

HYBRID ANALYSIS APPROACH USING GRAPHICAL MODEL STRUCTURE LEARNING AND STRUCTURAL EQUATION MODELLING FOR CLOUDIOT-BASED HEALTHCARE ADOPTION MODEL IN JORDAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2024

All material contained within this thesis, including without limitation text, logos, icons, photographs, and all other artworks, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of the material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

To my mother, whose love and sacrifices have been the foundation of my journey. To my brothers and sisters, who have always stood by my side as unwavering support pillars. And to my late father, whose steadfast belief in my abilities and constant encouragement was my guiding light throughout this journey. The values he instilled in me have been my compass, and even in his absence, his teachings and cherished memories have granted me strength, motivation, and resilience. This achievement is more than just mine; it is a testament to his profound love, boundless support, and the sacrifices he made for my dreams. Dad, this one's not just for me; it's for us. I hope it makes you proud, for it carries a part of you within its pages.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

HYBRID ANALYSIS APPROACH USING GRAPHICAL MODEL STRUCTURE LEARNING AND STRUCTURAL EQUATION MODELLING FOR CLOUDIOT-BASED HEALTHCARE ADOPTION MODEL IN JORDAN

By

IYAD MAHMOUD MOHAMMAD ALTAWAIHA

February 2024

Chairman : Associate Professor Ts. Rodziah binti Atan, PhD Faculty : Computer Science and Information Technology

This study addresses a gap in understanding and modeling the factors influencing the adoption of CloudIoT-based healthcare (CIoT-H) technology. Despite the potential of CloudIoT technology to enhance healthcare delivery, its utilization remains limited. To address this, we developed a comprehensive theoretical model that examines healthcare professionals' intentions to adopt CIoT-H, considering technological, individual, organizational, and environmental factors. Given the increasing pressures on global healthcare systems, such as aging populations, rising chronic diseases, and shortages of healthcare professionals, this research is timely and critical. We constructed the model using the Analytic Hierarchy Process (AHP) and employed a quantitative methodology to collect data via questionnaires. Data analysis was conducted using Structural Equation Modeling (SEM) and Graphical Model Structure Learning (GMSL), utilizing SmartPLS and BayesiaLab software tools.

Initial SEM analysis showed that performance expectancy, effort expectancy, facilitating conditions, perceived privacy, trust, and perceived security significantly influenced healthcare professionals' behavioral intentions. Trust also mediated the effects of performance expectancy, perceived security, and effort expectancy on behavioral intention. Subsequently, GMSL was used to build a data-driven model, which revealed three new relationships that were not considered in the proposed model. These relationships were then incorporated into the model, and the SEM analysis was re-conducted to assess the refined model. The result showed that including these relationships improved the model's goodness-of-fit by decreasing the SRMR value from 0.044 to 0.041. The adjusted R² value for trust increased from 0.799 to 0.842, indicating increased explanatory power. Meanwhile, the explanatory power for performance expectancy, introduced as a new mediator, achieved an adjusted R² of 0.756. Facilitating conditions had the largest effect size on behavioral intention (f2=0.031), perceived privacy on trust (f2=0.28), and effort expectancy on performance expectancy (f2=0.615). Predictive relevance (Q2) was high for all endogenous variables: behavioral intention (0.785), trust (0.837), and performance expectancy (0.755), affirming the GMSL's contribution and the robustness of the refined model.

This study contributes to understanding CIoT-H technology adoption by providing valuable insights into the factors influencing its adoption. Furthermore, this study contributes to the body of knowledge by building a theoretical adoption model using the AHP method, which contains factors derived from four main categories. Additionally, it introduces a hybrid approach that combines SEM and GMSL for model analysis and validation. The findings and novelty presented in this research hold

significant implications for the domain, guiding policymakers, stakeholders, and healthcare institutions in framing their strategies for implementing and optimizing CIoT-H solutions, ultimately contributing to a more effective and efficient healthcare system.

Keywords: Adoption, CloudIoT, Healthcare, Modeling, Technology

SDG: GOAL 3: Good Health and Well-being

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENDEKATAN ANALISIS HIBRID MENGGUNAKAN PEMBELAJARAN STRUKTUR MODEL GRAFIK DAN PEMODELAN PERSAMAAN STRUKTUR UNTUK MODEL ADOPSI PENJAGAAN KESIHATAN BERASASKAN CLOUDIOT DI JORDAN

Oleh

IYAD MAHMOUD MOHAMMAD ALTAWAIHA

Februari 2024

Pengerusi : Profesor Madya Ts. Rodziah binti Atan, PhD Fakulti : Sains Komputer dan Teknologi Maklumat

Kajian ini menangani jurang dalam memahami dan memodelkan faktor-faktor yang mempengaruhi penerimaan teknologi penjagaan kesihatan berasaskan CloudIoT (CIoT-H). Walaupun potensi teknologi CloudIoT untuk meningkatkan penyampaian penjagaan kesihatan, penggunaannya masih terhad. Untuk menangani isu ini, kami telah membangunkan model teoretikal yang komprehensif yang mengkaji niat profesional penjagaan kesihatan untuk menerima CIoT-H, dengan mengambil kira faktor teknologi, individu, organisasi, dan persekitaran. Memandangkan tekanan yang semakin meningkat ke atas sistem penjagaan kesihatan global, seperti populasi yang semakin tua, peningkatan penyakit kronik, dan kekurangan profesional penjagaan kesihatan, kajian ini adalah tepat pada masanya dan kritikal. Kami membina model menggunakan Proses Hierarki Analitik (AHP) dan menggunakan metodologi kuantitatif untuk mengumpul data melalui soal selidik. Analisis data dilakukan menggunakan Pemodelan Persamaan Struktural (SEM) dan Pembelajaran Struktur Model Grafik (GMSL), menggunakan alat perisian SmartPLS dan BayesiaLab.

Analisis SEM awal menunjukkan bahawa jangkaan prestasi, jangkaan usaha, keadaan fasilitasi, privasi yang dirasakan, kepercayaan, dan keselamatan yang dirasakan secara signifikan mempengaruhi niat tingkah laku profesional penjagaan kesihatan. Kepercayaan juga menengahi kesan jangkaan prestasi, keselamatan yang dirasakan, dan jangkaan usaha terhadap niat tingkah laku. Selepas itu, GMSL digunakan untuk membina model berasaskan data, yang mendedahkan tiga hubungan baharu yang tidak dipertimbangkan dalam model yang dicadangkan. Hubungan ini kemudiannya dimasukkan ke dalam model, dan analisis SEM dilakukan semula untuk menilai model yang diperhalusi. Keputusan menunjukkan bahawa memasukkan hubungan ini meningkatkan kesesuaian model dengan mengurangkan nilai SRMR daripada 0.044 kepada 0.041. Nilai R² yang diselaraskan untuk kepercayaan meningkat daripada 0.799 kepada 0.842, menunjukkan peningkatan kuasa penjelasan. Sementara itu, kuasa penjelasan untuk jangkaan prestasi, yang diperkenalkan sebagai mediator baharu, mencapai R² yang diselaraskan sebanyak 0.756. Keadaan fasilitasi mempunyai saiz kesan terbesar terhadap niat tingkah laku (f2=0.031), privasi yang dirasakan terhadap kepercayaan (f2=0.28), dan jangkaan usaha terhadap jangkaan prestasi (f2=0.615). Relevan ramalan (Q2) adalah tinggi untuk semua pemboleh ubah endogen: niat tingkah laku (0.785), kepercayaan (0.837), dan jangkaan prestasi (0.755), mengesahkan sumbangan GMSL dan kekukuhan model yang diperhalusi.

Kajian ini menyumbang kepada pemahaman penerimaan teknologi CIoT-H dengan memberikan pandangan berharga tentang faktor-faktor yang mempengaruhi penerimaannya. Selain itu, kajian ini menyumbang kepada badan pengetahuan dengan membina model penerimaan teoretikal menggunakan kaedah AHP, yang mengandungi faktor-faktor yang diperoleh daripada empat kategori utama. Selain itu,

ia memperkenalkan pendekatan hibrid yang menggabungkan SEM dan GMSL untuk analisis dan pengesahan model. Penemuan dan kebaharuan yang dibentangkan dalam kajian ini mempunyai implikasi yang signifikan untuk domain ini, membimbing pembuat dasar, pihak berkepentingan, dan institusi penjagaan kesihatan dalam merangka strategi mereka untuk melaksanakan dan mengoptimumkan penyelesaian CIoT-H, akhirnya menyumbang kepada sistem penjagaan kesihatan yang lebih berkesan dan efisien.

Kata kunci: CloudIoT, Kesihatan, Pemodelan

SDG: MATLAMAT 3: kesihatan baik dan Kesejahteraan

ACKNOWLEDGEMENTS

I express my deepest gratitude to my supervisor, Associate Professor Dr. Rodziah Atan. Your expertise, understanding, and patience have significantly shaped my doctoral research. Your mentorship provided me with a holistic and high-quality research experience. Your insightful feedback, constructive criticisms, and continuous support throughout this journey were nothing short of invaluable. I am deeply indebted to you.

I also extend my thanks to my committee members, Professor Rusli Bin Hj Abdullah and Associate Professor Dr. Razali Bin Yaakob. Your time, invaluable feedback, and questions have broadened my horizons and encouraged me to explore new perspectives.

Immense gratitude goes to the staff and administration at Universiti Putra Malaysia, particularly the computer science and information technology faculty. Your support and the conducive research environment you provided were pivotal to my work.

I extend a heartfelt thanks to the expert and healthcare professionals who participated in this research. Their time and cooperation have been instrumental in making this study possible.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rodziah binti Atan, PhD

Associate Professor Ts.
Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Rusli bin Hj Abdullah, PhD

Professor Ts.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Razali bin Yaakob, PhD

Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 July 2024

TABLE OF CONTENTS

			Page
ABSTRAC	CT		i
ABSTRAK			iv
ACKNOW	VLED	GEMENTS	vii
APPROV			viii
DECLAR			X
LIST OF			xvi
LIST OF			xix
LIST OF			XXi
LIST OF A	ABBR	REVIATIONS	xxii
CHAPTE	R		
1	INT	RODUCTION	1
-	1.1	Introduction	1
	1.2	Overview and Motivation	1
	1.3		4
	1.4	Research Questions	6
	1.5	Research Objectives	6
	1.6	Research Contribution	7
	1.7	Research Scope	8
	1.8	Research Significance	9
	1.9	Thesis Structure	11
2	LIT	ERATURE REVIEW	13
	2.1	Introduction	13
	2.2	Healthcare System	13
	2.3	eHealth	16
	2.4	8	18
	2.5	Cloud Computing in Healthcare	19
	2.6	CloudIoT Integration	21
		2.6.1 CloudIoT Complementary Aspects	23
	2.7	CloudIoT-based Healthcare	26
		2.7.1 CloudIoT-based Healthcare Scenario	28
		2.7.2 CloudIoT-based Healthcare Monitoring Systems	31
		2.7.3 CloudIoT Advantages for Healthcare Systems	32
	2.8	Related Work and the Research Landscape	33
	2.9	Research Gap Analysis	37
	2.10	1	42
	2.11	Review of eHealth Adoption Studies	43
	2.12		48
		2.12.1 Theory of Reasoned Action	50
		2.12.2 Theory of Planned Behavior	51
		2.12.3 Technology Acceptance Model	52

		2.12.4 Unified Theory of Acceptance and Use of Technology	54
		2.12.5 Unified Theory of Acceptance and Use of Technology 2	56
		2.12.6 The Diffusion of Innovation Theory	58
		2.12.7 Task Technology Fit Model	60
		2.12.8 Technology Organization Environment Framework	61
		2.12.9 Summary of Technology Acceptance Models	64
	2.13		65
	2.14	Graphical Model Structure Learning	66
		2.14.1 Theoretical Foundation of GMSL	66
		2.14.2 Algorithms Driving GMSL	67
	2.15	Hybrid Approach: Integrating SEM and GMSL	68
	2.16	Multi-criteria Decision-Making Methods	69
		2.16.1 Technique for Order Preference by Similarity to	
		Ideal Solution (TOPSIS)	70
		2.16.2 Decision-Making Trial and Evaluation	
		Laboratory (DEMATEL)	71
		2.16.3 VIKOR	72
		2.16.4 Analytic Hierarchy Process (AHP)	73
	2.17	Initial Stages of Conceptual Model Development	75
	2.18	Chapter Summary	81
3	DECE	EARCH METHODOLOGY	82
J	3.1	Research Philosophy	82
	3.1	Research Approach and Method	83
	3.3	Research Operational Framework	84
	3.4	Phase One: Literature Review	86
	5.1	3.4.1 Problem Definition	86
		3.4.2 Theoretical Foundation	87
	3.5	Phase Two: Model Development	88
		3.5.1 Factors Collection	89
		3.5.2 Analysis and Categorization of Factors	89
		3.5.3 Application of AHP to Rank Factors	90
		3.5.4 Developing the Initial Conceptual Model	97
		3.5.5 Expert Review of the Initial Conceptual Model	98
		3.5.6 Pilot Study	103
		3.5.7 Hypotheses and Model Development	109
	3.6	Phase Three: Data Collection and Model Validation	110
		3.6.1 Data Collection	111
	2.7	3.6.2 Model Validation	113
	3.7	Phase Four: Results and Discussion Research Ethics	118
	3.8 3.9		118 119
	3.7	Chapter Summary	117
4	MOD	DEL DEVELOPMENT	120
	4.1	Factor Collection	120
	4.2	Analysis and Categorization of Factors	121
	4.3	Application of AHP to Rank Factors	122

