Mathematics and Computers in Simulation 239 (2026) 420-441

Mathematics and Computers in Simulation

journal homepage: www.elsevier.com/locate/matcom

Contents lists available at ScienceDirect

Original articles

L))

Check for

A novel two-derivative multistep collocation method with
fitting-techniques with application to Duffing problem
K.C. Lee®", I. Hashim *®, M.N. Mohd Aris*®, N. Senu ><®>*

a Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
b Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
¢ Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia

ARTICLE INFO

ABSTRACT

Keywords:
Two-derivative linear multistep methods
Gegenbauer polynomial

The general k-step fifth-order two-derivative linear multistep collocation method (TDLMMS5)
using collocation technique with Gegenbauer polynomial as basis function is derived for direct
integrating second-order ordinary differential equation in the form u” () = f(t, u(?)) with periodic

Collocation ) ) ) ) solution. Fifth-order two-derivative linear multistep method with various collocation points
Second-order ordinary differential equations . . . . . . s

Stability and off-set points is developed using collocation and interpolation approach. Order, stability,
Consistency consistency and convergence of TDLMMS5 are analyzed and discussed. Then, trigonometrically-

fitting technique is adapted into TDLMMS5 by setting u(r) as the linear combination of the
functions {sin(Ar), cos(4n)}, 4 € R and turn the coefficients of TDLMMS5 into frequency-dependent.
Numerical experiment is conducted to verify the proposed method is superior compared to other
existing methods in the literature with similar order. Additionally, the trigonometrically-fitted
TDLMMS5, denoted as TFTDLMMS5, is applied to the well-known damped and driven oscillator
problem, known as the Duffing problem. The outcome demonstrates that the proposed method
is still successful in modeling this real-world application problem.

Trigonometrically-fitting technique

1. Introduction

High-order differential equations (ODEs) find extensive utility in forecasting and predicting the evolution of scientific phenomena
and application issues, particularly within engineering and physics domains. Examples include their application to electric circuits,
damped oscillation and vibration, the study of the Pleiades constellation, classical mechanics, and quantum mechanics [1-5]. The
strategic importance of these equations lies in their ability to model systems with high accuracy and predict future states under
varying conditions. Advanced numerical methods and computational techniques are often employed to solve these differential
equations, especially when analytical solutions are not feasible. The development and refinement of such methods are crucial for
enhancing the precision and reliability of predictions in these critical areas. [6-8]. Numerous studies have been undertaken to devise
effective techniques for the integration of second-order ordinary differential equations, particularly those exhibiting specific patterns
or properties.

In this article, our emphasis lies in the development of a trigonometrically-fitted two-derivative linear multistep method. This
method is founded on frequency evaluation techniques and is designed for the solution of a specific class of second-order ordinary
differential equations exhibiting periodic solutions as follows:

u"(0) = f@t,u)),
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u(ty) = ug, u'(to) = ué), t>t. (1.1)
where v’ () represents the second derivative of u(r) with respect to time (or some independent variable 7).

In recent, high-order direct multistep methods with various basis functions and various kind of efficient techniques have been
developed and analyzed to effectively solve high-order ODEs and application problems [9-12]. Awoyemi et al. [13] particularly
proposed four-point hybrid linear multistep method using Taylor’s series approach. The construction of proposed method involves
the interpolation of the power series approximate solution and the collocation of the differential system. The method demonstrates
both consistency and zero stability. Numerical results reveal its superior accuracy in comparison to existing methods. Baccouch [14]
proposed superconvergent discontinuous Galerkin (DG) method for integrating nonlinear second-order initial-value problems. It
establishes optimal a priori error estimates in the L>—norm and proves that the method achieves a convergence order of p and
superconvergence at downwind points with piecewise polynomials of degree p. Ibrahim et al. [15] introduced two-point variable-
order block multistep methods (BMM) with order 3,4 and 5 for direct solving general class of second-order ODEs. They derived
BMM through backward difference interpolation polynomial with two solutions are simultaneously generated at each step. Numerical
experiments validated the efficiency of the proposed method by generating consistently low global errors. Rasedee et al. [16] further
extended the previous research work by proposing variable-order multistep method with Newton-Gregory backward difference
polynomial as basis function in predictor-corrector mode. The predictor-corrector algorithm is further enhanced by incorporating
a variable order step-size algorithm to minimize computational costs. Stability and convergence of the proposed method are also
established. Singla et al. [17] constructed a hybrid block method as an implicit numerical integrator with adaptive step-size for
directly solving general second-order ODEs. Optimization of intermediate points is applied to develop this new efficient method and
the numerical results indicate that the new scheme is a strong alternative to existing solvers with similar characteristics. Ayinde
et al. [18] developed multistep method by employing interpolation within a finite range with the combination of exponential
and trigonometric functions as basis function. Zero stability, absolute stability region and consistency of the proposed method are
investigated. The proposed method has been tested numerically and proven to be more reliable when compared to existing linear
multistep methods that require the reduction of higher-order equations to a system of first-order equations.

Numerous studies have focused on the advancement of collocation methods for solving differential equations [19-21]. Ahsan
et al. [22] introduced a Haar wavelet-based collocation technique specifically designed to address inverse problems with unknown
space-dependent heat sources. Their method, which combines finite-difference and Haar wavelet approximations, produces a well-
conditioned system of algebraic equations, resulting in a stable and convergent solution that closely aligns with the exact solution,
as shown through various numerical examples. A year later, Ahsan et al. [23] enhanced the precision and order of convergence
of the established Haar wavelet collocation method. The proposed method is applied to various nonlinear ordinary differential
equations under diverse conditions, demonstrating improved stability, convergence and accuracy compared to existing collocation
methods. Then, high-order collocation technique based on Haar wavelets are further derived by Ahsan et al. [24] and applied to
solve fourth-order nonlinear differential equations with nonlocal integral boundary conditions. The quasi-linearization technique is
used to linearize nonlinear fourth-order differential equations, which are then efficiently solved using Haar wavelets.

To further enhance the existing multistep method for increased accuracy and order, there are some schemes incorporate a two-
derivative term, which corresponds to the derivative of the f-evaluation. Hojjati et al. [25] presented new class of second derivative
multistep method with improved stabity region. The second derivative extended backward differentiation formula is employed in
a predictor—corrector mode for the method. Yakubu et al. [26] developed two-step multistep method with second-derivative term
in the integration of first-order stiff systems. The inclusion of second derivative terms in the methods grants greater flexibility
in formulating a set of techniques that exhibit high stability, convergence and larger regions of absolute stability. Lee et al. [27]
proposed block hybrid collocation multistep method with four collocation points for direct solving third-order ODEs. They enhanced
the existing block method by incorporating the first derivative of a third-order function into the general formulas of the existing
method, using the power series method as the basis function. Ramos and Rufai [28] utilized collocation and interpolation techniques
in a modified Falkner-type method, incorporating third-order derivatives, to solve systems of second-order initial-value problems.
Their approach has been shown to exhibit stability and convergence properties. Majidi et al. [29] derived second derivative linear
multistep method using super-future point technique through backward differentiation formulae for solving first-order ODEs. They
modified the existing scheme by having same Jacobian matrix for all stages which hugely reduce the computational cost in numerical
approximation. Also, the stability and accuracy properties of proposed method are enhanced while simplifying the original structure
and computational complexity.

