

UNIVERSITI PUTRA MALAYSIA

EXTRACTION OF γ-ORYZANOL AND TOCOPHEROLS FROM RICE (*Oryza sativa*) BRAN

> ROSNIZAM ISMAIL FSTM 2008 19

EXTRACTION OF γ-ORYZANOL AND TOCOPHEROLS FROM RICE (*Oryza sativa*) BRAN

By

ROSNIZAM ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master of Science

July 2008

Especially dedicated to.....

Emak....in memory, may Allah bless her wherever she is, abah, family, friends and whoever has blown up my spirit..

...thank you for the guidance, encouragement, and love given throughout my life.....

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

EXTRACTION OF γ-ORYZANOL AND TOCOPHEROLS FROM RICE (Oryza sativa) BRAN

By

ROSNIZAM ISMAIL

July 2008

Chairman : Associate Professor Azizah Abdul Hamid, PhD

Faculty : Food Science and Technology

The objective of this study was to extract γ -oryzanol and tocopherols from rice bran. Different extraction times and sequential extractions utilizing different solvents on γ oryzanol and tocopherols levels from crude rice bran oil (CRBO) were studied. Rice bran was extracted using hexane with five different extraction times, while sequential extractions carried hexane/dichloromethane. was out utilizing hexane, dichloromethane and dichloromethane/methanol. Extraction of y-oryzanol and tocopherols was further studied using precipitation and liquid-liquid separation from unsaponified fraction of CRBO. Precipitation was carried out by diluting the sample in hexane overnight at -20°C. Liquid-liquid separations were carried out using hexanemethanol or hexane-acetonitrile. Solid and liquid portions formed from precipitation were further separated by liquid-liquid separations. The final stage of the extraction process was a combination of precipitation and single-stage chromatographic

separation. Results showed that percentage of extracted oil was not significantly different with the different extraction times used. However, 20 min extraction resulted in the highest γ -oryzanol level (p<0.05). On the other hand, 30 min extraction gave the highest tocopherols level (p<0.05). Sequential extractions resulted in higher γ oryzanol and tocopherols levels than that of hexane extraction alone (p<0.05). After saponification of CRBO extraction (with hexane, hexane/dichoromethane and dichloromethane), the unsaponified fraction was found to contain 1.4% y-oryzanol and 0.02% tocopherols. In liquid-liquid separations on unsaponified fraction of CRBO study, the process was able to concentrate 2.1% γ -oryzanol in methanol and 1.8% in acetonitrile, respectively. On the other hand, 0.03% tocopherols was concentrated in methanol and 0.04% in acetonitrile, respectively. In precipitation study, 4.04% yoryzanol was concentrated in solid portion. In column chromatography study, combining precipitation and single stage silica chromatography was able to concentrate 10.99% γ -oryzanol and 0.02% tocopherols. This work proposed an alternative method for γ -oryzanol and tocopherols extraction from rice bran.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PENGEKSTRAKAN γ-ORYZANOL DAN TOKOFEROLS DARIPADA DEDAK BERAS (Oryza sativa)

Oleh

ROSNIZAM ISMAIL

Julai 2008

Pengerusi : Profesor Madya Azizah Abdul Hamid, PhD

Fakulti : Sains dan Teknologi Makanan

Kajian ini dijalankan dengan objektif untuk mengekstrak γ -orizanol dan tokoferol daripada dedak beras. Perbandingan dalam masa pengekstrakan dan pengekstrakan secara sekuel menggunakan pelarut yang berbeza telah dikaji ke atas jumlah γ -orizanol dan tokoferol daripada minyak dedak beras. Dedak beras yang telah distabilkan diekstrak dengan heksana dengan lima masa pengekstrakan yang berbeza. Manakala pengekstrakan dijalankan dengan menggunakan sekuel heksana, heksana/diklorometana, diklorometana dan diklorometana/metanol. Kajian prakonsentrasi bagi γ -orizanol dan tokoferol selanjutnya telah dikaji dengan kaedah pemendakan dan kaedah pemisahan fasa cecair-cecair daripada bahagian tidaktersaponifikasi (sebagai sampel) minyak dedak beras. Kaedah pemendakan telah dijalankan dengan mencampurkan sampel dalam heksana dan dibiarkan semalaman pada suhu -20°C. Manakala kaedah pemisahan fasa cecair-cecair dijalankan dengan mencampurkan sampel dalam heksana-metanol atau heksana-asetonitril. Bahagian

