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 A B S T R A C T

The general 𝑘-step fifth-order two-derivative linear multistep collocation method (TDLMM5) 
using collocation technique with Gegenbauer polynomial as basis function is derived for direct 
integrating second-order ordinary differential equation in the form 𝑢′′ (𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) with periodic 
solution. Fifth-order two-derivative linear multistep method with various collocation points 
and off-set points is developed using collocation and interpolation approach. Order, stability, 
consistency and convergence of TDLMM5 are analyzed and discussed. Then, trigonometrically-
fitting technique is adapted into TDLMM5 by setting 𝑢(𝑡) as the linear combination of the 
functions {sin(𝜆𝑡), cos(𝜆𝑡)}, 𝜆 ∈ R and turn the coefficients of TDLMM5 into frequency-dependent. 
Numerical experiment is conducted to verify the proposed method is superior compared to other 
existing methods in the literature with similar order. Additionally, the trigonometrically-fitted 
TDLMM5, denoted as TFTDLMM5, is applied to the well-known damped and driven oscillator 
problem, known as the Duffing problem. The outcome demonstrates that the proposed method 
is still successful in modeling this real-world application problem.

1. Introduction

High-order differential equations (ODEs) find extensive utility in forecasting and predicting the evolution of scientific phenomena 
and application issues, particularly within engineering and physics domains. Examples include their application to electric circuits, 
damped oscillation and vibration, the study of the Pleiades constellation, classical mechanics, and quantum mechanics [1–5]. The 
strategic importance of these equations lies in their ability to model systems with high accuracy and predict future states under 
varying conditions. Advanced numerical methods and computational techniques are often employed to solve these differential 
equations, especially when analytical solutions are not feasible. The development and refinement of such methods are crucial for 
enhancing the precision and reliability of predictions in these critical areas. [6–8]. Numerous studies have been undertaken to devise 
effective techniques for the integration of second-order ordinary differential equations, particularly those exhibiting specific patterns 
or properties.

In this article, our emphasis lies in the development of a trigonometrically-fitted two-derivative linear multistep method. This 
method is founded on frequency evaluation techniques and is designed for the solution of a specific class of second-order ordinary 
differential equations exhibiting periodic solutions as follows:

𝑢′′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)),
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𝑢(𝑡0) = 𝑢0, 𝑢′(𝑡0) = 𝑢′0, 𝑡 ≥ 𝑡0. (1.1)

where 𝑢′′(𝑡) represents the second derivative of 𝑢(𝑡) with respect to time (or some independent variable 𝑡).
In recent, high-order direct multistep methods with various basis functions and various kind of efficient techniques have been 

developed and analyzed to effectively solve high-order ODEs and application problems [9–12]. Awoyemi et al. [13] particularly 
proposed four-point hybrid linear multistep method using Taylor’s series approach. The construction of proposed method involves 
the interpolation of the power series approximate solution and the collocation of the differential system. The method demonstrates 
both consistency and zero stability. Numerical results reveal its superior accuracy in comparison to existing methods. Baccouch [14] 
proposed superconvergent discontinuous Galerkin (DG) method for integrating nonlinear second-order initial-value problems. It 
establishes optimal a priori error estimates in the 𝐿2−norm and proves that the method achieves a convergence order of 𝑝 and 
superconvergence at downwind points with piecewise polynomials of degree 𝑝. Ibrahim et al. [15] introduced two-point variable-
order block multistep methods (BMM) with order 3,4 and 5 for direct solving general class of second-order ODEs. They derived 
BMM through backward difference interpolation polynomial with two solutions are simultaneously generated at each step. Numerical 
experiments validated the efficiency of the proposed method by generating consistently low global errors. Rasedee et al. [16] further 
extended the previous research work by proposing variable-order multistep method with Newton-Gregory backward difference 
polynomial as basis function in predictor–corrector mode. The predictor–corrector algorithm is further enhanced by incorporating 
a variable order step-size algorithm to minimize computational costs. Stability and convergence of the proposed method are also 
established. Singla et al. [17] constructed a hybrid block method as an implicit numerical integrator with adaptive step-size for 
directly solving general second-order ODEs. Optimization of intermediate points is applied to develop this new efficient method and 
the numerical results indicate that the new scheme is a strong alternative to existing solvers with similar characteristics. Ayinde 
et al. [18] developed multistep method by employing interpolation within a finite range with the combination of exponential 
and trigonometric functions as basis function. Zero stability, absolute stability region and consistency of the proposed method are 
investigated. The proposed method has been tested numerically and proven to be more reliable when compared to existing linear 
multistep methods that require the reduction of higher-order equations to a system of first-order equations.

Numerous studies have focused on the advancement of collocation methods for solving differential equations [19–21]. Ahsan 
et al. [22] introduced a Haar wavelet-based collocation technique specifically designed to address inverse problems with unknown 
space-dependent heat sources. Their method, which combines finite-difference and Haar wavelet approximations, produces a well-
conditioned system of algebraic equations, resulting in a stable and convergent solution that closely aligns with the exact solution, 
as shown through various numerical examples. A year later, Ahsan et al. [23] enhanced the precision and order of convergence 
of the established Haar wavelet collocation method. The proposed method is applied to various nonlinear ordinary differential 
equations under diverse conditions, demonstrating improved stability, convergence and accuracy compared to existing collocation 
methods. Then, high-order collocation technique based on Haar wavelets are further derived by Ahsan et al. [24] and applied to 
solve fourth-order nonlinear differential equations with nonlocal integral boundary conditions. The quasi-linearization technique is 
used to linearize nonlinear fourth-order differential equations, which are then efficiently solved using Haar wavelets.

To further enhance the existing multistep method for increased accuracy and order, there are some schemes incorporate a two-
derivative term, which corresponds to the derivative of the 𝑓 -evaluation. Hojjati et al. [25] presented new class of second derivative 
multistep method with improved stabity region. The second derivative extended backward differentiation formula is employed in 
a predictor–corrector mode for the method. Yakubu et al. [26] developed two-step multistep method with second-derivative term 
in the integration of first-order stiff systems. The inclusion of second derivative terms in the methods grants greater flexibility 
in formulating a set of techniques that exhibit high stability, convergence and larger regions of absolute stability. Lee et al. [27] 
proposed block hybrid collocation multistep method with four collocation points for direct solving third-order ODEs. They enhanced 
the existing block method by incorporating the first derivative of a third-order function into the general formulas of the existing 
method, using the power series method as the basis function. Ramos and Rufai [28] utilized collocation and interpolation techniques 
in a modified Falkner-type method, incorporating third-order derivatives, to solve systems of second-order initial-value problems. 
Their approach has been shown to exhibit stability and convergence properties. Majidi et al. [29] derived second derivative linear 
multistep method using super-future point technique through backward differentiation formulae for solving first-order ODEs. They 
modified the existing scheme by having same Jacobian matrix for all stages which hugely reduce the computational cost in numerical 
approximation. Also, the stability and accuracy properties of proposed method are enhanced while simplifying the original structure 
and computational complexity.

There are some researchers focus on deriving implicit multistep method with the aim to achieve unconditionally stable and 
better convergence compared to explicit multistep method [30–33]. Tumba et al. [34] presented novel implicit quarter step first 
derivative block hybrid method in the integration of first-order stiff ODEs. The method acquires consistent, convergent, A-stable 
and zero-stability properties. Absolute stability region of proposed method is larger and numerical efficiency is greater than other 
existing explicit multistep methods. Ekoro et al. [35] developed implicit second derivative hybrid linear multistep method with 
nested predictors based on interpolation and collocation approach using polynomial basis function. Their method is proved to have 
A-stability property using the boundary locus approach for step-length less than 6. Yakubu et al. [36] introduced multivalue multistep 
implicit methods with extra-derivatives evaluations in intermediate off-step points located between the well-known step-points. The 
stability regions of proposed method in the complex plane reveal better stability and convergence, exhibiting expansive regions 
of absolute stability when compared to existing methods without two-derivative term. The proposed method also demonstrates 
exceptional performance across a wide range of both linear and nonlinear stiff systems in the form of first-order ODEs, attributed 
to their high order of accuracy and stiffly accurate characteristic properties.
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In the pursuit of integrating differential equations with specific solutions effectively, such as exponential and periodic solutions, 
many researchers have devised linear or block multistep methods incorporating fitting techniques. You et al. [37] developed a 
novel set of phase-fitted and P-stable symmetric extended linear multistep (SELM) methods for solving initial value problems 
involving second-order oscillatory differential equations. Derived from the harmonic fitting condition and order requirements, 
novel explicit and implicit SELM methods with different orders have been formulated. Mansor et al. [38] presented two-point 
implicit block multistep methods with trigonometrically-fitting technique for integrating second-order ODEs in the form of 𝑦′′ =
𝑓 (𝑥, 𝑦) with periodic solutions. Their explicit counterparts are also trigonometrically-fitted, allowing the methods to function as 
predictor–corrector pairs during implementation for numerical approximations. Numerical results indicate that the new pairs of 
trigonometrically-fitted methods are superior in terms of accuracy and execution time compared to existing methods. Rufai et al. [39] 
proposed multistep method with two off-grid point that is formulated through the collocation of a derivative function at both 
equidistant grid points and off-grid points. Simultaneous approximations to the solution and its derivative are obtained at every 
point in the interval integration. The inclusion of higher derivatives enhances the method’s order, thus improving both its accuracy 
and stability properties. Simos [40] presented new methodology for the Adams–Bashforth methods with phase lag, amplification 
factor, phase-fitted and amplification-fitted technique. Stability analysis is conducted towards the proposed methods with different 
fitting techniques and fitted frequency. All proposed methods are applied to solve first-order application problems with periodic 
solutions.

In the development of method for integrating second-order ODEs, existing methods include various multistep approaches with 
fitting techniques and different collocation points. However, there is a notable lack of studies focusing on the development of extra-
derivative multistep methods with fitting techniques. Additionally, limited research has been conducted on analyzing the numerical 
properties of such methods, particularly in terms of stability analysis. It is well-established that incorporating a two-derivative 
term is an effective way to enhance the accuracy of numerical methods. Furthermore, the difference between the interpolating 
points and collocating points significantly affects the error generated in subsequent steps and selecting an appropriate difference 
is crucial for deriving an efficient proposed method. Hence, to address these drawbacks, we propose a two-derivative multistep 
method with trigonometrical fitting techniques and appropriate distance between the interpolating points and collocating points for 
solving second-order ODEs with oscillatory solutions. Additionally, a comprehensive stability analysis will be conducted to evaluate 
the method’s robustness and ensure its effectiveness for a wide range of periodic problems.

In the current research field, numerous articles explore the use of various intermediate points. For instance, Omar [41] 
proposed a ninth-order third-derivative block multistep method utilizing an intermediate point of 3/2 and employing a power 
series polynomial as the basis function. Similarly, Soomro et al. [42] developed a fifth-order 3-point block backward differentiation 
formula incorporating an intermediate point of 5/2 with a Lagrange polynomial as the basis function. Below are some similarities 
and differences between these two multistep methods and the proposed method:

Similarities of existing multistep methods:

• Use of Intermediate Points: Similar to existing multistep methods that utilize intermediate points (e.g., 1/2 or 3/2), the 
proposed method incorporates intermediate points to enhance the accuracy of approximations.

• Multistep Framework: Like other multistep methods, the proposed method calculates the solution at multiple steps in a single 
iteration, reducing computational effort compared to one-step methods.

• Targeted problem: Similar to the existing methods mentioned above, the proposed method specifically targets second-order 
ODEs.

Differences from other existing multistep methods:

• Fitting Techniques: The proposed method will incorporate trigonometrical fitting techniques, which are also utilized in some 
existing methods to enhance accuracy for solving ODEs with oscillatory or periodic solutions.

• Choice of Basis Function: Unlike existing methods that typically use power series (e.g., Taylor series) or Lagrange polynomials, 
the proposed method employs Gegenbauer polynomials, which offer unique orthogonality properties.

• Two-Derivative Term: The proposed method incorporates a two-derivative function in its formulation, whereas the majority 
of the existing methods rely solely on the 𝑓 -function, without including the 𝑔-function (the derivative of 𝑓 ).

