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HIGHLIGHTS

e Oriented to the understanding of MAX series materials, the research timeline, structure diversity, and synthesis are systematically reviewed.
e The prediction, properties, and functional applications of MAX series materials are summarized.

e This review emphasizes research challenges for the future development of MAX series materials.

ABSTRACT MAX series materials, as
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trification, and aerospace in the new era,

how to accelerate MAX series materials
into new quality productive forces? The
systematic enhancement of knowledge about MAX series materials is intrinsic to understanding its low-dimensional geometric structure char-
acteristics, and physical and chemical properties, revealing the correlation of composition, structure, and function and further realizing rational
design based on simulation and prediction. Diversity also brings complexity to MAX materials research. This review provides substantial tabular
information on (I) MAX’s research timeline from 1960 to the present, (II) structure diversity and classification convention, (III) synthesis route
exploration, (IV) prediction based on theory and machine learning, (V) properties, and (VI) functional applications. Herein, the researchers can
quickly locate research content and recognize connections and differences of MAX series materials. In addition, the research challenges for the

future development of MAX series materials are highlighted.
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1 Introduction

Oriented to the functional requirements of information,
intelligence, electrification, and aerospace in new era,
materials science research is the cornerstone of supporting
technological innovation, which can endow equipment and
systems with new functions and characteristics in various
fields, accelerating the realization of technological break-
throughs. Due to their similar atomic arrangements, a series
of transition metal carbides, nitrides, and carbonitrides are
categorized as MAX series materials (MAXs), once named
H-phases in 1960s [1]. Up to now, over 383 different types
of MAXs have been reported based on synthetic strategy
innovation on solid-state reaction sintering, melting reac-
tion, and physicochemical deposition. Meanwhile, a series
of novel MAXs are predicted by theoretical simulation and
machine learning. The diversity investigations in elemental
composition and structure bring the adjustable properties:
ceramic characteristics (high-temperature resilience [2],
strength [3], and oxidation resistance [4]); metallic proper-
ties (conductivity [5], thermal conduction [6], machinability
[7], and impact durability [8]). MAXSs are intended in the
potential function requirements in rail transportation lubri-
cation [9], heating components [10], electrical contacts [11,
12], electromagnetic shielding [13], microwave absorption
[14], high-level radioactive waste solidification [15], and
electrochemical energy storage [16, 17]. MXene series mate-
rials, as the low-dimensional derivatives, showed potential
applications in electrochemical energy storage [18], lumi-
nescence [19], catalysis, and other fields [20, 21]. Figure 1
shows the high-frequency keywords of MAX’s research.
However, MAXs are not a material cornerstone to future
industrialization prospects. How to accelerate MAXs into
new quality productive forces? It is intrinsic to understand
its low-dimensional geometric structure characteristics, and
physical and chemical properties, to reveal the correlation of
composition, structure, and function and further to realize
rational design based on simulation and prediction.

Herein, oriented toward structure and function correla-
tion, the information retrieval on (I) MAX’s research time-
line from 1960 to the present, (II) structure diversity and
classification convention, (III) synthesis route exploration,
(IV) prediction based on theory and machine learning, (V)
properties, and (VI) functional applications are described in
categories to help readers quickly understand the research

© The authors

progress of MAXs. Moreover, by integrating advanced syn-
thesis and characterization techniques and machine learning,
some existing problems are addressed, and future research
directions are prospected.

2 Historic Milestones and Timeline

Reviewing the history of MAXs helps understand the limita-
tions of science, technology, and society on the innovative
research, as shown in Fig. 2. Back to 1960, Rohde et al. [22]
found Ti,S,C, and Zr,S,C, by heat treatment of Ti, S, C,
and Zr at 1600 °C. Between 1960 and 1967, Nowotny et al.
[23-26] synthesized a series of ternary layered carbides/
nitrides, including Ti,AlC, V,AIC, Cr,AlC, and Nb,AIC,
which were named as H-phases. In 1970s, Nickl et al. [27]
prepared Ti;SiC, by chemical vapor deposition (CVD).
In 1994, Pietzka et al. [28] synthesized Ti;AlIC, by a cold
pressing sintering method and proposed the thermochemi-
cal stability limitation based on the formation free energy
of the binary intermediate phases of TiAl, TiC, and AIC.
In 1996, Prof. Barsoum et al. [8] achieved a dense Ti;SiC,
MAX bulk by reactive hot pressing (HP) technology. In
2000s, a review article entitled "The My, AXy Phases: A
New Class of Solids; Thermodynamically Stable Nanolami-
nates" was published in Prog. Solid St. Chem. The concept
of "M, ,;AX, phases (MAX)" was proposed based on the
unique structural features and properties, which opened a
new era of MAXs [1].

In 2002, Palmquist et al. [29] employed DC magnetron
sputtering technique to prepare the oriented Ti;SiC, and
Ti,SiC; MAX single-crystal thin films; in addition, two
previously unknown compounds of Ti;Si,C; and Ti,;Si,Cs
MAXs were observed. In 2006, Lin et al. [30] found a pre-
viously unknown TagAlCjs in the ternary Ta-Al-C system.
In 2008, Tian et al. [31] prepared high-purity Cr,AlC using
molten salt sintering, which reduce the sintering temperature
by 200 °C. This is a breakthrough in the MAX prepara-
tion strategy. In 2009, Zhang et al. [32] determined a new
MAX phase (716-phase Ti;SnC). In 2011, Naguib et al.
[33] found "MXene," "MX" stands for the element left after
MAX etching, and "ene" stands for the 2D material structure
features. In 2014, Liu et al. [34] reported the first out-of-
plane ordered MAX phase exhibiting perpendicular to the
M-layer, called o-MAX. In 2017, another type of ordered
MAX called in-plane ordered MAX (i-MAX) was first

https://doi.org/10.1007/s40820-025-01673-9
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Fig. 1 High-frequency keywords of MAX series materials

discovered by Tao et al.[35]. In 2019, Huang et al. [36, 37]
used Lewis acid molten salt to realize the element replace-
ment and created a series of new MAXs containing Zn and
Cu elements at A-sites. In 2019, Li et al. [38] synthesized
V,(A,Sn,_,)C MAX (A=Fe, Co, Ni, Mn or their binary/
ternary/quadratic combinations) based on alloying-guided
reactions. In 2022, by pressureless sintering at 1500 °C, Du
et al. [39] developed a series of high-entropy MAXs and fur-
ther the high-entropy MXene. In 2023, Ding et al. [40] pro-
posed a chemical scissor-mediated structural editing strategy
to allow the unconventional elements into interlayer atom
vacancies to form new MAXs, thus revolutionizing tradi-
tional metallurgic reactions. In 2024, Li et al. [41] reported

a universal method of A-site preferential alloying to form
noble metal MAXs.

Thanks to the fine structural analysis of the MAXs by
early researchers, this is the foundation for discovering struc-
tural similarities. Contributions to the development of prepa-
ration methods allow us to see the diversity of MAXs. Upon
application requirements, the chemical and physical proper-
ties, as well as the functional applications, are investigated.
In the past 60 years, progress in basic research of MAXs
comes alongside successes in preparation, characterization,
property, and function.
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Fig. 2 Timeline of MAX series materials
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3 Diversity and Classification Convention
3.1 Element Diversity

In the up-to-date periodic table of the elements, 28 M, 29 A,
and 6 X-site elements are found that can be utilized to form
MAXs. This means that MAXs can contain nearly 50% of
elements, as shown in Fig. 3. So why do MAX show such
strong elemental inclusiveness? This is due to the unique
layered structure, as well as the bonding and arrangement
between M-A and M-X, which gives the atoms a high free-
dom degree of spatial and chemical coordination in their
arrangement and bonding. Of course, the reported elemental
composition also reflects the rules.

In the M-site, there are 28 kinds of elements that can par-
ticipate in the composition, and the elements in the M-site
have been extended from the previously well-known transi-
tion metallic elements, such as Ti, V, and Cr [23-25], to the
rare-earth elements, such as Ce, Pr, and Nd [42—44]. Among
them, lanthanide elements can participate in the M-site with
MM’ as an ordered solid solution state. Fe, Ni, Cu, and Pd
can only exist in solid solution at the M-site with other ele-
ments [45-47]. The element of W can participate in both
ordered and disordered solid solutions but cannot exist at
the M-site alone [44, 48]. Hf, Ta can appear in M-site disor-
dered MAX [49, 50]. Mn, Zr, Sc, and Y have been added to
the M-site element [51-53]. Meanwhile, a series of i-MAXs

containing Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu
also are introduced in the M-sites [44].

For A-site, there are 29 kinds of elements that can partici-
pate in the composition, including group IIIA, group IVA,
and transition metal elements such as Au, Ir, Zn, Cu, Fe, Co,
Ni, Sb, and Pt [40, 41, 54]. In addition, P, S, As, Te, and Tl
are reported to participate in the formation of ternary A-site
[23, 55-57]. Mn, Rh, Pd, and Ag are reported to appear
at A-site with other elements as solid solutions [38, 40,
41]. Au, Ir, and Zn are introduced by substitution reaction
at the A-site [36, 54]. These magnetic elements of Fe, Co,
Ni, and Mn were utilized to prepare V,(A Sn;_,)C [38]. Fe
was introduced to form Ta,FeC, Ti,FeN, and Nb,FeC [58].
Relying on a chemical structure editing strategy, the uncon-
ventional elements (Bi, Sb, Fe, etc.) can be intercalated into
A-sites [40]. A series of noble metal elements were intro-
duced to prepare M,(A,_,A’)C (where M=Ti, V, or Nb;
A =Sn, Al, Ge, Ga, and In; and A’=Ru, Rh, Pd, Pt, Ir, and
Au, with 0 <x<0.4) by the method of A-site alloying-guided
strategy [41].

X-sites include C, N, B, P, O, and Se. C, N, and B can
exist independently. Relying on the partial substitution strat-
egy of X, Ti,AlIC,_,O,, Nb,SB,C,_,, Zr,Se(B,_,Se,) show
that elements O and Se can only be combined with C and B
at X-site [59-61]. The B-containing MAXs with a symmetry
of P6;/mmc are different from MAB materials [62-64]. In
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Fig. 3 Periodic table of the elements in the MAX series materials
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addition, Hf,SB, Ti,SbP, Zr,SbP, and Hf,SbP containing P
MAXSs are reported.