	4.3.1	Problem Structure and Hierarchy Development	122
	4.3.2	AHP Questionnaire Development and	100
	4 2 2	Decision-Makers Judgment	123
	4.3.3	Developing the Pairwise Comparison Matrices	124
	4.3.4	Developing the Group Judgment Matrix	125
	4.3.5	Consistency of Pairwise Comparison Matrices	127
	4.3.6	Calculation of Local Weights	128
	4.3.7	Calculation of Global Weights and Factor	120
	4.2.0	Ranking	128
4.4	4.3.8	Findings of AHP	128
4.4		ping the Initial Conceptual Model	132
4.5	-	Review of the Initial Conceptual Model	133
	4.5.1	Expert Review Document	134
	4.5.2	Expert Review Questionnaire Design	134
	4.5.3	Expert Reviewers Selection Criteria	134
	4.5.4	Experts Feedback Comments	135
	4.5.5	Expert Questionnaire Responses	138
	4.5.6	Evaluation of Consistency in Experts'	4.40
		Responses	140
	4.5.7	Expert Review Summary	143
4.6	Pilot St		144
	4.6.1	Questionnaire Design	144
	4.6.2	Selection Criteria of Respondents for Pilot	
		Test	145
	4.6.3	Face and Content Feedback of the Pilot	
		Questionnaire	146
	4.6.4	Reliability and Validity of Constructs	147
	4.6.5	Pilot Study Summary	153
4.7	- 1	eses and Model Development	154
	4.7.1	Hypotheses Development	154
	4.7.2	The Effect of Moderators	166
	4.7.3	The Proposed Model	167
	4.7.4	The Development of Measurement Model	168
4.8		ollection	173
	4.8.1	Survey Design	173
	4.8.2	Population, Sampling Method, and Sample	
		Size	177
	4.8.3	Response Rate	178
4.9	Chapte	r Summary	179
RES	SULTS AN	ND DISCUSSION	180
5.1	Data Cl	leaning and Normality Testing	180
	5.1.1	Missing data	180
	5.1.2	Outlier test	181
	5.1.3	Normality test	183
5.2	Respon	dents' demographic characteristics	184
5.3	-	ion of Model	185
	5.3.1	Evaluation of the Measurement Model	186
	5.3.2	Evaluation of the Structural Model	191
	5.3.3	Applying Graphical Model Structure Learning	199

		5.3.4 Structural Model Re-evaluation	211
		5.3.5 Multi-Group Analysis	216
	5.4	Comparative Analysis of Proposed Model and Refined	l
		Model: The Enhancements Brought by GMSL	219
	5.5	Results Summary and Discussion	222
	5.6	Chapter Summary	232
6	CON	ICLUSION AND FUTURE WORK	233
	6.1	Introduction	233
	6.2	Research Contributions	235
		6.2.1 Theoretical implications	236
		6.2.2 Practical implications	237
	6.3	Limitations and Future Work	240
RE	FEREN	ICES	241
AP.	PENDI	CES	274
BIC	DATA	OF STUDENT	319
LIS	T OF P	PUBLICATIONS	320

LIST OF TABLES

Table		Page
2.1	Cloud and IoT Complementary Aspects	24
2.2	CloudIoT Innovative Services and Models	26
2.3	Total Number of Selected and Reviewed Research Papers	35
2.4	Analysis of Gaps in the Current Studies	40
2.5	Classifications of Adoption Objects based on Adoption Subjects	44
2.6	Technology-Specific Factors	77
2.7	Individual-Specific Factors	78
2.8	Organizational-Specific Factors	79
2.9	Environmental-Specific Factors	80
3.1	The Steps of the Systematic Literature Review	86
3.2	The Nine Points Scale for Pairwise Comparisons	92
3.3	The AHP Experts' Background Information	93
3.4	Random Indexes of Random Matrices	96
3.5	Experts Reviewers Background Information	101
3.6	The Pilot Study Respondents Experts Backgrounds	106
4.1	An Example of Pairwise Comparison Matrix - Individual Specific Factors	125
4.2	Group Judgment Matrix for Categories	125
4.3	Group Judgment Matrix for ISFs	125
4.4	Group Judgment Matrix for TSFs	126
4.5	Group Judgment Matrix for OSFs	126
4.6	Group Judgment Matrix for ESFs	126
4.7	Consistency Analysis Results for Pairwise Comparison Matrices	127
4.8	Summary of AHP Findings and Factor Weights	131
4.9	Expert Review with Comments	137

4.10	Expert Reviewers Summarized Answers	139
4.11	The Total Number of Cycles, Pairwise Combinations, and Test Cases	140
4.12	The Expert Pairwise Agreement	141
4.13	Expert-Paired Responses Agreement Table	141
4.14	Average Pairwise Percentage Agreement	143
4.15	Summary of Experts' Answers with Yes (%)	143
4.16	Questionnaire Parts, Sub-parts, and Number of Questions	145
4.17	Face and Content Comments of the Pilot Study Questionnaire	147
4.18	Mean and Standard Deviation – Pilot Study	148
4.19	Constructs Reliability and Convergent Validity – Pilot Study	150
4.20	Discriminant validity- Fornell-Larcker technique – Pilot Study	152
4.21	Behavioral Intention Indicators	169
4.22	Performance Expectancy Indicators	169
4.23	Effort Expectancy Indicators	169
4.24	Social Influence Indicators	170
4.25	Facilitating Conditions Indicators	170
4.26	Habit Indicators	171
4.27	Trust Indicators	171
4.28	Perceived Security Indicators	172
4.29	Perceived Privacy Indicators	172
4.30	Personal Innovativeness Indicators	172
4.31	Task Complexity Indicators	173
4.32	Questionnaire Design for Adoption of CIoT-H Technology	176
5.1	Z-Scores Test Results for Constructs	181
5.2	Data Cleaning Results Summary	182
5 3	Demographic information	184

5.4	Measurement Model Fitting Criteria	187
5.5	Constructs Reliability and Convergent Validity	189
5.6	Discriminant Validity- Fornell-Larcker Technique	190
5.7	Discriminant Validity-Cross-Loading Technique	191
5.8	Inner VIF Values	193
5.9	Model Explanatory Power	194
5.10	Results of Path Analysis and Hypotheses Testing	196
5.11	Effect Size (f^2)	198
5.12	Predictive Relevance (Q ²)	198
5.13	Cluster Membership Including Number and Specific Nodes for Each Cluster	202
5.14	Clustering Membership	204
5.15	Re-evaluation of R ²	212
5.16	Results of Re-Conducting Path Analysis and Hypotheses Testing for Refined CIoT-HA Model	213
5.17	Path Analysis for Indirect Effects	214
5.18	Re-evaluation of Effect Size (f^2)	215
5.19	Re-evaluation of Predictive Relevance	216
5.20	Multi-Group Analysis Result	218
5.21	Comparative Summary of the Proposed and Refined CIoT-HA Model Illustrating the Impact of GMSL	220
5.22	Comparison of Hypotheses (H1-H5) Results with TAM, UTAUT, and UTAUT2 models	225
5.23	Comparison of Hypotheses (H6-H10) Findings and Corresponding Literature	227
5.24	Comparison of Hypotheses (H11-H14) Findings and Corresponding Literature	228
5.25	Comparative Analysis of Hypotheses H15 and H16 with Existing eHealth Literature	229
5.26	Achievement of Research Objectives	231

LIST OF FIGURES

Figure		Page
2.1	The CloudIoT Integration Model	22
2.2	Conceptual CloudIoT-based Healthcare Scenario	29
2.3	The Research Landscape Summary	34
2.4	Technology Acceptance Models Evolution	49
2.5	Theory of Reasoned Action	50
2.6	Theory of Planned Behavior	52
2.7	Technology Acceptance Model	53
2.8	Unified Theory of Acceptance and Use of Technology	55
2.9	Unified Theory of Acceptance and Use of Technology 2	57
2.10	Rogers' Model of Innovation-Decision Five-Step Process	58
2.11	Task Technology Fit	61
2.12	The Technology Organization Environment Framework	63
3.1	Research Operational Framework	85
3.2	Model Development Procedure	89
3.3	Schematic Representation of the AHP method for Ranking Factors	91
3.4	Schematic Representation of the Expert Review Process's Steps	99
3.5	Pilot Study Steps	104
3.6	Process Flow of Hypotheses and Model Development	109
3.7	Model Validation Procedure	113
3.8	Evaluation of Measurement Model	114
3.9	Evaluation of Structural Model Steps	115
3.10	Graphical Model Structure Learning Steps	116
3.11	Structural Model Re-evaluation Steps	117
4 1	Criteria for Factors Analysis	122

4.2	The AHP Three-level Model Hierarchy	123
4.3	The Model Derived Through Application of AHP	132
4.4	Initial Conceptual Model	133
4.5	Pilot Study Measurement Model	153
4.6	The Proposed CloudIoT-based Healthcare Adoption Model	168
5.1	Excess Kurtosis/Skewness Range Distribution	183
5.2	Measurement Model Analysis for the Proposed CIoT-HA Model	187
5.3	Structural Model for the Proposed CIoT-HA Model	192
5.4	Initial N <mark>etwork Usi</mark> ng MWST-Tabu	201
5.5	Variable Clustering	202
5.6	Clustering Frequency Graph	206
5.7	Multiple-Clustering Result	208
5.8	Bayesian Network Structure before Imposing Constraints	209
5.9	Bayesian Network Structure after Applying Constraints	210
5.10	The Refined CIoT-HA Model	211
5.11	Structural Model of the Refined CIoT-HA Model	212
5 12	The Refined CloT-HA Model Including Results	222

LIST OF APPENDICES

Appendix		Page
A	Theories' Primary Constructs, Limitations, Authors, Strengths, and Research Areas	274
В	Summary of Empirical Studies on the Adoption of Various eHealth Technologies, Highlighting the Theoretical Model Used, Analysis Method, Additional Variables Considered, and Variance	0.55
	Explained	275
C	Domain Experts Document and Questionnaire for AHP Method	280
D	Initial Model Expert Review Document and Questionnaire	288
Е	Pilot Study Questionnaire	297
F	Pilot Study Data	305
G	Main Study Questionnaire	307
Н	Data Collection Indicator Details	315
I	Test Results of MICOM for Gender, Profession, and Age Groups	317

LIST OF ABBREVIATIONS

ACC Accessibility

AHP Analytic Hierarchy Process

AI Artificial Intelligence

AIMDSS Artificial Intelligence-based Medical Diagnosis Support Systems

APPA Average Pairwise Percentage Agreement

AVA Availability

AVE Average Variance Extracted

AWR Awareness

BDAS Big Data Analytic Systems

BI Behavioral Intention

CA Cronbach's Alpha

CB-SEM Covariance-Based Structural Equation Modeling

CC Cloud Computing

CI Consistency Index

CIoT-HA CloudIoT-based Healthcare Adoption

CIoT-H CloudIoT-based Healthcare

CLW Category Local weight

COM Compatibility

CR Consistency Ratio

CRe Composite Reliability

DAG Directed Acyclic Graph

DEMATEL Decision-Making Trial and Evaluation Laboratory

DOI Diffusion of Innovation

EE Effort Expectancy

EHP eHealth Policy

EHRs Electronic Health Records

EM Expectation-Maximization

EMRs Electronic Medical Records

EPR External Pressure

EQ Equivalence Class Search

ESF Environmental Specific Factors

 f^2 effect size

FC Facilitating Conditions

FGW Factor Global Weight

FLW Factor Local Weight

GMSL Graphical Model Structure Learning

GS Government Support

HAC Hierarchical Agglomerative Clustering

HB Habit

HBM Health Belief Model

HCPs Healthcare Professionals

HCRs Healthcare Recipients

HIS Health Information Systems

HM Hedonic Motivation

ICDDSS Intelligent Clinical Diagnostic Decision Support Systems

ICT Information and Communications Technology

IoT Internet of Things

ISF Individual Specific Factors

MCDM Multi-Criteria Decision-Making

MGA Multi-Group Analysis

mHealth Mobile Health

MICOM Measurement Invariance of Composite Models

MWST Maximum Weight Spanning Tree

NGOs Non-Governmental Organizations

NIS Negative Ideal Solution

OS Organizational Support

OSF Organizational Specific Factors

PE Performance Expectancy

PI Personal Innovativeness

PLS Partial Least Squares

PLS-SEM Partial Least Squares-Based Structural Equation Modeling

PIS Positive Ideal Solution

PPR Perceived Privacy

PR Perceived Risk

PSE Perceived Security

PV Price Value

Q² predictive relevance

QoS Quality of Service

R² coefficient of determination

REL Reliability

RI Random Index

SE Self-efficacy

SEM Structural Equation Modeling

SI Social Influence

SLR Systematic Literature Review

SPSS Statistical Package for the Social Sciences

SRC Staff Resistance to Change

SRMR Standardized Root Mean Square Residual

TA Technology Anxiety

TAM Technology Acceptance Model

TCM Task Complexity

TOE Technology Organization Environment

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TPB Theory of Planned Behavior

TR Trust

TRA Theory of Reasoned Action

TSF Technology-Specific Factors

TTF Task Technology Fit

UNRWA United Nations Relief and Works Agency for Palestine Refugees

UTAUT Unified Theory of Acceptance and Use of Technology

UTAUT2 Unified Theory of Acceptance and Use of Technology 2

VIF Variation Indicator Factor

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter presents an overview and motivation of the research, problem statement, research questions, and objectives. Additionally, the significance and contributions of the study are discussed. The chapter concludes by outlining the structure of the thesis.

1.2 Overview and Motivation

The significance of technology in improving different aspects of living these days cannot be understated. The term "digital transformation," known as "digitalization," refers to using technology for improvement, simplification, and innovation (Pihir et al., 2019). Digitization has the potential to improve service provision in all spheres of society while simultaneously boosting productivity (Kagermann, 2015; Pihir et al., 2019). The widespread outbreak of the COVID-19 pandemic worldwide has revealed the significance of digitalization in all spheres of business and society (Iivari et al., 2020). The pandemic has harmed our lives and businesses, tested our social resilience, and altered our way of life. Among the most severely impacted sectors is healthcare, which revealed vulnerabilities in design and preparedness for handling such crises (Blumenthal et al., 2020).