One advantage of using Gegenbauer polynomials is their flexibility in the weighting parameter. Gegenbauer polynomials are 
orthogonal over the interval [−1, 1] with the weight function (1 − 𝑥2

)𝛼− 1
2 . By choosing a suitable 𝛼, such as 𝛼 = 1

4  for oscillatory 
solutions, the polynomials can be tailored to match the characteristics of the problem, thereby improving accuracy.

In this study, explicit fifth-order two-derivative multistep method is proposed, denoted as TDLMM5 method for the direct 
integration of second-order ODEs with periodic solutions. The derivation of TDLMM5 method is constructed with Gegenbauer 
polynomial up to order five as basis function. The method relies on collocating the differential equation at 𝑥𝑘 and 𝑥𝑘+1 and 
interpolating the approximate solution through Gegenbauer polynomial at the grid points. The stability region, consistency and 
convergence properties of the proposed method are thoroughly examined and discussed. Then, trigonometrically-fitting technique 
is implemented into the proposed method to generate frequency-dependent coefficients that exist in TDLMM5 method for making 
the proposed method have greater accuracy for solving second-order ODEs with periodic solutions. Numerical tests of both the 
proposed methods and selected existing multistep methods for the integration of second-order ordinary differential equations with 
periodic solutions, encompassing renowned application problems such as two-body problem and Pleiades problem, are presented 
and discussed in this article. The final section concludes with a discussion and summary of the findings.
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2. Development of trigonometrical-fitted two-derivative multistep collocation method

2.1. Derivation of two-derivative multistep collocation method

We begin with the general formulation of two-derivative linear multistep method for solving problem (1.1), comprises the 
derivative of the solution 𝑢′ (𝑡) = 𝑓 ′

𝑡 (𝑡, 𝑢(𝑡)) + 𝑓 ′
𝑢(𝑡, 𝑢(𝑡))𝑢

′ = 𝑔(𝑡, 𝑢(𝑡), 𝑢′(𝑡)) as below: 
𝑘
∑

𝑗=0
𝛼𝑗𝑢 (𝑡 + 𝑗ℎ) +

𝑚1
∑

𝑗=0
𝛼𝜈𝑗 𝑢

(

𝑡 + 𝑣𝑗ℎ
)

= ℎ2
( 𝑘
∑

𝑗=0
𝛽𝑗𝑓𝑛+𝑗 +

𝑚2
∑

𝑗=0
𝛽𝜈𝑗𝑓𝑛+𝜈𝑗

)

+ ℎ3
( 𝑘
∑

𝑗=0
𝛾𝑗𝑔𝑛+𝑗 +

𝑚3
∑

𝑗=0
𝛾𝜈𝑗 𝑔𝑛+𝜈𝑗

)

, (2.2)

where 𝑎𝑗 , 𝑎𝜈𝑗 , 𝛽𝑗 , 𝛽𝜈𝑗 , 𝛾𝑗 , 𝛾𝜈𝑗 ∈ R, 𝑚1, 𝑚2, 𝑚3, 𝑘 ∈ Z+ and 𝜈𝑗 is non-integer.
To construct TDLMM, we approximate the solution by employing the interpolating function, denoted as 𝑈 (𝑡), with Gegenbauer 

polynomials serving as basis functions. According to Stein and Weiss [43], Gegenbauer polynomials can be expressed in relation to 
their generating function as below: 

1
(

1 − 2𝑧𝑥 + 𝑥2
)𝜉 =

∞
∑

𝑛=0
𝑇 (𝜉)
𝑛 (𝑧)𝑥𝑛, (2.3)

where 0 ≤ |𝑧| ≤ 1, |𝑥| ≤ 1, 𝜉 > 0. The polynomials, 𝑇 (𝜉)(𝑧) fulfill the recursive Eq. (2.3), can be expressed as
𝑇 (𝜉)
0 = 1,

𝑇 (𝜉)
1 = 2𝜉𝑧,

(𝑛 + 1)𝑇 (𝜉)
𝑛+1(𝑧) = 2(𝑛 + 𝜉)𝑧𝑇 (𝜉)

𝑛 (𝑧) − (𝑛 + 2𝜉 − 1)𝑇 (𝜉)
𝑛−1. (2.4)

We designate 𝜉 as 14 , and subsequently generate the specific Gegenbauer polynomials.

𝑇0 = 1,

𝑇1 =
1
2
𝑧,

𝑇2 =
5
8
𝑧2 − 1

4
,

𝑇3 =
15
16

𝑧3 − 5
8
𝑧,

𝑇4 =
195
128

𝑧4 − 45
32

𝑧2 + 5
32

,

𝑇5 =
663
256

𝑧5 − 195
64

𝑧3 + 45
64

𝑧. (2.5)

To derive the TDLMM formula, we approximate the solution using an interpolating function in the following equation: 

𝑈 (𝑡) =
𝜎1+𝜎2+𝜂−1

∑

𝑗=0
𝑎𝑗𝑇𝑗 (𝑡), (2.6)

where 𝑡 ∈ [𝑡0, 𝑏], 𝑎𝑗 are unknown real coefficients to be determined, 𝑇𝑗 is Gegenbauer polynomial, 𝜎1 and 𝜎2 the number of 
interpolations for second derivative and third derivative respectively, 𝜂 distinct collocation points with 𝜂 > 0.

Then, the second derivative of third derivative of interpolating function will be as follows:

𝑈 ′′(𝑡) = 𝑓 (𝑡) =
𝜎1+𝜎2+𝜂−1

∑

𝑗=0
𝑎𝑗𝑇

′′
𝑗 (𝑡),

𝑈
′
(𝑡) = 𝑔(𝑡) =

𝜎1+𝜎2+𝜂−1
∑

𝑗=0
𝑎𝑗𝑇

′
𝑗 (𝑡). (2.7)

The continuous approximation is formulated by enforcing the following conditions:

𝑈 (𝑡𝑛+𝜂) = 𝑢𝑛+𝜂 , 𝜂 = 0, 1, 3
2
, 2,

𝑈 ′′(𝑡𝑛+𝜎1 ) = 𝑓𝑛+𝜎1 , 𝜎1 = 0, 1,

𝑈
′
(𝑡𝑛+𝜎2 ) = 𝑔𝑛+𝜎2 , 𝜎2 = 0, 1, 3

2
. (2.8)

Here, we solve 𝑈 (𝑡𝑛), 𝑈 (𝑡𝑛+1), 𝑈 ′′(𝑡𝑛), 𝑈 ′′(𝑡𝑛+1), 𝑈
′ (𝑡𝑛) and 𝑈

′ (𝑡𝑛+ 3
2
) simultaneously to obtain coefficients 𝑎𝑗 , 𝑗 = 0, 1,… , 5, then 

substituting the values 𝑎𝑗 into (2.6) and yield the continuous method as follows: 

𝑈 (𝑡) =
1
∑

𝑗=0
𝛼𝑗𝑢𝑛+𝑗 + ℎ2

1
∑

𝑗=0
𝛽𝑗𝑓𝑛+𝑗 + ℎ3

(

𝛾0𝑔𝑛 + 𝛾 3
2
𝑔𝑛+ 3

2

)

. (2.9)
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Later, we express 𝛼𝑗 , 𝛽𝑗 and 𝛾𝑗 as continuous coefficients, written as continuous function of 𝑥, where 𝑥 = 𝑡−𝑡𝑛
ℎ , to generalize the 

solution across the interval from 𝑡𝑛 to 𝑡𝑛+1. This process involves the following steps:

1. Continuous approximation: The interpolating function, 𝑈 (𝑡) was initially expressed in terms of Gegenbauer polynomials. To 
simplify the expression and make it applicable across any subinterval [𝑡𝑛, 𝑡𝑛+1

]

, the variable 𝑥 is introduced. By letting 𝑥 = 𝑡−𝑡𝑛
ℎ , 

where ℎ = 𝑡𝑛+1 − 𝑡𝑛, the functions can be written as continuous polynomials in 𝑥.
2. Substitution and simplification: Once 𝑥 is substituted, the expressions for the coefficients 𝛼𝑗 , 𝛽𝑗 and 𝛾𝑗 are derived by 
expanding the original functions into polynomial forms of 𝑥.

3. Polynomial fitting: Coefficients 𝛼𝑗 , 𝛽𝑗 and 𝛾𝑗 are obtained by matching the coefficients of the interpolating polynomials with 
the collocation points and their derivatives.

Hence, we obtain
𝛼0 = 1 − 𝑥, 𝛼1 = 𝑥,

𝛽0 = − 39
100

𝑥 + 1
2
𝑥2 − 3

20
𝑥4 + 1

25
𝑥5,

𝛽1 = − 11
100

𝑥 + 3
20

𝑥4 − 1
25

𝑥5,

𝛾0 = − 59
900

𝑥 + 1
6
𝑥3 − 23

180
𝑥4 + 2

75
𝑥5,

𝛾 3
2
= 2

225
𝑥 − 1

45
𝑥4 + 1

75
𝑥5. (2.10)

Let 𝑥 = 2, we get 

𝑢𝑛+2 = −𝑢𝑛 + 2𝑢𝑛+1 + ℎ2
( 1
10

𝑓𝑛 +
9
10

𝑓𝑛+1
)

+ ℎ3
(

1
90

𝑔𝑛 +
4
45

𝑔𝑛+ 3
2

)

. (2.11)

To obtain the equation for 𝑢′𝑛+2, (2.6) is differentiated with respect to 𝑡, substituted by 𝑥 = 𝑡−𝑡𝑛
ℎ  and setting 𝑥 = 2, resulting in: 

𝑢′𝑛+2 =
1
ℎ

[

−𝑢𝑛 + 𝑢𝑛+1 + ℎ2
( 1
100

𝑓𝑛 +
149
100

𝑓𝑛+1
)

+ ℎ3
(

− 19
900

𝑔𝑛 +
82
225

𝑔𝑛+ 3
2

)]

. (2.12)

In a similar manner, we concurrently solve for 𝑈 (𝑡𝑛), 𝑈 (𝑡𝑛+1), 𝑈 ′′(𝑡𝑛), 𝑈 ′′(𝑡𝑛+1), 𝑈
′ (𝑡𝑛), and 𝑈

′ (𝑡𝑛+1) to derive new coefficients 
𝑎𝑗 , where 𝑗 = 0, 1,… , 5. Subsequently, by substituting these values of 𝑎𝑗 into (2.6), we derived continuous method successfully as 
outlined below: 

𝑈 (𝑡) =
1
∑

𝑗=0
𝛼𝑗𝑢𝑛+𝑗 + ℎ2

1
∑

𝑗=0
𝛽𝑗𝑓𝑛+𝑗 + ℎ3

1
∑

𝑗=0
𝛾𝑗𝑔𝑛+𝑗 . (2.13)

Subsequently, when we define 𝛼𝑗 , 𝛽𝑗 , and 𝛾𝑗 as continuous functions of 𝑥 with 𝑡𝑛 = 𝑡 − 𝑥ℎ, we acquire
𝛼0 = 1 − 𝑥, 𝛼1 = 𝑥,

𝛽0 = − 7
20

𝑥 + 1
2
𝑥2 − 1

4
𝑥4 + 1

10
𝑥5,

𝛽1 = − 3
20

𝑥 + 1
4
𝑥4 − 1

10
𝑥5,

𝛾0 = − 1
20

𝑥 + 1
6
𝑥3 − 1

6
𝑥4 + 1

20
𝑥5,

𝛾 3
2
= 1

30
𝑥 − 1

12
𝑥4 + 1

20
𝑥5. (2.14)

When 𝑥 = 3
2 , we obtain 

𝑢𝑛+ 3
2
= −1

2
𝑢𝑛 +

3
2
𝑢𝑛+1 + ℎ2

( 3
32

𝑓𝑛 +
9
32

𝑓𝑛+1
)

+ ℎ3
( 3
128

𝑔𝑛 +
1
128

𝑔𝑛+1
)

. (2.15)

In order to derive the equation for 𝑢′
𝑛+ 3

2

, we differentiate (2.6) with respect to 𝑡, substituted by 𝑥 = 𝑡−𝑡𝑛
ℎ , ℎ = 𝑡𝑛+1 − 𝑡𝑛 and setting 

𝑥 = 3
2 , leading to: 