Based on the combination of different elements, MAXs
show great element compatibility. The inherent features of
different elements induced the diversity of MAX in struc-
ture, properties, and functions. The element combination
rules are essential for expanding the types of MAXs. To
facilitate the search, the reported MAXs are classified in
Table 1.

3.2 Structure Diversity and Classification
3.2.1 Structure Classification

Herein, to more precise structural identification, MAXs are
classified into three main types:

e Typel: M, AX, (n=1~6), hexagonal (P6;/mmc)

e Typell: M, ,A,X, (n=3, or 5), cubic (R 3 m)

e Typelll: M, ,A,X, (n=1, or 2), hexagonal (P6;/mmc)/
cubic (R 3 m)/ hexagonal (P 3 ml)

Type I: the ternary MAXs, as M, ;AX,, (n=1~6), exhibit
a hexagonal layered structure within the P6;/mmc space
group (Fig. 4a). Each X atom occupies the center of an octa-
hedron formed by six tightly packed M atoms, with A atoms
positioned between layers of MX. This results in a layered
structure comprising alternating MgX and A atom layers. n
signifies the number of MX octahedral layers between the
A atom layers; the values of n=1~6 allow for further clas-
sification [1, 28, 178, 181, 202, 203]. Moreover, Mo,VAIC,
is found to be a symmetric structure of herringbone P 6 m2
with the disordered solid solution [200]. The structure of
(Mo, _,V,)sAIC, was studied in depth by Snyder et al. by
using high-resolution X-ray diffraction and TEM images,
and the Rietveld refinement showed that the most suitable
space group for (Mo, _,V,)sAlC, is the P-6¢2 rather than the
conventional P6,/mmc space group [199].

Type II: intergrown ternary MAXs, MsA,X; and M;A, X,
show the crystal structure’s space group of R 3 m due to the
disrupted symmetry owing to the sequence and thickness of
the alternating M, , X, layers. Ti5Si,C; and Ti,Si,Cs were
reported with a longer c-axis of 30.4 and 40.4 A, respec-
tively [29]. Type I MAXs are essentially combinations of
Type I subunit cells; for instance, the 523 phase is a merger
of the 312 and 211 phase subunits. The 725 phase represents

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

a hybrid of the 312 and 413 phase subunits, with layers
of 3- and 4-layer carbides alternating between A layers
(Fig. 4b). To date, Ti5Si,C;, Ti;Si,Cs, TisAL,Cs, TisGe,Cs,
and Ti,Ge,C5 have been identified, as Type Il MAXs [29,
154, 183, 194].

Type III MAXs are defined as M, A, X, n=10r2. M
atomic layers are spaced by double A atomic layers (Fig. 4c).
A series of Mo,Ga,C, Nb,Bi,C, Ti;Cd,C,, Nb,S,C,
Ti,Au,C, and TizAu,C, MAX are found [40, 196, 204].
Notably, Mo,Ga,C exhibits hexagonal symmetry (space
group P6,;/mmc), akin to Type I [196, 205]. In addition, the
space symmetry group of hexagonal/ P 3 ml were first iden-
tified at 1 s-Nb,S,C, and 3 s-Nb,S,C is cubic R 3m [195].
Ti,Au,C and Ti;Au,C, show a trigonal crystal structure,

n’

with space group P 3 ml [197].

Objective to study structure isomerism, the M-X octa-
hedrons are found to appear slightly deviation from their
standard position. This induced a formation of a, f, and y
MAX polymorphs, respectively, with distinctions primarily
in the stacking patterns of adjacent M-X segments [202,
206]. According to the principle of minimum energy, 211
phases exhibit a single-crystal form (a-M,AX), 312 phases
exhibit two (a-M;AX, and -M;AX,), and 413 phases
exhibit three (a-M,AX;, f-M AX;, and y-M,AX). A-layer
atomic slippage induces structural transformation from a to
p to y MAXs, accompanied by changes in atomic positions.
For detailed atomic occupancy information, please refer to
Chapter 2 in “MAX Phases: Properties of Machinable Ter-
nary Carbides and Nitrides,” Michel W. Barsoum [207].

3.2.2 Solid Solutions

Multi-element occupations at the M, A or X sites create the
solid solution MAXs in Table 1. Due to the mutual modula-
tion between various elements, these atoms show two kinds
of arrangement states: disordered and ordered. An ordered
arrangement is that each M’ and M" atom occupies, respec-
tively, a separate atomic layer and shows the out-of-plane
ordered structure. Within a single atomic layer, there is only
one type of M atom. M’ atomic layers envelop one or two
layers of M" atomic layers (as shown in Fig. 5a). This type
of ordered solution of MAXs is marked as o-MAXs and
remains hexagonal (P6;/mmc) [164]. The ideal 0-MAXSs of
312M’, M”AX, and 413 M’, M”’,AX; present a relatively
accurate proportion of M’/M”’ [208]. Recently, the third

@ Springer
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metal element was introduced as doping atoms in M’/M’’-
site in disordered form [166]. A series of correlations were
discovered, (i) M’ near the A atomic layer does not form
the corresponding binary rock salt MC structure, (ii) M’
and M’ atomic sizes are similar, and (iii) the electronega-
tivity between M’ and A is different [209, 210]. The other
ordered arrangement is that M’ and M"’ atoms appear in the
same atomic layer and exhibit the in-plane ordered structure
(i-MAX) [35]. It is worth noting that i-MAX showcases a
blend of monoclinic (C2/m and C2/c) and orthorhom-
bic (Cmcm) crystal structures (as shown in Fig. 5b). The
deviation from hexagonal symmetry in the i-MAX structure
arises from the atomic size difference between the two met-
als being greater than 0.2 A (tM’ <rM’*), which causes the
M’ and M’ atoms to no longer occupy the same planes.
The M’ atoms move closer to the A-layer, influencing the
structure of the A-layer and causing it to deviate from a
hexagonal lattice toward a Kagomé-like lattice. However,
the three types of i-MAX structures still maintain the same
Al-M’ 3 M’’, 5-Al subunit, with only the stacking arrange-
ment along the c-axis differing [122]. The solid solution
orderly structure of i-MAXs is significantly influenced by
the mass and atomic radii of their constituent elements. The
i-MAX enriched with lighter elements like Ce and Pr tends
to adopt the C2/m structure, while those with heavier ele-
ments such as Tb, Nd, Gd, Dy, Ho, Er, and Tm favor the
C2/c structure [42]. It is driven by atomic radius differences,
particularly among M elements with larger radii. The vary-
ing distances of M elements to A elements and the structural
configurations of M" and M" elements are key factors in this
differentiation [43, 52].

Explorations into A-site and X-site solid solutions offer
a strategic avenue for tuning the structures and function-
alities of MAXs. Ge, Fe, Co, Ni, Mn, Au, Pt, Ru, Sb, Ir,
Pd, Rh, Bi, and Cu are introduced into A-site [38, 40, 41].
Dual-site solid solution MAXSs, where element solid solu-
tions occur at two sites among M, A, or X, with those sites
occupied by multiple elements, predominantly take place
at the M- and A-sites. This is because the X site is usually
filled by C and N [78, 138], while a broader selection of
elements for M- and A-sites facilitates the formation of
dual-site solutions [141, 143].

There is no doubt that great achievements have been
made in the study of the element and structural diversity of
MAXs, which laid the foundation for the development of

© The authors

properties and functions. At the same time, it also made us
realize that MAXs is an extremely complex material sys-
tem, and it is necessary to systematically understand the
internal relationship between its elements and structures.

4 Synthesis Strategy

MAXSs’ synthesis is a multi-level and complex process,
involving multiple physical and chemical phenomena such
as atomic diffusion, chemical bond breaking and forma-
tion, and so on, which lies in the reconstitution of chemical
bonds and atomic structures to a specific layered structure.
M-X bonds help maintain the structure’s stability, while
the weak M—A bonds provide a large degree of freedom
for the diffusion of A atoms. This weak bond property
enables rapid migration of A atoms, which promotes the
formation of the MAXs. The synthesis strategies of solid,
molten salt, and vapor systems are described.

4.1 Solid-State Reaction

Solid-state reaction sintering typically employs solid pow-
der particles including M powders or their metal hydrides,
elemental A metal powders, graphite powders, and metal
nitrides, as the precursors. Relying on a high-temperature
and pressure environment (Fig. 6a—f), the diffusion kinet-
ics of the constituent atoms is accelerated, and form Mny,
or M\A, at the interface of these precursor particles. Upon
increased temperature, M, X, and M, A, react to form MAX.

4.1.1 Pressureless Sintering

Pressureless sintering employs high-temperature devices like
tubes and muffle furnaces (Fig. 6a). The precursor’s particle
size, chemical stoichiometry, heating rate, peak temperature,
and duration are critical for MAXs formation. This method
produces MAXs with lower densities, facilitating their con-
version into powders. Its benefits include straightforward
operation, versatile precursor selection, and adaptability
for mass production. However, it requires extended dura-
tion at high temperatures, results in lower densities, and
necessitates ball milling for particle size adjustment. This
approach has been successfully applied in the synthesis of

https://doi.org/10.1007/s40820-025-01673-9
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Fig. 4 Atomic arrangement of MAX series materials. a Type I, b Type I, ¢ Type 111

materials such as V,SnC, Ti;AlC,, Ti;GaC,, among others
[28, 89, 145, 211]. Carbon materials can be employed to
reduce metal oxides at high temperatures. Therefore, these
conventional oxides are expanded as the precursor powders
of MAXs. Utilizing Cr,05, V,0s5, Ga, Ge, and C, a series of

) SHANGHAI JIAO TONG UNIVERSITY PRESS

high-purity MAXs (Cr,GeC, Cr,GaC, V,GeC) are prepared;
the initial carbon content crucially influenced Cr,GaC’s con-
version rate [212]. Ti;SiC, is also prepared by TiO, and
Si0,, highlighting cost-effectively [213].