Even before the emergence of COVID-19, healthcare systems around the world were grappling with the challenges posed by an aging population, the rise of chronic and lifestyle-related diseases, shortages of medical professionals, and the costs associated with addressing these issues (Gulland, 2013; Hiasat, 2019; Madae et al., 2018).

Moreover, the healthcare system confronts the difficulty of staying up to date in an arena where technology, medical information, and partnerships with other healthcare systems are all in perpetual change (Cohen et al., 2004; Kelly & Young, 2017; Thakur et al., 2012). Innovation is crucial for meeting the increasing demand for higher-quality, more efficient healthcare services (Thakur et al., 2012). Additionally, advances in healthcare and technology enable promising opportunities for state-of-the-art medical practices (Kelly & Young, 2017). Thus, the widespread adoption of technological advancements may drive the delivery of higher-quality, more cost-effective healthcare services.

In recent decades, there has been a growing focus on healthcare technology due to its potential to improve the quality of healthcare services and address the challenges faced by traditional healthcare systems. Generally, the use of technology in the healthcare field is referred to as eHealth (Harrison & Lee, 2006); eHealth offers numerous benefits, such as enhanced information exchange and improved healthcare quality. Despite these benefits, current eHealth systems face several challenges, such as device heterogeneity, restricted processing capabilities, and the need for expansive storage capacity to handle a vast volume of data (Aceto et al., 2020). Nonetheless, the latest trends in technology present potential solutions to these challenges.

The CloudIoT-based healthcare (CIoT-H) paradigm integrates connectivity technologies, applications, sensors, cloud services, and individuals into a cohesive, intelligent system for patient monitoring and secure record storage, enabling continuous treatment and analysis (Farahani et al., 2018). This innovative paradigm allows real-time monitoring of patient's vital signs, potentially saving lives by facilitating early detection and prediction of abnormal conditions. Moreover,

examining patients' medical records aids in preemptive disease prevention and management (Darwish et al., 2019).

One of the most salient advantages of this paradigm lies in its capacity to deliver ubiquitous, cost-effective, and high-quality healthcare services (Shah & Bhat, 2020). Moreover, the CIoT-H paradigm streamlines the diagnostic process, offers real-time insights on health indicators, ensures patient prescriptions adherence, and generates alerts concerning abnormal patient conditions (Darwish et al., 2019; Shah et al., 2022). This innovative paradigm empowers remote patient monitoring systems to access, monitor, and care for patients irrespective of their geographic location (Shah et al., 2022).

Despite the potential benefits of CIoT-H technology in revolutionizing patient care, enhancing medical decision-making, and fostering a more resilient and accessible healthcare system, its adoption among Healthcare Professionals (HCPs) remains limited. To address this discrepancy, this study explores the factors influencing HCPs' adoption of this technology.

The findings of this study will provide valuable insights for a diverse range of stakeholders, including healthcare organizations, technology developers, and policymakers. This research will lay the groundwork for designing and implementing strategies and interventions to improve the acceptance and utilization of CIoT-H technology by highlighting the factors that drive its adoption.

The insights gleaned from this study will hopefully enrich the ongoing discourse on technology adoption within the healthcare landscape, fostering a more nuanced understanding of how innovative technologies can be seamlessly integrated into healthcare systems. This study will serve as a guiding light toward harnessing the potential of CIoT-H technology by addressing the factors that shape healthcare professionals' adoption of this technology.

1.3 Problem Statement

Healthcare systems worldwide have been having trouble keeping up with the demands of an aging population, the rise of chronic and lifestyle diseases, and the shortage of HCPs (Gulland, 2013; Hiasat, 2019; Madae et al., 2018). These public issues are raising healthcare costs and, thus, growing inequality between various social groups and countries with varying economic levels in healthcare provision. An example is the COVID-19 outbreak that put severe pressure on the healthcare systems around the world (Tanne et al., 2020). The pandemic has harmed our lives and businesses, put our social resilience to the test, and altered our way of life. Our healthcare system was one of the most affected sectors, and the results have indicated that it was not designed and equipped to handle such crises (Blumenthal et al., 2020). eHealth technologies, particularly CIoT-H technology paradigm, hold great potential to address these challenges by improving service quality, reducing medical errors, and facilitating resource management (Bagherzadeh et al., 2020; Darwish et al., 2019; Shah et al., 2022).

Despite the acknowledged potential of CIoT-H, its integration into healthcare practices is still emerging (Botta et al., 2016; Darwish et al., 2019; Shah et al., 2022). The existing literature on CIoT-H technology focuses on the technical aspects, with less emphasis on understanding how HCPs adopt this technology. This is a pivotal

concern, as HCPs play an essential role in the effective deployment and utilization of eHealth technologies, directly influencing the success of these innovations in healthcare settings (Al-Rawashdeh et al., 2022; Kalayou et al., 2020).

Additionally, current technology adoption models have concentrated mainly on cognitive factors, neglecting the comprehensive range of influences, including emotional aspects and other categories that affect HCPs' decisions to adopt new technologies (Lai, 2017). This indicates a need for a more inclusive model that addresses the diverse dimensions influencing HCPs to adopt CIoT-H.

Furthermore, the common use of Structural Equation Modeling (SEM) alone in analyzing technology adoption factors suggests a methodological limitation. SEM may not fully capture the intricate dynamics of the adoption process. The current study proposes a hybrid methodology that integrates Graphical Model Structure Learning (GMSL) with SEM to address this limitation. This approach is necessary due to the complex interplay among factors affecting HCPs' adoption of CIoT-H. The goal is to provide a deeper and more comprehensive understanding of these factors, including individual, organizational, environmental, and technological influences. Incorporating GMSL in this research will reveal underlying patterns and relationships that might remain hidden under conventional analysis techniques.

Therefore, this research is proposed to address these critical gaps and seeks to enhance the understanding of CIoT-H adoption, contributing to broader acceptance, more effective implementation, and ultimately improving healthcare delivery and patient outcomes.

1.4 Research Questions

To address the gaps highlighted in the literature, this study focuses on building a model to study the factors influencing HCPs' intention to adopt CIoT-H. The research questions are as follows:

- 1. What are the key factors that influence HCPs' intention to adopt CIoT-H technology, and how can these factors be analytically identified?
- 2. How do the mediator and moderating variables influence HCPs' intention to adopt CIoT-H?
- 3. How can a model for the adoption of CIoT-H technology be developed?
- 4. How can the proposed model for CIoT-H adoption be validated?

1.5 Research Objectives

This research aims to design and develop a model that supports the adoption of CloudIoT technology in the healthcare sector by identifying the factors influencing the adoption intention of this technology from HCPs' perspectives. The following are the specific objectives of this research:

- 1. To identify factors significantly influencing HCPs' intention to adopt CIoT-H technology using an analytical method.
- 2. To analyze the influence of mediator and moderator variables on HCPs' intention to adopt CIoT-H technology.
- 3. To develop a model for HCPs' adoption of CIoT-H technology.
- 4. To validate the proposed model for CIoT-H adoption using appropriate data collection and analysis methods.

1.6 Research Contribution

Evidence in the literature suggests that developing countries lag behind industrialized ones when it comes to adopting cutting-edge technologies (Idoga et al., 2018). Additionally, few research studies have been conducted on CloudIoT technology adoption in developing countries like Jordan. Therefore, this study might contribute significantly by providing helpful and validated insights into adopting CIoT-H for developing countries like Jordan. Moreover, establishing a theoretical model centered on HCPs' intentions to understand better the adoption of CIoT-H remains unexplored in the literature. Prior research has been chiefly on CloudIoT characteristics and systems designs. Most previous studies have overlooked HCPs' adoption of this technology. Therefore, the main contribution of this study is a theoretical adoption model, which is considered a beneficial tool to guide and support the adoption of CIoT-H.

Existing models of technology adoption have been criticized for their concentrating on cognitive factors and overlooking the impacts or emotions of individuals as factors of technology adoption, which are critical in driving technology adoption (Hoff et al., 2012; Kulviwat et al., 2007). These models' predominant focus on cognitive attributes often results in an incomplete understanding of technology adoption, as they fail to account for the full range of factors that influence individuals' technology adoption behaviors. In response to these shortcomings, our research intends to contribute to the existing body of knowledge by developing a model for CIoT-H adoption grounded on an analytical process. This model encompasses factors drawn from four primary categories: technological, individual, organizational, and environmental.

We will employ GMSL to counteract the limitations in traditional methodologies, especially regarding model creation, model structure improvement, and the enhancement of model evaluation metrics. Given that our model is grounded in pre-existing knowledge, GMSL will be used in this research to improve the model structure and the model evaluation metrics. Therefore, an additional contribution of this study lies in introducing a new approach for analyzing and validating the proposed model. This hybrid approach combines the advantages of GMSL and SEM approaches.

Through employing an analytical method for building the model together with GMSL and SEM for analyzing and validating the model, this research seeks to develop a robust model that explains the adoption intention of the CIoT-H technology. This model will consider various technological, individual, organizational, and environmental factors to provide valuable insights for stakeholders working with CIoT-H technology, as will be detailed further in this thesis. Thus, it will help to understand HCPs' preferences and needs towards facilitating the adoption of the CIoT-H technology.

1.7 Research Scope

This study investigates the adoption intentions of CIoT-H technology for smart healthcare. CIoT-H has the potential to revolutionize healthcare through its widespread, cost-effective, and high-quality services. The primary objective is to enhance understanding of the factors that influence the adoption of the CIoT-H technology. To this end, the Analytic Hierarchy Process (AHP) is employed to

prioritize these factors, serving as the groundwork for building a model that explores the determinants of CIoT-H adoption intention.

This research examines the relationships between variables by employing a hybrid approach of GMSL and SEM approaches. Set within the unique healthcare context of Jordan, this research aims to provide insightful perspectives on the adoption of CIoT-H technology in a developing country, offering valuable implications for similar contexts on a global scale. The study population comprises HCPs working within Jordanian hospitals, explicitly including physicians, nurses, pharmacists, and lab technicians. These individuals are integral to the CIoT-H adoption process, as their direct engagement with and acceptance of this technology are crucial for its successful implementation and utilization in healthcare practices.

Through exploring the determinants of CIoT-H adoption, the research aims to contribute to the development of a more effective, efficient, and responsive healthcare system. The insights gained from this study are intended to guide policymakers, healthcare practitioners, and technology developers toward creating a more interconnected and patient-centric healthcare environment in Jordan and similar settings worldwide.

1.8 Research Significance

The significance of this study stems from its examination of the factors influencing the intention to adopt CIoT-H within the context of a developing country, namely Jordan. Prior studies have predominantly focused on the technical aspects of CloudIoT technology and its implementation in industrialized nations. This research addresses a

gap in the existing literature by investigating the adoption of this technology in a developing country. The study offers valuable insights to enhance our understanding of the opportunities in such environments.

This research also highlights the importance of considering multiple dimensions when studying technology adoption. Through constructing a model using the AHP method, which incorporates factors from technological, individual, organizational, and environmental categories, the study presents a comprehensive approach to understanding the adoption intention of CIoT-H. This approach is significant for future research, policymakers, healthcare organizations, designers, and developers in understanding drivers for the adoption intention.

Additionally, the insights derived from this study will contribute to the ongoing discourse on technology adoption within the healthcare sector, promoting a more designated approach to how innovative technologies can be effectively integrated into healthcare systems. This study's examination of factors that influence HCPs' adoption intention of CIoT-H technology provides insights into how to integrate this technology into the healthcare setting successfully. This will eventually lead to improved patient care, effective medical decision-making, and a more robust and inclusive healthcare system for all societal members.

Lastly, the significance of the study is augmented by the combination of GMSL and SEM in the analysis and validation of the model. This hybrid approach, employed to study HCPs' adoption intention of CIoT-H, offers a reliable approach to studying technology adoption. Its application could potentially extend to various contexts and different technologies.

1.9 Thesis Structure

The thesis consists of six chapters, each building upon the previous and paving the way for the next, which forms a coherent narrative that investigates the adoption intention of CloudIoT in the healthcare sector.

Chapter 1 is the introduction that paves the way for the research and establishes a robust foundation for the study. It presents the research problem, raising questions that guide the study's direction. It also shows the research's scope, contribution, and significance and outlines the thesis structure.

Chapter 2 systematically examines the existing literature related to CloudIoT technology and its integration into healthcare. Through a detailed exploration of previous research and theories, this chapter outlines the research landscape and analyzes the research gap. The chapter concludes by collecting several factors that will guide the subsequent methodology and model development.

Chapter 3 provides a roadmap for the research process. It describes the philosophical underpinnings of the study and the research approach and method adopted. It also presents a comprehensive operational framework encompassing all research stages, including literature review, model development, data collection and model validation, and results and discussion. The chapter also addresses the ethical considerations in conducting this research.

Chapter 4 weaves the threads of the previous chapters into a tangible model that can be empirically examined. Building upon the findings from the literature review and guided by the methodology, this chapter presents the model development process and outcomes. This includes expert reviews, a pilot study, and discussions on hypothesis development. This chapter also describes the data collection process, which marks a crucial point in the research as it transitions from theoretical exploration to empirical investigation.

Chapter 5 covers the results and discussion of the research. It forms the core of the thesis, showing the fruits of the study's work. The chapter analyzes the collected data, analyzes the proposed model through a hybrid analytical approach, tests the hypotheses, offers insights, and deepens understanding of the CIoT-H adoption behavior. The analytical process validates the proposed model and illustrates facets of the adoption behavior, contributing to the body of knowledge on CIoT-H.