There are some researchers focus on deriving implicit multistep method with the aim to achieve unconditionally stable and
better convergence compared to explicit multistep method [30-33]. Tumba et al. [34] presented novel implicit quarter step first
derivative block hybrid method in the integration of first-order stiff ODEs. The method acquires consistent, convergent, A-stable
and zero-stability properties. Absolute stability region of proposed method is larger and numerical efficiency is greater than other
existing explicit multistep methods. Ekoro et al. [35] developed implicit second derivative hybrid linear multistep method with
nested predictors based on interpolation and collocation approach using polynomial basis function. Their method is proved to have
A-stability property using the boundary locus approach for step-length less than 6. Yakubu et al. [36] introduced multivalue multistep
implicit methods with extra-derivatives evaluations in intermediate off-step points located between the well-known step-points. The
stability regions of proposed method in the complex plane reveal better stability and convergence, exhibiting expansive regions
of absolute stability when compared to existing methods without two-derivative term. The proposed method also demonstrates
exceptional performance across a wide range of both linear and nonlinear stiff systems in the form of first-order ODEs, attributed
to their high order of accuracy and stiffly accurate characteristic properties.
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In the pursuit of integrating differential equations with specific solutions effectively, such as exponential and periodic solutions,
many researchers have devised linear or block multistep methods incorporating fitting techniques. You et al. [37] developed a
novel set of phase-fitted and P-stable symmetric extended linear multistep (SELM) methods for solving initial value problems
involving second-order oscillatory differential equations. Derived from the harmonic fitting condition and order requirements,
novel explicit and implicit SELM methods with different orders have been formulated. Mansor et al. [38] presented two-point
implicit block multistep methods with trigonometrically-fitting technique for integrating second-order ODEs in the form of )"’ =
f(x,y) with periodic solutions. Their explicit counterparts are also trigonometrically-fitted, allowing the methods to function as
predictor—corrector pairs during implementation for numerical approximations. Numerical results indicate that the new pairs of
trigonometrically-fitted methods are superior in terms of accuracy and execution time compared to existing methods. Rufai et al. [39]
proposed multistep method with two off-grid point that is formulated through the collocation of a derivative function at both
equidistant grid points and off-grid points. Simultaneous approximations to the solution and its derivative are obtained at every
point in the interval integration. The inclusion of higher derivatives enhances the method’s order, thus improving both its accuracy
and stability properties. Simos [40] presented new methodology for the Adams-Bashforth methods with phase lag, amplification
factor, phase-fitted and amplification-fitted technique. Stability analysis is conducted towards the proposed methods with different
fitting techniques and fitted frequency. All proposed methods are applied to solve first-order application problems with periodic
solutions.

In the development of method for integrating second-order ODEs, existing methods include various multistep approaches with
fitting techniques and different collocation points. However, there is a notable lack of studies focusing on the development of extra-
derivative multistep methods with fitting techniques. Additionally, limited research has been conducted on analyzing the numerical
properties of such methods, particularly in terms of stability analysis. It is well-established that incorporating a two-derivative
term is an effective way to enhance the accuracy of numerical methods. Furthermore, the difference between the interpolating
points and collocating points significantly affects the error generated in subsequent steps and selecting an appropriate difference
is crucial for deriving an efficient proposed method. Hence, to address these drawbacks, we propose a two-derivative multistep
method with trigonometrical fitting techniques and appropriate distance between the interpolating points and collocating points for
solving second-order ODEs with oscillatory solutions. Additionally, a comprehensive stability analysis will be conducted to evaluate
the method’s robustness and ensure its effectiveness for a wide range of periodic problems.

In the current research field, numerous articles explore the use of various intermediate points. For instance, Omar [41]
proposed a ninth-order third-derivative block multistep method utilizing an intermediate point of 3/2 and employing a power
series polynomial as the basis function. Similarly, Soomro et al. [42] developed a fifth-order 3-point block backward differentiation
formula incorporating an intermediate point of 5/2 with a Lagrange polynomial as the basis function. Below are some similarities
and differences between these two multistep methods and the proposed method:

Similarities of existing multistep methods:

» Use of Intermediate Points: Similar to existing multistep methods that utilize intermediate points (e.g., 1/2 or 3/2), the
proposed method incorporates intermediate points to enhance the accuracy of approximations.

» Multistep Framework: Like other multistep methods, the proposed method calculates the solution at multiple steps in a single
iteration, reducing computational effort compared to one-step methods.

» Targeted problem: Similar to the existing methods mentioned above, the proposed method specifically targets second-order
ODEs.

Differences from other existing multistep methods:

» Fitting Techniques: The proposed method will incorporate trigonometrical fitting techniques, which are also utilized in some
existing methods to enhance accuracy for solving ODEs with oscillatory or periodic solutions.

» Choice of Basis Function: Unlike existing methods that typically use power series (e.g., Taylor series) or Lagrange polynomials,
the proposed method employs Gegenbauer polynomials, which offer unique orthogonality properties.

» Two-Derivative Term: The proposed method incorporates a two-derivative function in its formulation, whereas the majority
of the existing methods rely solely on the f-function, without including the g-function (the derivative of f).

One advantage of using Gegenbauer polynomials is their flexibility in the weighting parameter. Gegenbauer polynomials are

orthogonal over the interval [—1, 1] with the weight function (1 — x2)a7. By choosing a suitable a, such as « = 3—1 for oscillatory
solutions, the polynomials can be tailored to match the characteristics of the problem, thereby improving accuracy.

In this study, explicit fifth-order two-derivative multistep method is proposed, denoted as TDLMMS5 method for the direct
integration of second-order ODEs with periodic solutions. The derivation of TDLMM5 method is constructed with Gegenbauer
polynomial up to order five as basis function. The method relies on collocating the differential equation at x; and x,,; and
interpolating the approximate solution through Gegenbauer polynomial at the grid points. The stability region, consistency and
convergence properties of the proposed method are thoroughly examined and discussed. Then, trigonometrically-fitting technique
is implemented into the proposed method to generate frequency-dependent coefficients that exist in TDLMM5 method for making
the proposed method have greater accuracy for solving second-order ODEs with periodic solutions. Numerical tests of both the
proposed methods and selected existing multistep methods for the integration of second-order ordinary differential equations with
periodic solutions, encompassing renowned application problems such as two-body problem and Pleiades problem, are presented
and discussed in this article. The final section concludes with a discussion and summary of the findings.
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2. Development of trigonometrical-fitted two-derivative multistep collocation method
2.1. Derivation of two-derivative multistep collocation method

We begin with the general formulation of two-derivative linear multistep method for solving problem (1.1), comprises the
derivative of the solution ' () = 1@ u@) + fi u@n’ = g(t,u(@), ' (1) as below:

my k my k m3
z{)avju (t+v;h) = h? (Z(‘)ﬂjfnﬂ + z{)ﬂvjf,,JrV/) +n <26ngn+j + z(,)yv/gnwj) , (2.2)
= Jj= Jj= J= J=

k
z a;ju(t+jh)+
~ F

J
where aj,avj,ﬂj,ﬂvj,yj,yvj €R, m,my,m3, k € Z* and v; is non-integer.

To construct TDLMM, we approximate the solution by employing the interpolating function, denoted as U(r), with Gegenbauer
polynomials serving as basis functions. According to Stein and Weiss [43], Gegenbauer polynomials can be expressed in relation to
their generating function as below:

l [se]
— Trfé‘)(z)xn, (2.3)
(1 —21x+x2)§ ,§)

where 0 < |z] < 1,|x| < 1,& > 0. The polynomials, T®)(z) fulfill the recursive Eq. (2.3), can be expressed as

T =1,
T® =2¢z,
(n+ DT, (2) =201+ H2TO(2) — (1 +26 = DTS (2.4

We designate ¢ as i, and subsequently generate the specific Gegenbauer polynomials.

Ty =1,
T, = %z,
T; = %f - gz,

195 4 45, 5
—=2Z — =z + =,
128 32 32
663 5 195Z3+£

B5=556" " tea” (2.5)
To derive the TDLMM formula, we approximate the solution using an interpolating function in the following equation:
o1 +oy+n—1
un= Y aT0, (2.6)
j=0

where ¢t € [tg, b, a; are unknown real coefficients to be determined, T; is Gegenbauer polynomial, ¢, and o, the number of
interpolations for second derivative and third derivative respectively, 5 distinct collocation points with » > 0.