@ Springer
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4.1.2 Hot Press Sintering under inert gas pressures reaching 200 MPa, this method

ensures uniform compression of MAX at high temperatures
Hot pressure is introduced via a hot press furnace. The pro-  and pressures, resulting in superior density and uniformity
cess involves ball milling precursors for uniform mixing,  (Fig. 6¢). This technique is valued for its rapid production

followed by hot pressing (low pressure at 1000-1500 °C  time, streamlined process, reduced energy usage, and lower
and high pressure at 1200-2000 °C) to aid the synthesis =~ material wastage. However, the reaction scalability of this
and densification processes (Fig. 6b). This technique’s merit ~ method is limited due to the requirement of encapsulating
lies in its ability to directionally advance precursor reactions  the precursor powder in a specific glass or metal container
under pressure, preventing precursor loss through sublima-  [88].
tion in a sealed environment, making it ideal for creating
dense MAX bulk materials. However, this technology also 4.1.4 Self-Spreading High-Temperature Synthesis
has some drawbacks, such as potential carbon pollution from
graphite molds, scalability challenges, and high stability Relying on the exothermic reaction, self-spreading high-
requirements for equipment due to long-term high-pressure temperature synthesis leverages to facilitate solid-state
conditions [70]. reactions. The procedure involves pre-pressing precursor
materials into compact particles, igniting these particles
4.1.3 Hot Isostatic Pressure Sintering with tungsten or molybdenum wire in a vacuum to avoid
oxidation, and conducting the self-propagating sintering
Hot isostatic pressing sintering uses an inert gas as a pressur-  process where temperatures can soar up to 2000 °C, with
izing medium in a high-pressure environment. The workflow ~ combustion wave speeds reaching 25 cm s~!. This leads to
involves ball milling to blend precursor powders, pre-press-  the creation of porous MAX particles (Fig. 6d) [214, 215].
ing into solid bulks, sealing in inert gas, and then sintering. ~ The benefits include its straightforward execution, fast reac-
Operating within a temperature range of 1000-2000 °C and  tion, and minimal energy requirements. Nonetheless, it faces

© The authors https://doi.org/10.1007/s40820-025-01673-9
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challenges such as difficulty in controlling the reaction, a
high and uncontrollable amount of secondary phases, and
poor repeatability.

4.1.5 Microwave

Microwave heating’s rapid process stems from the intense
interaction between solids and microwave radiation, reach-
ing exceedingly high temperatures (Fig. 6e). Despite its
advantages of easy operation, fast reaction speed, and high
cost-effectiveness, microwave sintering still faces many bot-
tlenecks that need to be overcome, such as the type limita-
tions of MAX, difficulties in thermal management, precision
issues in temperature monitoring and control, uneven heat-
ing, cracking of sintered parts, and challenges of uniform
heating over large areas [105, 109, 203].

4.1.6 Spark Plasma Sintering

Spark plasma sintering employs electric currents and local-
ized high-temperature heating to foster plastic deformation
and diffusion among precursor powders, facilitating bonding
and sintering (Fig. 6f), which were utilized for the preparation
of Zr;InC,, Hf;InC,, Zr;SnC,, and Hf;SnC,. Spark plasma
sintering combines plasma activation, hot pressing, and
resistance heating to offer benefits such as quick tempera-
ture escalation, brief sintering durations, lower temperatures,
and grain uniformity, aiding in precise microstructure control
and achieving high-density materials. Despite its operational
simplicity and repeatability, its drawbacks include significant
energy demands, complex machinery, challenging mainte-
nance, and elevated equipment costs [147, 148, 216].

4.2 Melting Reaction
4.2.1 Molten Salt Sintering

The molten salt sintering technique leverages the flow prop-
erties of low melting point salts to enhance the delivery and
spread of precursor materials for MAXs, improving the
interaction among reactants to control reaction kinetics,
the nucleation and growth processes [87]. These key pro-
cedures include: (1) the types of molten salts; (2) sintering
temperature, rate, and duration; (3) isolation and purification
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of products. The selection of an appropriate molten salt is
pivotal; the salt’s melting point should be lower than the
metal precursors to ensure a liquid state; in addition, the
cost-effectiveness, solubility in water, and the diffusion rate
of reactants are considerable. Furthermore, an inert envi-
ronment can prevent oxidation of metal precursors. The
advantage lies in high purity, uniform size, and low sintering
temperature based on recycled molten salt. However, there
are disadvantages such as high cost and environmental pollu-
tion. Future research will focus on environmentally friendly
molten salts, sintering optimization, and functional ceramic
development [217, 218]. In addition, molten salts are also
employed as electrolytes to assist the electrochemical syn-
thesis of MAXs (Fig. 6i) [219].

4.2.2 Lewis Salt Substitution Strategy

Lewis acid molten salts (LAMS) enable the A-site atoms to
bond with the molten salt’s anions, while the molten salt’s
cations migrate into the vacancies left by the A atoms (as
shown in Fig. 6g). To obtain high-quality MAXs, these pro-
cesses should be strictly controlled: (1) the proportion of
MAX and LAMS; (2) the reaction temperature and envi-
ronment; (3) the separation and purification of products.
Based on the LAMS, a series of MAXs with new A-sites
are prepared, such as Ti;ZnC,, Ti,ZnC, Ti,ZnN, and V,ZnC
[36], Tiy(Al,Cu,;_)N and Nb,CuC, Ti,CuNj; [182]; some
transition metals, like Fe, Co, Ni, Cu, etc. are incorporated
into new MAXs via homologous substitution reactions
[40]. Meanwhile, an innovative method of interlayer chemi-
cal reaction mediated by "chemical scissors" was further
reported, significantly expanding the element types of
MAXs, as shown in Fig. 6h. Route I: LAMS cations act as
"chemical scissors" to etch A-site atoms of MAXs, open-
ing non-van der Waals gaps and forming interlayer atomic
vacancy structures; Route II: solvated intercalation atoms in
molten salt diffuse into interlayer atomic vacancies to form
MAXSs. The synergistic effect of the "chemical scissors" and
the guest ions offers greater space for interlayer composition
and structural regulation, resulting in a series of new MAXs
containing conventional A-site elements (Al, Ga, In, and
Sn) and unconventional A-site elements (Bi, Sb, Fe, Co,
Ni, Cu, Zn, Pt, Au, Pd, Ag, Cd, and Rh) [220]. Lewis salt
replacement strategy realizes the structure editing of MAXs,
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interlayers unconventional elements into the A atomic layer
of MAXs, breaks through the traditional metallurgical reac-
tion bound, and expands the types and application range of
MAX family. However, due to the limited types of Lewis
salt, the complex reaction process and high cost make large-
scale preparation impossible. In the future, how to develop
the new Lewis salts, further study the reaction mechanism,
and optimize the sintering process is crucial to form new
quality productivity based on MAXs.

4.3 Vapor Deposition

4.3.1 Physical Vapor Deposition

Physical vapor deposition (PVD) is reported for prepar-
ing MAX thin films with high purity, controllable com-
position, and wide applicability. Under high vacuum
conditions, PVD can effectively avoid the introduction of
impurities and achieve precise control of the thickness and
composition of films. As shown in Fig. 6j, the processes
include (1) the selection of substrates and MAX targets;
(2) PVD deposition of the thin film under a protective
atmosphere; and (3) annealing treatment. However, due
to the specific crystal structure required for MAXs, PVD-
deposited films often exhibit amorphous or mixed phases
and require high-temperature annealing (usually 600-1200
°C) to crystallize [221, 222]. In addition, the high equip-
ment requirements limit the large-scale production of
PVD, and the internal stress during the deposition process
affects the quality and adhesion of the films.

4.3.2 Chemical Vapor Deposition

Chemical vapor deposition primarily involves creating thin
films by chemical reactions of gaseous compounds or ele-
ments on the substrate surface. The process entails several
critical steps: (1) selecting and cleaning the substrate is
pristine to ensure a clean surface; (2) choosing the appro-
priate reactive gases to match the MAX targets’ require-
ments; (3) managing the reaction by placing the substrate
in a reaction chamber, introducing selected gases, and
heating to the desired temperature; (4) modifying depo-
sition rates and film quality by adjusting the deposition
duration and gas flow; (5) cooling the films. A mixture of

| SHANGHAI JIAO TONG UNIVERSITY PRESS

TiCl,, SiCl,, CCl,, and H, gases are employed to fabricate
polycrystalline Ti;SiC, MAX films [223] (Fig. 6k).

383 variants with diverse elemental compositions, and
crystalline structures are prepared through methods like
reaction sintering and molten salt techniques. These meth-
ods can precisely manipulate the microstructure, shape,
and defects of MAXs. Efforts are ongoing to enhance
the purity of the outcomes, boost preparation efficiency,
streamline the process, and cut down on energy use and
environmental impact.

Despite the growing variety of methods to prepare MAXs,
the process encounters several hurdles. Primarily, the synthesis
of MAXs requires high-temperature and high-pressure envi-
ronments, posing a challenge for scaling up and industrial pro-
duction. Synthesis often occurs at temperatures ranging from
1000 to 1700 °C and pressures from 1 to 50 MPa, necessitating
special equipment and techniques that increase costs and risks.
Frequently, the synthesis results in incomplete reactions, lead-
ing to products with impurities and defects that compromise
their purity and functional properties. For instance, excessive
reactions between the M element with A or X elements can
result in unwanted MA or MX phases, or internal diffusion
of the A element can disrupt the A-layer structure, diminish-
ing the electrical and thermal conductivity and the oxidation
resistance of MAXs. Moreover, controlling MAXs’ geometri-
cal morphology and crystal structure is challenging, limiting
their utility. Typically as powders or bulks, it is challenging to
fabricate MAXs into coatings, films, or fibers. Their layered
structure complicates the creation of heterogeneous or com-
posite configurations, thus limiting their potential applications
across various application scenarios.

5 Simulation and Prediction

Due to their intricate crystal structures and complex elemen-
tal makeup, high costs, low efficiency, limitations on shape,
harsh synthesis conditions, and complex equipment hindered
the advancement of novel MAXs. Simulation and prediction
can aid scientists in delving into the physical and chemical
essences and linking composition, structure, and properties.
The synergy between experimental validation and computer
simulation enriches the developmental insights and guidance
for MAXs. Expedited exploration of new MAXs necessitates
the leverage of supercomputing power. Techniques such as
introducing new elements, cluster expansion, random crystal
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structure prediction, and evolutionary algorithms open up new
avenues in understanding MAX structures, compositions, and
properties. It is crucial to explore the MAXs with unknown
element compositions and new structures based on the ther-
modynamic stability principle.

5.1 Prediction Types of MAXs

Currently, high-precision computational methods are exten-
sively employed, including density functional theory for
electronic structure calculations, Monte Carlo simulations,
molecular dynamics simulations, phase field methods, and
finite element analysis. With the continuous development of
MAXs experimental research and theoretical foundations, a
large amount of observation and simulation data has been
obtained through these methods. By utilizing these extensive
datasets, machine learning techniques have provided more
accurate and efficient predictions for the new MAXs. The
approach promises to greatly speed up the design process of
new materials and shorten the time needed for materials to
be converted from laboratory research to industrial applica-
tions. Through their training and optimization, machine learn-
ing models offer enhanced understanding and forecasting of
MAXSs’ performances and behaviors, marking a novel and
efficient avenue for advancing materials science research and
development.