pepejal dan cecair yang terbentuk daripada kaedah pemendakan telah selanjutnya dikaji dengan kaedah pemisahan fasa cecair-cecair. Bahagian terakhir kajian pengekstrakan bahan ini dijalankan dengan gabungan kaedah pemendakan dan kaedah pemisahan kromatografi turus. Keputusan telah menunjukkan peratusan minyak dedak beras yang terekstrak tidak berbeza secara signifikan dengan masa pengekstrakan yang berbeza. Walau bagaimanapun, pengekstrakan selama 20 minit telah memberi jumlah γ -orizanol yang tertinggi daripada masa pengekstrakan yang lain (p<0.05). Bagi tokoferol, pengekstrakan selama 30 minit memberi jumlah tertinggi bagi bahan tersebut (p<0.05). Pengekstrakan sekuel memberi jumlah lebih tinggi bagi kedua-dua γ -orizanol dan tokoferol daripada pengekstrakan dengan mengunakan heksana sahaja (p<0.05). Bahagian tidak-tersaponifikasi minyak dedak beras yang diekstrak dengan menggunakan tiga peringkat pengekstrakan sekuel mengandungi 1.4% γ -orizanol dan 0.02% tokoferol. Dalam kajian pra-konsentrasi γ -orizanol dan tokoferol, kaedah pemisahan fasa cecair-cecair ke atas bahagian tidak-tersaponifikasi minyak dedak beras telah mengkonsentrasikan γ -orizanol kepada 2.1% dalam metanol dan 1.8% dalam asetonitril (p<0.05). Tokoferol telah dikonsentrasikan kepada 0.03% dalam metanol dan 0.04% dalam asetonitril (p<0.05). Dalam kajian pemendakan, γ -orizanol telah dikonsentrasikan kepada 4.04% iaitu dalam fasa pepejal. Pemisahan fasa cecaircecair ke atas fasa pepejal (daripada pemendakan) menunjukkan γ-orizanol lebih tinggi berada dalam methanol, sebaliknya, tokoferol berada lebih banyak dalam asetonitril. Dalam kajian pemisahan kromatografi turus, gabungan kaedah pemendakan dan kromatografi turus silica mengkonsentrasikan γ -orizanol kepada

10.99% dan tokoferol kepada 0.02%. Kajian ini mencadangkan satu kaedah alternatif dalam pengekstrakan γ -orizanol dan tokoferol daripada dedak beras.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah s.w.t, The Almighty, for giving me strength, patience and ability to complete this project and thesis.

Firstly, I'd like to express my appreciation and thank you so much to Associate Professor Dr. Azizah Abdul Hamid of the Department of Food Science, Faculty of Food Science and Technology, UPM, as the Chairman of my Supervisory Committee for her guidance, patience, advice and encouragement and most important, give me the chance to gain knowledge and experience through the challenging research. Precious experiences gained from being her graduate student and her commitment to help the success of my study will always be remembered in my heart.

Beside, my deep sense of gratitude and respect goes to my co-supervisors, Associate Professor Badlishah Sham Baharin and Dr. Quek Siew Young (previously one of the supervisory committee, however, she was discontinued being a lecturer in UPM), for their sincere advice and support. I'd like to extend my appreciation to Associate Professor Dr. Nazamid Saari and Associate Professor Dr. Azizah Osman for their guidance, advice and encouraging interest in my study.

My sincere thank also to all dedicated friend of my fellow graduate students and also to all helpful staff of the Faculty of Food Science and Technology. Sincere gratitude is

dedicated to Malaysian Government for the financial support provide through IRPA fund and to Graduate School of UPM for providing me with Biasiswa Pasca Siswazah. Finally, my deepest gratitude and appreciation goes to my beloved father, for his continuous support and to all my brothers and sister, thank you so much for their love and support who have been inspiring my life.

I certify that an Examination Committee met on 1^{st} of July 2008 to conduct the final examination of Rosnizam Ismail on his Master of Science Thesis entitled "Extraction of γ -oryzanol and tocopherols from rice (*Oryza sativa*) bran" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azizah Osman, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Yaakob Che Man, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Aabdul Azis Ariffin, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Osman Hassan, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

Hasanah Ghazali, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 25 September 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azizah Abdul Hamid, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Badlishah Sham Baharin, MSc

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Aini Ideris, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 Oktober 2008

DECLARATION

I declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that is not been previously and is not concurrently submitted for any degree at UPM or at any other institution.