Then, the second derivative of third derivative of interpolating function will be as follows:

o1 +oy+n—1
U'n=rn=3 aT/0,
j=0
o1 +oy+n—1
’ ’
Ui=en= Y 4T 0. @.7)
j=0
The continuous approximation is formulated by enforcing the following conditions:

3
U(tn+r,) =Upyy, N= 0,1,=,2

A
UI,(IH+61)=fn+aly [ =0,1,

3
U (tysoy) = 8veye 02 =0.1.5. 2.8)

Here, we solve U(t,),U(t,,). U"(t,), U" (t,.1), U'(t,,) and U'(tn+;) simultaneously to obtain coefficients a;,j = 0,1,...,5, then
substituting the values a ; into (2.6) and yield the continuous method as follows:

1 1

U@ = Z Aty + h? Z Bifusj + n <y0gn + y%gnJr%) . (2.9)

j=0 Jj=0
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-1, .
o to generalize the

Later, we express «;, f; and y; as continuous coefficients, written as continuous function of x, where x =
solution across the interval from ¢, to 7, . This process involves the following steps:

1. Continuous approximation: The interpolating function, U(r) was initially expressed in terms of Gegenbauer polynomials. To
simplify the expression and make it applicable across any subinterval [t,,, t, +1], the variable x is introduced. By letting x = %,
where h =1, —1,, the functions can be written as continuous polynomials in x.

2. Substitution and simplification: Once x is substituted, the expressions for the coefficients a;, f; and y; are derived by
expanding the original functions into polynomial forms of x.

3. Polynomial fitting: Coefficients a;, f; and y; are obtained by matching the coefficients of the interpolating polynomials with

the collocation points and their derivatives.

Hence, we obtain

aq=1-x, a =x,

ﬂo——m Ex—%x +§x,
0= =505+ 65 T+ 55
y% =%x—%x4+71—5x5. (2.10)

Let x =2, we get

1 9 1 4
Uppp = —Uy + 2un+1 + h2 (Efn + l_ofn+1> + h3 <%gn + Eg"+%> . (211)
To obtain the equation for v/ 42> (2.6) is differentiated with respect to 7, substituted by x = ' and setting x = 2, resulting in:
;o , /1 149 s 19 82
un+2—z[—un+un+l+h (mf,1+mfn+l)+h (—%gn+ﬁgn+%>] (2.12)

In a similar manner, we concurrently solve for U(t,), U(t,,,), U (1), U"(t,,1), U '(t,,), and U '(t,, +1) to derive new coefficients
a;, where j = 0,1,...,5. Subsequently, by substituting these values of a ; into (2.6), we derived continuous method successfully as
outlined below:

1 1 1
U =Y ity + 0 Y B frny + 1 Y V8- (2.13)
j=0 Jj=0 Jj=0
Subsequently, when we define «;, f;, and y; as continuous functions of x with 7, =t — xh, we acquire

a=1-x, a =x,

__ 1 1o 14 1
bo = 20x+2x 4x +10x,
34 115
b=t T
__ 1 13 14, 13
Yo = 20x+6x 6x +20x,
v = Lx - sz‘ + ixs. (2.14)

When x = %, we obtain

3

1 3 3 9 1
= U, + U, +h? (ﬁfn + ﬁfnﬂ) +h (—8n + mgnﬂ) . (2.15)

B 2T 3 128

n+

1w

In order to derive the equation for &’ , we differentiate (2.6) with respect to #, substituted by x = % h=t,,, —t, and setting
n+3
2
x= %, leading to:

49 111 29 167
u 3=—|:_Hn+un+l+h2<mfn+mfn+l)+h3(mgn+%gn_'_l)]. (2.16)

Therefore, the complete formula for the two-step fifth-order TDLMM, denoted as TDLMM5 method is provided below:

13 E 9 5/ 3 1
Uy = Uyt Syt (ﬁfn+§fn+l>+h <mgr1+mgu+l)’
_ (1 9 3( 1 4
un+2__“n+2un+l+h (Efn+mfn+l)+h <9_Og"+Eg"+%>’
111 29 167 )

49
hi 5 ==ty + +h? (mfn + @fnﬂ) +h (ﬁgn + 560 &t

n+2
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. ) YT
o = =+t 1 (G554 S )+ <_%g"+ﬁgn+% ‘ (2.17)

2.2. Trigonometrically-fitted two-derivative linear multistep method

In developing the TFTDLMMS5 method with a trigonometric fitting technique, we replace some coefficients in TDLMM5 method
with frequency-dependent coefficients, K; and L;,i =1,2,3,4 as follows:

1 3 9 1
Uppd = 75t + St h? (Klfn + ﬁfw—l) +h (Kzgn + ﬁgr&l)’
1
Upyp = —Uy +2un+l + h2 (Efn +K3fn+l) +h3 <90gn + K4gn+ )

! 3 = Uyt t+ n? (L]fn 160fn+1> +h (ngn 96Ogn+1 > s

nt3
19
Rl = =ty + Uy + B ( Tt L3fn+1) + i < 5008 + Lag3 > (2.18)
Initially, we set u, = €'¥, u,,, = e¥elV, p = 1, 5, 2, and 4 represents the frequency. Subsequently, we determine the first derivative,

u,, ,» second derivative, £, , and third derlvatlve 8&u+p using the formula u, and u,,,, as mentioned above. Then, exponential functions
e and ¥ are integrated at each stage, where v = 1k and A € R, we obtain the equations corresponding to u, hu’ below:

Ly 1 3 s, 9\ . T 1
er2l = —Ee"‘” +3- v? (K1e+“' + 3—2) Fio? <K2e+‘” + ﬁ)
e = e 12 (et H Ky ) Fiod (et + Kyt ), 2.19)
R ) i v, 111 167
+ivet2"W = —eFV 4 [ — v? (Lle“*'lb + @) Fiv (Lz Fo %>
+ivetlV = —¢Fi0 4 1 — 2 (ﬁeii” + L3) Fi’ (—%e*‘” + L4ei ”) . (2.20)

o et
2

The relation cos(v) = ’ and sin(v) = % are substituted in the Egs. (2.19) corresponding to u, we get hyperbolic functions

of v below:

cos (g) = -1 cos(v) + % -2 (Kl cos(v) + %) - (K2 sin(u)) s

2
sin (%) = % sin(v) + u2K1 sin(v) — v (K2 cos(v) + %)
cos(v) = 1 — 0* (21—0 cos(v) + = K;) +0° [ 80 sin(v) + 1[(4 sin (%)] ,
sin(v) = sin(v) + v (11—0 sin(v)) - [91—0 cos(v) + K, cos (%)] . (2.21)

Further solving (2.21) and apply Taylor series expansion, we obtain the frequency-dependent parameters of K;,i = 1,2,3,4

K= 33_2 1513160 vt~ 3413240 ‘ 12322;(1)400 o* = 7265??2800 o'+ 00"),

K= 13% * 3017320 o= 88431;;60 o+ 99019105432 o'~ 435923;(1)0800 o'+ 00",

K= 19_0 - % t 11;00 o+ 362187800 o+ 299;32000 o'+ 0w"),

Ky = 4i5 * ﬁ’ﬂ * 67;00 o+ 1163?600 o’ 5474?32074000 o'+ 00", (2.22)

In a similar manner, we incorporate the relationship between cos(v) and sin(v) into the Egs. (2.20), which correspond to 4u'. As
a result, we obtain trigonometric functions of v as follows:

vsin (g) = cos(v) — 1 + v? (Ll cos(v) + %) + 03 (L, sin(v))
vcos (g) = sin(v) + 0*L, sin(v) — v (L2 cos(v) + 9—2(7))
vcos(v) = sin(v) + v? (m sm(v)) v’ % cos(v) — L, cos (%u)] s
Usin(v) = cos(v) — 1 + v ( 5 Cos(e) + L;) -0 9090 sin(v) + Ly sin (;)] . (2.23)

Subsequently, the coefficients above are used to generate parameters L;,i = 1,2,3,4 through Taylor series expansion

49, 23 4 3071 . SOl 203597

1T 760 T 5760° T 3225600° ' 928972800° 136249344000
- 29 4181 4 23561 ¢ 304019 ¢ 8731067
27320 T 1612800 92897280 ' 40874803200  42509795328000

0'% 4+ O,

UlO + (9(1112)’
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149 13 4 223 ¢ 37 3 10609

— -

10 12
= [©] s
3= 700~ 7200° T 3360000t 1451520° T 29937600000 T 0@
82 607 4 1907 . 19649 ¢ 1810859 1o "
L =224 + n + +0O0'?). 2.24
4= 225 T504000° T 18144000 T 1824768000° 1660538880000 " S (224

As v approaches 0, the coefficients K; and L;,i = 1,2,3,4 of the proposed methods with fitting technique will revert to the
coefficients of the classical form.