Finally, Chapter 6, the conclusion and future work, brings closure to the research efforts. It presents an overview of the study, highlighting its theoretical and practical contributions. In addition, the chapter discusses potential avenues for future research, outlining the study's limitations and emphasizing the fulfillment of research objectives. It also synthesizes the key findings, effectively concluding the thesis.

REFERENCES

- Aazam, M., & Huh, E.-N. (2014). Fog computing and smart gateway based communication for cloud of things. 2014 International Conference on Future Internet of Things and Cloud, 464–470.
- Aazam, M., Huh, E.-N., St-Hilaire, M., Lung, C.-H., & Lambadaris, I. (2016). Cloud of things: integration of IoT with cloud computing. *Robots and Sensor Clouds*, 77–94.
- Aazam, M., Hung, P. P., & Huh, E.-N. (2014). Smart gateway based communication for cloud of things. 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 1–6.
- Abbad, M. M. (2021). Using the UTAUT model to understand students' usage of e-learning systems in developing countries. *Education and Information Technologies*, 26(6), 7205–7224.
- Abdekhoda, M., Dehnad, A., & Khezri, H. (2019). The effect of confidentiality and privacy concerns on adoption of personal health record from patient's perspective. *Health and Technology*, 9(4), 463–469. https://doi.org/10.1007/s12553-018-00287-z
- Abdekhoda, M., & Salih, K. M. (2017). Determinant Factors in Applying Picture Archiving and Communication Systems (PACS) in Healthcare. *Perspectives in Health Information Management*, 14(Summer).
- Aceto, G., Persico, V., & Pescapé, A. (2020). Journal of Industrial Information Integration Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing. *Journal of Industrial Information Integration*, 18(February 2019), 100129. https://doi.org/10.1016/j.jii.2020.100129
- Adenuga, K. I., Iahad, N. A., & Miskon, S. (2017). Towards reinforcing telemedicine adoption amongst clinicians in Nigeria. *International Journal of Medical Informatics*, 104, 84–96.
- Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. *Information Systems Research*, 9(2), 204–215.
- Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. *International Journal of Medical Informatics*, 78(2), 115–126.
- Aguzzi, S., Bradshaw, D., Canning, M., Cansfield, M., Carter, P., Cattaneo, G., Gusmeroli, S., Micheletti, G., Rotondi, D., & Stevens, R. (2013). Definition of a research and innovation policy leveraging cloud computing and IoT combination. *Final Report, European Commission, SMART*, 37, 2013.
- Agyei, D. D., & Adzobu, P. (2020). Factors influencing professional nurses' acceptance and use of mobile medical apps in Ghana. *Journal of Information*

- *Technology Management*, *12*(1), 27–42. https://doi.org/10.22059/JITM.2020. 286522.2389
- Ahmad, S., & Iqbal, T. (2022). The role of management commitment in adoption of occupational health and safety at higher education institutions. *Entrepreneurship and Sustainability Issues*, 9(3), 103.
- Ahmed, M. H., Awol, S. M., Kanfe, S. G., Hailegebreal, S., Debele, G. R., Dube, G. N., Guadie, H. A., Ngusie, H. S., & Klein, J. (2021). Willingness to use telemedicine during COVID-19 among health professionals in a low income country. *Informatics in Medicine Unlocked*, 27, 100783.
- Ahmed, M. H., Bogale, A. D., Tilahun, B., Kalayou, M. H., Klein, J., Mengiste, S. A., & Endehabtu, B. F. (2020). Intention to use electronic medical record and its predictors among health care providers at referral hospitals, north-West Ethiopia, 2019: using unified theory of acceptance and use technology 2 (UTAUT2) model. *BMC Medical Informatics and Decision Making*, 20(1), 1–11.
- Ajzen, I. (1991). The Theory of Planned Behaviour. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1922/CDH_2120VandenBroucke08
- Akter, S., Fosso Wamba, S., & Dewan, S. (2017). Why PLS-SEM is suitable for complex modelling? An empirical illustration in big data analytics quality. *Production Planning & Control*, 28(11–12), 1011–1021.
- Al-Radaideh, A. T., & Alazzam, M. (2020). Critical successful factors affecting adoption of e-health system in developing countries. *Available at SSRN* 3522884.
- Al-Rawashdeh, M., Keikhosrokiani, P., Belaton, B., Alawida, M., & Zwiri, A. (2022). IoT adoption and application for smart healthcare: a systematic review. *Sensors*, 22(14), 5377.
- Al Mansoori, F. T., Rahman, I. A., & Kasim, R. (2020). Structural Relationship of Factors Affecting the Performance of Oil & Gas Company: Case Study of Adnoc. *International Journal of Sustainable Construction Engineering and Technology*, 11(2), 140–149.
- Alai, M. (2019). The underdetermination of theories and scientific realism. *Axiomathes*, 29(6), 621–637.
- ALAIAD, A. (2017). Patients 'Adoption of WSN-Based Smart Home Healthcare Systems: An Integrated Model of Facilitators and Barriers. *IEEE Transactions on Professional Communication*, 60(1), 1–20.
- Alaiad, A., Alsharo, M., & Alnsour, Y. (2019). The Determinants of M-Health Adoption in Developing Countries: An Empirical Investigation. *Applied Clinical Informatics*, 10(5), 820–840. https://doi.org/10.1055/s-0039-1697906

- Alaiad, A., Zhou, L., & Koru, G. (2014). An exploratory study of home healthcare robots adoption applying the UTAUT model. *International Journal of Healthcare Information Systems and Informatics (IJHISI)*, 9(4), 44–59.
- Alam, M. M. D., Alam, M. Z., Rahman, S. A., & Taghizadeh, S. K. (2021). Factors influencing mHealth adoption and its impact on mental well-being during COVID-19 pandemic: A SEM-ANN approach. *Journal of Biomedical Informatics*, 116(August 2020), 103722. https://doi.org/10.1016/j.jbi.2021. 103722
- Alam, M. Z., Hu, W., Kaium, M. A., Hoque, M. R., & Alam, M. M. D. (2020). Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. *Technology in Society*, 61(October 2019), 101255. https://doi.org/10.1016/j.techsoc.2020.101255
- Alan, M., Hu, W., & Barua, Z. (2018). Using the UTAUT Model to Determine Factors Affecting Acceptance and Use of Mobile Health (mHealth) Services in Bangladesh Mohammad. *Journal of Studies in Social Sciences*, 17(2), 137–172.
- Aldosari, B. (2014). Rates, levels, and determinants of electronic health record system adoption: A study of hospitals in Riyadh, Saudi Arabia. *International Journal of Medical Informatics*, 83(5), 330–342.
- Algharibi, A. J., & Arvanitis, T. N. (2011). Adapting the Unified Theory of Acceptance and Use of Technology (UTAUT) as a tool for validating user needs on the implementation of e-Trial software systems. *Proceedings of HCI 2011 The 25th BCS Conference on Human Computer Interaction 25*, 526–530.
- Alhakbani, N., Hassan, M. M., Hossain, M. A., & Alnuem, M. (2014). A framework of adaptive interaction support in cloud-based internet of things (iot) environment. *International Conference on Internet and Distributed Computing Systems*, 136–146.
- Alharbi, F. (2021). The use of digital healthcare platforms during the COVID-19 pandemic: The consumer perspective. *Acta Informatica Medica*, 29(1), 51–58. https://doi.org/10.5455/AIM.2021.29.51-58
- Alhasan, A., Audah, L., Ibrahim, I., Al-Sharaa, A., Al-Ogaili, A. S., & M. Mohammed, J. (2022). A case-study to examine doctors' intentions to use IoT healthcare devices in Iraq during COVID-19 pandemic. *International Journal of Pervasive Computing and Communications*, 18(5), 527–547.
- Ali, O., Shrestha, A., Soar, J., & Wamba, S. F. (2018). Cloud computing-enabled healthcare opportunities, issues, and applications: A systematic review. *International Journal of Information Management*, 43, 146–158.
- Almalki, M., Alsulami, M. H., Alshdadi, A. A., Almuayqil, S. N., Alsaqer, M. S., Atkins, A. S., & Choukou, M.-A. (2022). Delivering digital healthcare for elderly: a holistic framework for the adoption of ambient assisted living. *International Journal of Environmental Research and Public Health*, 19(24),

- Almazroi, A. A., Mohammed, F., Al-Kumaim, N. H., & Hoque, M. R. (2022). An empirical study of factors influencing e-health services adoption among public in Saudi Arabia. *Health Informatics Journal*, 28(2), 14604582221102316.
- Almegbel, H., & Aloud, M. (2021). Factors Influencing the Adoption of mHealth Services in Saudi Arabia: A Patient-centered Study. *International Journal of Computer Science and Network Security*, 21(4), 313–324.
- Alotaibi, N., Gutub, A., & Khan, E. (2015). Stego-system for hiding text in images of personal computers. *The 12th Learning and Technology Conference:* Wearable Tech/Wearable Learning, 12–13.
- AlQudah, A. A., & Shaalan, K. (2022). Extending utaut to understand the acceptance of queue management technology by physicians in uae. *Proceedings of International Conference on Emerging Technologies and Intelligent Systems:*ICETIS 2021 Volume 2, 969–981.
- Alraja, M. N., Farooque, M. M. J., & Khashab, B. (2019). The Effect of Security, Privacy, Familiarity, and Trust on Users' Attitudes Toward the Use of the IoT-Based Healthcare: The Mediation Role of Risk Perception. *IEEE Access*, 7(May 2020), 111341–111354. https://doi.org/10.1109/ACCESS.2019. 2904006
- Alsahafi, Y. A., Gay, V., & Khwaji, A. A. (2020). The Acceptance of National Electronic Health Records in Saudi Arabia: Healthcare Consumers 'Perspectives. Australasian Conference on Information Systems, 1–12.
- Alshammari, S. H., & Rosli, M. S. (2020). A review of technology acceptance models and theories. *Innovative Teaching and Learning Journal (ITLJ)*, 4(2), 12–22.
- Alsyouf, A., & Ishak, A. K. (2018). Understanding EHRs continuance intention to use from the perspectives of UTAUT: Practice environment moderating effect and top management support as predictor variables. *International Journal of Electronic Healthcare*, 10(1–2), 24–59. https://doi.org/10.1504/IJEH.2018.092175
- Alzahrani, B. A. (2021). Secure and efficient cloud-based IoT authenticated key agreement scheme for e-health wireless sensor networks. *Arabian Journal for Science and Engineering*, 46(4), 3017–3032.
- Alzubi, J. A., Alzubi, O. A., Singh, A., & Ramachandran, M. (2022). Cloud-IIoT-Based Electronic Health Record Privacy-Preserving by CNN and Blockchain-Enabled Federated Learning. *IEEE Transactions on Industrial Informatics*, 19(1), 1080–1087.
- Anil, C., & Thaier, H. (2018). Security and privacy issues with IoT in healthcare. *EAI Endorsed Transactions on Pervasive Health and Technology*, 4(14), 1–7.
- Arfi, W. Ben, Nasr, I. Ben, Kondrateva, G., & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in

- a consumer context. *Technological Forecasting and Social Change*, 167(April 2020), 120688. https://doi.org/10.1016/j.techfore.2021.120688
- Arpaci, I., Yardimci Cetin, Y., & Turetken, O. (2015). Impact of perceived security on organizational adoption of smartphones. *Cyberpsychology, Behavior, and Social Networking*, 18(10), 602–608.
- Asadi, S., Abdullah, R., Safaei, M., & Nazir, S. (2019). An Integrated SEM-Neural Network Approach for Predicting Determinants of Adoption of Wearable Healthcare Devices. *Mobile Information Systems*, 2019. https://doi.org/10.1155/2019/8026042
- Ashfaq, Z., Rafay, A., Mumtaz, R., Zaidi, S. M. H., Saleem, H., Zaidi, S. A. R., Mumtaz, S., & Haque, A. (2022). A review of enabling technologies for Internet of Medical Things (IoMT) Ecosystem. *Ain Shams Engineering Journal*, 13(4), 101660.
- Aski, V. J., Dhaka, V. S., Kumar, S., Verma, S., & Rawat, D. B. (2022). Advances on networked ehealth information access and sharing: Status, challenges and prospects. *Computer Networks*, 204, 108687.
- Azimi, I., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2017). Internet of things for remote elderly monitoring: a study from user-centered perspective. *Journal of Ambient Intelligence and Humanized Computing*, 8(2), 273–289.
- Azrour, M., Mabrouki, J., & Chaganti, R. (2021). New efficient and secured authentication protocol for remote healthcare systems in cloud-iot. Security and Communication Networks, 2021.
- Bagherzadeh, L., Shahinzadeh, H., Shayeghi, H., Dejamkhooy, A., Bayindir, R., & Iranpour, M. (2020). Integration of cloud computing and IoT (CloudIoT) in smart grids: benefits, challenges, and solutions. 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), 1–8.
- Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.
- Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. *Journal of the Academy of Marketing Science*, 40, 8–34.
- Bakar, N. A. A., ChePa, N., & Jasin, N. M. (2017). Challenges in the implementation of hospital information systems in Malaysian public hospitals. *Proceedings of the 6th International Conference on Computing & Informatics*, 636–642.
- Baral, M. M., & Verma, A. (2021). Cloud computing adoption for healthcare: An empirical study using SEM approach. *FIIB Business Review*, 10(3), 255–275.
- Basanta, H., Huang, Y.-P., & Lee, T.-T. (2016). Intuitive IoT-based H2U healthcare system for elderly people. 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), 1–6.