This research methodically examined the MAXSs’ struc-
tural stability, lattice parameters, mechanical characteristics,
electronic properties, and thermal conductivity using den-
sity functional theory principles. These analyses provide a
theoretical basis for identifying promising MAXs and have
informed experimental synthesis efforts [209, 224-227]. In
2021, Khaldi Alidusti et al. [228] utilized density functional
theory to analyze 1122 MAX candidates and found that 466
MAX and 26 MXene may be prepared. In 2023, Martin et al.
[208] conducted a more detailed investigation into the phase
stability of MAXs. Figure 7a shows the stability heat maps
of the C-based MAX. The 3705 different MAXs, with vari-
ous combinations of M, A, and N, B, and P elements, were
evaluated based on the stability and identified 180 ternary
MAXs that were theoretically predicted to be stable but not
synthesized in the laboratory. In 2022, Dahlqvist et al. [229]
utilized DFT and PBE-parameterized GGA for insights into
electronic exchange and correlation within MAXs (Fig. 7b).
Notably, there are 23 thermodynamically stable i-MAX,

© The authors

with 9 already verified experimentally, and highlighted
48 stable disordered solid solution MAXs (Fig. 7c). The
synthesis and theoretical predictions of MAXs are counted
(Fig. 7d), illustrating how the ordered or disordered nature
is influenced by the size disparity between M- and A-site
elements [210].

5.2 Functional Development of MAXs

Benefiting from ceramic and metal features and their char-
acteristics like low density, high modulus, excellent elec-
trical and thermal conductivity, thermal shock resistance,
and resistance to high-temperature oxidation, MAXs dem-
onstrate exceptional potential for applications under extreme
conditions such as high temperatures, severe corrosion, and
radiation exposure. The diversity of MAXs, however, intro-
duces significant challenges in researching their properties,
with the current lack of comprehensive and systematic stud-
ies hindering broader application. Through in-depth knowl-
edge of factors like composition, microstructure, crystal
structure, and processing parameters, combined with ele-
ments’ physical and chemical properties, leveraging theo-
retical material science to create physical models and math-
ematical calculations enables effective prediction of MAXs’
performance parameters (Fig. 7e).

In 2016, Wang et al. [230] employed density func-
tional theory-based first-principles calculations to thor-
oughly investigate the lattice structure, stability, elec-
tronic structure, and mechanical and thermal properties
of Ti;(Sn,Al,_,)C, solid solutions across varying Sn con-
centrations. Their research indicates that increasing Sn
content minimally impacts the crystal structure, and these
solid solutions behave as metallic, stable, and brittle mate-
rials both thermodynamically and mechanically. Notably,
the maximum bulk modulus was observed at the Sn dop-
ing concentration of 0.75, and the maximum shear modu-
lus was observed at the Sn doping concentration of 0.5.
Moreover, these solid solutions boast high melting points
and Debye temperatures, with their lattice thermal conduc-
tivity at room temperature exceeding 40 W m~! K~! for x
values of 0, 0.25, and 0.5, indicating superior thermal con-
ductivity. In 2021, Ahams et al. [231] first applied DFT to
analyze the structure, elasticity, and electronic properties
of novel MAXs such as (V) ,5Zr; 75),PbC, (V, 571, 5),PbC,
(Vo.75Zr 5),PbC, and V,PbC and studied the effects of
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Nano-Micro Lett. (2025) 17:173 Page 17 of 42 173

a MZAC (n=1),N =312 M3AC; (n = 2), N = 312 M4ACs (n = 3), N = 312
ScV'I’lZvaVIG/I’)TaCrMoWMnFe 5cv1‘|2erVNMbTaCrMoanFe ScYTerHf\/IC/I’nTaCrMoWMnFe 250
200
O
O 150
O ~
O 5
coonon Glele 1) w g
@@+ OLJoor o 9
FEFoeE @0 ~[1] @6 - 1JOO0 s %
- BOECe000 0077 el enn £
Wel®] - [ eI (] 7O @Il 0000000
SI@0000LOC000e s @C[-OO Clele/elele 0
cOONOOENMIO®Oe0® </06r[IC]
s VOEFMFEOHO@OC00 @0 [ ]
W] - [ Y@ Oe[1~[F] -0
P OO0FIFIOe0eC|® ®C[LIOL]
0 OLOOFELO0 O ©
Sroneeeor I TN ] oen -
sEOCCNe® 000
sHEEREO©00 @ @O OL] MHep =0
< HEEEEOC0® ® s @@OL] W 2 <0
OO0 ee® o Helvelee I I ) L Jelelel I' X |
v IS\lyztggsized u 'Svta=b|3e3 v iyzt?gsized J ?Itazbl;l v ,Svyztgesized J ?Itazblze8
b M M A i
§ S TV C Mn Fe Co Ni M T V C Mn Fe Co Ni Al si <
c — o
;’- Y Zr Nb Mo Y Zr Nb Mo Ni Cu |Zn [Ga Ge 502
<Z|( Hf Ta W Hf Ta W Pd Ag In  Sn
- 40
Pt  Au

solid solution
MAX phase

=<
=
(<)
=
N
=z
(@)
2
N
=

= ¢ |
&

2]
&

N

o

# of stable occurences with M*, M”

Pt | Au
d 0
. 100 E ol sold solution
(M. OB
g s o
o £ L,/ HE [ A=cansicesn 5 g
5 2 3
o ol o ¢ [ [ A=2zncuniAgraaupt 2 =
2 5 ]
L 2 3k [ 4= Al metastable g s
B o w0 £ » T H
o oo oo o & ] g
. A E A A o o E o E:“”e_ersl:cal O:Qdyero' % 10 g E
afdlo o 00 o ° éou & % =
LN - 5 ﬁ
Exp. known S
OJORCHEH - | JCl O | [Jmax order
@ a@| ) [zt souton
isorder
T Zr ff V Nb Ta Cr Mo W Mn fe o "TJoso 1985 1550 195 2000 2005 This work
" Year of discovery
e _
The computational prediction of M
MAX/MX Feature Model Predicti
: h : S rediction
Synthesizability Generation Building

Fig. 7 a Calculated stability for C-based MAX. Reproduced with [229]. Copyright 2022, Royal Society of Chemistry. d Statistical chart
permission from Ref. [208]. Copyright 2023, Elsevier. b Element of stable MAX series materials formed from experimental implemen-
distribution maps in predicted stable i-MAX and solid solution MAX tation and theoretical prediction since 1960. Reproduced with permis-
series materials. Reproduced with permission from Ref. [229]. Copy- sion from Ref. [229]. Copyright 2022, Royal Society of Chemistry. e
right 2022, Royal Society of Chemistry. ¢ Predicted phase stability MAXs calculation workflow diagram

for (M',;3 M"|5),AIC alloys. Reproduced with permission from Ref.

SHANGHAI JIAO TONG UNIVERSITY PRESS @ Springer




173 Page 18 of 42

Nano-Micro Lett. (2025) 17:173

changes in V and Zr concentrations on the properties of
Zr,PbC. Their research revealed that the structural integ-
rity of these new MAXs remains stable within the P65/
mmc space group as the V element ratio increases, with
the 25% V-containing samples showing improved plastic-
ity, compressibility, brittleness, and hardness. Elastic con-
stants rose with higher V concentrations, and the atomic
concentration also influenced the MAXSs’ electronic band
structure and total density of states (TDOS), offering cru-
cial insights for predicting and understanding the perfor-
mance of MAXs. In 2022, Zeng et al. [232] employed den-
sity functional theory (DFT) to explore the Nb,AN (A =Si,
Ge, Sn) MAXs compounds, focusing on their structure,
mechanical attributes, electronic structure, and thermal
behavior. The study revealed that these compounds not
only maintain strong structures but also maintain dynamic
mechanical stability. Notably, the Nb,SnN phase stood out
for its superior thermal shock resistance, even though it
didn’t have the highest melting point among the group.
Due to its thermal expansion coefficient in the temperature
range of 300-1452 K being very close to that of nickel-
based alloys, coupled with the lowest lattice thermal con-
ductivity, it has become a promising candidate for thermal
barrier coating (TBC) applications. The Nb,SnN phase is
distinguished by its mechanical resilience, attributed to the
minimal deformation of its octahedral structure, high duc-
tility, and low anisotropy. Electronic analyses pinpointed
the phase’s low Debye temperature ® to its high ionic
character and minimal covalency. Further extending the
scope, in 2024, Tian et al. [233] delved into the impact of
pressure on V,ZnC'’s crystal structure, elasticity, electronic
framework, and thermodynamic steadiness through DFT
investigations. They discovered that V,ZnC transitions
from brittleness to ductility at a pressure of 20 GPa, with
its elastic constants and modulus escalating in response to
increased pressure.

These findings underscore the pivotal role of theoretical
computations in paving the way for novel materials, ena-
bling the anticipation of diverse material characteristics
such as optical, magnetic, and electronic transport proper-
ties. Through advanced simulations, scientists gain deeper
insights into materials’ band structures, Fermi levels, and
electron density distributions, which facilitate predictions
about their performance under specific conditions. These
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insights are invaluable to material developers, which guide
the selection of material composition, synthesis methods,
and processing parameters, thereby simplifying the creation
and optimization of new materials.

6 Properties and Performances

MAXs demonstrate mechanical properties, thermal prop-
erties, electrical properties, magnetism, high-temperature
oxidation resistance, and corrosion resistance, owing to
their layered structure consisting of alternating M-X layers
bonded by strong covalent bonds and M-A layers bonded
by weak metal bonds, endowing them with high hardness,
strength, toughness, and excellent electrical and thermal
conductivity. This structure enables the material to maintain
good mechanical and chemical stability even at high tem-
peratures. For specific application fields, the performance
of MAXs can be further adjusted and optimized through
methods such as alloying, nanomaterialization, and surface
modification.