𝑢′
𝑛+ 3

2
= 1

ℎ

[

−𝑢𝑛 + 𝑢𝑛+1 + ℎ2
( 49
160

𝑓𝑛 +
111
160

𝑓𝑛+1
)

+ ℎ3
( 29
320

𝑔𝑛 +
167
960

𝑔𝑛+1
)]

. (2.16)

Therefore, the complete formula for the two-step fifth-order TDLMM, denoted as TDLMM5 method is provided below:

𝑢𝑛+ 3
2
= −1

2
𝑢𝑛 +

3
2
𝑢𝑛+1 + ℎ2

( 3
32

𝑓𝑛 +
9
32

𝑓𝑛+1
)

+ ℎ3
( 3
128

𝑔𝑛 +
1
128

𝑔𝑛+1
)

,

𝑢𝑛+2 = −𝑢𝑛 + 2𝑢𝑛+1 + ℎ2
( 1
10

𝑓𝑛 +
9
10

𝑓𝑛+1
)

+ ℎ3
(

1
90

𝑔𝑛 +
4
45

𝑔𝑛+ 3
2

)

,

ℎ𝑢′ 3 = −𝑢𝑛 + 𝑢𝑛+1 + ℎ2
( 49 𝑓𝑛 +

111𝑓𝑛+1
)

+ ℎ3
( 29 𝑔𝑛 +

167 𝑔𝑛+1
)

,

𝑛+ 2 160 160 320 960
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ℎ𝑢′𝑛+2 = −𝑢𝑛 + 𝑢𝑛+1 + ℎ2
( 1
100

𝑓𝑛 +
149
100

𝑓𝑛+1
)

+ ℎ3
(

− 19
900

𝑔𝑛 +
82
225

𝑔𝑛+ 3
2

)

. (2.17)

2.2. Trigonometrically-fitted two-derivative linear multistep method

In developing the TFTDLMM5 method with a trigonometric fitting technique, we replace some coefficients in TDLMM5 method 
with frequency-dependent coefficients, 𝐾𝑖 and 𝐿𝑖, 𝑖 = 1, 2, 3, 4 as follows:

𝑢𝑛+ 3
2
= −1

2
𝑢𝑛 +

3
2
𝑢𝑛+1 + ℎ2

(

𝐾1𝑓𝑛 +
9
32

𝑓𝑛+1
)

+ ℎ3
(

𝐾2𝑔𝑛 +
1
128

𝑔𝑛+1
)

,

𝑢𝑛+2 = −𝑢𝑛 + 2𝑢𝑛+1 + ℎ2
( 1
10

𝑓𝑛 +𝐾3𝑓𝑛+1
)

+ ℎ3
(

1
90

𝑔𝑛 +𝐾4𝑔𝑛+ 3
2

)

,

ℎ𝑢′
𝑛+ 3

2
= −𝑢𝑛 + 𝑢𝑛+1 + ℎ2

(

𝐿1𝑓𝑛 +
111
160

𝑓𝑛+1
)

+ ℎ3
(

𝐿2𝑔𝑛 +
167
960

𝑔𝑛+1
)

,

ℎ𝑢′𝑛+2 = −𝑢𝑛 + 𝑢𝑛+1 + ℎ2
( 1
100

𝑓𝑛 + 𝐿3𝑓𝑛+1
)

+ ℎ3
(

− 19
900

𝑔𝑛 + 𝐿4𝑔𝑛+ 3
2

)

. (2.18)

Initially, we set 𝑢𝑛 = 𝑒i𝜆𝑡, 𝑢𝑛+𝑝 = 𝑒i𝜆𝑡𝑒𝑝i𝑣, 𝑝 = 1, 32 , 2, and 𝜆 represents the frequency. Subsequently, we determine the first derivative, 
𝑢′𝑛+𝑝, second derivative, 𝑓𝑛+𝑝 and third derivative, 𝑔𝑛+𝑝 using the formula 𝑢𝑛 and 𝑢𝑛+𝑝 as mentioned above. Then, exponential functions 
𝑒i𝜆𝑡 and 𝑒−i𝜆𝑡 are integrated at each stage, where 𝑣 = 𝜆ℎ and 𝜆 ∈ R, we obtain the equations corresponding to 𝑢, ℎ𝑢′ below:

𝑒±
1
2 i𝑣 = −1

2
𝑒∓i𝑣 + 3

2
− 𝑣2

(

𝐾1𝑒
∓i𝑣 + 9

32

)

∓ i𝑣3
(

𝐾2𝑒
∓i𝑣 + 1

128

)

,

𝑒±i𝑣 = ∓𝑒−i𝑣 + 2 − 𝑣2
( 1
10

𝑒∓i𝑣 +𝐾3

)

∓ i𝑣3
( 1
90

𝑒∓i𝑣 +𝐾4𝑒
± 1

2 i𝑣
)

, (2.19)

±i𝑣𝑒±
1
2 i𝑣 = −𝑒∓i𝑣 + 1 − 𝑣2

(

𝐿1𝑒
∓i𝑣 + 111

160

)

∓ i𝑣3
(

𝐿2𝑒
∓i𝑣 + 167

960

)

,

±i𝑣𝑒±i𝑣 = −𝑒∓i𝑣 + 1 − 𝑣2
( 1
100

𝑒∓i𝑣 + 𝐿3

)

∓ i𝑣3
(

− 19
900

𝑒∓i𝑣 + 𝐿4𝑒
1
2 i𝑣

)

. (2.20)

The relation cos(𝑣) = 𝑒i𝑣+𝑒−i𝑣
2  and sin(𝑣) = 𝑒i𝑣−𝑒−i𝑣

2i  are substituted in the Eqs. (2.19) corresponding to 𝑢, we get hyperbolic functions 
of 𝑣 below:

cos
(𝑣
2

)

= −1
2
cos(𝑣) + 3

2
− 𝑣2

(

𝐾1 cos(𝑣) +
9
32

)

− 𝑣3
(

𝐾2 sin(𝑣)
)

,

sin
(𝑣
2

)

= 1
2
sin(𝑣) + 𝑣2𝐾1 sin(𝑣) − 𝑣3

(

𝐾2 cos(𝑣) +
1
128

)

,

cos(𝑣) = 1 − 𝑣2
( 1
20

cos(𝑣) + 1
2
𝐾3

)

+ 𝑣3
[

− 1
180

sin(𝑣) + 1
2
𝐾4 sin

( 1
2

)]

,

sin(𝑣) = sin(𝑣) + 𝑣2
( 1
10

sin(𝑣)
)

− 𝑣3
[ 1
90

cos(𝑣) +𝐾4 cos
( 1
2

)]

. (2.21)

Further solving (2.21) and apply Taylor series expansion, we obtain the frequency-dependent parameters of 𝐾𝑖, 𝑖 = 1, 2, 3, 4

𝐾1 =
3
32

+ 11
15360

𝑣4 − 491
3440640

𝑣6 + 8611
1238630400

𝑣8 − 12259
72666316800

𝑣10 + (𝑣12),

𝐾2 =
3
128

+ 13
30720

𝑣4 − 311
8847360

𝑣6 + 115
99090432

𝑣8 − 9511
435997900800

𝑣10 + (𝑣12),

𝐾3 =
9
10

− 1
720

𝑣4 + 1
11200

𝑣6 + 17
3628800

𝑣8 + 139
299376000

𝑣10 + (𝑣12),

𝐾4 =
4
45

+ 1
7200

𝑣4 + 1
67200

𝑣6 + 173
116121600

𝑣8 + 827
5474304000

𝑣10 + (𝑣12). (2.22)

In a similar manner, we incorporate the relationship between cos(𝑣) and sin(𝑣) into the Eqs. (2.20), which correspond to ℎ𝑢′. As 
a result, we obtain trigonometric functions of 𝑣 as follows:

𝑣 sin
(𝑣
2

)

= cos(𝑣) − 1 + 𝑣2
(

𝐿1 cos(𝑣) +
111
160

)

+ 𝑣3
(

𝐿2 sin(𝑣)
)

,

𝑣 cos
(𝑣
2

)

= sin(𝑣) + 𝑣2𝐿1 sin(𝑣) − 𝑣3
(

𝐿2 cos(𝑣) +
167
960

)

,

𝑣 cos(𝑣) = sin(𝑣) + 𝑣2
( 1
100

sin(𝑣)
)

+ 𝑣3
[ 19
900

cos(𝑣) − 𝐿4 cos
( 1
2
𝑣
)]

,

𝑣 sin(𝑣) = cos(𝑣) − 1 + 𝑣2
( 1
100

cos(𝑣) + 𝐿3

)

− 𝑣3
[ 19
900

sin(𝑣) + 𝐿4 sin
( 1
2

)]

. (2.23)

Subsequently, the coefficients above are used to generate parameters 𝐿𝑖, 𝑖 = 1, 2, 3, 4 through Taylor series expansion

𝐿1 =
49
160

+ 23
5760

𝑣4 − 3071
3225600

𝑣6 + 50111
928972800

𝑣8 − 203597
136249344000

𝑣10 + (𝑣12),

𝐿 = 29 + 4181 𝑣4 − 23561 𝑣6 + 394019 𝑣8 − 8731067 𝑣10 + (𝑣12),
2 320 1612800 92897280 40874803200 42509795328000
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𝐿3 =
149
100

− 13
7200

𝑣4 + 223
336000

𝑣6 + 37
1451520

𝑣8 + 10609
2993760000

𝑣10 + (𝑣12),

𝐿4 =
82
225

+ 607
504000

𝑣4 + 1907
18144000

𝑣6 + 19649
1824768000

𝑣8 + 1810859
1660538880000

𝑣10 + (𝑣12). (2.24)

As 𝑣 approaches 0, the coefficients 𝐾𝑖 and 𝐿𝑖, 𝑖 = 1, 2, 3, 4 of the proposed methods with fitting technique will revert to the 
coefficients of the classical form.

3. Numerical analysis of TFTDLMM5 method

Referring to Ibrahim and Nasarudin [44] and generalization from the theorem of Henrici [45], we introduce the zero stability 
associated with TFTDLMM method in Definition  1.

Definition 1 (Zero stable). A block multistep method with order 𝑝 is zero stable provided the roots, 𝑅𝑖 for 𝑖 = 1,… , 𝑘 of the 
characteristic polynomial, 𝜌(𝑅) such that: 

𝜌(𝑅) = det

[ 𝑘
∑

𝑚=1
𝐾 (𝑚)𝑅(𝑘−𝑚)

]

, 𝐾 (0) = 𝐼, (3.25)

satisfies the following conditions:
1. |𝑅𝑚| ≤ 1 for 𝑚 = 1, 2,… , 𝑘,
2. If 𝑅𝑚 is a repeated root, then the multiplicity of the root of modulus 1 must be at most 𝑝,

where 𝐼 is identity matrix and 𝐾 (𝑚) is 𝑘 × 𝑘 matrix that appears in the construction of the block multistep method’s characteristic 
polynomial.

Zero stability is the method’s ability to control the propagation of errors introduced in initial values as the step number increases. 
A method is zero-stable if small perturbations in the initial conditions do not lead to unbounded growth in the numerical solution. 
The focus of zero stability is on the behavior of the method near the limit of zero step size. For example, if a method is zero-stable, it 
means that the errors do not grow uncontrollably as the grid gets finer. It is different with linear stability that refers to the behavior 
of a numerical method when applied to a linear problem, often in the context of time-stepping algorithms for solving ODEs or PDEs. 
Linear stability examines the growth or decay of perturbations in the solution using a linearized analysis, often through the linear 
test equation. The stability region, typically derived from a linear stability test, is plotted in the complex plane and illustrates the 
values of 𝜆 (or eigenvalues) for which the numerical method remains stable. This region helps in determining the step sizes for which 
the method will effectively solve the problem without introducing excessive errors. Functions of the stability region include guiding 
the choice of appropriate time step sizes for time-stepping schemes and ensuring that the method maintains controlled growth of 
errors during computation.