- Baudier, P., Kondrateva, G., & Ammi, C. (2020). The future of Telemedicine Cabin? The case of the French students' acceptability. *Futures*, *122*(October 2019), 102595. https://doi.org/10.1016/j.futures.2020.102595
- Baudier, P., Kondrateva, G., Ammi, C., Chang, V., & Schiavone, F. (2021). Patients' perceptions of teleconsultation during COVID-19: A cross-national study. *Technological Forecasting and Social Change*, *163*(December 2020), 120510. https://doi.org/10.1016/j.techfore.2020.120510
- Bawack, R. E., & Kala Kamdjoug, J. R. (2018). Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. *International Journal of Medical Informatics*, 109, 15–22. https://doi.org/10.1016/j.ijmedinf.2017.10.016
- Bayesia-S.A.S. (2018). BayesiaLab 10 Bayesian Networks for Research and Analytics (p. http://www.bayesialab.com).
- Becker, J.-M., Ringle, C. M., Sarstedt, M., & Völckner, F. (2015). How collinearity affects mixture regression results. *Marketing Letters*, 26(4), 643–659.
- Beh, P. K., Ganesan, Y., Iranmanesh, M., & Foroughi, B. (2021). Using smartwatches for fitness and health monitoring: the UTAUT2 combined with threat appraisal as moderators. *Behaviour and Information Technology*, 40(3), 282–299. https://doi.org/10.1080/0144929X.2019.1685597
- Ben Arfi, W., Ben Nasr, I., Khvatova, T., & Ben Zaied, Y. (2021). Understanding acceptance of eHealthcare by IoT natives and IoT immigrants: An integrated model of UTAUT, perceived risk, and financial cost. *Technological Forecasting and Social Change*, 163(May 2020), 120437. https://doi.org/10.1016/j.techfore.2020.120437
- Bergerson, C., Groves, E., & Gorji, M. B. (2020). Artificial Intelligence in Healthcare. Software Engineering: Artificial Intelligence, Compliance, and Security, May, 73–102. https://doi.org/10.53730/ijhs.v6ns2.5987
- Bhardwaj, V., Joshi, R., & Gaur, A. M. (2022). IoT-based smart health monitoring system for COVID-19. *SN Computer Science*, 3(2), 137.
- Binyamin, S. S., & Hoque, M. R. (2020). Understanding the drivers of wearable health monitoring technology: An extension of the unified theory of acceptance and use of technology. *Sustainability (Switzerland)*, *12*(22), 1–20. https://doi.org/10.3390/su12229605
- Bird, D. K. (2009). The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation—a review of current knowledge and practice. *Natural Hazards and Earth System Sciences*, *9*(4), 1307–1325.
- Blasi, F., Caiani, E. G., Cereda, M. G., Montorsi, M., Panella, V., & Pelagalli, F. (2022). Six drivers to face the XXI century challenges and build the new healthcare system: "La Salute in Movimento" Manifesto. *Frontiers in Public*

- Health, 10, 876625.
- Blumenthal, D., Fowler, E. J., Abrams, M., & Collins, S. R. (2020). Covid-19—implications for the health care system. In *New England Journal of Medicine* (Vol. 383, Issue 15, pp. 1483–1488). Mass Medical Soc.
- Boone, H., & Boone, D. A. (2012). Analyzing Likert Data. *The Journal of Extension*, 50.
- Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. *Future Generation Computer Systems*, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021
- Bowden, A., Fox-Rushby, J. A., Nyandieka, L., & Wanjau, J. (2002). Methods for pretesting and piloting survey questions: illustrations from the KENQOL survey of health-related quality of life. *Health Policy and Planning*, 17(3), 322–330.
- Butpheng, C., Yeh, K. H., & Xiong, H. (2020). Security and privacy in IoT-cloud-based e-health systems-A comprehensive review. *Symmetry*, 12(7), 1–35. https://doi.org/10.3390/sym12071191
- Carlini, J., Muir, R., McLaren-Kennedy, A., & Grealish, L. (2024). Transforming health-care service through consumer co-creation: directions for service design. *Journal of Services Marketing*, 38(3), 326–343.
- Çelikbilek, Y., & Tüysüz, F. (2020). An in-depth review of theory of the TOPSIS method: An experimental analysis. *Journal of Management Analytics*, 7(2), 281–300.
- Cepeda-Carrion, G., Cegarra-Navarro, J.-G., & Cillo, V. (2019). Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. *Journal of Knowledge Management*, 23(1), 67–89.
- Chang, Y. T., Chao, C. M., Yu, C. W., & Lin, F. C. (2021). Extending the Utility of UTAUT2 for Hospital Patients' Adoption of Medical Apps: Moderating Effects of e-Health Literacy. *Mobile Information Systems*, 2021. https://doi.org/10.1155/2021/8882317
- Chang, Y., Wong, S. F., Libaque-Saenz, C. F., & Lee, H. (2018). The role of privacy policy on consumers' perceived privacy. *Government Information Quarterly*, 35(3), 445–459. https://doi.org/10.1016/j.giq.2018.04.002
- Chardina, E. I. (2021). Decision Support System for Determining Employee Working Time with Analytical Hierarchy Process Method. *Journal of Intelligent Decision Support System (IDSS)*, 4(1), 6–9.
- Chatterjee, P., & Chakraborty, S. (2016). A comparative analysis of VIKOR method and its variants. *Decision Science Letters*, 5(4), 469–486.
- Cheah, J.-H., Thurasamy, R., Memon, M. A., Chuah, F., & Ting, H. (2020). Multigroup analysis using smartpls: step-by-step guidelines for business research. *Asian Journal of Business Research*, 10(3), I–XIX.

- Chen, L., Rashidin, M. S., Song, F., Wang, Y., Javed, S., & Wang, J. (2021). Determinants of consumer's purchase intention on fresh e-commerce platform: perspective of UTAUT model. *SAGE Open*, *11*(2), 21582440211027876.
- Chickering, D. M. (2002). Optimal structure identification with greedy search. *Journal of Machine Learning Research*, 3(Nov), 507–554.
- Chowdhury, P., & Paul, S. K. (2020). Applications of MCDM methods in research on corporate sustainability: A systematic literature review. *Management of Environmental Quality: An International Journal*, 31(2), 385–405.
- Chuttur, M. (2009). Working Papers on Information Systems Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. *Sprouts*, 9(2009), 9–37.
- Cilliers, L., & Flowerday, S. (2014). User acceptance of telemedicine by health care workers a case of the eastern cape province, South Africa. *The Electronic Journal of Information Systems in Developing Countries*, 65(1), 1–10.
- Cobelli, N., & Blasioli, E. (2023). To be or not to be digital? A bibliometric analysis of adoption of eHealth services. *The TQM Journal*, 35(9), 299–331.
- Cohen, D., McDaniel Jr, R. R., Crabtree, B. F., & Ruhe, M. C. (2004). A practice change model for quality improvement in primary care practice. *Journal of Healthcare Management*, 49(3), 155.
- Cohen, J. (1960). A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*, 20(1), 37–46.
- Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98–101.
- Creswell, J. W; Creswell, J. D. (2017). Research Design: Qualitative, quantitative, and mixed Methods Approaches. Sage publications. Sage publications.
- Dadhich, M., Poddar, S., & Hiran, K. K. (2022). Antecedents and consequences of patients' adoption of the IoT 4.0 for e-health management system: A novel PLS-SEM approach. *Smart Health*, 25, 100300.
- Dai, B., Larnyo, E., Tetteh, E. A., Aboagye, A. K., & Musah, A. A. I. (2019). Factors Affecting Caregivers' Acceptance of the Use of Wearable Devices by Patients With Dementia: An Extension of the Unified Theory of Acceptance and Use of Technology Model. *American Journal of Alzheimer's Disease and Other Dementias*, 35, 1–11. https://doi.org/10.1177/1533317519883493
- Damberg, S. (2021). Predicting future use intention of fitness apps among fitness app users in the United Kingdom: the role of health consciousness. *International Journal of Sports Marketing and Sponsorship*. https://doi.org/10.1108/IJSMS-01-2021-0013
- Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2019). The impact of the hybrid platform of internet of things and cloud

- computing on healthcare systems: opportunities, challenges, and open problems. *Journal of Ambient Intelligence and Humanized Computing*, 10(10), 4151–4166. https://doi.org/10.1007/s12652-017-0659-1
- Das, S., & Namasudra, S. (2023). Lightweight and efficient privacy-preserving mutual authentication scheme to secure Internet of Things-based smart healthcare. *Transactions on Emerging Telecommunications Technologies*, 34(11), e4716.
- Dash, A., & Sahoo, A. K. (2021). Moderating effect of gender on adoption of digital health consultation: a patient perspective study. *International Journal of Pharmaceutical and Healthcare Marketing*, 15(4), 598–616. https://doi.org/10.1108/IJPHM-01-2021-0012
- Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. *Technological Forecasting and Social Change*, 173, 121092.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly: Management Information Systems*, 13(3), 319–339. https://doi.org/10.2307/249008
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. *Management Science*, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
- de Farias Aires, R. F., & Ferreira, L. (2019). A new approach to avoid rank reversal cases in the TOPSIS method. *Computers & Industrial Engineering*, 132, 84–97.
- de Macedo, D. D. J., de Araújo, G. M., Dutra, M. L., Dutra, S. T., & Lezana, Á. G. R. (2019). Toward an efficient healthcare CloudIoT architecture by using a game theory approach. *Concurrent Engineering*, 27(3), 189–200.
- Dempster, E. R., & Kirby, N. F. (2018). Inter-rater agreement in assigning levels of difficulty to examination questions in Life Sciences. *South African Journal of Education*, 38(3).
- Deng, Z., Hong, Z., Ren, C., Zhang, W., & Xiang, F. (2018). What predicts patients' adoption intention toward mhealth services in China: Empirical study. *JMIR MHealth and UHealth*, 6(8), 1–14. https://doi.org/10.2196/mhealth.9316
- Dhagarra, D., Goswami, M., & Kumar, G. (2020). Impact of Trust and Privacy Concerns on Technology Acceptance in Healthcare: An Indian Perspective. *International Journal of Medical Informatics*, 141(April), 104164. https://doi.org/10.1016/j.ijmedinf.2020.104164
- Dhillon, P. K., & Kalra, S. (2019). A secure multi-factor ECC based authentication scheme for Cloud-IoT based healthcare services. *Journal of Ambient Intelligence and Smart Environments*, 11(2), 149–164.
- Dhiman, N., Arora, N., Dogra, N., & Gupta, A. (2020). Consumer adoption of smartphone fitness apps: an extended UTAUT2 perspective. *Journal of Indian*

- Business Research, 12(3), 363–388. https://doi.org/10.1108/JIBR-05-2018-0158
- Dias Jr, A., & Ioannou, P. G. (1996). Company and project evaluation model for privately promoted infrastructure projects. *Journal of Construction Engineering and Management*, 122(1), 71–82.
- Dillman, D. A., Smyth, J. D., & Christian, L. M. (2016). Internet, phone, mail and mixed-mode surveys: the tailored design method. *Reis*, 154, 161–176.
- Domingo, M. C. (2012). An overview of the Internet of Things for people with disabilities. *Journal of Network and Computer Applications*, 35(2), 584–596.
- Duarte, P., & Pinho, J. C. (2019). A mixed methods UTAUT2-based approach to assess mobile health adoption. *Journal of Business Research*, 102(February), 140–150. https://doi.org/10.1016/j.jbusres.2019.05.022
- Duke, J. M., & Aull-Hyde, R. (2002). Identifying public preferences for land preservation using the analytic hierarchy process. *Ecological Economics*, 42(1–2), 131–145.
- Dünnebeil, S., Sunyaev, A., Blohm, I., Leimeister, J. M., & Kremar, H. (2012). Determinants of physicians' technology acceptance for e-health in ambulatory care. *International Journal of Medical Informatics*, 81(11), 746–760.
- El-Jardali, F., & Fadlallah, R. (2017). A review of national policies and strategies to improve quality of health care and patient safety: a case study from Lebanon and Jordan. *BMC Health Services Research*, 17(1), 1–13.
- El-Masri, M., & Tarhini, A. (2017). Factors affecting the adoption of e-learning systems in Qatar and USA: Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Educational Technology Research and Development, 65(3), 743–763.
- Ellis, T. J., & Levy, Y. (2010). A guide for novice researchers: Design and development research methods. *Proceedings of Informing Science & IT Education Conference (InSITE)*, 10(10), 107–117.
- Enaizan, O., Eneizan, B., Almaaitah, M., Al-Radaideh, A. T., & Saleh, A. M. (2020). Effects of privacy and security on the acceptance and usage of EMR: the mediating role of trust on the basis of multiple perspectives. *Informatics in Medicine Unlocked*, 21, 100450.
- Eriş, M. B., Sezer, E. D. G., & Ocak, Z. (2022). Prioritization of the factors affecting the performance of clinical laboratories using the AHP and ANP techniques. *Network Modeling Analysis in Health Informatics and Bioinformatics*, 12(1), 5.
- Esfahani, A. A., Ahmadi, H., Nilashi, M., Alizadeh, M., Bashiri, A., Farajzadeh, M. A., Shahmoradi, L., Nobakht, M., & Rasouli, H. R. (2018). An evaluation model for the implementation of hospital information system in public hospitals using multi-criteria-decision-making (MCDM) approaches.