3. Numerical analysis of TFTDLMM5 method

Referring to Ibrahim and Nasarudin [44] and generalization from the theorem of Henrici [45], we introduce the zero stability
associated with TFTDLMM method in Definition 1.

Definition 1 (Zero stable). A block multistep method with order p is zero stable provided the roots, R; for i = 1,...,k of the
characteristic polynomial, p(R) such that:

k
p(R) = det [z K<"’>R<k-'">] L, KO =7, (3.25)

m=1

satisfies the following conditions:

1. R, <1form=1,2,....k,
2. If R, is a repeated root, then the multiplicity of the root of modulus 1 must be at most p,

where T is identity matrix and K" is k x k matrix that appears in the construction of the block multistep method’s characteristic
polynomial.

Zero stability is the method’s ability to control the propagation of errors introduced in initial values as the step number increases.
A method is zero-stable if small perturbations in the initial conditions do not lead to unbounded growth in the numerical solution.
The focus of zero stability is on the behavior of the method near the limit of zero step size. For example, if a method is zero-stable, it
means that the errors do not grow uncontrollably as the grid gets finer. It is different with linear stability that refers to the behavior
of a numerical method when applied to a linear problem, often in the context of time-stepping algorithms for solving ODEs or PDEs.
Linear stability examines the growth or decay of perturbations in the solution using a linearized analysis, often through the linear
test equation. The stability region, typically derived from a linear stability test, is plotted in the complex plane and illustrates the
values of 4 (or eigenvalues) for which the numerical method remains stable. This region helps in determining the step sizes for which
the method will effectively solve the problem without introducing excessive errors. Functions of the stability region include guiding
the choice of appropriate time step sizes for time-stepping schemes and ensuring that the method maintains controlled growth of
errors during computation.

Linear stability analysis focuses on the evolution of numerical errors over time, while zero stability ensures that the method
behaves appropriately as the step size approaches zero. Both are crucial for the accuracy and reliability of numerical methods
in solving differential equations. In this study, the linear stability analysis begins by deriving the first characteristic polynomial
associated with the proposed method, using an appropriate test problem. The roots of this polynomial are then examined to
investigate the zero-stability property. Additionally, the eigenvalues of the first characteristic polynomial are analyzed to construct
the stability region of the TFTDLMMS5 method, providing insight into its stability performance.

To construct the first characteristic polynomial, we use the following second-order linear test problem:

d = -2 (3.26)
Apply TFTDLMM5 method into the test problem and substitute v = Ah, we obtain
uﬂ+% = (—% - K, vz)un + (% - 322112> U,y + (—szz) hu; + (—1—;802) h”:H-l’ (3.27)
Upyn = (—1 - %Uz) Uy + (2= K3v?) tppy + (—%U2> h,+ (—K40?) hu;Jr%, (3.28)
hu;+% = (~1=Ly?)u, + (1 - %02) Uy + (—Loo?) hu! + (—%02) hul,.. (3.29)
b, = (—1 - ﬁvz) Uy + (1= Lyv?) u,py + <%U2) hi, + (—Lyv*) hu;Jré. (3.30)
Differentiating (3.27) and multiplying both sides by A, we get
mi s = (-3 = K2t (34 50 ) (Kot ()t (3.31)
Next, substitute (3.31) into (3.28),
Uyy = (—1 - %Uz - K4K2u6)u,1 + (2 - K302 - $K4U4) Uy
+ [—%Uz - K 0? (—% - K102>] hu!, + [—K4U2 (% + 3%112)] hu;_H. (3.32)
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Same goes to the derivative of u in TFTDLMMS5 method, we substitute (3.29) into (3.30), we obtain

1 111
h,,, = [—1 - o0t = Lt (-1 - L,uz)] u, + [1 — Ly? — L, (1 - ﬁuz)] U
19 5 4 1 4
+ <%v + LyLyot) hut + (@Lw ) i (3.33)

We can summarize (3.32) and (3.33) into

10 Upio _ Uyt Uy
<0 1) <hu;+2> = K;(v) <hu;+l + K, (v) hu; s (3.34)

where
- 2_ L 4 _ 2(3 .92
K,0) = 2 - Kjv o5 Kav Kyv <2 + 50 >
2 2 11 2 1 4
1= Lyo? — Ly (1—7601;) Ly
_ —1—%U2—K4K2u6 —91—OU2—K4U2 (—%—Kluz)
K@) = 1 o 2 2 19 2 4 :
_I_WU - Lyv (—l—le) i + L, L4v

Then, we substitute ( “nt2 > =R?, ( ;: il ) = R and (
un+2 u

> = 1, we yield the following first characteristic polynomial
n+l

Uy
hu!,
p(R,v) = R* — K; ()R — K, (v). (3.35)
Determine the determinant of first characteristic polynomial and set v = 0, we get the stability polynomial as follows:
R'-2R + R? =0. (3.36)

Hence, the roots of stability polynomial are 0,0,1,1. All of the roots have modulus less or equal to one, which satisfied the zero
stable conditions given in Definition 1. Thus, we conclude that TFTDLMMS is zero stable.

Next, by setting p(R, v) = 0 and solving for R in terms of v within the matrix, we obtain the 2 x 2 matrix P(v). The stability
region in complex plane of TFTDLMMS5 method, .S can then be defined as

Sg={v: [4PW)| < Li=12}, (3.37)

where 4; are eigenvalues of P(v). The stability region of TFTDLMMS5 method is shown in Fig. 1.
Additionally, we introduce some definitions related to consistency, order and convergence for the linear multistep method as
follows:

Definition 2 (Consistency). The linear multistep method acquires consistency if it has the order of p > 1 [44].

Definition 3 (Order). The linear multistep method associated with the linear difference operator is said to be of order p if all the
error constants with order less than p are equal to zero [46].

Definition 4 (Convergence). According to the Lax Equivalence Theorem, a linear multistep method is convergent if and only if it
possesses both zero stability and consistency [47].

To determine the error constant, C,,n =0,1,...,p + 1, we set v = 0 and rearrange TFTDLMM5 method into:
aolt, + Uy, + a%u’H_% +au, o, =h <ﬁ%u;+§ + ﬁ2u2+2> + K2 (Yof" + }’1fn+1) +n <C0gn + 81841 t C%gn+%> , (3.38)
< 2
where
1/2 -3/2 1 0 0 0
1 -2 0 1 0 0
| = | 9T el 2=lo|r BTl 2o
1 -1 0 0 -1
3/32 9/32 3/128 1/128 0
| 1710 | 9/10 o =| /o0 q-| O o | 4%
=l49/160" T /1600 0T 297320 | 1 T 16779600 2 T| o
1/100 149/100 —19/900 0 82/225

Referring to [46], the linear difference operator L associated with TFTDLMMS5 method is
L[u(t), h] = Cou(t) + C,hul' (1) + Cyh*" (1) + -+ + C,h"uD (), (3.39)

where ¢ =0,1,...,p+1and C,,n=0,1,...,q is error constant.
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Adapted to the TFTDLMMS5 method, the error constants are as follows:

12) (-3/2) (1) (o) (o
1 -2 0 1 0
C0:a0+a1+a%+a2= 1 + 1 +0+0=0,
1 -1 0 0 0
1/2 -3/2 1 0 0) (o
=0(a0)+1(a1)+%(a%)+2a2—<ﬂ%+ﬂ2 +1 j %g (1) - 8 = 8,
-1 0 0 -1 0 (3.40)
2
=1 [02(a0)+12(a1)+(%) (a3)+22(a2)] %ﬁ3)+2(ﬁ2)] (ro+7)
1/2 -3/2 1 0 0 0 3/32 9/32 0
RIFE .| -2 32[o], 2 ft]] 3o ,|o 1/10 9/10 0
=39 [T o +(2) ol ™% [o]| 21|72 0 “49/160| " |111/160| T |0’
1 -1 0 0 0 1/100 149/100 0
1 3 3 3 3 3 1 3 2
C =3 [0 (@) + () +(3) <a%)+2(az>] 5 (3) (ﬂz)+2(ﬂz) 0(y0>+1(y1>]— c0+c.+ca
1/2 -3/2 1 0 0 0 3/32 9/32
BINIR! 5| -2 3\3[0], 5|1 120 2| O o] /10 | ] 9/10
=510 [T - +(2) o™ [o]|” 2 2 1|2 o |7 49/160 111/160
1 -1 0 0 0 -1 1/100 149/100
3/128 1/128 0 0
190 | | o | [445] o
29/320 167/960 o | |ol
~19/900 0 82/225] |o
4 3
Ci=y [04((10)+ )+ (3) (a%)+24(a2>] -3 [(%) (ﬂ%)+23(ﬂz)] - 2 [P0 + 120
0
3 0
- [0<:0>+1(¢1>+5<¢%)] 1ol (3.41)
0
5 4
Cs =3 [05<a0>+15<a1>+(§) () +2@)| - [(%) (ﬂ%)+24(ﬂz)] - [P0+ P
0
1 eens ters (3P el <[0
3 [o G+ P+ (3) (4;)]— ol
0
1 3\° 1[/3V° 1
Co=¢ [06(a0>+16<a1)+(5) (@) +2%w)| - 5 [(5) (ﬁ%)+25(ﬂ2)] A UCORINA)
11/15360
1 3 —-1/720
-1 [03(C0)+13(§1)+<%) «:%)] =1 23/570
~13/7200
0 0
Since C) = C| = - = C5 = 8 and Cy # 8 , thus, TFTDLMMS5 is proven to have an order of 5. Also, TFTDLMMS5 is of order,
0 0

p =5 > 1, it is consistence by definition. The error constant of the TFTDLMM5 method up to order 6 is equal to Cy mentioned

above.

Since TFTDLMMS5 method is zero-stable and consistent, referring to Lax equivalence theorem, TFTDLMMS5 method is convergent.

By the fundamental theorem of numerical analysis, if a method is both consistent and stable, the global error, E, tends to zero
as n — oo and h — 0. In the analysis above, we have

E, =0 (n"),
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Im(v) °4

Ren(v)

Fig. 1. The stability region of TFTDLMM5 method.

where p = 5 is the order of TFTDLMMS5 method. This implies that the global error goes to zero as the step size decreases, establishing
the convergence of the method.

4. Numerical tests and results

In this section, we apply the TFTDLMMS5 method to solve second-order ordinary differential equations of the form u"" = f(z, u(z))
and an application problem featuring a periodic solution. The efficiency of the proposed method in the literature is demonstrated by
comparing it with various existing linear multistep methods, including classical-type and fitted techniques. The following methods
have been selected for numerical comparison.

» TFTDLMMS5 - Trigonometrically-fitted two derivative linear multistep method with fifth-order proposed in this paper.

+ TFLMMAA4 - Trigonometrically-fitted extra derivative multistep method with fourth-order, proposed by Ahmad et al. [48]

+ LFDM6 - Linear finite difference method with sixth-order, proposed by Jator [49]

» TFTDLMM(S3) - Trigonometrically-fitted block multistep methods in predictor-corrector mode with three step number, k = 3,
proposed by Mansor et al. [38]

» TFTDLMM(S5) - Trigonometrically-fitted block multistep methods in predictor—corrector mode with five step number, k = 5,
proposed by Mansor et al. [38]

In each second-order oscillatory initial value problem (IVP), there is a specific fitted frequency, 4, that can be identified from
the analytical solutions. The value of v = Ah, where 4 is the step size, will be determined and then substituted into the frequency-
dependent parameters for all selected trigonometrical-fitted methods, including the proposed method. Six numerical problems are
selected, including some application problems, two-body problem and Duffing problem. Five selected methods are utilized to solve
all the problems with different step-size and endpoints, 5. Then the numerical approximation generated by all selected methods
will be compared with analytical solution to calculate maximum global error. For the Duffing problem, since there is no analytical
solution, the classical fourth-order Runge-Kutta method with an extremely low step size, 1 = 10~ will be used to obtain the
estimated maximum global error for the selected methods.

Problem 1. Homogeneous linear problem studied by [50]
u" = =25u(r),

u@©) =1, «0)=1, tel0,1000],
with analytical solution, u (t) = é sin(5¢) + cos(51).

The fitted frequency, 4 = 5.
Problem 2. Inhomogeneous linear problem studied by [50]
u" = —10000u(r) + (cos(r))* ,

w0)y=1, 40 =1, te]0,100],

with analytical solution u (1) = 1 sin(1001) +
The fitted frequency, 4 = 100.

24985001 | |
J99s0000 C0S(1000) + 75555 c0s(20) + 35505+
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Problem 3. Homogeneous linear system [50]
uf (1) = 2498u, (1) + 4998uy (1), uy (1) = —2499u; (1) + 4999u, (1),

u1(0) =2, u’1 0)=0, uy(0)=-1, u'Z(O) =0, t€][0,100],

with analytical solution, u; (r) = 2 cos(r) and u, () = — cos(?).
The fitted frequency, 4 = 1.

Problem 4. Two-body problem (first type) studied by [51]

u’l,(t) = —_ul(t) 3 u/z,(l) = —_uz(t) 3
(, /uf(z) + ug(t)> (, /uf(z) + ug(z)>
@ =1, @©0)=0, u0)=0, uy)0)=1, (4.43)

with exact solution u,(r) = cos(r) and u,(f) = sin(?).
The fitted frequency, 4 = 1.

Problem 5. Two-body problem with nonlinear orbital property (second type) studied by [52]

2, (uy(1) = sin@An) (1) — u (1) — cos(24t)

u;’(t) = 3 U 3
<, [ul () + u%(t)) (, [ud(6) + u%(t))
@ =1, ©0)=0, u0)=0, uh0) =4, (4.44)

with exact solution is u,(r) = cos(10¢) and u,(r) = sin(10¢).
The fitted frequency, A = 10.

Problem 6. Nonlinear perturbed Kepler problem with orbital property studied by [53]

" uy (1) (2 +¢2) uy (1) Y (1) (2€ + €2) uy (1)
u () =- 3~ 5 Uy () =- 3~ 5
(, /uf(t) + u%(t)) (, /uf(t) + u%(t)) <\ /uf(z) + u%(t)) < uf(t) + u%(t))
w@ =1, 0)=0, u0)=0, uw)0)=1+e, (4.45)

with exact solution is u;(r) = cos [(1 + €)t] and u,(r) = sin[(1 + e)t].
The fitted frequency, A =1+e.
In this study, we use a perturbed value of ¢ = 0.001.

Problem 7. Stiff application problem of second-order ODEs - Duffing problem

The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861-1944), is a nonlinear second-order differential
equation that models certain types of damped and driven oscillators, as well as chaotic behavior of oscillator [54]. The equation is
expressed as follows:

W' (1) + ' () + au(r) + p2 = ycos(AD), ulty) =uy, W (tg) = uj), (4.46)

where u(f) indicates the displacement of oscillator at time ¢, § is the parameter to regulate the level of damping, « is the parameter
to regulate the linear stiffness, g is the degree of non-linearity in the restoring force, y is the magnitude of the periodic driving force
and A is the angular frequency of oscillating driving force. The Duffing equation can be interpreted as describing the oscillations of
a mass attached to linear damper and nonlinear spring. The total restoring force imposed by the spring is au(t) + 13 [55].

If both a and g are greater than 0, the spring is categorized as hardening spring. When a > 0 and g < 0, it is categorized as
softening spring. When g = § = 0, the equation can be reduced into simple harmonic motion of elastic pendulum. The behavior of the
Duffing equation’s solution varies significantly based on the initial conditions and the parameters. Additionally, the Duffing problem
showcases the jump resonance phenomenon in its frequency response, characterized by a type of frequency hysteresis behavior.

In the literature, we focus on undamped driven oscillator, which is a mechanical system where an external force drives the
oscillations, but there is no damping force to dissipate the energy from the system. There are numerous cases where different initial
conditions and parameters can be considered. Three simulations with various conditions are displayed in Figs. 24 using classical
fourth-order Runge-Kutta method with h = 107,

In numerical test, we focus on this kind of Duffing problem:

W’ = —u(t) — 0.001u(t)® + 0.002 cos(357),

u©0) =0, '©0)=0, re[0,50],
with fitted frequency, 1 = 35.
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Fig. 2. Numerical simulation for Duffing problem, 6 =0, a =1, #=1, y =0.002, A= 1.01,u(0) = «’(0) = 0 and ¢ € [0, 50].