Linear stability analysis focuses on the evolution of numerical errors over time, while zero stability ensures that the method 
behaves appropriately as the step size approaches zero. Both are crucial for the accuracy and reliability of numerical methods 
in solving differential equations. In this study, the linear stability analysis begins by deriving the first characteristic polynomial 
associated with the proposed method, using an appropriate test problem. The roots of this polynomial are then examined to 
investigate the zero-stability property. Additionally, the eigenvalues of the first characteristic polynomial are analyzed to construct 
the stability region of the TFTDLMM5 method, providing insight into its stability performance.

To construct the first characteristic polynomial, we use the following second-order linear test problem: 
𝑢′′ = −𝜆2𝑢. (3.26)

Apply TFTDLMM5 method into the test problem and substitute 𝑣 = 𝜆ℎ, we obtain

𝑢𝑛+ 3
2
=
(

−1
2
−𝐾1𝑣

2
)

𝑢𝑛 +
( 3
2
− 9

32
𝑣2
)

𝑢𝑛+1 +
(

−𝐾2𝑣
2)ℎ𝑢′𝑛 +

(

− 1
128

𝑣2
)

ℎ𝑢′𝑛+1, (3.27)

𝑢𝑛+2 =
(

−1 − 1
10

𝑣2
)

𝑢𝑛 +
(

2 −𝐾3𝑣
2) 𝑢𝑛+1 +

(

− 1
90

𝑣2
)

ℎ𝑢′𝑛,+
(

−𝐾4𝑣
2)ℎ𝑢′

𝑛+ 3
2
, (3.28)

ℎ𝑢′
𝑛+ 3

2
=
(

−1 − 𝐿1𝑣
2) 𝑢𝑛 +

(

1 − 111
160

𝑣2
)

𝑢𝑛+1 +
(

−𝐿2𝑣
2)ℎ𝑢′𝑛 +

(

−167
960

𝑣2
)

ℎ𝑢′𝑛+1, (3.29)

ℎ𝑢′𝑛+2 =
(

−1 − 1
100

𝑣2
)

𝑢𝑛 +
(

1 − 𝐿3𝑣
2) 𝑢𝑛+1 +

( 19
900

𝑣2
)

ℎ𝑢′𝑛 +
(

−𝐿4𝑣
2)ℎ𝑢′

𝑛+ 3
2
. (3.30)

Differentiating (3.27) and multiplying both sides by ℎ, we get 

ℎ𝑢′
𝑛+ 3

2
=
(

−1
2
−𝐾1𝑣

2
)

ℎ𝑢′𝑛 +
(3
2
+ 9

32
𝑣2
)

ℎ𝑢′𝑛+1 +
(

𝐾2𝑣
4) 𝑢𝑛,+

( 1
128

𝑣4
)

𝑢𝑛+1 (3.31)

Next, substitute (3.31) into (3.28),

𝑢𝑛+2 =
(

−1 − 1
10

𝑣2 −𝐾4𝐾2𝑣
6
)

𝑢𝑛 +
(

2 −𝐾3𝑣
2 − 1

128
𝐾4𝑣

4
)

𝑢𝑛+1

+
[

− 1 𝑣2 −𝐾 𝑣2
(

−1 −𝐾 𝑣2
)]

ℎ𝑢′ +
[

−𝐾 𝑣2
( 3 + 9 𝑣2

)]

ℎ𝑢′ . (3.32)

90 4 2 1 𝑛 4 2 32 𝑛+1
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Same goes to the derivative of 𝑢 in TFTDLMM5 method, we substitute (3.29) into (3.30), we obtain

ℎ𝑢′𝑛+2 =
[

−1 − 1
100

𝑣2 − 𝐿4𝑣
2 (−1 − 𝐿1𝑣

2)
]

𝑢𝑛 +
[

1 − 𝐿3𝑣
2 − 𝐿4𝑣

2
(

1 − 111
160

𝑣2
)]

𝑢𝑛+1

+
( 19
900

𝑣2 + 𝐿2𝐿4𝑣
4
)

ℎ𝑢′𝑛 +
( 1
128

𝐿4𝑣
4
)

ℎ𝑢′𝑛+1. (3.33)

We can summarize (3.32) and (3.33) into 
(

1 0
0 1

)(

𝑢𝑛+2
ℎ𝑢′𝑛+2

)

= 𝐾1(𝑣)
(

𝑢𝑛+1
ℎ𝑢′𝑛+1

)

+𝐾2(𝑣)
(

𝑢𝑛
ℎ𝑢′𝑛

)

, (3.34)

where

𝐾1(𝑣) =
⎛

⎜

⎜

⎝

2 −𝐾3𝑣2 −
1

128𝐾4𝑣4 −𝐾4𝑣2
(

3
2 + 9

32𝑣
2
)

1 − 𝐿3𝑣2 − 𝐿4𝑣2
(

1 − 111
160𝑣

2
)

1
128𝐿4𝑣4

⎞

⎟

⎟

⎠

,

𝐾2(𝑣) =

(

−1 − 1
10𝑣

2 −𝐾4𝐾2𝑣6 − 1
90𝑣

2 −𝐾4𝑣2
(

− 1
2 −𝐾1𝑣2

)

−1 − 1
100𝑣

2 − 𝐿4𝑣2
(

−1 − 𝐿1𝑣2
) 19

900𝑣
2 + 𝐿2𝐿4𝑣4

)

.

Then, we substitute 
(

𝑢𝑛+2
ℎ𝑢′𝑛+2

)

= 𝑅2, 
(

𝑢𝑛+1
ℎ𝑢′𝑛+1

)

= 𝑅 and 
(

𝑢𝑛
ℎ𝑢′𝑛

)

= 1, we yield the following first characteristic polynomial 

𝜌(𝑅, 𝑣) = 𝑅2 −𝐾1(𝑣)𝑅 −𝐾2(𝑣). (3.35)

Determine the determinant of first characteristic polynomial and set 𝑣 = 0, we get the stability polynomial as follows: 

𝑅4 − 2𝑅3 + 𝑅2 = 0. (3.36)

Hence, the roots of stability polynomial are 0,0,1,1. All of the roots have modulus less or equal to one, which satisfied the zero 
stable conditions given in Definition  1. Thus, we conclude that TFTDLMM5 is zero stable.

Next, by setting 𝜌(𝑅, 𝑣) = 0 and solving for 𝑅 in terms of 𝑣 within the matrix, we obtain the 2 × 2 matrix 𝑃 (𝑣). The stability 
region in complex plane of TFTDLMM5 method, 𝑆𝑅 can then be defined as 

𝑆𝑅 = {𝑣 ∶ |𝜆𝑖(𝑃 (𝑣))| < 1, 𝑖 = 1, 2}, (3.37)

where 𝜆𝑖 are eigenvalues of 𝑃 (𝑣). The stability region of TFTDLMM5 method is shown in Fig.  1.
Additionally, we introduce some definitions related to consistency, order and convergence for the linear multistep method as 

follows:

Definition 2 (Consistency). The linear multistep method acquires consistency if it has the order of 𝜌 ≥ 1 [44].

Definition 3 (Order). The linear multistep method associated with the linear difference operator is said to be of order 𝜌 if all the 
error constants with order less than 𝜌 are equal to zero [46].

Definition 4 (Convergence). According to the Lax Equivalence Theorem, a linear multistep method is convergent if and only if it 
possesses both zero stability and consistency [47].

To determine the error constant, 𝐶𝑛, 𝑛 = 0, 1,… , 𝜌 + 1, we set 𝑣 = 0 and rearrange TFTDLMM5 method into: 

𝛼0𝑢𝑛 + 𝛼1𝑢𝑛+1 + 𝛼 3
2
𝑢𝑛+ 3

2
+ 𝛼2𝑢𝑛+2 = ℎ

(

𝛽 3
2
𝑢′
𝑛+ 3

2
+ 𝛽2𝑢

′
𝑛+2

)

+ ℎ2
(

𝛾0𝑓𝑛 + 𝛾1𝑓𝑛+1
)

+ ℎ3
(

𝜁0𝑔𝑛 + 𝜁1𝑔𝑛+1 + 𝜁 3
2
𝑔𝑛+ 3

2

)

, (3.38)

where

𝛼0 =

⎛

⎜

⎜

⎜

⎜

⎝

1∕2
1
1
1

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛼1 =

⎛

⎜

⎜

⎜

⎜

⎝

−3∕2
−2
−1
−1

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛼 3
2
=

⎛

⎜

⎜

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛼2 =

⎛

⎜

⎜

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛽 3
2
=

⎛

⎜

⎜

⎜

⎜

⎝

0
0
−1
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛽2 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
−1

⎞

⎟

⎟

⎟

⎟

⎠

,

𝛾0 =

⎛

⎜

⎜

⎜

⎜

⎝

3∕32
1∕10
49∕160
1∕100

⎞

⎟

⎟

⎟

⎟

⎠

, 𝛾1 =

⎛

⎜

⎜

⎜

⎜

⎝

9∕32
9∕10

111∕160
149∕100

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜁0 =

⎛

⎜

⎜

⎜

⎜

⎝

3∕128
1∕90
29∕320
−19∕900

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜁1 =

⎛

⎜

⎜

⎜

⎜

⎝

1∕128
0

167∕960
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜁 3
2
=

⎛

⎜

⎜

⎜

⎜

⎝

0
4∕45
0

82∕225

⎞

⎟

⎟

⎟

⎟

⎠

.

Referring to [46], the linear difference operator 𝐿 associated with TFTDLMM5 method is 

𝐿[𝑢(𝑡), ℎ] = 𝐶0𝑢(𝑡) + 𝐶1ℎ𝑢
′(𝑡) + 𝐶2ℎ

2𝑢′′(𝑡) +⋯ + 𝐶𝑞ℎ
𝑞𝑢(𝑞)(𝑡), (3.39)

where 𝑞 = 0, 1,… , 𝜌 + 1 and 𝐶 , 𝑛 = 0, 1,… , 𝑞 is error constant.
𝑛
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Adapted to the TFTDLMM5 method, the error constants are as follows: 

𝐶0 =𝛼0 + 𝛼1 + 𝛼 3
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+ 𝛼2 =
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⎜

⎜
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⎠
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⎜
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⎜
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⎠
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⎜

⎜
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⎠
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⎜
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⎜
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⎠
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( 3
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(3.40)
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(3.41)

Since 𝐶0 = 𝐶1 = ⋯ = 𝐶5 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
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⎞
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⎝

0
0
0
0
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⎟

⎟

⎟

⎟

⎠

, thus, TFTDLMM5 is proven to have an order of 5. Also, TFTDLMM5 is of order, 

𝜌 = 5 ≥ 1, it is consistence by definition. The error constant of the TFTDLMM5 method up to order 6 is equal to 𝐶6 mentioned 
above.

Since TFTDLMM5 method is zero-stable and consistent, referring to Lax equivalence theorem, TFTDLMM5 method is convergent.
By the fundamental theorem of numerical analysis, if a method is both consistent and stable, the global error, 𝐸𝑛 tends to zero 

as 𝑛 → ∞ and ℎ → 0. In the analysis above, we have 

𝐸 = 𝑂
(

ℎ𝑝+1
)

, (3.42)
𝑛

428 



K.C. Lee et al. Mathematics and Computers in Simulation 239 (2026) 420–441 
Fig. 1. The stability region of TFTDLMM5 method.

where 𝑝 = 5 is the order of TFTDLMM5 method. This implies that the global error goes to zero as the step size decreases, establishing 
the convergence of the method.

4. Numerical tests and results

In this section, we apply the TFTDLMM5 method to solve second-order ordinary differential equations of the form 𝑢′′ = 𝑓 (𝑡, 𝑢(𝑡))
and an application problem featuring a periodic solution. The efficiency of the proposed method in the literature is demonstrated by 
comparing it with various existing linear multistep methods, including classical-type and fitted techniques. The following methods 
have been selected for numerical comparison.