- *International Journal of Engineering and Technology (UAE)*, 7(1), 1–18.
- Eysenbach, G. (2001). What is e-health? *Journal of Medical Internet Research*, 3(2), e833.
- Faloye, S. T., Ndlanzi, S. L., & Ajayi, N. (2021). Factors Affecting e-Health Adoption in South African Public Hospitals: A Case of Edendale Hospital. *2021 IST-Africa Conference (IST-Africa)*, 1–11.
- Fan, W., Liu, J., Zhu, S., & Pardalos, P. M. (2020). Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS). *Annals of Operations Research*, 294(1–2), 567–592. https://doi.org/10.1007/s10479-018-2818-y
- Fanucci, L., Saponara, S., Bacchillone, T., Donati, M., Barba, P., Sánchez-Tato, I., & Carmona, C. (2012). Sensing devices and sensor signal processing for remote monitoring of vital signs in CHF patients. *IEEE Transactions on Instrumentation and Measurement*, 62(3), 553–569.
- Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. *Future Generation Computer Systems*, 78, 659–676.
- Farash, M. S., Turkanović, M., Kumari, S., & Hölbl, M. (2016). An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. *Ad Hoc Networks*, *36*, 152–176. https://doi.org/10.1016/j.adhoc.2015.05.014
- Farid, F., Elkhodr, M., Sabrina, F., Ahamed, F., & Gide, E. (2021). A smart biometric identity management framework for personalised IoT and cloud computing-based healthcare services. *Sensors*, 21(2), 552.
- Fischer, C., Mayer, S., Perić, N., & Simon, J. (2022). Harmonization issues in unit costing of service use for multi-country, multi-sectoral health economic evaluations: a scoping review. *Health Economics Review*, 12(1), 42.
- Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. *Contemporary Sociology*, 6(2), 244. https://doi.org/10.2307/2065853
- Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. *European Journal of Operational Research*, 108(1), 165–169.
- Fortino, G., Parisi, D., Pirrone, V., & Di Fatta, G. (2014). BodyCloud: A SaaS approach for community body sensor networks. *Future Generation Computer Systems*, 35, 62–79.
- Francis, R. P. (2019). Examining healthcare providers' acceptance of data from patient self-monitoring devices using structural equation modeling with the UTAUT2 model. *International Journal of Healthcare Information Systems and Informatics*, 14(1), 44–60. https://doi.org/10.4018/IJHISI.2019010104

- G. AL-Jaf, T., & H. Al-Hemiary, E. (2017). Internet of Things Based Cloud Smart Monitoring for Asthma Patient. *Qalaai Zanist Scientific Journal*, 2(2), 359–364. https://doi.org/10.25212/lfu.qzj.2.2.36
- Gachet, D., De Buenaga, M., Aparicio, F., & Padrón, V. (2012). Integrating internet of things and cloud computing for health services provisioning: The virtual cloud carer project. *Proceedings 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2012*, 918–921. https://doi.org/10.1109/IMIS.2012.25
- Gajanayake, R., Lane, B., Iannella, R., & Sahama, T. (2014). Accountable-eHealth systems: The next step forward for privacy. *Electronic Journal of Health Informatics*, 8(2). https://doi.org/10.4225/75/5796fa8940a98
- Gallupe, R. B., DeSanctis, G., & Dickson, G. W. (1988). Computer-based support for group problem-finding: An experimental investigation. *MIS Quarterly*, 277–296.
- Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. *Journal of Enterprise Information Management*, 28(1), 107–130.
- Gao, C., Ma, J., Liu, Z., & Ma, X. (2015). An approach to quality assessment for web service selection based on the analytic hierarchy process for cases of incomplete information. *Science China. Information Sciences*, 58(12), 1–14.
- Gefen, D., Straub, D., & Boudreau, M.-C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), 7.
- Ghasemy, M., Teeroovengadum, V., Becker, J.-M., & Ringle, C. M. (2020). This fast car can move faster: A review of PLS-SEM application in higher education research. *Higher Education*, 80(6), 1121–1152.
- Gia, T. N., Ali, M., Dhaou, I. Ben, Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2017). IoT-based continuous glucose monitoring system: A feasibility study. *Procedia Computer Science*, 109, 327–334. https://doi.org/10.1016/j.procs.2017.05.359
- Glover, F., Laguna, M., & Marti, R. (2007). Principles of tabu search. *Approximation Algorithms and Metaheuristics*, 23, 1–12.
- Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. *MIS Quarterly*, 213–236.
- Govindan, K., & Chaudhuri, A. (2016). Interrelationships of risks faced by third party logistics service providers: A DEMATEL based approach. *Transportation Research Part E: Logistics and Transportation Review*, 90, 177–195.
- Graham, J. W. (2009). Missing data analysis: Making it work in the real world. *Annual Review of Psychology*, 60, 549–576.

- Gu, D., Khan, S., Khan, I. U., Khan, S. U., Xie, Y., Li, X., & Zhang, G. (2021). Assessing the Adoption of e-Health Technology in a Developing Country: An Extension of the UTAUT Model. *SAGE Open*, 11(3). https://doi.org/10.1177/21582440211027565
- Gulland, A. (2013). Shortage of health workers is set to double, says WHO. *BMJ* (Clinical Research Ed.), 347(November), 6804. https://doi.org/10.1136/bmj.f6804
- Gunawan, I., Redi, A. A. N. P., Santosa, A. A., Maghfiroh, M. F. N., Pandyaswargo, A. H., & Kurniawan, A. C. (2022). Determinants of customer intentions to use electric vehicle in Indonesia: An integrated model analysis. *Sustainability*, 14(4), 1972.
- Gwet, K. (2002). Kappa statistic is not satisfactory for assessing the extent of agreement between raters. Statistical Methods for Inter-Rater Reliability Assessment, 1(6), 1-6.
- Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433.
- Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
- Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. In *Springer*.
- Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. *European Business Review*.
- Hanafiah, M. H. (2020). Formative vs. reflective measurement model: Guidelines for structural equation modeling research. *International Journal of Analysis and Applications*, 18(5), 876–889.
- Harris, L. F., Awoonor-Williams, J. K., Gerdts, C., Gil Urbano, L., González Vélez, A. C., Halpern, J., Prata, N., & Baffoe, P. (2016). Development of a conceptual model and survey instrument to measure conscientious objection to abortion provision. *PLoS One*, 11(10), e0164368.
- Harrison, J. P., & Lee, A. (2006). The role of e-health in the changing health care environment. *Nursing Economics*, 24(6), 283.
- Hartono, I. K., Della, T. K., Kawi, Y. A., & Yuniarty. (2021). Determinants factor affecting user continuance usage and intention to recommend of mobile telemedicine. *IOP Conference Series: Earth and Environmental Science*, 794(1). https://doi.org/10.1088/1755-1315/794/1/012079
- Hassan, Z. A., Schattner, P., & Mazza, D. (2006). Doing a pilot study: why is it essential? *Malaysian Family Physician: The Official Journal of the Academy*

- of Family Physicians of Malaysia, 1(2–3), 70.
- Hennemann, S., Beutel, M. E., & Zwerenz, R. (2017). Ready for eHealth? Health Professionals' Acceptance and Adoption of eHealth Interventions in Inpatient Routine Care. *Journal of Health Communication*, 22(3), 274–284. https://doi.org/10.1080/10810730.2017.1284286
- Henseler, J. (2018). Partial least squares path modeling: Quo vadis? *Quality & Quantity*, 52(1), 1–8.
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. *International Marketing Review*.
- Hiasat, A. (Higher H. C. of J. (2019). The Hashemite Kingdom of Jordan The Higher Health Council. *World Health Organization (WHO)*, 109.
- Hidayat, S., Wibowo, W., Gunawan, Y. E., Dewi, G. C., & Wijayaningtyas, M. (2021). Factors influencing purchase intention of healthcare products during the COVID-19 pandemic: An empirical study in Indonesia. Factors Influencing Purchase Intention of Healthcare Products during the COVID-19 Pandemic: An Empirical Study in Indonesia, 8(6), 337–345.
- Hoff, T., Weller, W., & DePuccio, M. (2012). The patient-centered medical home: a review of recent research. *Medical Care Research and Review*, 69(6), 619–644.
- Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. *International Journal of Medical Informatics*, 101, 75–84. https://doi.org/10.1016/j.ijmedinf.2017.02.002
- Hossain, A., Quaresma, R., & Rahman, H. (2019). Investigating factors influencing the physicians' adoption of electronic health record (EHR) in healthcare system of Bangladesh: An empirical study. *International Journal of Information Management*, 44(September 2018), 76–87. https://doi.org/10.1016/j.ijinfomgt.2018.09.016
- Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. *Psychological Methods*, 3(4), 424.
- Huarng, K. H., Yu, T. H. K., & Lee, C. fang. (2022). Adoption model of healthcare wearable devices. *Technological Forecasting and Social Change*, 174(October 2021). https://doi.org/10.1016/j.techfore.2021.121286
- Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. *Strategic Management Journal*, 20(2), 195–204.
- Hung, S.-Y., Tsai, J. C.-A., & Chuang, C.-C. (2014). Investigating primary health care nurses' intention to use information technology: An empirical study in Taiwan. *Decision Support Systems*, *57*, 331–342.

- Hurputlugil, T. (2018). Analytic Hierarchy process (AHP) as an Assessment Approach for Architectural Design: case study of Architectural Design studi. *International Journal of Architecture & Planning*, 6(2), 217–245.
- Hussain, F., Abbas, S. G., Shah, G. A., Pires, I. M., Fayyaz, U. U., Shahzad, F., Garcia, N. M., & Zdravevski, E. (2021). A framework for malicious traffic detection in IoT healthcare environment. *Sensors*, 21(9), 3025.
- Idoga, P. E., Toycan, M., Nadiri, H., & Çelebi, E. (2018). Factors Affecting the Successful Adoption of e-Health Cloud Based Health System from Healthcare Consumers' Perspective. *IEEE Access*, 6, 71216–71228. https://doi.org/10.1109/ACCESS.2018.2881489
- Idoga, P. E., Toycan, M., Nadiri, H., & Çelebi, E. (2019). Assessing factors militating against the acceptance and successful implementation of a cloud based health center from the healthcare professionals' perspective: A survey of hospitals in Benue state, northcentral Nigeria. *BMC Medical Informatics and Decision Making*, 19(1), 1–18. https://doi.org/10.1186/s12911-019-0751-x
- Iivari, N., Sharma, S., & Ventä-Olkkonen, L. (2020). Digital transformation of everyday life—How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? *International Journal of Information Management*, 55, 102183.
- Ismail, A., Majid, A. H. A., Rahman, M. A., Jamaluddin, N. A., Susantiy, A. I., & Setiawati, C. I. (2021). Aligning Malaysian SMEs with the megatrends: The roles of HPWPs and employee creativity in enhancing Malaysian SME performance. *Global Business Review*, 22(2), 364–380.
- Ismail, N., Kinchin, G., & Edwards, J.-A. (2018). Pilot study, Does it really matter? Learning lessons from conducting a pilot study for a qualitative PhD thesis. *International Journal of Social Science Research*, 6(1), 1–17.
- Iyanna, S., Kaur, P., Ractham, P., Talwar, S., & Islam, A. K. M. N. (2022). Digital transformation of healthcare sector. What is impeding adoption and continued usage of technology-driven innovations by end-users? *Journal of Business Research*, 153, 150–161.
- Jagrič, T., Brown, C., Boyce, T., & Jagrič, V. (2021). The impact of the health-care sector on national economies in selected European countries. *Health Policy*, 125(1), 90–97.
- Jalghoum, Y., Tahtamouni, A., Khasawneh, S., & Al-Madadha, A. (2021). Challenges to healthcare information systems development: The case of Jordan. *International Journal of Healthcare Management*, 14(2), 447–455. https://doi.org/10.1080/20479700.2019.1658159
- Javaid, M., Khan, S., Haleem, A., & Rab, S. (2022). Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. *Benchmarking: An International Journal, ahead-of-print.*

- Jayaseelan, R., Koothoor, P., & Pichandy, C. (2020). Technology acceptance by medical doctors in india: An analysis with UTAUT model. *International Journal of Scientific and Technology Research*, 9(1), 3854–3857.
- Jeong, Y. J., & Kang, J. (2019). Development and validation of a questionnaire to measure post-intensive care syndrome. *Intensive and Critical Care Nursing*, 55, 102756.
- Jit, M., Ananthakrishnan, A., McKee, M., Wouters, O. J., Beutels, P., & Teerawattananon, Y. (2021). Multi-country collaboration in responding to global infectious disease threats: lessons for Europe from the COVID-19 pandemic. *The Lancet Regional Health–Europe*, 9.
- Johnson, T., & Owens, L. (2003). Survey response rate reporting in the professional literature. 58th Annual Meeting of the American Association for Public Opinion Research, Nashville, 2003.
- Ju, Y., & Wang, A. (2013). Extension of VIKOR method for multi-criteria group decision making problem with linguistic information. *Applied Mathematical Modelling*, 37(5), 3112–3125.
- Kagermann, H. (2015). Change through digitization—Value creation in the age of Industry 4.0. In *Management of permanent change* (pp. 23–45). Springer.
- Kalayou, M. H., Endehabtu, B. F., & Tilahun, B. (2020). The applicability of the modified technology acceptance model (TAM) on the sustainable adoption of eHealth systems in resource-limited settings. *Journal of Multidisciplinary Healthcare*, 1827–1837.
- Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). *Technology in Society*, 60(November 2019), 101212. https://doi.org/10.1016/j.techsoc.2019.101212
- Kao, Y. S., Nawata, K., & Huang, C. Y. (2019). An exploration and confirmation of the factors influencing adoption of IoT-basedwearable fitness trackers. *International Journal of Environmental Research and Public Health*, 16(18). https://doi.org/10.3390/ijerph16183227
- Kar, S. S., & Ramalingam, A. (2013). Is 30 the magic number? Issues in sample size estimation. *National Journal of Community Medicine*, 4(01), 175–179.
- Kasunic, M. (2005). *Designing an effective survey*. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.
- Kelly, C. J., & Young, A. J. (2017). Promoting innovation in healthcare. *Future Healthcare Journal*, 4(2), 121.
- Kelman, H. C. (1958). Compliance, identification, and internalization three processes of attitude change. *Journal of Conflict Resolution*, 2(1), 51–60.