4.1. Algorithm: Implementation of TFTDLMM5 method

The implementation of trigonometrically-fitted TDLMM involves several key steps:
1. Initialization:

* Set initial conditions 7,4, and u.

» Define the frequency parameter, v = Ah.
2. Compute coefficients:

+ Calculate the frequency-dependent parameters K; and L;,i = 1,2,3,4 using the provided equations or precomputed
values.

3. Start iteration for n = 0 to endpoint:

+ Evaluate the function of f, = f(,.u,).
+ Calculate the derivative of function, g, = g(t,, u,. u},).

+ Get the approximation of u 3 and «’
nt3 n+3

* Use the previous grid points of #,u and «’ to determine u,,, and u/ 2
4. Update the approximations:

+ Set u,,, as the final value for solution at ¢, ,
* Set u! , as the final value for the derivative at 1,,,

5. Output:

* Repeat Step 3 and 4 until the endpoint of ¢ is reached.

+ Return the solution u, and «/ for all time steps n

« Compute the computational time and relative error at every step.
+ Evaluate the maximum global error.

This algorithm provides a framework for implementing the TFTDLMM5 method, allowing for efficient and accurate solutions to
second-order ODEs with oscillatory characteristics.

The numerical data are presented in Tables 1-6 with different step-size, h in particular endpoints, b. The tables contain the
maximum global error (ERROR) and the time of computation in seconds (TIME), where TIME refers to the CPU time. The error in
the form of 2.324(—8) represents 2.324 x 10~3. These results were obtained using Maple software, which was employed to implement
the algorithms and perform the calculations.

Figs. 1-7 demonstrate the numerical performance of proposed method and other selected methods in term of maximum global
truncation error against computational time. The model of computer used in computing the numerical results is Lenovo ideapad
330 Intel Core i5-8050U (1.8 GHz).
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Fig. 3. Numerical simulation for Duffing problem, 6 =0, « = 1, f =0.001, y = 0.002, 4 =35,u(0) =4'(0) =0 and ¢ € [0, 50].

U054

-0.54

Fig. 4. Numerical simulation for Duffing problem, § =0, a = 10, = -2, y = 0.002, 4 = 1.01, u(0) = 1,4/(0) = -1 and ¢ € [0, 50].
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Fig. 5. Numerical curves of selected methods for problem 1 with » =100 and h = 07'1 =0,1,...,4.
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Table 1
Numerical comparison between TFTDLMM5 method with existing methods for problem 1.
h Methods b =100 b= 1000
ERROR TIME ERROR TIME
TFTDLMM5 3.080822(-9) 0.070 3.084562(—8) 1.044
TFLMMA4 2.879908(—4) 0.169 2.879908(-4) 2.511
0.1 LFDM6 7.940765(-2) 0.061 5.834896(-1) 0.964
TFTDLMM(S3) 2.122583(-4) 0.123 2.163089(-3) 1.790
TFTDLMM(S5) 5.449040(—4) 0.140 5.497057(-3) 2.088
TFTDLMM5 7.321837(-13) 0.141 7.359522(-12) 2.076
TFLMMA4 4.331341(-6) 0.332 4.339723(-6) 4.983
0.05 LFDM6 1.858558(-2) 0.120 1.722294(-1) 1.880
TFTDLMM(S3) 1.834283(-7) 0.258 1.853044(-6) 3.066
TFTDLMM(S5) 4.454862(-7) 0.275 4.489033(-6) 3.566
TFTDLMMS5 1.784523(-16) 0.289 1.791698(-15) 4.157
TFLMMA4 6.435404(-8) 0.673 6.739007(—8) 9.418
0.025 LFDM6 2.544737(-3) 0.235 2.530715(-2) 3.710
TFTDLMM(S3) 1.749708(-10) 0.482 1.755904(-9) 5.117
TFTDLMM(S5) 4.249776(-10) 0.523 4.260681(-9) 6.078
TFTDLMM5 4.355671(—20) 0.576 4.370149(-19) 8.170
TFLMMA4 8.307822(-10) 1.385 1.051535(-9) 18.876
0.0125 LFDM6 3.238462(—4) 0.468 3.255817(-3) 7.833
TFTDLMM(S3) 1.696834(-13) 0.879 1.703211(-12) 9.759
TFTDLMM(S5) 4.120322(-13) 0.957 4.132831(-12) 11.802
TFTDLMM5 1.063306(—23) 1.174 1.067033(-22) 16.297
TFLMMA4 8.898683(-12) 2.689 1.641794(-11) 35.986
0.00625 LFDM6 4.050655(-5) 0.964 4.092068(-4) 15.893
TFTDLMM(S3) 1.654418(-16) 1.530 1.660466(-15) 17.538
TFTDLMM(S5) 4.041456(-16) 1.660 4.030619(-15) 21.622
Table 2
Numerical comparison between TFTDLMM5 method with existing methods for problem 2.
h Methods b=10 b =100
ERROR TIME ERROR TIME
TFTDLMM5 6.056155(—9) 0.876 6.062388(—8) 8.410
TFLMMA4 8.804463(-3) 1.986 8.804463(-3) 18.059
0.005 LFDM6 1.518060(-1) 0.786 8.325815(-1) 7.622
TFTDLMM(S3) 4.202813(-4) 1.104 4.994741(-2) 9.948
TFTDLMM(S5) 1.075435(-3) 1.236 1.082991(-2) 13.559
TFTDLMM5 1.566963(-12) 1.812 1.448237(-11) 16.790
TFLMMA4 1.088900(-3) 3.940 1.088900(-3) 35.985
0.0025 LFDM6 3.614375(-2) 1.679 3.099210(-1) 15.017
TFTDLMM(S3) 3.622192(-7) 2.070 3.634861(-6) 19.497
TFTDLMM(S5) 8.788966(-7) 2.493 8.808807(-6) 25.421
TFTDLMM5 2.728844(-14) 3.643 2.739838(-14) 33.544
TFLMMA4 1.354475(-4) 6.910 1.354475(-4) 68.575
0.00125 LFDM6 5.007624(-3) 3.305 4.902641(-2) 29.839
TFTDLMM(S3) 3.433103(-10) 4.149 3.445535(-9) 37.932
TFTDLMM(S5) 8.333796(-10) 4.998 8.360669(-9) 48.746
TFTDLMM5 1.699032(-15) 7.188 1.699056(-15) 65.683
TFLMMA4 1.620214(-5) 14.441 1.620214(-5) 135.481
0.000625 LFDM6 6.401012(—4) 6.584 6.380343(-3) 59.764
TFTDLMM(S3) 3.362081(-13) 8.210 3.343162(-12) 76.034
TFTDLMM(S5) 7.906715(-15) 10.876 8.109941(-12) 93.292
TFTDLMM5 1.060843(-16) 14.305 1.060843(-16) 131.478
TFLMMA4 2.118873(-6) 28.796 2.118873(-6) 277.583
0.0003125 LFDM6 8.038350(-5) 12.941 8.032162(—4) 114.879
TFTDLMM(S3) 1.326901(-15) 16.325 3.886620(-15) 151.326
TFTDLMM(S5) 7.901624(-16) 21.569 7.906715(-15) 189.648