Rosnizam Ismail

Date:

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENT	viii
APPROVAL	X
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INT	RODUCTION	1	
2	LITI	LITERATURE REVIEW		
	2.1	Overview of Rice	5 5	
	2.2	Rice Bran	5 5	
		2.2.1 Stabilization of Rice Bran	7	
		2.2.2 Chemical Composition of Rice Bran	8	
		2.2.3 Rice Bran Lipid	10	
	2.3	γ-oryzanol	11	
		2.3.1 Chemical Structure of γ -oryzanol	12	
		2.3.2 Physiological Activity of γ -oryzanol	13	
	2.4	Tocopherols	16	
		2.4.1 Chemical Structure of Tocopherols	17	
		2.4.2 Physiological Activity of Tocopherols	19	
	2.5	γ -oryzanol and Tocopherols Extraction	22	
		2.5.1 Sequential Chemical Extractions	23	
		2.5.2 γ -oryzanol and Tocopherols Separation	25	
		2.5.3 Liquid-liquid Separation and Precipitation Separation	27	
		2.5.4 Adsorption Column Chromatography	29	
3	EXT	RACTION OF CRUDE RICE BRAN OIL	31	
	3.1	Introduction	31	
	3.2	Methodology	32	
		3.2.1 Reagents and Solutions	32	
		3.2.2 Standard Solutions	33	
		3.2.3 Rice Bran	33	

		3.2.4		34
		3.2.5	CRBO Yield, γ-oryzanol and Tocopherols Levels Effect of Sequential Extractions on CRBO yield, γ-oryzanol and Tocopherols Levels	34 34
		3.2.6	Determination of γ -oryzanol and Tocopherols	35
		3.2.7		
			High Performance Liquid Chromatography (HPLC)	38
		3.2.8		40
	3.3		s and Discussion	40
			Extraction of CRBO	40
		3.3.2	Effect of Extraction Times and Sequential Extraction	44
		3.3.3	on γ-oryzanol Effect of Extraction Times and Sequential Extraction	44
		5.5.5	on Tocopherols	47
	3.4	Conclu	1	53
4			NTRATION OF γ-ORYZANOL AND TOCOPHEROLS	
			APONIFIED FRACTION OF CRBO	54
	4.1	Introd		54
	4.2	4.2.1	dology Reagents and Solutions	55 55
		4.2.1	e	55
		4.2.3		56
		4.2.4	1 1	57
		4.2.5	Liquid-liquid Separation of Unsaponified Fraction of CRBO	57
		4.2.6	Precipitation of Unsaponified Fraction of CRBO	58
		4.2.7		50
		4.2.8	of Unsaponified Fraction of CRBO	58 58
		4.2.8	HPLC Determination of γ -oryzanol and Tocopherols Statistical Analysis	58 59
	4.3		s and Discussion	60
		4.3.1	γ -oryzanol and Tocopherols Content of	00
			Unsaponified Fraction of CRBO	60
		4.3.2	Liquid-liquid Separation of Unsaponified	
			Fraction of CRBO	61
		4.3.3	γ-oryzanol and Tocopherols obtained from	
			Precipitation of Unsaponified Fraction of CRBO	66
		4.3.4	Liquid-liquid Separation on Precipitation	
		C 1	Fractions of Unsaponified Fraction of CRBO	67 72
	4.4	Conclu	JSION	73
5	SEPA	RATIC	ON OF γ-ORYZANOL AND TOCOPHEROLS USING	
~			ON COLUMN CHROMATOGRAPHY	74

ADSORPTION COLUMN CHROMATOGRAPHY Introduction 74 5.1

	5.2	Metho	odology	75
		5.2.1	Reagents and Solutions	75
		5.2.2	Unsaponified Fraction of CRBO	75
		5.2.3	Fractionation of γ -oryzanol and Tocopherol	
			Using Silica Column Chromatography	76
		5.2.4	HPLC Determination of γ -oryzanol and Tocopherols	77
		5.2.5	Statistical Analysis	77
	5.3	Result	ts and Discussion	79
		5.3.1	Adsorption Chromatographic Separation of γ-oryzanol	79
		5.3.2	γ -oryzanol Levels in Eluted Fraction of	
			Chromatographic Separation	81
		5.3.3	Adsorption Chromatographic Separation of Tocopherols	85
		5.3.4	Tocopherols Levels in Eluted Fraction of	
			Chromatographic Separation	87
	5.4	Conclu	usion	92
6	SUM	MARY	AND RECOMMENDATIONS	93
BIBI	LIOGR	APHY		96
APP				109
BIODATA OF STUDENT 12			120	
LIST OF PUBLICATIONS		121		