6.1 Mechanical Properties

MAXs exhibit a unique combination of mechanical advantages,
including high strength, moderate hardness (4—6 GPa), excel-
lent fracture toughness (3—5 MPa m"?), superior wear resist-
ance, and exceptional thermal shock resistance. These perfor-
mances can be maintained even at high temperatures due to
the stable layered crystal structure. The mechanical properties
stem from the hybrid bonding, with strong covalent M-X bonds
contributing to hardness and high-temperature stability, and
metallic M-A bonds providing ductility. The layered structure
also allows for self-lubrication and crack resistance, ensuring
enhanced durability. This unique interplay of ceramic-like and
metallic features gives MAXs a significant edge in demanding
applications like aerospace, automotive, and energy systems.
Table 2 summarizes the mechanical properties.

Typically, MAXSs have a brittle-plastic transition tempera-
ture (BPTT), which is the transition temperature from typi-
cal brittle fracture (traditional ceramics) to fracture tough-
ness (metals). When the environment temperature is higher
than BPTT, the bending strength rapidly decreases. As
the temperature increases, the Young’s modulus of MAXs

https://doi.org/10.1007/s40820-025-01673-9
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Table 2 Mechanical properties of MAXs at RT

MAX Phases Density [g cm™] Vickers hardness Young’s modu-  Flexural strength Compressive Fracture tough-
[GPa] lus [GPa] [MPa] strength [MPa] ness [MPa
m'?]
211 phase
Ti,SC [234] 4.6 * 290 * * *
Ti,AIC [235] 4.1 58+0.5 271 432+12 952+6 6.5+0.2
Ti,SnC [236] 4.7 35+04 * * * *
Ti,AIN [237] 43 * 285 * * *
Ti,AlC) 5Ny 5 [237] 4.2 * 290 * * *
V,AIC [66] 4.0 22+0.1 235 270+ 12 527+12 57+0.2
Cr,AlIC [67, 238] 5.17 4.9 282 469 +27 949 + 22 62+0.3
Cr,GeC [239] 52 * 208 * * *
Nb,AIC [69] 6.44 45+03 294 481 +42 * 59+03
Nb,SnC [236] 8.0 3.8+0.2 216 * * *
Ta,AlC [70] 11.46 44+0.1 292 360 + 19 804 77+0.2
Zr,SnC [236] 6.9 39+03 178 * * *
Hf,SnC [236] 11.2 35+04 237 * * *
312 phase
Ti;SiC, [8] 4.5 4.0 320 260 + 20 600 *
Ti;AlC, [235] 421 2.7-3.2 297 340 760 6.9-7.2
Ti;GeC, [240, 241] 5.22 5.0 340 * 1277 *
Ti;(S1,Ge)C, [241] 5.02 * 322 * * *
Ti;AICN [237] 45 * 330 * * *
413 phase
Nb,AlIC; [242] 6.97 26+0.2 306 346 + 38 515+44 7.1+03
Ta,AlC; [243] 13.18 51+0.1 324 372 +20 821 +97 7.7+0.5
Ti,AIN; [243] 4.6 2.5 3102 350+ 15 475+ 15 *

2The symbol * indicates that MAXs data have not yet been reported

decreases, but the high stiffness remains [66]. Thermal sta-
bility is also an important criterion. MAXs can sustain the
structure integrity, and the strength increases upon quench-
ing in the air at 1300 °C. In addition, larger grain sizes can
achieve higher thermal stability [244]. Attributed to the
microplastic behavior and quasi-metallic damage tolerance
(KBs) during quenching, MAXs can maintain excellent
mechanical properties and thermal stability even in high-
temperature environments.

6.2 Thermal Properties
6.2.1 Thermal Conductivity
MAXs are good thermal conductors, with thermal con-

ductivities ranging from 12 to 60 W m~! K~! at RT. The
total thermal conductivity (k) is determined by both the

SHANGHAI JIAO TONG UNIVERSITY PRESS

electronic thermal conductivity (xk,) and the phonon thermal
conductivity (k). In general, for non-S- or Al-containing
MAXs, the phonon thermal conductivity (k) is lower than
the electronic thermal conductivity (k,). However, MAX con-
taining S and Al is good phonon conductors; the k, value of
Ti;AICN at RT is up to 36 W m~! K™, the highest value in
MAXs [245]. MAX”’ Kph is related to their defect concentra-
tion, which can be evaluated by the residual resistance ratio
(RRR). As the RRR value increases, the Kph value increases
[246]. However, the point defects and the rattler effect sup-
press the contribution of k., to the thermal conductivity in
part of MAXSs, which refers to the vibration atoms at their
equilibrium positions leading to phonon scattering. Many
elements, with atomic numbers > S, tend to "rattle," which
explains why the phonon thermal conductivity of Ti,InC,
Hf,InC, Nb,SnC, and other compounds contributes less to
the overall thermal conductivity.
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6.2.2 Heat Capacity and Thermal Expansion Coefficient

The heat capacity of MAXs depends on the following fac-
tors: temperature, chemical composition, crystal structure,
and potential phase transitions. At low temperatures, the
heat capacity increases nonlinearly, governed by the Debye
model, while at high temperatures it approaches the classi-
cal limit (~ 3R per atom). At high temperatures, it tends to
be constant, approaching the Dulong Petit limit. Variations
in M, A, and X significantly influence phonon spectra and
thus heat capacity. The layered structure results in unique
lattice vibrations, with defects and doping further modify-
ing thermal properties. Despite metallic behavior, MAXs
exhibit low electronic contributions to heat capacity, with
phonons being dominant. These properties, combined
with high thermal conductivity and stability, make MAXs
suitable for high-temperature applications such as ther-
mal management, energy storage, aerospace, and nuclear
systems [7, 8].

The coefficient of thermal expansion (CTE) describes
the variation in volume with temperature. A low CTE can
reduce internal stress caused by thermal expansion and
contraction, thereby improving the thermal cycling stabil-
ity and service life. The thermal expansion behavior is ani-
sotropic due to the relatively weak interlayer bonds (MA
or van der Waals forces) and relatively strong intra-layer
bonds (MX). This unique bonding characteristic limits the
thermal expansion of the lattice, allowing MAX to main-
tain stable volume in high-temperature environments and
reduce the damage of thermal stress to the structure [8].

6.3 Electrical Properties

6.3.1 Resistivity

MAXSs exhibit metallic conductivity because: (1) The high
density of electronic states near the Fermi level provides a
large number of conductive electrons. (2) The unique lay-
ered structure of MAX, alternating M-X layers and A lay-
ers, facilitates the free electron migration within the M-X
layers, while reducing scattering and thereby enhancing
conductivity. (3) The weak interlayer interactions result in
lower electron scattering rates, thereby maintaining higher
electron mobility. Meanwhile, the scattering effects of

© The authors

impurities, vacancies, or other defects may lead to a higher
residual resistivity and a lower RRR at low temperatures.
The solid solution MAXs show a higher resistivity than
the corresponding MAXs due to the stronger scattering
effect, leading to a decrease in electron mobility. Since
N(EF) predominates in the d-orbitals of the solid solution
elements, the impact of substitutions at different positions
(M, A, X) on resistivity is not equal [247]. In addition, the
morphology of MAX also affects resistivity, mainly due
to different surface areas of MAX with different appear-
ances, with a larger specific surface area providing more
surface area. During the contact process between electrons
and external electrodes or other materials, it increases the
contact points for electron transmission and improves con-
ductivity efficiency [248].

6.3.2 Superconductivity

Owing to the strong covalent and ionic bonding interactions,
coupled with weaker metallic or van der Waals interactions,
this structural characteristic enables electrons to maintain long-
range coherence at low temperatures, facilitating the forma-
tion of Cooper pairs, thereby promoting the frictionless flow
of superconducting current, which is one of the fundamental
principles of superconductivity. MAXs exhibit a higher den-
sity of electronic states near the Fermi level, which enhances
electron—phonon coupling. The d-electron states of elements
such as Ti, Mo, and Nb significantly contribute to supercon-
ductivity, such as the superconductivity of Mo,GaC [249] and
Nb,SnC [250] which has been demonstrated. The introduction
of C or N atoms provides additional electronic states, which
promotes the formation of stable electron—phonon coupling
systems, thereby improving superconductivity. Experiments
have found that certain MAXs exhibit a superconducting
transition within a specific low-temperature range, similar
to the behavior of traditional superconductors. For instance,
the superconducting transition temperature for Mo,GaC is
3.7-4.1 K [249], while Nb,SC is below 5 K [250]. In addition,
Nb,SnC, at 7.8 K, exhibits a higher superconducting transition
temperature [250].

6.4 Magnetic Properties

By introducing a magnetic element component into M- or
A-site, MAXs can realize magnetic properties. Cr,GeC is
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antiferromagnetic [251]; (Cr,_Mn,),GeC formed by par-
tially replacing Cr with Mn induces ferromagnetic polari-
zation. The average magnetic moment and Curie tempera-
ture increase with the increase in Mn doping content. The
magnetic properties of (Cr;_,Mn,),GeC depend on the con-
centration of Mn and the atomic configuration of Cr and
Mn in the crystal lattice [252]. The competition outcome
between ferromagnetic and antiferromagnetic states depends
on the local chemical composition and the ordered state of
the M sites, including (Cr,Mn),AlC [253], (Cr,Mn),GeC
[252], (Cr,Mn),GaC [113, 114], (Mo,Mn),GaC [115],
(V,Mn);GaC, [162], Cr,AlC [67], Cr,GeC [239], and
Mn,GaC [80]. (Mo,;;RE;/3),AIC, a series of the magnetic
i-MAXs, with RE standing for Ce, Pr, Nd, Sm, Gd, Tb, Dy,
Ho, Er, Tm, and Lu, exhibit a special microstructure of
quasi-two-dimensional magnetically frustrated triangular
lattice layers covering the Mo honeycomb structure [42].
The introduction of A-site elements also provides a new
pathway for the modulation of magnetic properties [38].
Fe, Ni, Co, and Mn with 3d electrons have been generally
added into the A-site. V,(A Sn,_,)C exhibits hysteresis lines
with an "S" shape at low temperatures, and the saturation
magnetization intensity gradually decreases with increasing
temperature, which indicates that it is a typical soft magnetic
material. This strong magnetic modulation that relies on ele-
ment combinations can precisely control the magnetism of
MAXs.
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6.5 High-Temperature Oxidation Resistance

The oxidation resistance of MAX at high temperatures pri-
marily stems from the diffusion behavior of their specific
metal elements, especially those containing Al elements. At
high temperatures, the Al atoms tend to diffuse to the sur-
face, forming a dense Al,O, protective layer that effectively
prevents oxygen penetration (as shown in Fig. 8a) [254].
However, the grain size of MAXs significantly affects the
diffusion rate of the Al element. For Ti,AlC with small grain
size, Al atoms can quickly diffuse to the surface of the grain
and uniformly form an Al,O; protective layer. On the con-
trary, for Ti,AlC with large grain sizes, Al atoms are difficult
to precipitate inside the grain and form a continuous Al,O;
protective layer, resulting in weaker oxidation resistance.
Additionally, when large grain Ti,AlC precipitates Al at
high temperatures, the matrix does not directly transform
into TiC, but instead forms a sandwich structure of Ti;AlC,
and TiC. This transformation is accompanied by volume
contraction, leading to surface cracks that facilitate oxygen
infiltration, thus significantly reducing oxidation resistance
[255]. Replacing Al with low melting point elements (such
as Sn) can lower the temperature of crack healing caused
by oxidation, as the oxidation reaction temperature of Sn is
lower than that of Al. Specifically, SnO, can form at 460 °C,
whereas Al,O; requires 900 °C. The high diffusivity and flu-
idity of Sn facilitate crack repair through oxidation reactions
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[256]. Nevertheless, these properties can also lead to the
diffusion of Sn to the sample surface, promoting the growth
of unprotected SnO,. Moreover, the small Al/Ti atom’s ratio
promotes the growth of a non-protective rutile-TiO, scale
(as illustrated in Fig. 8b), which in turn affects the alloy’s
oxidation resistance [254].