5. Discussion and conclusions
In this paper, a novel fifth-order two-derivative linear multistep method with trigonometrically-fitting technique, denoted as
TFTDLMMS is constructed based on the Gegenbauer polynomial as basis function is derived for solving u”(r) = f(t,u(t)) with

oscillatory solution. At first, general formulation of TDLMM method, with second-derivative, f-evaluations and third-derivative,
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Table 3
Numerical comparison between TFTDLMM5 method with existing methods for problem 3.
h Methods b=5 b=50
ERROR TIME ERROR TIME
TFTDLMM5 5.641905(-7) 0.005 4.720604(—6) 0.062
TFLMMA4 2.935044(-5) 0.009 1.953935(-4) 0.095
0.5 LFDM6 5.342877(-5) 0.009 4.776093(-4) 0.078
TFTDLMM(S3) 6.895303(—6) 0.007 7.170154(-5) 0.071
TFTDLMM(S5) 3.481899(-5) 0.008 1.061880(+7) 0.073
TFTDLMM5 1.809876(-7) 0.007 1.891834(-6) 0.074
TFLMMA4 6.278201(-6) 0.012 4.536311(-5) 0.123
0.4 LFDM6 1.189272(-5) 0.013 1.382468(-4) 0.099
TFTDLMM(S3) 1.878760(—6) 0.009 2.353384(-5) 0.082
TFTDLMM(S5) 1.784879(-5) 0.010 1.132666(+4) 0.085
TFTDLMMS5 5.276895(-8) 0.009 5.823086(-7) 0.100
TFLMMA4 8.988203(-7) 0.015 6.893348(-6) 0.164
0.3 LFDM6 2.341808(-6) 0.016 2.611099(-5) 0.142
TFTDLMM(S3) 5.791658(-7) 0.011 6.838890(—6) 0.106
TFTDLMM(S5) 3.735978(-6) 0.012 5.959620(+0) 0.108
TFTDLMM5 1.049511(-8) 0.011 1.130206(-7) 0.153
TFLMMA4 7.499951(-8) 0.018 6.175574(-7) 0.241
0.2 LFDM6 2.226380(-7) 0.019 2.424289(-6) 0.201
TFTDLMM(S3) 1.174565(-7) 0.014 1.342521(-6) 0.155
TFTDLMM(S5) 4.890288(-7) 0.016 1.035996(-3) 0.159
TFTDLMM5 6.601377(-10) 0.022 6.988465(—9) 0.304
TFLMMA4 3.107346(-9) 0.035 3.088265(—8) 0.479
0.1 LFDM6 3.659208(-9) 0.039 3.837896(-8) 0.400
TFTDLMM(S3) 7.677380(-9) 0.028 8.265949(-8) 0.305
TFTDLMM(S5) 1.651870(-8) 0.031 1.946905(-7) 0.317
Table 4
Numerical comparison between TFTDLMM5 method with existing methods for problem 4.
h Methods b=10 b =100
ERROR TIME ERROR TIME
TFTDLMM5 7.977340(-19) 0.067 3.572508(-17) 0.513
TFLMMA4 2.938062(—8) 0.126 3.176734(-4) 0.972
0.1 LFDM6 2.998295(-8) 0.151 3.195565(-7) 0.890
TFTDLMM(S3) 2.237790(-12) 0.044 1.222159(-10) 0.420
TFTDLMM(S5) 1.092689(-16) 0.046 3.402128(-16) 0.431
TFTDLMMS5 2.063606(—22) 0.132 1.920456(-21) 1.072
TFLMMA4 1.981663(-10) 0.250 1.688161(-7) 1.995
0.05 LFDM6 4.599714(-10) 0.286 4.815364(-9) 1.796
TFTDLMM(S3) 1.780272(-15) 0.086 6.678577(—14) 0.839
TFTDLMM(S5) 2.763311(-20) 0.090 2.634101(-19) 0.864
TFTDLMM5 5.227559(—26) 0.262 4.334490(-25) 2.297
TFLMMA4 1.433911(-12) 0.495 4.168009(-10) 3.813
0.025 LFDM6 7.041945(-12) 0.547 7.561881(-11) 3.863
TFTDLMM(S3) 1.534396(-18) 0.172 3.960639(-17) 1.688
TFTDLMM(S5) 6.788675(—24) 0.176 7.156790(-23) 1.703
TFTDLMM5 1.302537(-29) 0.524 1.159116(-28) 4.751
TFLMMA4 1.077299(-14) 0.974 1.944607(-12) 7.578
0.0125 LFDM6 9.625602(-12) 1.040 9.480182(-10) 7.852
TFTDLMM(S3) 1.396694(-21) 0.340 2.616662(—20) 3.412
TFTDLMM(S5) 1.664261(-27) 0.346 1.765264(—26) 3.849
TFTDLMMS5 3.213882(-33) 1.023 3.069561(-32) 9.501
TFLMMA4 8.252017(-17) 1.851 1.192627(-14) 14.854
0.00625 LFDM6 2.936344(-13) 2.079 2.894594(-11) 15.863
TFTDLMM(S3) 1.313810(-24) 0.713 1.944082(-23) 7.015
TFTDLMM(S5) 4.074683(-31) 0.721 4.313005(-30) 7.781

g-evaluations is proposed. Interpolation and collocation technique in various grid-points are applied to derive this method. Then, the
trigonometrical-fitted technique is implemented into the proposed method whereby several parameters are chosen to be formulated
into frequency and step-size dependent coefficients. In numerical analysis, our proposed method has been shown to exhibit stability,
consistency and convergence properties. The analysis confirms that the proposed method offers reliability and accuracy in solving
the equation in the form of ¥’ (t) = f(t,u(?)).
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Table 5
Numerical comparison between TFTDLMM5 method with existing methods for problem 5.
h Methods b=5 b=50
ERROR TIME ERROR TIME
TFTDLMMS5 2.883465(-22) 1.212 2.942271(-21) 10.796
TFLMMA4 3.072194(-11) 2.579 1.935640(-10) 24.536
0.005 LFDM6 5.998222(-10) 2.402 6.116481(-9) 20.594
TFTDLMM(S3) 1.749946(-15) 0.860 1.790669(-14) 9.461
TFTDLMM(S5) 3.646129(—20) 0.884 1.899662(-11) 10.523
TFTDLMM5 7.044740(-26) 2.364 7.183239(-25) 20.950
TFLMMA4 2.473917(-13) 5.112 1.968380(-12) 46.469
0.0025 LFDM6 9.218070(-12) 4.856 9.571915(-11) 41.895
TFTDLMM(S3) 1.710569(-18) 1.722 1.746507(-17) 20.979
TFTDLMM(S5) 8.867717(—24) 1.806 5.880075(—22) 20.716
TFTDLMM5 1.720582(-29) 4.526 1.753613(-28) 42.543
TFLMMA4 1.963414(-15) 11.199 1.775162(-14) 96.874
0.00125 LFDM6 7.336177(-12) 9.797 7.518863(-11) 84.957
TFTDLMM(S3) 1.671770(-21) 3.488 1.704967(-20) 38.654
TFTDLMM(S5) 2.164417(-27) 3.603 2.208382(-26) 41.750
TFTDLMM5 4.201504(-33) 9.132 4.281238(-32) 85.982
TFLMMA4 1.551217(-17) 22.696 1.494554(-16) 212.350
0.000625 LFDM6 2.319059(-13) 19.814 2.351709(-12) 180.847
TFTDLMM(S3) 1.633289(-24) 6.999 1.664825(-23) 78.692
TFTDLMM(S5) 5.285847(-31) 7.838 5.389048(—30) 82.266
TFTDLMM5 1.025757(-36) 19.177 1.045212(-35) 173.565
TFLMMA4 1.218641(-19) 39.187 1.213034(-18) 422.875
0.0003125 LFDM6 7.307939(-15) 37.931 7.351022(-14) 353.310
TFTDLMM(S3) 1.595385(-27) 14.626 1.625744(-26) 154.059
TFTDLMM(S5) 1.290839(-34) 15.439 1.315544(-33) 165.232
Table 6
Numerical comparison between TFTDLMM5 method with existing methods for problem 6.
h Methods b=10 b =100
ERROR TIME ERROR TIME
TFTDLMM5 1.108454(-18) 0.130 3.252864(-17) 1.239
TFLMMA4 2.504817(-8) 0.203 3.201751(-6) 2.048
0.1 LFDM6 3.023221(-8) 0.185 3.225787(-7) 1.851
TFTDLMM(S3) 2.268773(-12) 0.098 1.241867(-10) 0.945
TFTDLMM(S5) 1.107823(-16) 0.108 3.433128(-16) 1.007
TFTDLMMS5 2.488077(-22) 0.235 5.179904(-21) 2.441
TFLMMA4 1.837986(-10) 0.402 3.588304(-8) 3.987
0.05 LFDM6 4.635080(—10) 0.361 4.772839(-9) 3.682
TFTDLMM(S3) 1.803891(-15) 0.195 6.784257(-14) 1.894
TFTDLMM(S5) 2.801710(-20) 0.216 2.672955(-19) 2.021
TFTDLMM5 5.803054(—26) 0.503 9.248865(—25) 4.876
TFLMMA4 1.388878(-12) 0.801 2.247937(-10) 7.685
0.025 LFDM6 5.233038(-12) 0.709 5.233038(-12) 7.204
TFTDLMM(S3) 1.553750(-18) 0.385 4.022125(-17) 3.780
TFTDLMM(S5) 6.884213(—24) 0.421 7.269413(-23) 4.053
TFTDLMM5 1.383244(-29) 0.921 1.842230(-28) 9.013
TFLMMA4 1.066655(-14) 1.565 1.488750(-12) 15.204
0.0125 LFDM6 9.307832(-12) 1.421 9.195546(-10) 14.219
TFTDLMM(S3) 1.413996(-21) 0.762 2.656149(-20) 7.552
TFTDLMM(S5) 1.687701(-27) 0.838 1.793263(-26) 8.091
TFTDLMMS5 3.336016(-33) 1.839 3.989720(-32) 17.471
TFLMMA4 8.261090(-17) 3.097 1.058974(-14) 29.879
0.00625 LFDM6 2.900328(-13) 2.814 2.823020(-11) 27.635
TFTDLMM(S3) 1.329904(-24) 1.490 1.972659(-23) 14.875
TFTDLMM(S5) 4.132141(-31) 1.680 4.381653(-30) 15.625