LIST OF TABLES

Table]	Page
2.1	Composition of paddy kernel	7
2.2	Proximate chemical composition of rice bran (dry basis), percentage	9
2.3	Lipids profile in crude rice bran oil	11
2.4	Name and structural interrelationship of natural tocopherols	18
3.1	Extracted CRBO levels with different extraction times and sequential extraction	41
3.2	Effect of different extraction times and sequential extraction on γ -oryzanol levels from rice bran	45
3.3	Effect of different extraction times on tocopherols levels from rice bran	48
3.4	Effect of sequential extractions on tocopherols levels from rice bran	49
4.1	γ -oryzanol and tocopherols levels in unsaponified fraction of CRBO	60
4.2	γ -oryzanol and to copherols levels of unsaponified fraction of CRBO obtai from liquid-liquid separation at 4°C	ned 63
4.3	γ -oryzanol and tocopherols levels in unsaponified fraction of CRBO obtain from precipitation separation at -20°C	ned 67
4.4	γ -oryzanol and tocopherols levels obtained from liquid-liquid separation (at 4°C) on liquid fraction of unsaponified fraction of CRBO Precipitation	69
4.5	γ -oryzanol and tocopherols levels obtained from liquid-liquid separation (at 4°C) on solid fraction of unsaponified fraction of CRBO precipitation	72
5.1	Recovered samples weight obtained from eluted fraction of chromatographic separation of γ -oryzanol	81
5.2	γ-oryzanol levels obtained using silica column chromatography	82

5.3	Recovered samples weight obtained from eluted fraction of chromatographic separation of tocopherols	87
5.4	Tocopherols obtained using silica column chromatography	89

LIST OF FIGURES

Figure		
2.1	Diagram of Paddy Structure	6
2.2	Molecular Structure of Individual γ -oryzanol According to Xu <i>et al.</i> (199	99 14
2.3	Diagram of Tocopherols Molecular Structure	18
3.1	Flow Chart of Sequential Extractions of Rice Bran with Different Solvent Polarity	36
3.2	Flow Chart of Saponification of CRBO for Determination of γ -oryzanol and Tocopherols	37
3.3	Flow Chart of Sample Filtration Prior to HPLC Determination of γ -oryzanol and Tocopherols	38
3.4	Chromatogram of γ -oryzanol Standard detected using C ₁₈ Novapak column	47
3.5	Chromatogram of Tocopherols Standard detected using C ₁₈ Symmetry Column	51
4.1	Experimental Layout of γ-oryzanol and Tocopherols Separation of Unsaponified Fraction of CRBO by Precipitation and Liquid-liquid Separation	59
5.1	Experimental Layout of γ -oryzanol and Tocopherols Separation using Silica Column	78
5.2	γ -oryzanol Absorbance obtained from Silica Column Chromatography Elution of Three Different Types of Samples	80
5.3	Tocopherols Absorbance obtained from Silica Column Chromatography Elution of Three Different Types of Samples	86
5.4	γ -oryzanol and Tocopherols Extraction from Rice bran	91

LIST OF PLATES

Figur	e	Page
1.1	BERNAS factory that rice bran was taken at Kuala Selangor	109
1.2	Unstabilized rice bran from rice milling was packed and to be sent to animal feed company	109
1.3	Immediate rice bran stabilization process by using microwave in the factory	110
1.4	Stabilized rice bran	110
1.5	Crude rice bran oil and unsaponified fraction of crude rice bran oil	111

LIST OF ABBREVIATIONS

°C	Degree Celsius
GC/MS	Gas chromatography/ mass spectroscopy
HPLC	High pressure liquid chromatography
IU	International Unit
TE	Tocopherol Equivalent
ROS	Reactive oxygen species
CVD	Cardiovascular disease
LDL	Low-density lipoprotein
HDL	High-density lipoprotein
CRBO	Crude rice bran oil
NaOH	Sodium hydroxide
BHT	Butylated hydroxytoluene
mg	Milligram
g	Gram
kg	Kilogram
ppm	Part per million
ml	Milliliter
MHz	Mega Hertz
min	minutes
μm	Micrometer
mm	Millimeter

- nm Nanometer
- i.d. Internal diameter
- UV/Vis Ultraviolet/visible
- UV Ultraviolet
- SAS Statistical Analysis System
- MeOH Methanol
- MeCl₂ Dichloromethane
- rpm Revolution per minute
- mol. wt Molecular weight
- CaCl₂ Calcium chloride
- atm atmosphere
- P' empirical solvent polarity