• TFTDLMM5 - Trigonometrically-fitted two derivative linear multistep method with fifth-order proposed in this paper.
• TFLMMA4 - Trigonometrically-fitted extra derivative multistep method with fourth-order, proposed by Ahmad et al. [48]
• LFDM6 - Linear finite difference method with sixth-order, proposed by Jator [49]
• TFTDLMM(S3) - Trigonometrically-fitted block multistep methods in predictor–corrector mode with three step number, 𝑘 = 3, 
proposed by Mansor et al. [38]

• TFTDLMM(S5) - Trigonometrically-fitted block multistep methods in predictor–corrector mode with five step number, 𝑘 = 5, 
proposed by Mansor et al. [38]

In each second-order oscillatory initial value problem (IVP), there is a specific fitted frequency, 𝜆, that can be identified from 
the analytical solutions. The value of 𝑣 = 𝜆ℎ, where ℎ is the step size, will be determined and then substituted into the frequency-
dependent parameters for all selected trigonometrical-fitted methods, including the proposed method. Six numerical problems are 
selected, including some application problems, two-body problem and Duffing problem. Five selected methods are utilized to solve 
all the problems with different step-size and endpoints, 𝑏. Then the numerical approximation generated by all selected methods 
will be compared with analytical solution to calculate maximum global error. For the Duffing problem, since there is no analytical 
solution, the classical fourth-order Runge–Kutta method with an extremely low step size, ℎ = 10−6 will be used to obtain the 
estimated maximum global error for the selected methods.

Problem 1.  Homogeneous linear problem studied by [50]
𝑢′′ = −25𝑢(𝑡),

𝑢(0) = 1, 𝑢′(0) = 1, 𝑡 ∈ [0, 1000] ,

with analytical solution, 𝑢 (𝑡) = 1
5 sin(5𝑡) + cos(5𝑡).

The fitted frequency, 𝜆 = 5.

Problem 2.  Inhomogeneous linear problem studied by [50]
𝑢′′ = −10000𝑢(𝑡) + (cos(𝑡))2 ,

𝑢(0) = 1, 𝑢′(0) = 1, 𝑡 ∈ [0, 100] ,

with analytical solution 𝑢 (𝑡) = 1
100 sin(100𝑡) +

24985001
49980000 cos(100𝑡) +

1
19992 cos(2𝑡) +

1
20000 .

The fitted frequency, 𝜆 = 100.
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Problem 3.  Homogeneous linear system [50]
𝑢′′1 (𝑡) = 2498𝑢1(𝑡) + 4998𝑢2(𝑡), 𝑢′′2 (𝑡) = −2499𝑢1(𝑡) + 4999𝑢2(𝑡),

𝑢1(0) = 2, 𝑢′1(0) = 0, 𝑢2(0) = −1, 𝑢′2(0) = 0, 𝑡 ∈ [0, 100] ,

with analytical solution, 𝑢1 (𝑡) = 2 cos(𝑡) and 𝑢2 (𝑡) = − cos(𝑡).
The fitted frequency, 𝜆 = 1.

Problem 4.  Two-body problem (first type) studied by [51]

𝑢′′1 (𝑡) =
−𝑢1(𝑡)

(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)3

, 𝑢′′2 (𝑡) =
−𝑢2(𝑡)

(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)3

,

𝑢1(0) = 1, 𝑢′1(0) = 0, 𝑢2(0) = 0, 𝑢′2(0) = 1, (4.43)

with exact solution 𝑢1(𝑡) = cos(𝑡) and 𝑢2(𝑡) = sin(𝑡).
The fitted frequency, 𝜆 = 1.

Problem 5.  Two-body problem with nonlinear orbital property (second type) studied by [52]

𝑢′′1 (𝑡) =
2𝑢1(𝑡)𝑢2(𝑡) − sin(2𝜆𝑡)
(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)3

, 𝑢′′2 (𝑡) =
𝑢21(𝑡) − 𝑢22(𝑡) − cos(2𝜆𝑡)
(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)3

,

𝑢1(0) = 1, 𝑢′1(0) = 0, 𝑢2(0) = 0, 𝑢′2(0) = 𝜆, (4.44)

with exact solution is 𝑢1(𝑡) = cos(10𝑡) and 𝑢2(𝑡) = sin(10𝑡).
The fitted frequency, 𝜆 = 10.

Problem 6.  Nonlinear perturbed Kepler problem with orbital property studied by [53]

𝑢′′1 (𝑡) = −
𝑢1(𝑡)

(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)3

−

(

2𝜖 + 𝜖2
)

𝑢1(𝑡)
(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)5

, 𝑢′′2 (𝑡) = −
𝑢2(𝑡)

(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)3

−

(

2𝜖 + 𝜖2
)

𝑢2(𝑡)
(

√

𝑢21(𝑡) + 𝑢22(𝑡)
)5

,

𝑢1(0) = 1, 𝑢′1(0) = 0, 𝑢2(0) = 0, 𝑢′2(0) = 1 + 𝜖, (4.45)

with exact solution is 𝑢1(𝑡) = cos [(1 + 𝜖)𝑡] and 𝑢2(𝑡) = sin [(1 + 𝜖)𝑡].
The fitted frequency, 𝜆 = 1 + 𝜖.
In this study, we use a perturbed value of 𝜖 = 0.001.

Problem 7.  Stiff application problem of second-order ODEs - Duffing problem
The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861–1944), is a nonlinear second-order differential 

equation that models certain types of damped and driven oscillators, as well as chaotic behavior of oscillator [54]. The equation is 
expressed as follows: 

𝑢′′(𝑡) + 𝛿𝑢′(𝑡) + 𝛼𝑢(𝑡) + 𝛽𝑡3 = 𝛾 cos(𝜆𝑡), 𝑢(𝑡0) = 𝑢0, 𝑢′(𝑡0) = 𝑢′0, (4.46)

where 𝑢(𝑡) indicates the displacement of oscillator at time 𝑡, 𝛿 is the parameter to regulate the level of damping, 𝛼 is the parameter 
to regulate the linear stiffness, 𝛽 is the degree of non-linearity in the restoring force, 𝛾 is the magnitude of the periodic driving force 
and 𝜆 is the angular frequency of oscillating driving force. The Duffing equation can be interpreted as describing the oscillations of 
a mass attached to linear damper and nonlinear spring. The total restoring force imposed by the spring is 𝛼𝑢(𝑡) + 𝛽𝑡3 [55].

If both 𝛼 and 𝛽 are greater than 0, the spring is categorized as hardening spring. When 𝛼 > 0 and 𝛽 < 0, it is categorized as 
softening spring. When 𝛽 = 𝛿 = 0, the equation can be reduced into simple harmonic motion of elastic pendulum. The behavior of the 
Duffing equation’s solution varies significantly based on the initial conditions and the parameters. Additionally, the Duffing problem 
showcases the jump resonance phenomenon in its frequency response, characterized by a type of frequency hysteresis behavior.

In the literature, we focus on undamped driven oscillator, which is a mechanical system where an external force drives the 
oscillations, but there is no damping force to dissipate the energy from the system. There are numerous cases where different initial 
conditions and parameters can be considered. Three simulations with various conditions are displayed in Figs.  2–4 using classical 
fourth-order Runge–Kutta method with ℎ = 10−6.

In numerical test, we focus on this kind of Duffing problem:
𝑢′′ = −𝑢(𝑡) − 0.001𝑢(𝑡)3 + 0.002 cos(35𝑡),

𝑢(0) = 0, 𝑢′(0) = 0, 𝑡 ∈ [0, 50] ,

with fitted frequency, 𝜆 = 35.
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Fig. 2. Numerical simulation for Duffing problem, 𝛿 = 0, 𝛼 = 1, 𝛽 = 1, 𝛾 = 0.002, 𝜆 = 1.01, 𝑢(0) = 𝑢′(0) = 0 and 𝑡 ∈ [0, 50].

4.1. Algorithm: Implementation of TFTDLMM5 method

The implementation of trigonometrically-fitted TDLMM involves several key steps:

1. Initialization:

• Set initial conditions 𝑡0, 𝑢0 and 𝑢′0.
• Define the frequency parameter, 𝑣 = 𝜆ℎ.

2. Compute coefficients:

• Calculate the frequency-dependent parameters 𝐾𝑖 and 𝐿𝑖, 𝑖 = 1, 2, 3, 4 using the provided equations or precomputed 
values.

3. Start iteration for 𝑛 = 0 to endpoint:

• Evaluate the function of 𝑓𝑛 = 𝑓 (𝑡𝑛, 𝑢𝑛).
• Calculate the derivative of function, 𝑔𝑛 = 𝑔(𝑡𝑛, 𝑢𝑛, 𝑢

,
𝑛).

• Get the approximation of 𝑢𝑛+ 3
2
 and 𝑢′

𝑛+ 3
2

• Use the previous grid points of 𝑡, 𝑢 and 𝑢′ to determine 𝑢𝑛+2 and 𝑢′𝑛+2.

4. Update the approximations:

• Set 𝑢𝑛+2 as the final value for solution at 𝑡𝑛+2
• Set 𝑢′𝑛+2 as the final value for the derivative at 𝑡𝑛+2

5. Output:

• Repeat Step 3 and 4 until the endpoint of 𝑡 is reached.
• Return the solution 𝑢𝑛 and 𝑢′𝑛 for all time steps 𝑛
• Compute the computational time and relative error at every step.
• Evaluate the maximum global error.

This algorithm provides a framework for implementing the TFTDLMM5 method, allowing for efficient and accurate solutions to 
second-order ODEs with oscillatory characteristics.

The numerical data are presented in Tables  1–6 with different step-size, ℎ in particular endpoints, 𝑏. The tables contain the 
maximum global error (ERROR) and the time of computation in seconds (TIME), where TIME refers to the CPU time. The error in 
the form of 2.324(−8) represents 2.324×10−8. These results were obtained using Maple software, which was employed to implement 
the algorithms and perform the calculations.

Figs.  1–7 demonstrate the numerical performance of proposed method and other selected methods in term of maximum global 
truncation error against computational time. The model of computer used in computing the numerical results is Lenovo ideapad 
330 Intel Core i5-8050U (1.8 GHz).
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Fig. 3. Numerical simulation for Duffing problem, 𝛿 = 0, 𝛼 = 1, 𝛽 = 0.001, 𝛾 = 0.002, 𝜆 = 35, 𝑢(0) = 𝑢′(0) = 0 and 𝑡 ∈ [0, 50].

Fig. 4. Numerical simulation for Duffing problem, 𝛿 = 0, 𝛼 = 10, 𝛽 = −2, 𝛾 = 0.002, 𝜆 = 1.01, 𝑢(0) = 1, 𝑢′(0) = −1 and 𝑡 ∈ [0, 50].

Fig. 5. Numerical curves of selected methods for problem 1 with 𝑏 = 100 and ℎ = 0.1
2𝑖
, 𝑖 = 0, 1,… , 4.
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Table 1
Numerical comparison between TFTDLMM5 method with existing methods for problem 1.
 ℎ Methods 𝑏 = 100 𝑏 = 1000

 ERROR TIME ERROR TIME  
 TFTDLMM5 3.080822(−9) 0.070 3.084562(−8) 1.044  
 TFLMMA4 2.879908(−4) 0.169 2.879908(−4) 2.511  
 0.1 LFDM6 7.940765(−2) 0.061 5.834896(−1) 0.964  
 TFTDLMM(S3) 2.122583(−4) 0.123 2.163089(−3) 1.790  
 TFTDLMM(S5) 5.449040(−4) 0.140 5.497057(−3) 2.088  
 TFTDLMM5 7.321837(−13) 0.141 7.359522(−12) 2.076  
 TFLMMA4 4.331341(−6) 0.332 4.339723(−6) 4.983  
 0.05 LFDM6 1.858558(−2) 0.120 1.722294(−1) 1.880  
 TFTDLMM(S3) 1.834283(−7) 0.258 1.853044(−6) 3.066  
 TFTDLMM(S5) 4.454862(−7) 0.275 4.489033(−6) 3.566  
 TFTDLMM5 1.784523(−16) 0.289 1.791698(−15) 4.157  
 TFLMMA4 6.435404(−8) 0.673 6.739007(−8) 9.418  
 0.025 LFDM6 2.544737(−3) 0.235 2.530715(−2) 3.710  
 TFTDLMM(S3) 1.749708(−10) 0.482 1.755904(−9) 5.117  
 TFTDLMM(S5) 4.249776(−10) 0.523 4.260681(−9) 6.078  
 TFTDLMM5 4.355671(−20) 0.576 4.370149(−19) 8.170  
 TFLMMA4 8.307822(−10) 1.385 1.051535(−9) 18.876 
 0.0125 LFDM6 3.238462(−4) 0.468 3.255817(−3) 7.833  
 TFTDLMM(S3) 1.696834(−13) 0.879 1.703211(−12) 9.759  
 TFTDLMM(S5) 4.120322(−13) 0.957 4.132831(−12) 11.802 
 TFTDLMM5 1.063306(−23) 1.174 1.067033(−22) 16.297 
 TFLMMA4 8.898683(−12) 2.689 1.641794(−11) 35.986 
 0.00625 LFDM6 4.050655(−5) 0.964 4.092068(−4) 15.893 
 TFTDLMM(S3) 1.654418(−16) 1.530 1.660466(−15) 17.538 
 TFTDLMM(S5) 4.041456(−16) 1.660 4.030619(−15) 21.622 