- Kesse-Tachi, A., Asmah, A. E., & Agbozo, E. (2019). Factors influencing adoption of eHealth technologies in Ghana. *Digital Health*, *5*, 2055207619871425.
- Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. *Computers in Human Behavior*, 70(January), 460–474. https://doi.org/10.1016/j.chb.2017.01.001
- Khan, A. A., Shameem, M., Kumar, R. R., Hussain, S., & Yan, X. (2019). Fuzzy AHP based prioritization and taxonomy of software process improvement success factors in global software development. *Applied Soft Computing*, 83, 105648.
- Khan, I. U., Hameed, Z., & Khan, S. U. (2017). Understanding online banking adoption in a developing country: UTAUT2 with cultural moderators. *Journal of Global Information Management (JGIM)*, 25(1), 43–65.
- Khan, I. U., Yu, Y., Hameed, Z., Khan, S. U., & Waheed, A. (2018). Assessing the Physicians' Acceptance of E-Prescribing in a Developing Country: An Extension of the UTAUT Model With Moderating Effect of Perceived Organizational Support. *Journal of Global Information Management*, 26(3), 121–142. https://doi.org/10.4018/JGIM.2018070109
- Khatun, F., Palas, M. J., & Ray, P. (2017). Using the Unified Theory of Acceptance and Use of Technology model to analyze cloud-based mHealth service for primary care. *Digital Medicine*, 3(2), 69. https://doi.org/10.4103/digm.digm 21 17
- Kim, B., & Lee, E. (2022). What Factors Affect a User's Intention to Use Fitness Applications? The Moderating Effect of Health Status: A Cross-Sectional Study. *INQUIRY: The Journal of Health Care Organization, Provision, and Financing*, 59, 00469580221095826.
- Kim, S.-K. (2014). Explicit design of innovation performance metrics by using analytic hierarchy process expansion. *International Journal of Mathematics and Mathematical Sciences*, 2014.
- Kim, T. B., & Ho, C. T. B. (2021). Validating the moderating role of age in multiperspective acceptance model of wearable healthcare technology. *Telematics and Informatics*, 61(October 2020), 101603. https://doi.org/10.1016/j.tele.2021.101603
- Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. *Information and Software Technology*, 55(12), 2049–2075.
- Kline, R. B. (2015). *Principles and practice of structural equation modeling*. Guilford publications.
- Kock, N. (2018). Should bootstrapping be used in PLS-SEM? Toward stable P-Value calculation methods. *Journal of Applied Structural Equation Modeling*, 2(1), 1–12.

- Koivumäki, T., Pekkarinen, S., Lappi, M., Väisänen, J., Juntunen, J., & Pikkarainen, M. (2017). Consumer adoption of future MyData-based preventive eHealth services: an acceptance model and survey study. *Journal of Medical Internet Research*, 19(12), e7821.
- Koller, D., & Friedman, N. (2009). *Probabilistic graphical models: principles and techniques*. MIT press.
- Korb, K. B., & Nicholson, A. E. (2010). Bayesian artificial intelligence. CRC press.
- Koski, T., & Noble, J. (2011). *Bayesian networks: an introduction*. John Wiley & Sons.
- Kretser, A., Murphy, D., Bertuzzi, S., Abraham, T., Allison, D. B., Boor, K. J., Dwyer, J., Grantham, A., Harris, L. J., & Hollander, R. (2019). Scientific integrity principles and best practices: recommendations from a scientific integrity consortium. *Science and Engineering Ethics*, 25(2), 327–355.
- Kulviwat, S., Bruner II, G. C., Kumar, A., Nasco, S. A., & Clark, T. (2007). Toward a unified theory of consumer acceptance technology. *Psychology & Marketing*, 24(12), 1059–1084.
- Kumar, P., & Silambarasan, K. (2022). Enhancing the performance of healthcare service in IoT and cloud using optimized techniques. *IETE Journal of Research*, 68(2), 1475–1484.
- Lai, P. C. (2017). The literature review of technology adoption models and theories for the novelty technology. *JISTEM-Journal of Information Systems and Technology Management*, 14, 21–38.
- Lally, P., Van Jaarsveld, C. H. M., Potts, H. W. W., & Wardle, J. (2010). How are habits formed: Modelling habit formation in the real world. *European Journal of Social Psychology*, 40(6), 998–1009.
- Lamb, E. G., Mengersen, K. L., Stewart, K. J., Attanayake, U., & Siciliano, S. D. (2014). Spatially explicit structural equation modeling. *Ecology*, 95(9), 2434–2442.
- Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. *Business Horizons*, 58(4), 431–440.
- Leguina, A. (2015). A primer on partial least squares structural equation modeling (PLS-SEM). Taylor & Francis.
- Li, J., Ma, Q., Chan, A. H. S., & Man, S. S. (2019). Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. *Applied Ergonomics*, 75, 162–169.
- Li, X., Hess, T. J., & Valacich, J. S. (2008). Why do we trust new technology? A study of initial trust formation with organizational information systems. *The Journal of Strategic Information Systems*, 17(1), 39–71.

- Lietz, P. (2010). Research into questionnaire design: A summary of the literature. *International Journal of Market Research*, 52(2), 249–272.
- Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How habit limits the predictive power of intention: The case of information systems continuance. *MIS Quarterly*, 705–737.
- Little, R. J. A., & Rubin, D. B. (2019). *Statistical analysis with missing data* (Vol. 793). John Wiley & Sons.
- Liu, H.-C., Chen, W.-S., Tsaur, W.-G., Yeh, H.-M., & Huh, C.-L. (2016). An evaluation of the Balance and Variation of DEMATELs by Using Liu's Integrated Validity Index. *Journal of Data Science*, 14(3), 509–518.
- Liu, K., & Tao, D. (2022). The roles of trust, personalization, loss of privacy, and anthropomorphism in public acceptance of smart healthcare services. *Computers in Human Behavior*, 127(September 2021), 107026. https://doi.org/10.1016/j.chb.2021.107026
- Liu, P., & Zhang, L. (2017). An extended multiple criteria decision making method based on neutrosophic hesitant fuzzy information. *Journal of Intelligent & Fuzzy Systems*, 32(6), 4403–4413.
- Luhmann, N. (1979). Trust and power Chichester. UK: Wiley.
- Lulin, Z., Owusu-Marfo, J., Asante Antwi, H., Antwi, M. O., & Xu, X. (2020). Nurses' Readiness in the Adoption of Hospital Electronic Information Management Systems in Ghana: The Application of the Structural Equation Modeling and the UTAUT Model. SAGE Open, 10(2). https://doi.org/10.1177/2158244020931814
- Lundblad, J. P. (2003). A review and critique of Rogers' diffusion of innovation theory as it applies to organizations. *Organization Development Journal*, 21(4), 50.
- Lundereng, E. D., Nes, A. A. G., Holmen, H., Winger, A., Thygesen, H., Jøranson, N., Borge, C. R., Dajani, O., Mariussen, K. L., & Steindal, S. A. (2023). Health care professionals' experiences and perspectives on using telehealth for homebased palliative care: scoping review. *Journal of Medical Internet Research*, 25, e43429.
- Luyten, J., & Marneffe, W. (2021). Examining the acceptance of an integrated Electronic Health Records system: Insights from a repeated cross-sectional design. *International Journal of Medical Informatics*, 150(January), 104450. https://doi.org/10.1016/j.ijmedinf.2021.104450
- Maathuis, M., Drton, M., Lauritzen, S., & Wainwright, M. (2018). *Handbook of graphical models*. CRC Press.
- Madae, S., &, & Adeinat, M. (2018). The Health Sector in Jordan: Effectiveness and Efficiency. *Modern Applied Science*, 12(12). https://doi.org/10.5539/mas.v12n12p234

- Madria, S., Kumar, V., & Dalvi, R. (2013). Sensor cloud: A cloud of virtual sensors. *IEEE Software*, 31(2), 70–77.
- Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148.
- Martins, N. L. M., Duarte, P., & Pinho, J. C. M. R. (2021). an Analysis of Determinants of the Adoption of Mobile Health (Mhealth). *RAE Revista de Administração de Empresas*, 61(4), 1–17. https://doi.org/10.1590/S0034-759020210403x
- Maulidina, P. R., Sarno, R., Sungkono, K. R., & Giranita, T. A. (2020). Using extended UTAUT2 model to determine factors influencing the use of shopee e-commerce. 2020 International Seminar on Application for Technology of Information and Communication (ISemantic), 493–498.
- McKenzie, J. F., Wood, M. L., Kotecki, J. E., Clark, J. K., & Brey, R. A. (1999). Establishing content validity: Using qualitative and quantitative steps. *American Journal of Health Behavior*.
- McLachlan, G. J., & Krishnan, T. (2007). *The EM algorithm and extensions*. John Wiley & Sons.
- Meier, D. Y., Barthelmess, P., Sun, W., & Liberatore, F. (2020). Wearable Technology Acceptance in Health Care Based on National Culture Differences: Cross-Country Analysis between Chinese and Swiss Consumers. *Journal of Medical Internet Research*, 22(10), 1–15. https://doi.org/10.2196/18801
- Memon, M. A., Cheah, J.-H., Ramayah, T., Ting, H., Chuah, F., & Cham, T. H. (2019). Moderation analysis: issues and guidelines. *Journal of Applied Structural Equation Modeling*, 3(1), 1–11.
- Mital, M., Chang, V., Choudhary, P., Papa, A., & Pani, A. K. (2018). Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach. *Technological Forecasting and Social Change*, 136, 339–346.
- MO, O., Emuoyibofarhe, J. O., & ... (2019). A Modified Unified Theory of Acceptance And Use of Technology (Utaut) Model For E-Health Services. *Journal of Experimental* ..., 7(3), 30–36. http://www.digitaldreamstudios.net/erjournal/papers/Osifeko_2019_Sept_7_3 30-36.pdf
- Mohamed, K. (2019). An Improved User Authentication Model for Mobile Application Systems: An Expert Review Verification. *International Journal of Advanced Trends in Computer Science and Engineering*. https://doi.org/10.30534/ijatcse/2019/7481.42019
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. *Information*

- *Systems Research*, 2(3), 192–222.
- Murtagh, F., & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? *Journal of Classification*, 31, 274–295.
- Myeong, S., Jung, Y., & Lee, E. (2018). A study on determinant factors in smart city development: An analytic hierarchy process analysis. *Sustainability*, 10(8), 2606.
- Nabukenya, J., Egwar, A. A., Drumright, L., Semwanga, A. R., & Kasasa, S. (2023). Feasibility and utility of Point-of-Care electronic clinical data capture in Uganda's healthcare system: a qualitative study. *Journal of the American Medical Informatics Association*, 30(5), 932–942.
- Namatovu, H. K., Oyana, T. J., & Sol, H. G. (2021). Barriers to eHealth adoption in routine antenatal care practices: Perspectives of expectant mothers in Uganda–A qualitative study using the unified theory of acceptance and use of technology model. *Digital Health*, 7, 20552076211064410.
- Napitupulu, D., Yacub, R., & Putra, A. H. P. K. (2021). Factor Influencing of Telehealth Acceptance During COVID-19 Outbreak: Extending UTAUT Model. *International Journal of Intelligent Engineering and Systems*, 14(3), 267–281. https://doi.org/10.22266/ijies2021.0630.23
- Nassoura, A. B. (2020). Critical success factors for adoption of cloud computing in jordanian healthcare organizations. *International Journal of Scientific & Technology Research*, 9(4), 2798–2803.
- Neagu, G., Preda, Ş., Stanciu, A., & Florian, V. (2017). A Cloud-IoT based sensing service for health monitoring. 2017 E-Health and Bioengineering Conference (EHB), 53–56.
- Nilashi, M., Ahmadi, H., Ahani, A., Ibrahim, O., & Almaee, A. (2015). Evaluating the Factors Affecting Adoption of Hospital Information System Using Analytic Hierarchy Process. *Journal of Soft Computing and Decision Support Systems*, 3(1), 8–35.
- Nixon, J. D., Dey, P. K., & Davies, P. A. (2010). Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process. *Energy*, *35*(12), 5230–5240.
- Nusairat, N. M., Abdellatif, H., Al-Gasawneh, J. A., Akhorshaideh, A. H. O., Aloqool, A., Rabah, S., & Ahmad, A. M. K. (2021). Determinants of behavioral intentions to use mobile healthcare applications in Jordan. *International Journal of Data and Network Science*, 5(4), 547–556. https://doi.org/10.5267/j.ijdns.2021.8.013
- Oh, H., Rizo, C., Enkin, M., & Jadad, A. (2005). What is eHealth?: a systematic review of published definitions. *World Hosp Health Serv*, 41(1), 32–40.