Surface roughness also has a significant impact on oxida-
tion resistance. A rough surface increases stress concentra-
tion points, making the Al,O; protective layer more suscep-
tible to thermal stress during the initial stages of oxidation,
resulting in uneven distribution of stress and the phenom-
enon of rumpling. Wrinkles can exacerbate the accumulation
of compressive stress, causing unstable deformation of the
oxide layer in these high stress areas, gradually forming a
bubble structure. The irregular morphology of the rough
surface makes these bubble structures more likely to form.
When bubbles burst under external stress or mechanical dis-
turbance, the exposed matrix in the rough area becomes a
pathway for oxygen, accelerating the infiltration of oxygen
and leading to the formation of a porous mixed oxide layer
(as shown in Fig. 8c) [257].

6.6 Corrosion Resistance

The A element can form a stable oxide or nitride protec-
tive layer in the corrosive environment, such as aluminum
forming an alumina layer and silicon forming a silica layer,
which effectively isolates the corrosive medium. In addi-
tion, MAXs have a high melting point and excellent thermal
stability allowing them to maintain their structural integ-
rity at high temperatures and are not susceptible to thermal
decomposition or phase transformation. However, corrosion
remains a key factor limiting their long-term use and reli-
ability. In acidic and alkaline environments, MAXs show
ceramic material properties with good corrosion resist-
ance, which is mainly related to the elemental composi-
tion, whether the M/A element reacts chemically with acid
and alkali, and in addition, whether the surface passivation
layer can be formed quickly or not, which also determines
the corrosion resistance of MAXs in acidic and alkaline
environments. It was shown that Ti;SiC, is very stable in
NaOH, HCI, and H,SO, concentrated/dilute solutions with
negligible mass loss (<2 um yr~') over six months. The
corrosion rates in dilute HF and concentrated HNO; were
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5 and 13 mm/yr, respectively. However, in the dilute HNO;
solution, the corrosion rate was as high as 250-320 mm yr‘l,
which was mainly due to the dissolution of Ti elements into
the corrosive medium, leaving behind a Si-rich layer that
was oxidized to SiO, in HNO; [258]. Cyclic polarization
and chrono-current tests in HCI and H,SO, dilute solutions
showed that an irreversible electrically insulating layer was
generated on the surface of Ti;SiC,, and this protective
film may be responsible for its corrosion resistance. Due to
the complex Lewis acid reaction at high temperatures, dis-
solved A-site elements diffuse into the atomic layer toward
the inward molten salt and fluoride salt, resulting in poor
corrosion resistance of MAXs in molten salt and fluoride
salt environments [259].

7 Functional Applications

MAXs, due to their unique layered structure, combine the
advantages of metals and ceramics and have excellent high-
temperature resistance, oxidation resistance, thermal shock
resistance, mechanical strength, and electrical conductivity,
providing support for technological progress and innovation
in fields such as aerospace, automotive, electronics, energy,
and chemical engineering, as shown in Fig. 9.
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7.1 Powders of MAXSs

Powder materials exhibit significant advantages in processing
flexibility, material performance improvement, rapid reactivity,
lightweight and high strength, and microstructure controllabil-
ity. In addition, the physical and chemical properties of powder
MAXSs can be regulated and controlled by adjusting the parti-
cle size and morphology, thereby improving their functional
performance. Therefore, powder MAXSs are widely utilized in
fields such as electromagnetic shielding and absorption, energy
storage and conversion, composite material construction, cata-
lytic reaction regulation, and 3D printing materials.

7.1.1 Electromagnetic Interference

Electromagnetic pollution generated by mobile phones,
antennas, and security devices also harms human health.
Therefore, there is an urgent need to develop high-per-
formance shielding and absorbing materials for electro-
magnetic protection or electromagnetic compatibility
management of electronic components in both military
and civilian electromagnetic interference management.
MAXSs exhibit unique advantages in electromagnetic
interference shielding and absorption due to their layered
structure, band structure, electronic properties, controlled
planar structure, and a wide range of element composition
choices.

The EMI performance of MAX powders exhibits signifi-
cant microstructure dependence [260]. When the particle
size of MAX powders decreases, the number of particles
per unit volume increases, and the average distance O
between particles decreases, which helps to form a more
effective conductive network and promote absorption per-
formance [14]. In addition, as the amount of MAX pow-
ders increases, the free electron density and electron trans-
fer efficiency increase, resulting in enhanced dielectric
loss, reduced reflection loss, and thus improved absorp-
tion performance. Future research focuses on how to real-
ize the geometric configuration design via the structure
orientation control technology and composite material
construction methods. To understand the electromagnetic
interference shielding mechanism of MAX enables the
enhancement of EMI performance. In addition, the hol-
low rod-shaped MAX phase exhibits excellent microwave
absorption performance due to its unique microstructure,
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which facilitates impedance matching and dielectric loss
[261].

7.1.2 Electrochemical Energy Storage

Based on the fully adjustable physicochemical properties
induced by the multi-element composition and layered struc-
ture of MAX powder, it exhibits potential as a functional
material for electrochemical energy storage electrodes.
Due to its layered structure, the large theoretical capacity
of A-site atoms, and good conductivity, it was once highly
anticipated as an anode material [262]. Still, its performance
did not meet expectations. Recent studies have revealed that
the layered structure advantage of micron-sized (or larger)
MAX particles, coupled with the inability of A-site elements
with high specific capacity to function, significantly reduces
electrochemical performance. According to theoretical cal-
culations and experimental results, reducing particle size can
effectively harness the advantages of the MAX and enhance
its energy storage performance [263, 264]. Compared to tra-
ditional electrochemical electrode materials, MAX particles
exhibit a higher density and stable lattice valence bond rela-
tionships, which makes it challenging for electrolyte ions to
migrate and transform the valence bonds of MAXs under
potential fields. Additionally, MAX particles are predomi-
nantly prepared using a top-down method, making it difficult
to obtain nanoscale ultrafine particles. This results in the
inability of active elements inside the particles to contribute
to reaction charges. Therefore, the development of nanoscale
MAX powder particle preparation technology is crucial [16,
17].

7.1.3 Catalysis

MAX powder materials can provide a larger specific surface
area, allowing more constituent metals M to participate in
catalytic reactions and promote reaction rates. In addition,
the ceramic properties exhibited by MAXs enable them to
maintain catalytic activity even in high-temperature and cor-
rosive environments. The rich elemental composition and
structure of MAX also provide a foundation for the regu-
lation of catalytic function. The Cr,AIC MAX phase as a
catalyst has significant advantages in catalyzing wet per-
oxide oxidation (CWPO), including significantly reducing
the generation of carbon monoxide (CO), excellent chemical
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stability, and reusability [265]. Its unique surface structure
and lower metal leaching further enhance the environmental
friendliness of the catalyst. MAX catalysts can also improve
hydrogen storage performance; adding 7 wt% Ti;AlIC, to
MgH, can lower the dehydrogenation starting temperature
to 205 °C [266]. Meanwhile, the apparent activation energy
(104.7 kJ mol™') of MgH, sample with 7 wt% Ti,AlC,
addition was significantly lower than that of the original
MgH, sample (50.4 kJ mol™"). The high catalytic activity
of Ti;AlC, is attributed to the ability of H atoms to bind to
the interstitial positions of the Ti—Al layer.

7.1.4 Composite Material Reinforcing Agents

Based on the synergy of properties and functions, MAX
powders are utilized as additives in composite materials to
enhance various mechanical properties, including strength,
high-temperature resistance, and corrosion resistance.
Metal-based composites incorporating MAX powder exhibit
not only high strength, modulus, and hardness but also dem-
onstrate excellent machinability, friction, and wear resist-
ance, as well as significant damping capacity. There exists a
certain contradiction between the mechanical properties and
damping capacity of composite materials [267, 268]. Spe-
cifically, while the addition of hard and brittle dispersed par-
ticles (such as SiC) can enhance the mechanical properties
of composites, it can also pin dislocation movement, thereby
affecting damping performance. Therefore, it is proposed
that by replacing traditional hard and brittle reinforcements
with MAX powders possessing plastic deformation and high
toughness, the pinning effect on dislocation movement can
be minimized, thus achieving a synergistic enhancement of
both strength and damping capacity [269].

7.1.5 Precursor of MXene

The geometric structure (particle size, morphology) of MAX
powder materials directly affects the preparation method of
MXene and the morphology of the obtained MXene materi-
als. In addition, the M-A/M-X bond energy of MAXs also
determines the difficulty of MXene etching. The smaller
grain size of the MAX usually has a larger specific surface
area, which helps accelerate the acid etching reaction and
accelerate the synthesis process of MXene. The obtained
MXene has richer active sites and a larger specific surface
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area, which can enable MXene to exhibit higher reaction
activity and efficiency in catalysis, sensing, and energy stor-
age [270]. Large-sized MAX grains typically contribute to
the formation of a uniform MXene layer structure while
maintaining more consistent surface properties and higher
electrochemical conductivity [271, 272]. In addition, larger-
sized MXene can provide higher mechanical strength [273].
Therefore, regulating the grain/particle size of MAX is key
to optimizing the preparation and functionality of MXene.
Exploring new MAXs, guiding the control of the geometric
structure and valence bond relationships of MAX powder
materials, and developing environmentally friendly MXene
synthesis methods are the foundation for promoting the com-
mercial application of MXene materials.