Table 2
Numerical comparison between TFTDLMM5 method with existing methods for problem 2.
 ℎ Methods 𝑏 = 10 𝑏 = 100

 ERROR TIME ERROR TIME  
 TFTDLMM5 6.056155(−9) 0.876 6.062388(−8) 8.410  
 TFLMMA4 8.804463(−3) 1.986 8.804463(−3) 18.059  
 0.005 LFDM6 1.518060(−1) 0.786 8.325815(−1) 7.622  
 TFTDLMM(S3) 4.202813(−4) 1.104 4.994741(−2) 9.948  
 TFTDLMM(S5) 1.075435(−3) 1.236 1.082991(−2) 13.559  
 TFTDLMM5 1.566963(−12) 1.812 1.448237(−11) 16.790  
 TFLMMA4 1.088900(−3) 3.940 1.088900(−3) 35.985  
 0.0025 LFDM6 3.614375(−2) 1.679 3.099210(−1) 15.017  
 TFTDLMM(S3) 3.622192(−7) 2.070 3.634861(−6) 19.497  
 TFTDLMM(S5) 8.788966(−7) 2.493 8.808807(−6) 25.421  
 TFTDLMM5 2.728844(−14) 3.643 2.739838(−14) 33.544  
 TFLMMA4 1.354475(−4) 6.910 1.354475(−4) 68.575  
 0.00125 LFDM6 5.007624(−3) 3.305 4.902641(−2) 29.839  
 TFTDLMM(S3) 3.433103(−10) 4.149 3.445535(−9) 37.932  
 TFTDLMM(S5) 8.333796(−10) 4.998 8.360669(−9) 48.746  
 TFTDLMM5 1.699032(−15) 7.188 1.699056(−15) 65.683  
 TFLMMA4 1.620214(−5) 14.441 1.620214(−5) 135.481 
 0.000625 LFDM6 6.401012(−4) 6.584 6.380343(−3) 59.764  
 TFTDLMM(S3) 3.362081(−13) 8.210 3.343162(−12) 76.034  
 TFTDLMM(S5) 7.906715(−15) 10.876 8.109941(−12) 93.292  
 TFTDLMM5 1.060843(−16) 14.305 1.060843(−16) 131.478 
 TFLMMA4 2.118873(−6) 28.796 2.118873(−6) 277.583 
 0.0003125 LFDM6 8.038350(−5) 12.941 8.032162(−4) 114.879 
 TFTDLMM(S3) 1.326901(−15) 16.325 3.886620(−15) 151.326 
 TFTDLMM(S5) 7.901624(−16) 21.569 7.906715(−15) 189.648 

5. Discussion and conclusions

In this paper, a novel fifth-order two-derivative linear multistep method with trigonometrically-fitting technique, denoted as 
TFTDLMM5 is constructed based on the Gegenbauer polynomial as basis function is derived for solving 𝑢′′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) with 
oscillatory solution. At first, general formulation of TDLMM method, with second-derivative, 𝑓 -evaluations and third-derivative, 
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Table 3
Numerical comparison between TFTDLMM5 method with existing methods for problem 3.
 ℎ Methods 𝑏 = 5 𝑏 = 50

 ERROR TIME ERROR TIME 
 TFTDLMM5 5.641905(−7) 0.005 4.720604(−6) 0.062 
 TFLMMA4 2.935044(−5) 0.009 1.953935(−4) 0.095 
 0.5 LFDM6 5.342877(−5) 0.009 4.776093(−4) 0.078 
 TFTDLMM(S3) 6.895303(−6) 0.007 7.170154(−5) 0.071 
 TFTDLMM(S5) 3.481899(−5) 0.008 1.061880(+7) 0.073 
 TFTDLMM5 1.809876(−7) 0.007 1.891834(−6) 0.074 
 TFLMMA4 6.278201(−6) 0.012 4.536311(−5) 0.123 
 0.4 LFDM6 1.189272(−5) 0.013 1.382468(−4) 0.099 
 TFTDLMM(S3) 1.878760(−6) 0.009 2.353384(−5) 0.082 
 TFTDLMM(S5) 1.784879(−5) 0.010 1.132666(+4) 0.085 
 TFTDLMM5 5.276895(−8) 0.009 5.823086(−7) 0.100 
 TFLMMA4 8.988203(−7) 0.015 6.893348(−6) 0.164 
 0.3 LFDM6 2.341808(−6) 0.016 2.611099(−5) 0.142 
 TFTDLMM(S3) 5.791658(−7) 0.011 6.838890(−6) 0.106 
 TFTDLMM(S5) 3.735978(−6) 0.012 5.959620(+0) 0.108 
 TFTDLMM5 1.049511(−8) 0.011 1.130206(−7) 0.153 
 TFLMMA4 7.499951(−8) 0.018 6.175574(−7) 0.241 
 0.2 LFDM6 2.226380(−7) 0.019 2.424289(−6) 0.201 
 TFTDLMM(S3) 1.174565(−7) 0.014 1.342521(−6) 0.155 
 TFTDLMM(S5) 4.890288(−7) 0.016 1.035996(−3) 0.159 
 TFTDLMM5 6.601377(−10) 0.022 6.988465(−9) 0.304 
 TFLMMA4 3.107346(−9) 0.035 3.088265(−8) 0.479 
 0.1 LFDM6 3.659208(−9) 0.039 3.837896(−8) 0.400 
 TFTDLMM(S3) 7.677380(−9) 0.028 8.265949(−8) 0.305 
 TFTDLMM(S5) 1.651870(−8) 0.031 1.946905(−7) 0.317 

Table 4
Numerical comparison between TFTDLMM5 method with existing methods for problem 4.
 ℎ Methods 𝑏 = 10 𝑏 = 100

 ERROR TIME ERROR TIME  
 TFTDLMM5 7.977340(−19) 0.067 3.572508(−17) 0.513  
 TFLMMA4 2.938062(−8) 0.126 3.176734(−4) 0.972  
 0.1 LFDM6 2.998295(−8) 0.151 3.195565(−7) 0.890  
 TFTDLMM(S3) 2.237790(−12) 0.044 1.222159(−10) 0.420  
 TFTDLMM(S5) 1.092689(−16) 0.046 3.402128(−16) 0.431  
 TFTDLMM5 2.063606(−22) 0.132 1.920456(−21) 1.072  
 TFLMMA4 1.981663(−10) 0.250 1.688161(−7) 1.995  
 0.05 LFDM6 4.599714(−10) 0.286 4.815364(−9) 1.796  
 TFTDLMM(S3) 1.780272(−15) 0.086 6.678577(−14) 0.839  
 TFTDLMM(S5) 2.763311(−20) 0.090 2.634101(−19) 0.864  
 TFTDLMM5 5.227559(−26) 0.262 4.334490(−25) 2.297  
 TFLMMA4 1.433911(−12) 0.495 4.168009(−10) 3.813  
 0.025 LFDM6 7.041945(−12) 0.547 7.561881(−11) 3.863  
 TFTDLMM(S3) 1.534396(−18) 0.172 3.960639(−17) 1.688  
 TFTDLMM(S5) 6.788675(−24) 0.176 7.156790(−23) 1.703  
 TFTDLMM5 1.302537(−29) 0.524 1.159116(−28) 4.751  
 TFLMMA4 1.077299(−14) 0.974 1.944607(−12) 7.578  
 0.0125 LFDM6 9.625602(−12) 1.040 9.480182(−10) 7.852  
 TFTDLMM(S3) 1.396694(−21) 0.340 2.616662(−20) 3.412  
 TFTDLMM(S5) 1.664261(−27) 0.346 1.765264(−26) 3.849  
 TFTDLMM5 3.213882(−33) 1.023 3.069561(−32) 9.501  
 TFLMMA4 8.252017(−17) 1.851 1.192627(−14) 14.854 
 0.00625 LFDM6 2.936344(−13) 2.079 2.894594(−11) 15.863 
 TFTDLMM(S3) 1.313810(−24) 0.713 1.944082(−23) 7.015  
 TFTDLMM(S5) 4.074683(−31) 0.721 4.313005(−30) 7.781  

𝑔-evaluations is proposed. Interpolation and collocation technique in various grid-points are applied to derive this method. Then, the 
trigonometrical-fitted technique is implemented into the proposed method whereby several parameters are chosen to be formulated 
into frequency and step-size dependent coefficients. In numerical analysis, our proposed method has been shown to exhibit stability, 
consistency and convergence properties. The analysis confirms that the proposed method offers reliability and accuracy in solving 
the equation in the form of 𝑢′′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)).
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Table 5
Numerical comparison between TFTDLMM5 method with existing methods for problem 5.
 ℎ Methods 𝑏 = 5 𝑏 = 50

 ERROR TIME ERROR TIME  
 TFTDLMM5 2.883465(−22) 1.212 2.942271(−21) 10.796  
 TFLMMA4 3.072194(−11) 2.579 1.935640(−10) 24.536  
 0.005 LFDM6 5.998222(−10) 2.402 6.116481(−9) 20.594  
 TFTDLMM(S3) 1.749946(−15) 0.860 1.790669(−14) 9.461  
 TFTDLMM(S5) 3.646129(−20) 0.884 1.899662(−11) 10.523  
 TFTDLMM5 7.044740(−26) 2.364 7.183239(−25) 20.950  
 TFLMMA4 2.473917(−13) 5.112 1.968380(−12) 46.469  
 0.0025 LFDM6 9.218070(−12) 4.856 9.571915(−11) 41.895  
 TFTDLMM(S3) 1.710569(−18) 1.722 1.746507(−17) 20.979  
 TFTDLMM(S5) 8.867717(−24) 1.806 5.880075(−22) 20.716  
 TFTDLMM5 1.720582(−29) 4.526 1.753613(−28) 42.543  
 TFLMMA4 1.963414(−15) 11.199 1.775162(−14) 96.874  
 0.00125 LFDM6 7.336177(−12) 9.797 7.518863(−11) 84.957  
 TFTDLMM(S3) 1.671770(−21) 3.488 1.704967(−20) 38.654  
 TFTDLMM(S5) 2.164417(−27) 3.603 2.208382(−26) 41.750  
 TFTDLMM5 4.201504(−33) 9.132 4.281238(−32) 85.982  
 TFLMMA4 1.551217(−17) 22.696 1.494554(−16) 212.350 
 0.000625 LFDM6 2.319059(−13) 19.814 2.351709(−12) 180.847 
 TFTDLMM(S3) 1.633289(−24) 6.999 1.664825(−23) 78.692  
 TFTDLMM(S5) 5.285847(−31) 7.838 5.389048(−30) 82.266  
 TFTDLMM5 1.025757(−36) 19.177 1.045212(−35) 173.565 
 TFLMMA4 1.218641(−19) 39.187 1.213034(−18) 422.875 
 0.0003125 LFDM6 7.307939(−15) 37.931 7.351022(−14) 353.310 
 TFTDLMM(S3) 1.595385(−27) 14.626 1.625744(−26) 154.059 
 TFTDLMM(S5) 1.290839(−34) 15.439 1.315544(−33) 165.232 

Table 6
Numerical comparison between TFTDLMM5 method with existing methods for problem 6.
 ℎ Methods 𝑏 = 10 𝑏 = 100

