehensively based on a systematic 
methodology (described in Materials and Methods). All information 
extracted in this review paper is arranged from a total 50 countries in 
Asia Region consisting of 228 papers that match the study scope. 

For the first time, important information of microplastics studies 
among the Asian Rivers was extracted and discussed systematically and 
compared in this study. Notably, we present a comprehensive compar
ison of microplastics studies, meticulously defining the color, shape, and 
type of microplastics to understand their distribution within Asian river 
systems. A key revelation is the identification of China as the leading 
contributor to microplastic research in Asia, followed by Indonesia and 
India. Among all studies extracted in Asian Rivers, 38% was conducted 
by using nets (neuston, plankton, and manta nets) for water sampling 
and 41% studies have used grab samplers for collecting sediment sam
ples. Besides, biota samples have been collected at least on 25 studies by 
collecting from local fishermen. Based on the microplastics color, shape 
and type, white and transparent color are well-distributed the most in 
eight countries. While fiber shape and PE type was detected in 12 
countries including Vietnam, Thailand, and Saudi Arabia. In the MENA 
(Middle East and North Africa) region, fiber and PE were also found 
dominant in the samples (Ouda et al., 2021). In conclusion, our research 

not only affirms the ongoing monitoring of microplastic pollution in the 
Asian region but also emphasizes the urgent need for further expansion 
in this field, especially given Asia’s substantial plastic production, 
highlighting the significant risk of environmental contamination, 
particularly in rivers. 

4.3. Research gaps and challenges in microplastics research 

The study of microplastics is a rapidly growing field of scientific 
interest. There is still much to be explored to improve our understanding 
of the fate of microplastics in the aquatic environment, the potential 
toxicological impacts of microplastics on ecology at community and 
population levels, and the relative contribution of anthropogenic ac
tivities, fisheries and aquaculture to microplastic pollution. In view of 
these research gaps, future research needs to address the challenges 
associated with analytical methods for the recovery of microplastics in 
various environmental matrices. Although enormous efforts have been 
made to characterize microplastics in Asian freshwaters, there are still 
no standardized experimental protocols for identifying and quantifying 
microplastics in freshwater ecosystems. Therefore, there is an urgent 
need to standardize analytical methods to allow better quantitative 
comparison of microplastics in different studies. Among the many 
analytical methods that have been described in the literature, the most 
common protocols are filtration, oxidative digestion and spectroscopic 
confirmation using Fourier Transform Infrared (FTIR) and Raman 
spectroscopy. Our review also showed that studies from certain coun
tries or regions are missing, including big river systems (Mekong river, 
Lena river, Irtysh river) and major rivers in Russia. More emphasizes 
should be put here to obtain the overview and construct strategies for 
microplastics pollution in Asia. 

5. Conclusions 

This comprehensive review underscores the critical issue of micro
plastic pollution in Asian rivers, exacerbated by rapid economic growth 
and inadequate waste management practices. Through a detailed anal
ysis of 228 studies indexed in the Scopus database, we’ve witnessed an 
escalating focus on microplastics research within these environments. 
The findings reveal a concentration of studies in China, Indonesia, 
Japan, and India, though significant data gaps exist for numerous other 
regions and freshwater reservoirs. 

Predominantly, microplastics identified in these studies comprise 
polyethylene (PE), polypropylene (PP), and polyethylene terephthalate 
(PET), manifesting mainly as fibers or fragments. A notable challenge 
highlighted is the diversity of sampling methodologies employed across 
studies, leading to discrepancies in reporting units and difficulties in 
comparing results or assessing the efficacy of microplastics extraction 
methods. This variability complicates the analysis and interpretation of 
microplastic pollution using existing analytical techniques. 

To advance our understanding of microplastics in freshwater systems 
and their ecological impacts, future research must tackle the current 
methodological challenges. There is an imperative need to develop and 
standardize analytical methods to ensure consistency and comparability 
across studies. Furthermore, expanded research efforts are necessary to 
elucidate the fate of microplastics in aquatic environments, assess their 
toxicological effects on ecological communities, and quantify the con
tributions of human activities, fisheries, and aquaculture to microplastic 
pollution. Addressing these research gaps is crucial for formulating 
effective strategies to mitigate microplastic contamination and safe
guard freshwater ecosystems in Asia. 
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