In the numerical test, seven different types of problems in the form of u”(r) = f (¢, u(t)) with periodic solutions have been selected
to assess the numerical performance of all chosen methods. TFTDLMMS5 method is compared to the existing trigonometrical-fitted
block multistep methods in predictor—corrector mode, TFTDLMM(S3) and TFTDLMM(S5) methods with three step and five step
respectively, fourth-order extra derivative multistep method with trigonometrically-fitting technique, denoted as TFLMMA4 method
and sixth-order linear finite difference method, denoted as LFDM6 method. The numerical performance is assessed based on time
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Table 7
Numerical comparison between TFTDLMM5 method with existing methods for problem 7.
h Methods b=5 b=50
ERROR TIME ERROR TIME
TFTDLMM5 9.070204(-8) 0.010 6.913959(-7) 0.096
TFLMMA4 1.942953(-3) 0.023 +00 -
0.06 LFDM6 1.008236(-5) 0.030 1.047901(-5) 0.293
TFTDLMM(S3) 1.243813(-4) 0.016 1.905735(-4) 0.167
TFTDLMM(S5) 3.484310(-4) 0.020 3.484310(-4) 0.190
TFTDLMM5 4.156115(-8) 0.012 3.981147(-7) 0.115
TFLMMA4 2.012324(-6) 0.027 4.587678(-6) 0.281
0.05 LFDM6 1.278385(-5) 0.033 1.318964(-5) 0.329
TFTDLMM(S3) 1.622511(-5) 0.019 1.739963(-5) 0.189
TFTDLMM(S5) 2.624433(-4) 0.024 2.624433(-4) 0.231
TFTDLMMS5 1.812304(-8) 0.016 1.826894(-7) 0.147
TFLMMA4 1.274522(-6) 0.036 3.390203(-6) 0.324
0.04 LFDM6 2.892861(-6) 0.046 2.915024(-6) 0.472
TFTDLMM(S3) 1.206657(—6) 0.023 1.231387(-6) 0.229
TFTDLMM(S5) 1.767325(-5) 0.030 1.891734(-5) 0.281
TFTDLMM5 6.122474(-9) 0.019 6.214625(-8) 0.195
TFLMMA4 2.020570(-7) 0.046 7.249179(-7) 0.452
0.03 LFDM6 1.136894(-7) 0.059 1.137089(-7) 0.581
TFTDLMM(S3) 8.012362(-8) 0.027 1.208352(-7) 0.260
TFTDLMM(S5) 9.464944(-8) 0.038 1.179918(-7) 0.389
TFTDLMM5 1.265660(—9) 0.031 1.284038(-8) 0.325
TFLMMA4 1.645368(-8) 0.071 9.031406(-8) 0.650
0.02 LFDM6 4.751012(-9) 0.090 4.767446(-9) 0.948
TFTDLMM(S3) 9.149944(-9) 0.044 8.106083(—8) 0.434
TFTDLMM(S5) 1.515671(-9) 0.057 7.101003(-9) 0.587
0 T T T T T
—¥— TFTDLMM5
ok —#— TFLMMA4 1

—Oo— LFDM6
—O— TFTDLMM(S3)
—&— TFTDLMM(S5)

& A
T T
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Computational time(s)
Fig. 6. Numerical curves of selected methods for problem 2 with 5 =100 and h = 02&, =0,1,...,4.

of computation and maximum global error generated by all selected methods. The results are displayed in Tables 1-7 and Figs.
5-11. The two-derivative term offers significant advantages in accuracy, particularly when coupled with the trigonometric-fitting
technique. This combination ensures that the error generated at every stage is exceptionally small, particularly when the step-size
is sufficiently small. Also, the complexity of the TFTDLMMS5 method is relatively low compared to others. It does not involve a
corrector method to rectify the approximations at every stage, resulting in lower computational time compared to TFTDLMM(S3) and
TFTDLMM(S5) with corrector methods. Besides, TFTDLMMS5 method generates the least maximum global error among all methods
with different step-sizes and endpoints. The results indicate that TFTDLMMS5 method outperforms other existing methods.

From the results, the TFTDLMMS5 method has proven to be proficient in solving various types of problems, including homo-
geneous, inhomogeneous, linear, and nonlinear problems. Nonlinear application problems with periodic properties, such as the
two-body problem and Duffing problem, have been selected for numerical tests. The nonlinearity in the two-body problem and
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Fig. 8. Numerical curves of selected methods for problem 4 with » =100 and h = 02711 =0,1,...,4.

Duffing problem causes some inaccuracy for certain methods, leading to relatively high global error compared to others, especially
for the method without trigonometrical-fitted technique. Frequency-dependent coefficients are tailored to match the oscillatory
nature of the problem being solved. By fitting these coefficients to the specific frequency of the solution, the numerical method
can more accurately capture the behavior of the system, reducing the local truncation error. These coefficients help ensure that the
numerical method remains stable over a wide range of step sizes. For oscillatory problems, maintaining stability is critical to prevent
the solution from diverging or exhibiting unphysical behavior. In oscillatory problems, phase error can accumulate over time, leading
to significant discrepancies between the numerical and exact solutions. Frequency-dependent coefficients help minimize phase error,
ensuring that the numerical solution stays in phase with the true solution over long time intervals.

There are a few topics that can be explored for future research. TFTDLMM method can be extended to solve general type of
second-order ODEs in the form of u”(f) = f(t,u(t),u’(t)) with periodic solution. Besides, two-derivative multistep method can be
adapted to solve delay differential equations (DDEs), which involve delays in their formulation, can be a significant research area.
This involves modifying the existing methods to handle the delayed terms effectively while maintaining stability and accuracy. Also,
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we can adapt two-derivative linear multistep methods with trigonometric-fitting techniques to solve partial differential equations
(PDEs). The proposed method can indeed be extended to partial differential equations (PDEs), particularly when the PDEs exhibit
certain properties such as periodicity or separability in space and time. To apply our method to PDEs, we would typically need
to discretize the spatial and temporal domains. For example, in the case of a time-dependent PDE, such as a heat equation or
wave equation, the temporal discretization could be handled using our two-derivative linear multistep method, while the spatial
derivatives could be approximated using methods like finite differences, finite elements, or spectral methods. The trigonometrical-
fitting technique could also be adapted to improve the accuracy of spatial or temporal discretization, ensuring accuracy for problems
with oscillatory behavior in both dimensions. Moreover, for nonlinear PDEs, the method can still be applicable if the nonlinearity is
separable or if the problem can be treated using an iterative approach. In such cases, the method would be applied to the linearized
form of the PDE in each iteration, with updates to the solution at each time step. Other than block multistep method, we could
combine trigonometric-fitting technique with other efficient methods, such as finite element methods or spectral methods, to create
hybrid approaches that leverage the strengths of each method for solving complex partial differential equations.
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