 ERROR TIME ERROR TIME  
 TFTDLMM5 1.108454(−18) 0.130 3.252864(−17) 1.239  
 TFLMMA4 2.504817(−8) 0.203 3.201751(−6) 2.048  
 0.1 LFDM6 3.023221(−8) 0.185 3.225787(−7) 1.851  
 TFTDLMM(S3) 2.268773(−12) 0.098 1.241867(−10) 0.945  
 TFTDLMM(S5) 1.107823(−16) 0.108 3.433128(−16) 1.007  
 TFTDLMM5 2.488077(−22) 0.235 5.179904(−21) 2.441  
 TFLMMA4 1.837986(−10) 0.402 3.588304(−8) 3.987  
 0.05 LFDM6 4.635080(−10) 0.361 4.772839(−9) 3.682  
 TFTDLMM(S3) 1.803891(−15) 0.195 6.784257(−14) 1.894  
 TFTDLMM(S5) 2.801710(−20) 0.216 2.672955(−19) 2.021  
 TFTDLMM5 5.803054(−26) 0.503 9.248865(−25) 4.876  
 TFLMMA4 1.388878(−12) 0.801 2.247937(−10) 7.685  
 0.025 LFDM6 5.233038(−12) 0.709 5.233038(−12) 7.204  
 TFTDLMM(S3) 1.553750(−18) 0.385 4.022125(−17) 3.780  
 TFTDLMM(S5) 6.884213(−24) 0.421 7.269413(−23) 4.053  
 TFTDLMM5 1.383244(−29) 0.921 1.842230(−28) 9.013  
 TFLMMA4 1.066655(−14) 1.565 1.488750(−12) 15.204 
 0.0125 LFDM6 9.307832(−12) 1.421 9.195546(−10) 14.219 
 TFTDLMM(S3) 1.413996(−21) 0.762 2.656149(−20) 7.552  
 TFTDLMM(S5) 1.687701(−27) 0.838 1.793263(−26) 8.091  
 TFTDLMM5 3.336016(−33) 1.839 3.989720(−32) 17.471 
 TFLMMA4 8.261090(−17) 3.097 1.058974(−14) 29.879 
 0.00625 LFDM6 2.900328(−13) 2.814 2.823020(−11) 27.635 
 TFTDLMM(S3) 1.329904(−24) 1.490 1.972659(−23) 14.875 
 TFTDLMM(S5) 4.132141(−31) 1.680 4.381653(−30) 15.625 

In the numerical test, seven different types of problems in the form of 𝑢′′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) with periodic solutions have been selected 
to assess the numerical performance of all chosen methods. TFTDLMM5 method is compared to the existing trigonometrical-fitted 
block multistep methods in predictor–corrector mode, TFTDLMM(S3) and TFTDLMM(S5) methods with three step and five step 
respectively, fourth-order extra derivative multistep method with trigonometrically-fitting technique, denoted as TFLMMA4 method 
and sixth-order linear finite difference method, denoted as LFDM6 method. The numerical performance is assessed based on time 
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Table 7
Numerical comparison between TFTDLMM5 method with existing methods for problem 7.
 ℎ Methods 𝑏 = 5 𝑏 = 50

 ERROR TIME ERROR TIME 
 TFTDLMM5 9.070204(−8) 0.010 6.913959(−7) 0.096 
 TFLMMA4 1.942953(−3) 0.023 +∞ –  
 0.06 LFDM6 1.008236(−5) 0.030 1.047901(−5) 0.293 
 TFTDLMM(S3) 1.243813(−4) 0.016 1.905735(−4) 0.167 
 TFTDLMM(S5) 3.484310(−4) 0.020 3.484310(−4) 0.190 
 TFTDLMM5 4.156115(−8) 0.012 3.981147(−7) 0.115 
 TFLMMA4 2.012324(−6) 0.027 4.587678(−6) 0.281 
 0.05 LFDM6 1.278385(−5) 0.033 1.318964(−5) 0.329 
 TFTDLMM(S3) 1.622511(−5) 0.019 1.739963(−5) 0.189 
 TFTDLMM(S5) 2.624433(−4) 0.024 2.624433(−4) 0.231 
 TFTDLMM5 1.812304(−8) 0.016 1.826894(−7) 0.147 
 TFLMMA4 1.274522(−6) 0.036 3.390203(−6) 0.324 
 0.04 LFDM6 2.892861(−6) 0.046 2.915024(−6) 0.472 
 TFTDLMM(S3) 1.206657(−6) 0.023 1.231387(−6) 0.229 
 TFTDLMM(S5) 1.767325(−5) 0.030 1.891734(−5) 0.281 
 TFTDLMM5 6.122474(−9) 0.019 6.214625(−8) 0.195 
 TFLMMA4 2.020570(−7) 0.046 7.249179(−7) 0.452 
 0.03 LFDM6 1.136894(−7) 0.059 1.137089(−7) 0.581 
 TFTDLMM(S3) 8.012362(−8) 0.027 1.208352(−7) 0.260 
 TFTDLMM(S5) 9.464944(−8) 0.038 1.179918(−7) 0.389 
 TFTDLMM5 1.265660(−9) 0.031 1.284038(−8) 0.325 
 TFLMMA4 1.645368(−8) 0.071 9.031406(−8) 0.650 
 0.02 LFDM6 4.751012(−9) 0.090 4.767446(−9) 0.948 
 TFTDLMM(S3) 9.149944(−9) 0.044 8.106083(−8) 0.434 
 TFTDLMM(S5) 1.515671(−9) 0.057 7.101003(−9) 0.587 

Fig. 6. Numerical curves of selected methods for problem 2 with 𝑏 = 100 and ℎ = 0.005
2𝑖

, 𝑖 = 0, 1,… , 4.

of computation and maximum global error generated by all selected methods. The results are displayed in Tables  1–7 and Figs. 
5–11. The two-derivative term offers significant advantages in accuracy, particularly when coupled with the trigonometric-fitting 
technique. This combination ensures that the error generated at every stage is exceptionally small, particularly when the step-size 
is sufficiently small. Also, the complexity of the TFTDLMM5 method is relatively low compared to others. It does not involve a 
corrector method to rectify the approximations at every stage, resulting in lower computational time compared to TFTDLMM(S3) and 
TFTDLMM(S5) with corrector methods. Besides, TFTDLMM5 method generates the least maximum global error among all methods 
with different step-sizes and endpoints. The results indicate that TFTDLMM5 method outperforms other existing methods.

From the results, the TFTDLMM5 method has proven to be proficient in solving various types of problems, including homo-
geneous, inhomogeneous, linear, and nonlinear problems. Nonlinear application problems with periodic properties, such as the 
two-body problem and Duffing problem, have been selected for numerical tests. The nonlinearity in the two-body problem and 
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Fig. 7. Numerical curves of selected methods for problem 3 with 𝑏 = 50 and ℎ = 0.5 − 0.1𝑖, 𝑖 = 0, 1,… , 4.

Fig. 8. Numerical curves of selected methods for problem 4 with 𝑏 = 100 and ℎ = 0.1
2𝑖
, 𝑖 = 0, 1,… , 4.

Duffing problem causes some inaccuracy for certain methods, leading to relatively high global error compared to others, especially 
for the method without trigonometrical-fitted technique. Frequency-dependent coefficients are tailored to match the oscillatory 
nature of the problem being solved. By fitting these coefficients to the specific frequency of the solution, the numerical method 
can more accurately capture the behavior of the system, reducing the local truncation error. These coefficients help ensure that the 
numerical method remains stable over a wide range of step sizes. For oscillatory problems, maintaining stability is critical to prevent 
the solution from diverging or exhibiting unphysical behavior. In oscillatory problems, phase error can accumulate over time, leading 
to significant discrepancies between the numerical and exact solutions. Frequency-dependent coefficients help minimize phase error, 
ensuring that the numerical solution stays in phase with the true solution over long time intervals.

There are a few topics that can be explored for future research. TFTDLMM method can be extended to solve general type of 
second-order ODEs in the form of 𝑢′′(𝑡) = 𝑓 (𝑡, 𝑢(𝑡), 𝑢′(𝑡)) with periodic solution. Besides, two-derivative multistep method can be 
adapted to solve delay differential equations (DDEs), which involve delays in their formulation, can be a significant research area. 
This involves modifying the existing methods to handle the delayed terms effectively while maintaining stability and accuracy. Also, 
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Fig. 9. Numerical curves of selected methods for problem 5 with 𝑏 = 50 and ℎ = 0.005
2𝑖

, 𝑖 = 0, 1,… , 4.

Fig. 10. Numerical curves of selected methods for problem 6 with 𝑏 = 10 and ℎ = 0.1
2𝑖
, 𝑖 = 0, 1,… , 4.

we can adapt two-derivative linear multistep methods with trigonometric-fitting techniques to solve partial differential equations 
(PDEs). The proposed method can indeed be extended to partial differential equations (PDEs), particularly when the PDEs exhibit 
certain properties such as periodicity or separability in space and time. To apply our method to PDEs, we would typically need 
to discretize the spatial and temporal domains. For example, in the case of a time-dependent PDE, such as a heat equation or 
wave equation, the temporal discretization could be handled using our two-derivative linear multistep method, while the spatial 
derivatives could be approximated using methods like finite differences, finite elements, or spectral methods. The trigonometrical-
fitting technique could also be adapted to improve the accuracy of spatial or temporal discretization, ensuring accuracy for problems 
with oscillatory behavior in both dimensions. Moreover, for nonlinear PDEs, the method can still be applicable if the nonlinearity is 
separable or if the problem can be treated using an iterative approach. In such cases, the method would be applied to the linearized 
form of the PDE in each iteration, with updates to the solution at each time step. Other than block multistep method, we could 
combine trigonometric-fitting technique with other efficient methods, such as finite element methods or spectral methods, to create 
hybrid approaches that leverage the strengths of each method for solving complex partial differential equations.
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Fig. 11. Numerical curves of selected methods for Duffing problem with 𝑏 = 5 and ℎ = 0.06 − 0.01𝑖, 𝑖 = 0, 1,… , 4.

CRediT authorship contribution statement

K.C. Lee: Writing – review & editing, Writing – original draft, Visualization, Software, Project administration, Methodology, 
Funding acquisition, Formal analysis, Data curation. I. Hashim: Writing – review & editing, Validation, Supervision, Conceptualiza-
tion. M.N. Mohd Aris: Writing – original draft, Visualization, Methodology, Conceptualization. N. Senu: Validation, Supervision, 
Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: This study was supported by Grant Schemes (Ref. No. GGPM-2023-029) awarded by Universiti Kebangsaan Malaysia 
(UKM). The authors declare that there is no conflict of interest related to the publication of this paper.

Acknowledgments

All authors gratefully acknowledge for the financial support by Grant Schemes (Ref. No. GGPM-2023-029) awarded by Universiti 
Kebangsaan Malaysia. The authors declare that there is no conflict of interest related to the publication of this paper.

References

[1] Z. Chen, J. Li, R. Zhang, X. You, Exponentially fitted two-derivative Runge–Kutta methods for simulation of oscillatory genetic regulatory systems, Comput. 
Math. Methods Med. 2015 (2015) 1–14.

[2] J.M. Franco, L. Randez, Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs, Internat. 
J. Modern Phys. C 29 (2018) 1850002.

[3] Z. Abbasi, M. Izadi, M.M. Hosseini, A highly accurate matrix method for solving a class of strongly nonlinear BVP arising in modeling of human shape 
corneal, Math. Methods Appl. Sci. 46 (2022) 1511–1527.

[4] M. Izadi, H.M. Srivastava, The reaction–diffusion models in biomedicine: highly accurate calculations via a hybrid matrix collocation algorithm, Circuits 
Syst. Signal Process. Appl. Sci. 13 (2023) 11672.

[5] A. Hasan, M.A. Halim, M.A. Meia, Application of linear differential equation in an analysis transient and steady response for second order RLC closed 
series circuit, Circuits Systems Signal Process. 5 (2019) 1–8.

[6] X. Bai, Y. He, M. Xu, Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form, IEEE Trans. Aerosp. Electron. 
Syst. 57 (2021) 3279–3295.

[7] L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural 
network, IEEE Trans. Cybern. 53 (2023) 4015–4028.

[8] B. Jiang, Y. Zhao, J. Dong, J. Hu, Analysis of the influence of trust in opposing opinions: An inclusiveness-degree based signed Deffuant–Weisbush model, 
Inf. Fusion 104 (2024) 102173.