Although MAX powder materials have demonstrated
potential applications in various fields owing to their unique
physical and chemical properties, reducing preparation costs,
controlling uniformity, and improving surface stability are
serious challenges for large-scale applications. Therefore,
developing MAX powder materials with unique geometric
shapes, adjusting the surface and interface properties of
MAX powder, optimizing the interface bonding strength
with the matrix material, and comprehensively improving
the functional performance of MAX powder materials are
crucial for the application of MAX in specific environments.

7.2 Bulk of MAXs

Bulk materials exhibit a denser overall morphology, typi-
cally possessing higher mechanical strength, hardness, and
toughness, capable of withstanding greater external impact
or compression. Usually, traditional mechanical process-
ing such as cutting, drilling, and forging, can be used to
shape and structure them, making it easier to manufacture
complex structural components. Due to the continuity of
its internal structure, it can form a complete electronic con-
duction path, usually with good thermal and electrical con-
ductivity, excellent thermal stability, oxidation resistance,
and electrical conductivity. In a radiation environment, bulk
materials can more effectively resist high-energy radiation
(such as neutrons, electrons, ions, X-rays, and gamma rays)
due to their dense structure and layered crystal arrange-
ment. These advantages make bulk MAXs widely used in
important fields such as mechanical structural components,
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building materials, electronic components, etc. that require
high mechanical strength and stability.

7.2.1 High-Temperature Structural Materials

MAX bulk materials exhibit excellent high-temperature
stability, oxidation resistance, corrosion resistance, and
self-healing properties under high and rapid tempera-
ture changes, which are used in the aerospace industry
for gas turbine blades, aircraft engine components, and
spacecraft insulation layers. MAX can increase the maxi-
mum operating temperature by 200 °C [274]. Moreover,
MAX shows a good CTE match with standard TBC and
thermal growth oxide (TGO) material at high tempera-
tures, which reduces its thermal stress, thereby extend-
ing the service life [10, 220]. In the nuclear industry,
MAXSs are utilized in fourth-generation nuclear reactor
components and nuclear fuel cladding materials, owing
to their radiation resistance, creep resistance, and self-
healing capabilities [275, 276]. The high thermal con-
ductivity and high-temperature resistance of MAX are
harnessed in heat exchangers for gas turbine components
and solar thermal power generation systems [277]. Fur-
thermore, MAX material serves as a corrosion-resistant
reactor liner, high-temperature corrosion-resistant pipe-
line material, high-temperature furnace lining, and molten
metal processing equipment, due to its corrosion resist-
ance, oxidation resistance, and wear resistance at extreme
temperatures [13, 278, 279]. The MAX bulk material
exhibits high conductivity and a low thermal expansion
coefficient, rendering it ideal for high-temperature elec-
trode materials and electromagnetic shielding materials
[13, 264, 280]. Leveraging its high-temperature creep
resistance, MAX bulk material is also suitable for wear-
resistant components of engines and thermal management
systems of electric vehicles [281]. As manufacturing tech-
nology evolves, MAX bulk materials are poised to play
an increasingly significant role in these fields that require
high temperature, corrosion, and high strength.

7.2.2 Electrical Contact Materials

The primary function of electrical contacts is to establish
reliable contact points within the circuit, ensuring efficient
current conduction while enduring extreme conditions such
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as wear, corrosion, and arcing during operation. MAXs are
renowned for their exceptional conductivity, wear resistance,
corrosion resistance, and high-temperature stability. These
attributes render MAXs highly effective in high-current and
high-frequency applications, particularly during frequent
switching and contact separation processes. They effectively
minimize arc and contact point wear, thereby prolonging
equipment lifespan. Furthermore, the antioxidant properties
of MAXs ensure stable electrical contact performance in
harsh environments, such as humidity and corrosive gases
[12, 282]. Notably, silver-based electrical contact compos-
ite materials containing 10% Ti;AlC, (by volume) exhibit
performance comparable to commercial AgCdO compos-
ite materials [11, 283-285]. Additionally, incorporating
Ti;AlC, MAX significantly enhances the welding resistance
and simplifies the processing of electrical contact materials.
The pursuit of non-toxic, high-performance electrical con-
tact materials has emerged as a focal point in this field [286].

7.2.3 Connecting Materials

Connecting materials are used to bond two or more compo-
nents together. MAX bulk materials can provide stronger
mechanical properties and thermal stability when connecting
complex ceramic, composite materials, and metal compo-
nents, especially exhibiting significant advantages in high
temperatures and harsh environments. By solid-state diffu-
sion, Ti;SiC, MAX bulk can bond to Ti;AlC, directly [287].
During the bonding process of Ti;SiC, and Ti;AlC,, it was
found that Si and Al undergo mutual diffusion, forming a
Ti,(Si,_,Al)C, solid solution in a pulse current sintering
furnace using the rapid current heating method, without the
need for any filler compounds or welding agents [288]. It
provides a new possibility to seal nuclear fuel cladding tubes
onto MAXs.

Despite their excellent mechanical properties, the bulk
MAX still exhibits brittleness under certain conditions, par-
ticularly in stress concentration points or high-impact envi-
ronments. While the bulk MAX demonstrates good thermal
stability at high temperatures, it still faces oxidation issues
in extremely high-temperature environments. Long-term
exposure to such environments may lead to performance
degradation; therefore, there is an urgent need to improve
their antioxidant properties. Additionally, the insufficient
interfacial bonding strength between the bulk MAX and
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other materials during the preparation of composite materi-
als could potentially diminish the mechanical properties of
the composites. Furthermore, the bulk MAX encounters dif-
ficulties in cutting and forming during processing, especially
when manufacturing complex-shaped components, resulting
in relatively high production costs and potentially limiting
their promotion in certain low-cost applications. To address
these issues, future research could concentrate on enhanc-
ing the antioxidant properties of the materials, strengthening
interfacial bonding, and developing more efficient process-
ing technologies, thereby expanding the application areas
of the bulk MAX.

7.3 Film of MAXs

MAX films combine the small particle characteristics of
powders and the continuity characteristics of bulks in two
dimensions. The self-lubricating, mechanical properties,
conductivity, and thermal conductivity make MAX thin
films represent the application potential in electronics and
electrical engineering. Moreover, MAX thin films exhibit
extremely high thermal stability and oxidation resistance
under high-temperature conditions, making them highly
durable in corrosive and radiation environments. The depo-
sition of MAX on various substrate materials through physi-
cal vapor deposition (PVD) and chemical vapor deposition
(CVD) has promoted the development of a new generation
of high-performance materials.

7.3.1 Friction-Reducing Lubrication Coating

Although pure metal coatings are widely used in various
industries, their weak atomic bonding forces render them
susceptible to wear and corrosion in frictional and chemi-
cal environments. Moreover, they tend to oxidize in high
temperatures and corrosive media, thereby diminishing their
performance. In contrast, MAX thin film materials exhibit
exceptional wear resistance and corrosion resistance, owing
to their unique layered structure and strong covalent bond-
ing. The M-A-X bonding endows the material with high
hardness and friction resistance, while its chemical stabil-
ity maintains its structural integrity in acidic and alkaline
environments. MAXs retain excellent oxidation resistance
even at high temperatures. Therefore, when combined with
metals, they significantly enhance the wear and corrosion
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resistance of coatings, offering more reliable protection and
extending the service life of coatings under harsh conditions.
Jamshidi et al. [289] explored the tribological and corrosion
behavior of Al/Ti;SiC, composite coatings and discovered
that AI-MAX composite coatings exhibit higher corrosion
potential and lower corrosion current density compared to
pure aluminum coatings. Additionally, the dense oxide film
formed by the MAX not only enhances the surface friction
reduction performance of the coating but also prevents exter-
nal material erosion in certain high-temperature extreme
environments, significantly broadening the application range
and service environment of this type of composite coating.

MAX films are superior to traditional graphite in terms
of self-lubricating performance, thermal conductivity, and
high-temperature oxidation resistance, making them signifi-
cantly advantageous as friction lubrication components in
extreme environments such as strong acids, strong bases,
and high temperatures [290, 291]. Shi et al. [292] studied
the tribological behavior of NiAI-Ti;SiC,-MoS, composite
materials and found that MoS, + Ti;SiC,/NiAl-based com-
posite lubricating materials achieved good synergistic lubri-
cation in a wide temperature range from room temperature to
800 °C. The friction coefficient at 400 °C was only 0.13, and
the lubrication effect was supported by a friction film com-
posed of oxide film. MoS, had the main lubrication effect
at medium and low temperatures, while the MAX provided
a lubrication effect at high temperatures. This type of com-
posite material is expected to perform well in continuous
heating environments and is a promising wear-resistant and
high-temperature application material. The research results
of Zhou et al. [293] show that an increased MAX content
can improve the anti-friction performance of composite
coatings. In addition, due to the introduction of MAX, the
Al,O; oxide film generated on the surface of the coating at
high temperatures not only improves the surface anti-friction
performance but also enhances the high-temperature oxida-
tion resistance of the coating.

7.3.2 High-Temperature Protective Coating

High-temperature protective coatings play a crucial role
in various fields, including aerospace, energy, chemical,
automotive, and electronics. Compared to traditional coat-
ings, MAXs demonstrate exceptional thermal stability and
oxidation resistance at elevated temperatures. Additionally,
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their superior thermal conductivity and self-lubricating
properties enable them to effectively reduce friction under
extreme operating conditions, thereby significantly enhanc-
ing the durability and reliability of the coatings [294, 295].
The composite oxides formed by the oxidation of metal ele-
ments in the coating at high temperatures, such as TiO, and
Al, 03, can effectively enhance the bonding strength between
the coating and the substrate. Especially after the formation
of multi-layer structures, the interface bonding between the
coating and the substrate becomes even more compact [2].
MAX coating films serve as a protective coating for refrac-
tory alloys and a bonding coating in thermal barrier coat-
ings (TBC) systems. The coefficient of thermal expansion
is crucial for reducing stress and avoiding coating peeling.
Specifically, the CTE of Cr,AIC (12.0-13.3x 107° K1)
is relatively high, making it suitable for protective layers
in metal systems. The thermal expansion coefficients of
Ti,AlC and Ti;AlC, are relatively low, ranging from 8.2 to
9.0x 107° K=, and they exhibit better thermal expansion
matching with TBC compounds, making them more suit-
able for use as bonding layers in thermal barrier coatings
[274, 296, 297].