CHAPTER 1

INTRODUCTION

Rice (*Oryza sativa*) bran has gained much interest in recent years because it serves as an excellent source of beneficial γ -oryzanol, tocopherols and tocotrienols (Da Silva *et al.*, 2006; Iqbal *et al.*, 2005; Jennings and Akoh, 2000; Dunford and King, 2000). It has been viewed as a potential functional food and commercial source for use as food additive, pharmaceutical and in cosmetic product (Parrado *et al.*, 2006; Lloyd *et al.*, 2000). As an under-utilized by-product from paddy-milling, rice bran is potentially an inexpensive raw material. The obstacle hindering the use of rice bran for human consumption is its instability and rapid spoilage.

Rice bran represents 10% of paddy (rough rice) weight fraction and reported to contain up to 17% protein, 23% lipid, 27% dietary fibre, vitamins (thiamine, riboflavin, niacin, tocopherols and tocotrienols), minerals (calcium, phosphorus and magnesium) and other bioactive compounds, in particular, γ -oryzanol (Parrado *et al.*, 2006; Da Silva *et al.*, 2006; Shin *et al.*, 1997, Salunkhe *et al.*, 1992; Saunders, 1990; Fedeli, 1983).

Up to 28%, crude rice bran oil (CRBO) can be extracted from bran, making rice bran oil the richest oil from cereal (Da Silva *et al.*, 2006). Several countries including Japan and India used the oil as speciality oil (Saunders, 1990; Prabhakar *et al.*, 1986; Bhattacharyya *et al.*, 1983). Furthermore, CRBO is one of the nature's richest sources

of potent antioxidant including tocopherols, tocotrienols and γ -oryzanol, which are unique compared to other plants oil (Da Silva *et al.*, 2006; Lloyd *et al.*, 2000; Jennings *et al.*, 2000; Das *et al.*, 1998). These compounds in CRBO are believed to be responsible for hypocholesterolemic effect and reduction of aortic fatty streak (Pszczola, 2001; Kahlon *et al.*, 1996; Rogers *et al.*, 1993).

 γ -oryzanol has been shown to be a potent antioxidant and inhibits cholesterol oxidation *in vitro* better than that of tocopherols and tocotrienols. 24-methylene cycloartanyl ferulate exhibited the highest cholesterol antioxidation compared to other γ -oryzanol members in rice bran oil (Xu *et al.*, 2001). It was reported that γ -oryzanol exhibited hypocholesterolemic action, decreased cholesterol absorption and plasma cholesterol level (Wilson *et al.*, 2007; Vissers *et al.*, 2000). In technological uses, the compound contributed to the rice bran oil stabilization at frying temperature and use as special cosmetic ingredient (Miller *et al.*, 2003).

Tocopherols is well known as an active free radical and reactive singlet oxygen scavenger that prevent peroxidation of lipid either *in vivo* or *in vitro* systems. Tocopherols has been repeatedly shown to have anticancer and anti-thrombosis properties; able to reduce cardiovascular disease (CVD) and offer protection against coronary heart disease by arresting free radical damages (Sylvester, 2002; Pszczola, 2001; Cicero and Gaddi, 2001; Eintenmiller and Landen, 1999). Both γ -oryzanol and tocopherols are liposoluble compounds that are extracted in CRBO.

2

Various methods were used to separate or isolate both γ-oryzanol and tocopherols either from rice bran or other samples. Extraction methods used commonly involved solvent extraction followed by various concentration techniques such as adsorption column chromatography, preparative HPLC, chemical separation (such as esterification and transesterification and aminoalkylation), hydrogenation, crystallization, molecular distillation, supercritical extraction and others. Some methods involved sophisticated and expensive equipment and have certain drawbacks (Abidi, 2001; Sumner Jr. *et al.*, 2001; Akihisa *et al.*, 2000; Qureshi *et al.*, 2000; Xu *et al.*, 1999; Cheruckuri *et al.*, 1999; Das *et al.*, 1998; Hunt, 1997; Fizet, 1996; Baldwin *et al.*, 1990; Takagi *et al.*, 1984).

Column chromatography was reported to be effective in separating desired compounds. Selective separation of the compounds of interest from rice bran may involve several complex and intensive unit operations. Beside, many procedures were time demanding procedures which enhance oxidation compounds and thermal degradation of the target compounds (Dunford *et al.*, 2003; Guiochon and Lin, 2003; Diack *et al.*, 1994; Dondi and Guiochon, 1992).