[9] S.N. Jator, Solving second order initial value problems by a hybrid multistep method without predictors, Appl. Math. Comput. 217 (2010) 4036–4046.
[10] K.S. Jacob, A zero-stable optimal order method for direct solution of second order differential equations, J. Math. Stat. 6 (2010) 367–371.
[11] I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger 

equation, Comput. Math. Appl. 62 (2011) 3756–3774.
[12] G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Optimized explicit symmetric linear multistep methods for the numerical solution of the Schrödinger equation 

and related orbital problems, AIP Conf. Proc. 1504 (2012) 1344–1347.
439 

http://refhub.elsevier.com/S0378-4754(25)00217-4/sb1
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb1
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb1
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb2
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb2
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb2
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb3
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb3
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb3
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb4
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb4
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb4
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb5
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb5
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb5
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb6
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb6
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb6
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb7
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb7
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb7
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb8
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb8
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb8
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb9
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb10
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb11
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb11
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb11
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb12
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb12
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb12


K.C. Lee et al. Mathematics and Computers in Simulation 239 (2026) 420–441 
[13] D.O. Awoyemi, O.O. Olanegan, O.B. Akinduko, A 2-step four-point hybrid linear multistep method for solving second order ordinary differential equations 
using Taylor’s series approach, Brit. J. Math. Comput. Sci. 11 (2015) 1–13.

[14] M. Baccouch, Superconvergence of the discontinuous Galerkin method for nonlinear second-order initial-value problems for ordinary differential equations, 
Appl. Numer. Math. 115 (2017) 160–179.

[15] Z.B. Ibrahim, N. Zainuddin, K.I. Othman, Variable order block method for solving second order ordinary differential equations, Sains Malays. 48 (2019) 
1761–1769.

[16] A.F.N. Rasedee, M.H.A. Sathar, S.R. Hamzah, N. Ishak, T.J. Wong, L.F. Koo, S.N.I. Ibrahim, Two-point block variable order step size multistep method for 
solving higher order ordinary differential equations directly, J. King Saud Univ. 33 (2021) 101376.

[17] R. Singla, G. Singh, H. Ramos, V. Kanwar, An efficient optimized adaptive step-size hybrid block method for integrating 𝑤′′ = 𝑓 (𝑡, 𝑤,𝑤′) directly, J. 
Comput. Appl. Math. 420 (2022) 114838.

[18] S.O. Ayinde, M.O. Oke, R.B. Ogunrinde, A.A. Obayomi, S.N. Ogunyebi, S.E. Fadugba, O.E. Abolarin, A multistep method for a special class of second-order 
differential equations, Innov. Sci. Technol. 1 (2022) 8–18.

[19] M. Ahsan, T. Tran, Siraj-ul Islam, I. Hussain, A multiresolution collocation method and its convergence for Burgers’ type equations, Math. Methods Appl. 
Sci. 46 (2022) 11702–11725.

[20] M. Ahsan, W. Lei, M. Alwuthaynani, M. Ahmad, M. Nisar, A higher-order collocation method based on Haar wavelets for integro-differential equations 
with two-point integral condition, Phys. Scr. 99 (2023) 015211.

[21] M. Ahsan, W. Lei, M. Bohner, A.A. Khan, A high-order multi-resolution wavelet method for nonlinear systems of differential equations, Math. Comput. 
Simulation 215 (2024) 543–559.

[22] M. Ahsan, W. Lei, M. Ahmad, M.S. Hussein, A wavelets based collocation technique to find the discontinuous heat source in inverse heat conduction 
problems, Phys. Scr. 97 (2022) 125208.

[23] M. Ahsan, W. Lei, A.A. Khan, A. Ullah, S. Ahmad, S.U. Arifeen, Z. Uddin, H. Qu, A high-order reliable and efficient Haar wavelet collocation method for 
nonlinear problems with two point-integral boundary conditions, Alex. Eng. J. 71 (2023) 185–200.

[24] M. Ahsan, W. Lei, A.A. Khan, M. Ahmad, M. Alwuthaynani, A. Amjad, A higher-order collocation technique based on Haar wavelets for fourth-order 
nonlinear differential equations having nonlocal integral boundary conditions, Alex. Eng. J. 86 (2024) 230–242.

[25] G. Hojjati, M.Y.R. Ardabili, S.M. Hosseini, New second derivative multistep methods for stiff systems, Appl. Math. Model. 30 (2006) 466–476.
[26] D.G. Yakubu, A.I. Bakari, S. Markus, Two-step second-derivative high-order methods with two off-step points for solution of stiff systems, Afr. Mat. 26 

(2014) 1081–1093.
[27] K.C. Lee, U.K.S. Din, R.R. Ahmad, Solution of third order ordinary differential equation using improved block hybrid collocation method, Sains Malays. 

47 (2018) 2179–2186.
[28] H. Ramos, M.A. Rufai, Third derivative modification of 𝑘-step block falkner methods for the numerical solution of second order initial-value problems, 

Appl. Math. Comput. 333 (2018) 231–245.
[29] T. Majidi, A. Abdi, G. Hojjati, Generalized second derivative linear multistep methods for ordinary differential equations, Numer. Algorithms 91 (2022) 

227–250.
[30] O.K. Matthew, A family of implicit higher order methods for the numerical integration of second order differential equations, Math. Theory Model. 2 

(2012) 67–75.
[31] R.B. Adeniyi, E.O. Adeyefa, Chebyshev collocation approach for a continuous formulation of implicit hybrid methods for vips in second order odes, IOSR 

J. Math. 6 (2013) 9–12.
[32] M.M. Khalsaraei, S. Bazm, N.N. Oskuyi, Matrix free super-implicit second derivative multistep methods for stiff initial value problems in odes, Acta Univ. 

Apulensis 35 (2013) 259–272.
[33] Y. Skwame, J. Sunday, T.Y. Kyagya, An A-stable backward difference second order linear multistep method for solving stiff ordinary differential equation, 

Int. J. Multidiscip. Curr. Educ. Res. 1 (2019) 1–11.
[34] P. Tumba, J. Sabo, A.A. Okeke, D.I. Yakoko, An accurate implicit quarter step first derivative block hybrid method (AIQSFDBHM) for solving ordinary 

differential equations, Asian Res. J. Math. 13 (2019) 1–13.
[35] S.E. Ekoro, M.N.O. Ikhile, I.M. Esuabana, Implicit second derivative hybrid linear multistep method with nested predictors for ordinary differential equations, 

Am. Sci. Res. J. Eng. Technol. Sci. 42 (2021) 297–308.
[36] D.G. Yakubu, M. Abdulhameed, G.T. Adamu, I. Abdullahi, Multivalue multistep implicit second derivative methods for the numerical integration of stiff 

ordinary differential equations, J. Pure Appl. Sci. 21 (2021) 1–13.
[37] X. You, Y. Zhou, X. Cheng, A novel family of P-stable symmetric extended linear multistep methods for oscillators, Appl. Math. Comput. 249 (2014) 

597–610.
[38] A.F. Mansor, F. Ismail, N. Senu, Two point block multistep methods with trigonometric-fitting for solving oscillatory problems, Pertanika J. Sci. Technol. 

27 (2019) 2381–2398.
[39] M.A. Rufai, A. Shokri, E.O. Omole, A one-point third-derivative hybrid multistep technique for solving second-order oscillatory and periodic problems, J. 

Math. 2023 (2023) 2343215, 12.
[40] T.E. Simos, A new methodology for the development of efficient multistep methods for first-order IVPs with oscillating solutions, Math. 12 (2023) 504.
[41] Z. Omar, Hybrid third derivative block method for the solution of general second order initial value problems with generalized one step point, Eur. J. 

Pure Appl. Math. 12 (2019) 1199–1214.
[42] H. Soomro, N. Zainuddin, H. Daud, J. Sunday, N. Jamaludin, A. Abdullah, A. Mulono, E.A. Kadir, 3-point block backward differentiation formula with an 

off-step point for the solutions of stiff chemical reaction problems, J. Math. Chem. 61 (2022) 75–97.
[43] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., ISBN: 978-0-691-08078-9.
[44] Z.B. Ibrahim, A.A. Nasarudin, A class of hybrid multistep block methods with A-stability for the numerical solution of stiff ordinary differential equations, 

Math. 8 (2020) 914.
[45] P. Henrici, Discrete Variable Method in Ordinary Differential Equations, John Wiley & Sons, New York., 1962.
[46] K.C. Lee, U.K.S. Din, R.R. Ahmad, Solution of third order ordinary differential equation using improved block hybrid collocation method, Sains Malays. 

47 (2018) 2179–2186.
[47] J.D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, John Wiley & Sons, Chichester, 1991.
[48] S.Z. Ahmad, Y.T. Mohamed, F. Ismail, N. Senu, Extra derivative linear multistep methods with trigonometric-fitting for oscillatory problems, J. Eng. Appl. 

Sci. 14 (2019) 2230–2239.
[49] S.N. Jator, A sixth order linear multistep method for the direct solution of 𝑦′′ = 𝑓 (𝑥, 𝑦, 𝑦′), Int. J. Pure Appl. Math. 40 (2011) 457–472.
[50] K.C. Lee, M.A. Alias, N. Senu, A. Ahmadian, On efficient frequency-dependent parameters of explicit two-derivative improved Runge–Kutta-Nyström method 

with application to two-body problem, Alex. Eng. J. 72 (2023) 605–620.
[51] H. Ramos, R. Abdulganiy, R. Olowe, S. Jator, A family of functionally-fitted third derivative block falkner methods for solving second-order initial value 

problems with oscillating solutions, Math. 9 (2021) 713.
[52] F. Ismail, S.Z. Ahmad, Y.D. Jikantoro, N. Senu, Block hybrid method with trigonometric-fitting for solving oscillatory problems, Sains Malays. 47 (2018) 

2223–2230.
440 

http://refhub.elsevier.com/S0378-4754(25)00217-4/sb13
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb13
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb13
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb14
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb14
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb14
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb15
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb15
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb15
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb16
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb16
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb16
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb17
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb17
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb17
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb18
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb18
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb18
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb19
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb19
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb19
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb20
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb20
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb20
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb21
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb21
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb21
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb22
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb22
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb22
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb23
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb23
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb23
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb24
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb24
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb24
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb25
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb26
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb26
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb26
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb27
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb27
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb27
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb28
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb28
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb28
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb29
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb29
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb29
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb30
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb30
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb30
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb31
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb31
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb31
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb32
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb32
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb32
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb33
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb33
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb33
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb34
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb34
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb34
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb35
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb35
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb35
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb36
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb36
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb36
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb37
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb37
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb37
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb38
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb38
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb38
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb39
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb39
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb39
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb40
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb41
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb41
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb41
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb42
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb42
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb42
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb43
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb44
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb44
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb44
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb45
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb46
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb46
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb46
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb47
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb48
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb48
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb48
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb49
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb50
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb50
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb50
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb51
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb51
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb51
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb52
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb52
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb52


K.C. Lee et al. Mathematics and Computers in Simulation 239 (2026) 420–441 
[53] B. Wang, A. Iserles, X. Wu, Arbitrary–order trigonometric Fourier collocation methods for multi-frequency oscillatory systems, Found. Comput. Math. 16 
(2015) 151–181.

[54] H.S.S. Alvaro, C.A. Gilder, J.M.H. Lorenzo, Analytical solution to the generalized complex Duffing equation, Sci. World J. 2022 (2022) 2711466.
[55] M.J. Brennan, I. Kovacic, A. Carrella, T.P. Waters, On the jump-up and jump-down frequencies of the Duffing oscillator, J. Sound Vib. 318 (2008) 

1250–1261.
441 

http://refhub.elsevier.com/S0378-4754(25)00217-4/sb53
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb53
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb53
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb54
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb55
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb55
http://refhub.elsevier.com/S0378-4754(25)00217-4/sb55

	A novel two-derivative multistep collocation method with fitting-techniques with application to Duffing problem
	Introduction
	Development of trigonometrical-fitted two-derivative multistep collocation method
	Derivation of two-derivative multistep collocation method
	Trigonometrically-Fitted Two-Derivative Linear Multistep Method

	Numerical Analysis of TFTDLMM5 Method
	Numerical Tests and Results
	Algorithm: Implementation of TFTDLMM5 method

	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