7.3.3 Nuclear Protective Coating

MAX, with excellent radiation resistance, oxidation resist-
ance, corrosion resistance, strong mechanical properties, and
chemical stability, is regarded as potential accident-tolerant
fuel (ATF) cladding candidate materials for third-generation
light water reactors (LWRs) and future fourth-generation
fission devices [275, 298, 299]. The neutron irradiation
activity of MAX, including Ti;SiC,, Ti;AlC,, and Ti,AlC,
is comparable to that of SiC materials and is three orders of
magnitude lower than that of Alloy 617 nickel-based alloys
[300, 301].

V,AIC coating exhibits a unique gradient structure along
its growth direction. In the region close to the substrate sur-
face, the grains are smaller with more interfaces, whereas
in the region farther from the substrate surface, the grains
gradually grow larger. This gradient distribution effectively
suppresses the excessive aggregation and growth of helium
bubbles, thereby enhancing the protective performance of
the coating [302]. Ti3AlC, and Ti;SiC, demonstrate remark-
able radiation tolerance upon exposure to high-energy ions
like Xe and Kr. Despite being irradiated at high doses, such
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as 25-30 dpa (displacement per atom), they retain their crys-
tal structure and exhibit rapid self-healing capabilities [303].
Ti;AlC, demonstrates a stronger resilience against radiation
damage, exhibiting excellent radiation resistance at both low
(50 K) and room temperature (300 K) conditions. Although
Ti;SiC, also exhibits high radiation resistance, it tends to
undergo amorphization at higher doses. This amorphization
primarily stems from the weaker bonding of Si—C bonds,
whereas the Ti—Al and Ti—C bonds in Ti;AlC, are more
stable, enabling them to withstand radiation damage and
recover swiftly. Additionally, both Ti;AlC, and Ti;SiC, con-
sist of elements with low atomic number (Z), ensuring they
do not significantly activate radioactivity under prolonged
radiation, which is crucial in nuclear protective materials.

7.3.4 Metal Plate Protective Coating

Metal plates are extensively utilized in various fields, such as
electrochemistry, corrosion protection, aerospace, and more,
owing to their optimized current distribution, enhanced reac-
tion efficiency, and superior corrosion resistance. Introduc-
ing coatings can enhance their durability, corrosion resist-
ance, and stability in high-temperature and high-pressure
environments, thereby ensuring reliable performance under
various extreme conditions. It is crucial to screen coating
materials with exceptional corrosion resistance, strength,
and stability suitable for extreme environments. Compared
to commonly used coating materials such as metals, poly-
mers, and ceramics, MAX films exhibit excellent corrosion
resistance, good conductivity thermal conductivity, and
flexible machinability. The MAX film coatings on the sur-
face of metal bipolar plates can significantly improve their
corrosion resistance and conductivity, presenting consider-
able application prospects in commercial fuel cells [304].
The MAX film coating exhibits extremely low interfacial
contact resistance (ICR) and demonstrates excellent cor-
rosion resistance and durability [305]. In the future, it is
necessary to further improve the chemical bonding force
and mechanical anchoring effect between the coating and
the substrate, such as nitriding or the introduction of transi-
tion layers and gradient composite layers. By controlling
the changes in composition and structure, gradual transition
can be achieved, reducing stress concentration between the
coating and the substrate, thereby enhancing the bonding
force between the interface, breaking through the interface
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bonding between MAX coating and substrate materials, con-
structing integrated electrode materials, and optimizing their
functionality.

7.3.5 Electrical Contact Coating

Contact materials play a pivotal role in electrical contact
materials, directly influencing the operational reliability
and service life of equipment. Although pure copper has
excellent conductivity and thermal conductivity, its weld-
ing resistance is limited. During the surface melting process
triggered by arc discharge and Joule heating, the contacts
tend to bond, making separation challenging, which in turn
compromises the equipment’s disconnection capability. Cur-
rently, copper alloys, copper-based composite materials, and
copper—ceramic composite materials are widely used as new
electrical contact materials, particularly in applications such
as pantograph slides, high-voltage switch contacts, and
conductive slip rings. MAX films possess strong oxidation
resistance, allowing them to maintain performance in high-
temperature oxidation environments. These characteristics
enable MAXs to provide long-term reliable performance
under harsh working conditions. Furthermore, the layered
structure endows them with exceptional mechanical strength
and toughness, enhancing their durability underwear and
impact conditions, particularly suitable for electrical contact
applications involving repeated insertion and high-frequency
operations. For instance, Ti,AIN [306], Ti;SiC, [307], and
a series of MAX [308] are sputtered on n-type GaN, SiC, or
Cu substrates and demonstrate a low ohmic contact resistiv-
ity. The deposited MAX film coating serves as an oxygen
barrier, preventing potential oxidation, contamination, or the
need for any cleaning steps, thereby enhancing the long-term
stability of the device. MAX film coating exhibits a higher
thermal capacity and a lower thermal conductivity. Under
the influence of an arc, the pure metal coating undergoes
significant melting and recrystallization, whereas the com-
posite MAX film coating remains largely unaffected, indi-
cating that MAX film coatings have the potential to serve as
protective materials for electrical contact surfaces.

In order to better apply MAX film to practice,
the advanced synthesis and characterization technology
should be applied to achieve the accurate control of the com-
position, geometric structure, density, uniformity and inter-
face strength of MAX film, so as to improve its functional
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performance in new energy, sensors, optoelectronic devices,
self-healing, and strain response functions.

MAXs have demonstrated significant application potential
in multiple fields due to their unique physical and chemical
properties. Their conductivity and high surface area make
them excellent in lithium-ion batteries and supercapacitors.
Their high melting point, excellent mechanical properties,
and oxidation resistance make them suitable for high-tem-
perature structural materials, such as aerospace and turbine
components. Corrosion resistance and self-healing proper-
ties apply to protective coatings and wear-resistant materials.
Thoroughly studying the microstructure and performance
characteristics of MAXs is key to understanding their struc-
ture—activity relationship and driving behavior. Specifically,
through in-depth analysis of the crystal structure, defect dis-
tribution, interface behavior, and stress—strain relationship of
MAXs, the mechanism of performance changes in different
environments can be revealed. This not only helps optimize
the design of materials, but also guides their performance
prediction and reliability evaluation in practical applications.
Optimizing the preparation process to achieve mass produc-
tion and cost control is the key to large-scale applications.
By improving synthesis parameters and increasing yield,
costs can be reduced and economics can be improved. In
the future, MAXs are expected to be widely applied in the
fields of energy, aerospace, and environmental protection,
promoting the development of related industries. Despite
facing challenges, continuous research and technological
advancements will enable MAXs to achieve widespread
applications soon.

8 Conclusions and Perspectives

This review comprehensively explores the development
trajectory, elemental composition, crystalline structure,
preparation techniques, formation mechanisms and com-
putational simulation advancements, physical and chemi-
cal properties, and applications of MAX series materials.
It provides a thorough and accessible guide for researchers
in the MAX domain to comprehend the latest developments
in preparation technologies, structural decipherment, and
functional innovation within MAX series materials. MAX
series materials still face unresolved challenges that hinder
their widespread applications:

https://doi.org/10.1007/s40820-025-01673-9
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(1) How to construct a machine learning system to support
MAX innovation research?

Gathering data on the chemical compositions, struc-
tures, and both physical and chemical properties of
known MAX series materials and merging this with
current experimental practices, computational mod-
eling, machine learning, and deep learning can aid sci-
entists and engineers in predicting structure stability
and performance under extreme environments. This
may minimize the experimental scope, and acceler-
ate the development of MAX series materials through
computational insights and empirical validations. By
integrating expertise from materials science, computer
science, chemistry, and physics, data sample collec-
tion is quickly enriched, and the machine learning sys-
tems are updated and refactored. The vision is to create
an Al-driven autonomous system for MAX creation,
incorporating robotics for synthesis and characteriza-
tion, and Al for interpreting results and suggesting new
experiments, thus achieving a fully automated innova-
tion cycle for MAX series materials.

(2) How to address scientific and rational control synthesis
of MAX series materials?

To answer this issue, the exploration of the reac-
tion mechanism is the foundation; in situ characteriza-
tion may be a key to addressing how to control purity,
density, geometrical morphology, and microstructure.
In our opinion, the precision preparation should be
transformed from solid-phase sintering into molten
salt-assisted and vapor deposition. However, to our
knowledge, most production enterprises of MAX
series materials are using a solid-phase sintering strat-
egy, which makes it difficult to control nucleation and
growth processes based on interfacial atomic diffusion
by solid interfaces. High temperature and high pressure
can accelerate diffusion dynamics; however, it leads
an unavoidable energy consumption. The preparation
strategies of pressureless, low-temperature sinter-
ing based on solid-phase reactions, and cost-effective
molten salt processes should be pushed into mass pro-
duction as soon as possible. Moreover, the vapor depo-
sition technology should be promoted for use in high-
end manufacturing, aviation, and military industries,
which are not subject to cost control. The synthesis of
MAX series materials via aqueous solution reaction is
expected.
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(3) How to establish an industrial ecosystem for MAX
series materials, leading to their practical application?
Creating an industrial ecosystem for MAX series
materials hinges on recognizing and integrating their
unique attributes into existing industrial workflows,
overcoming challenges in synthesis, property exploita-
tion, and identifying new application domains. In aero-
space, MAX series materials can endure extreme tem-
peratures, which are the ideal components in engines
and spacecraft. Their resistance to wear and corro-
sion also suits for protective coatings in space launch
vehicles and marine engineering. How to discover the
unique characteristics of MAX series materials, the
indispensable properties in specific application sce-
narios can form competitiveness in a variety of func-
tional materials. It is an important option to develop
the functional applications of MAX series materials
in aerospace and deep-sea exploration. In addition, the
balance of function and cost is also a key parameter that
limits practical applications.

As a multi-element material system, how to design
the atomic architecture and micro-geometry of MAX
series materials is the basis for regulating its proper-
ties and functions. The development of new preparation
technology is the premise of realizing its large-scale
application. Navigating the innovation investigations
by cross-disciplinary may unlock a new era of MAX
series materials.
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