- Olson, K. (2010). An examination of questionnaire evaluation by expert reviewers. *Field Methods*, 22(4), 295–318.
- Ortega Egea, J. M., & Román González, M. V. (2011). Explaining physicians' acceptance of EHCR systems: An extension of TAM with trust and risk factors. *Computers in Human Behavior*, 27(1), 319–332. https://doi.org/10.1016/j.chb.2010.08.010
- Owusu Kwateng, K., Appiah, C., & Atiemo, K. A. O. (2021). Adoption of health information systems: Health professionals perspective. *International Journal of Healthcare Management*, 14(2), 517–533. https://doi.org/10.1080/20479700.2019.1672004
- Pal, D., Funilkul, S., Charoenkitkarn, N., & Kanthamanon, P. (2018). Internet-of-Things and Smart Homes for Elderly Healthcare: An End User Perspective. *IEEE*Access, 6, 10483–10496. https://doi.org/10.1109/ACCESS.2018.2808472
- Pal, D., Papasratorn, B., Chutimaskul, W., & Funilkul, S. (2019). Embracing the smart-home revolution in Asia by the elderly: An end-user negative perception modeling. *IEEE Access*, 7, 38535–38549.
- Pan, J., Ding, S., Wu, D., Yang, S., & Yang, J. (2019). Exploring behavioural intentions toward smart healthcare services among medical practitioners: a technology transfer perspective. *International Journal of Production Research*, 57(18), 5801–5820. https://doi.org/10.1080/00207543.2018.1550272
- Papa, A., Mital, M., Pisano, P., & Del Giudice, M. (2020). E-health and wellbeing monitoring using smart healthcare devices: An empirical investigation. *Technological Forecasting and Social Change*, 153(September 2017), 119226. https://doi.org/10.1016/j.techfore.2018.02.018
- Parwekar, P. (2011). From internet of things towards cloud of things. 2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011), 329–333.
- Petersen, F., Luckan, Z., & Pather, S. (2020). Impact of demographics on patients' acceptance of ICT for diabetes self-management: Applying the UTAUT model in low socio-economic areas. 2020 Conference on Information Communications Technology and Society, ICTAS 2020 Proceedings. https://doi.org/10.1109/ICTAS47918.2020.233975
- Philippi, P., Baumeister, H., Apolinário-Hagen, J., Ebert, D. D., Hennemann, S., Kott, L., Lin, J., Messner, E. M., & Terhorst, Y. (2021). Acceptance towards digital health interventions Model validation and further development of the Unified Theory of Acceptance and Use of Technology. *Internet Interventions*, 26. https://doi.org/10.1016/j.invent.2021.100459
- Pihir, I., Tomičić-Pupek, K., & Tomičić Furjan, M. (2019). Digital transformation playground-literature review and framework of concepts. *Journal of*

- *Information and Organizational Sciences*, 43(1), 33–48.
- Pimentel, J. (2010). A note on the usage of Likert Scaling for research data analysis. *Usm R & D*, *18*(2), 109–112.
- Prakash, A. V., & Das, S. (2021). Medical practitioner's adoption of intelligent clinical diagnostic decision support systems: A mixed-methods study. *Information & Management*, 58(7), 103524.
- Quaosar, G. M. A. A., Hoque, M. R., & Bao, Y. (2018). Investigating factors affecting elderly's intention to use m-health services: An empirical study. *Telemedicine and E-Health*, 24(4), 309–314. https://doi.org/10.1089/tmj.2017.0111
- Rabaa'i, A. A., & Zhu, X. (2021). Understanding the determinants of wearable payment adoption: An empirical study. *Interdisciplinary Journal of Information, Knowledge, and Management*, 16(1), 173–211. https://doi.org/10.28945/4746
- Rahi, S., Alnaser, F. M. I., & Abd Ghani, M. (2019). Designing survey research: recommendation for questionnaire development, calculating sample size and selecting research paradigms. *Economic and Social Development: Book of Proceedings*, 1157–1169.
- Rajak, M., & Shaw, K. (2021). An extension of technology acceptance model for mHealth user adoption. *Technology in Society*, 67(September 2020), 101800. https://doi.org/10.1016/j.techsoc.2021.101800
- Ramdani, B., Duan, B., & Berrou, I. (2020). Exploring the determinants of mobile health adoption by hospitals in china: empirical study. *JMIR Medical Informatics*, 8(7), e14795.
- Rao, B. B. P., Saluia, P., Sharma, N., Mittal, A., & Sharma, S. V. (2012). Cloud computing for Internet of Things & sensing based applications. 2012 Sixth International Conference on Sensing Technology (ICST), 374–380.
- Rattray, J., & Jones, M. C. (2007). Essential elements of questionnaire design and development. *Journal of Clinical Nursing*, 16(2), 234–243.
- Ravangard, R., Kazemi, Z., Zaker Abbasali, S., Sharifian, R., & Monem, H. (2017). Development of the UTAUT2 model to measure the acceptance of medical laboratory portals by patients in Shiraz. *Electronic Physician*, 9(2), 3862–3869. https://doi.org/10.19082/3862
- Ray, B., Saha, K. K., Biswas, M., & Rahman, M. M. (2020). User perspective on usages and privacy of ehealth systems in bangladesh: A dhaka based survey. 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 1–5.
- Refaee, E., Parveen, S., Begum, K. M. J., Parveen, F., Raja, M. C., Gupta, S. K., & Krishnan, S. (2022). Secure and scalable healthcare data transmission in IoT based on optimized routing protocols for mobile computing applications. *Wireless Communications and Mobile Computing*, 2022, 1–12.

- Rho, M. J., young Choi, I., & Lee, J. (2014). Predictive factors of telemedicine service acceptance and behavioral intention of physicians. *International Journal of Medical Informatics*, 83(8), 559–571.
- Riana, D., Hidayanto, A. N., Hadianti, S., & Napitupulu, D. (2021). Integrative Factors of E-Health Laboratory Adoption: A Case of Indonesia. *Future Internet*, *13*(2), 26.
- Riddell, W. C., & Song, X. (2017). The role of education in technology use and adoption: Evidence from the Canadian workplace and employee survey. *ILR Review*, 70(5), 1219–1253.
- Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. *Long Range Planning*, 45(5–6), 341–358.
- Roberts, K., Holland, J., Prigerson, H. G., Sweeney, C., Corner, G., Breitbart, W., & Lichtenthal, W. G. (2017). Development of the Bereavement Risk Inventory and Screening Questionnaire (BRISQ): item generation and expert panel feedback. *Palliative & Supportive Care*, 15(1), 57–66.
- Rogers, E. M. (1962). Diffusion of Innovations. Free Press of Glencoe.
- Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). *Diffusion of innovations*. Routledge.
- Rolim, C. O., Koch, F. L., Westphall, C. B., Werner, J., Fracalossi, A., & Salvador, G. S. (2010). A cloud computing solution for patient's data collection in health care institutions. *2010 Second International Conference on EHealth, Telemedicine, and Social Medicine*, 95–99.
- Rondan-Cataluña, F. J., Arenas-Gaitán, J., & Ramírez-Correa, P. E. (2015). A comparison of the different versions of popular technology acceptance models a non-linear perspective. *Kybernetes*, 44(5), 788–805. https://doi.org/10.1108/K-09-2014-0184
- Roopa, S., & Rani, M. S. (2012). Questionnaire designing for a survey. *Journal of Indian Orthodontic Society*, 46(4 suppl1), 273–277.
- Rouidi, M., Hamdoune, A., Choujtani, K., & Chati, A. (2022). TAM-UTAUT and the acceptance of remote healthcare technologies by healthcare professionals: A systematic review. *Informatics in Medicine Unlocked*, *32*, 101008.
- Rousseeuw, P. J., & Hubert, M. (2011). Robust statistics for outlier detection. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, *1*(1), 73–79.
- Rowley, J. (2014). Designing and using research questionnaires. *Management Research Review*, 37(3), 308–330.
- Rozga, P., Kraslawski, A., Klarecki, A., Romanowski, A., & Krysiak, W. (2021). A New Approach for Decision Support of the Selection of Construction Technology of High-Voltage Substations Based on AHP Method. *IEEE*

- Access, 9, 73413-73423.
- Russo, D., & Stol, K.-J. (2021). PLS-SEM for software engineering research: An introduction and survey. *ACM Computing Surveys (CSUR)*, *54*(4), 1–38.
- Saaty, T. L. (1988). What is the analytic hierarchy process? In *Mathematical models* for decision support (pp. 109–121). Springer.
- Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. *European Journal of Operational Research*, 48(1), 9–26.
- Sabol, M., Hair, J., Cepeda, G., Roldán, J. L., & Chong, A. Y. L. (2023). PLS-SEM in information systems: seizing the opportunity and marching ahead full speed to adopt methodological updates. *Industrial Management & Data Systems*, 123(12), 2997–3017.
- Sahi, A., Lai, D., & Li, Y. (2021). A review of the state of the arts in privacy and security in the eHealth cloud. *IEEE Access*, 9, 104127–104141.
- Saunders, M., Lewis, P., & Thornhill, A. (2009). Research Methods for Business Students (5th Ed).
- Scanagatta, M., de Campos, C. P., Corani, G., & Zaffalon, M. (2015). Learning Bayesian networks with thousands of variables. *Advances in Neural Information Processing Systems*, 28.
- Schlägel, C., & Sarstedt, M. (2016). Assessing the measurement invariance of the four-dimensional cultural intelligence scale across countries: A composite model approach. *European Management Journal*, 34(6), 633–649.
- Schmitz, A., Díaz-Martín, A. M., & Guillén, M. J. Y. (2022). Modifying UTAUT2 for a cross-country comparison of telemedicine adoption. *Computers in Human Behavior*, 130, 107183.
- Schreiweis, B., Pobiruchin, M., Strotbaum, V., Suleder, J., Wiesner, M., & Bergh, B. (2019). Barriers and facilitators to the implementation of eHealth services: systematic literature analysis. *Journal of Medical Internet Research*, 21(11), e14197.
- Seethamraju, R., Diatha, K. S., & Garg, S. (2018). Intention to Use a Mobile-Based Information Technology Solution for Tuberculosis Treatment Monitoring Applying a UTAUT Model. *Information Systems Frontiers*, 20(1), 163–181. https://doi.org/10.1007/s10796-017-9801-z
- Semiz, B. B., & Semiz, T. (2021). Examining consumer use of mobile health applications by the extended UTAUT model. *Business & Management Studies:* An International Journal, 9(1), 267–281. https://doi.org/10.15295/bmij.v9i1.1773
- Semwanga, A. R., Namatovu, H. K., Kyanda, S., Kaawaase, M., & Magumba, A. (2021). An ehealth Adoption Framework for Developing Countries: A Systematic Review. *Health Informatics-An International Journal (HIIJ)*,

10(3).

- Setiyani, L., & Rostiani, Y. (2021). Analysis of E-commerce adoption by SMEs using the technology-organization-environment (TOE) model: A case study in karawang, Indonesia. *International Journal of Science, Technology & Management*, 2(4), 1113–1132.
- Shabbir, R., & Ahmad, S. S. (2016). Water resource vulnerability assessment in Rawalpindi and Islamabad, Pakistan using analytic hierarchy process (AHP). *Journal of King Saud University-Science*, 28(4), 293–299.
- Shadangi, P. Y., Kar, S., Mohanty, A. K., & Dash, M. (2018). Physician's attitude towards acceptance of telemedicine technology for delivering health care services. *International Journal of Mechanical Engineering and Technology*, 9(11), 715–722.
- Shah, J. L., & Bhat, H. F. (2020). Internet of Things Use Cases for the Healthcare Industry. In *Internet of Things Use Cases for the Healthcare Industry*. Springer International Publishing. https://doi.org/10.1007/978-3-030-37526-3
- Shah, J. L., Bhat, H. F., & Khan, A. I. (2021). Integration of Cloud and IoT for smart e-healthcare. In *Healthcare Paradigms in the Internet of Things Ecosystem* (pp. 101–136). Elsevier.
- Shah, J. L., Bhat, H. F., & Khan, A. I. (2022). CloudIoT-Driven Healthcare: Review, Architecture, Security Implications, and Open Research Issues. *Advanced Healthcare Systems: Empowering Physicians with IoT-Enabled Technologies*, 173–253.
- Shahbaz, M., Gao, C., Zhai, L. L., Shahzad, F., & Hu, Y. (2019). Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change. *Journal of Big Data*, 6(1). https://doi.org/10.1186/s40537-019-0170-y
- Shahbaz, M., & Zahid, R. (2022). Probing the factors influencing cloud computing adoption in healthcare organizations: A three-way interaction model. *Technology in Society*, 71, 102139.
- Shaikh, Y., Parvati, V. K., & Biradar, S. R. (2018). Survey of smart healthcare systems using internet of things (IoT). 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), 508–513.
- Shiferaw, K. B., & Mehari, E. A. (2019). Modeling predictors of acceptance and use of electronic medical record system in a resource limited setting: Using modified UTAUT model. *Informatics in Medicine Unlocked*, 17(April), 100182. https://doi.org/10.1016/j.imu.2019.100182
- Shiferaw, K. B., Mengiste, S. A., Gullslett, M. K., Zeleke, A. A., Tilahun, B., Tebeje, T., Wondimu, R., Desalegn, S., & Mehari, E. A. (2021). Healthcare providers' acceptance of telemedicine and preference of modalities during COVID-19 pandemics in a low-resource setting: An extended UTAUT model. *PLoS ONE*,

- 16(4 April 2021), 1–15. https://doi.org/10.1371/journal.pone.0250220
- Siam, A. I., Abou Elazm, A., El-Bahnasawy, N. A., El Banby, G., Abd El-Samie, F. E., & Abd El-Samie, F. E. (2019). Smart health monitoring system based on IoT and cloud computing. *Menoufia Journal of Electronic Engineering Research*, 28(1), 37–42.
- Siejka, M. (2020). The use of AHP to prioritize five waste processing plants locations in Krakow. *ISPRS International Journal of Geo-Information*, 9(2), 110.
- Singh, N., Alshibani, S. M., Misra, P., Nawaz, R., & Gupta, B. (2023). Unravelling barriers in high-tech technology start-ups: practical insights and solutions for healthcare enterprises. *Journal of Enterprise Information Management*, *36*(6), 1708–1726.
- Soceanu, A., Vasylenko, M., Egner, A., & Muntean, T. (2015). Managing the privacy and security of eHealth data. *Proceedings 2015 20th International Conference on Control Systems and Computer Science, CSCS 2015*, 439–446. https://doi.org/10.1109/CSCS.2015.76
- Solangi, Z. A., Solangi, Y. A., & Maher, Z. A. (2021). Adoption of IoT-based smart healthcare: An empirical analysis in the context of Pakistan. *Journal of Hunan University Natural Sciences*, 48(9).
- Sönmez, A. (2013). Research methodology and design. *Contributions to Management Science*, 63–112. https://doi.org/10.1007/978-3-319-02033-4_3
- Srivastava, M., & Raina, M. (2020). Consumers' usage and adoption of e-pharmacy in India. *International Journal of Pharmaceutical and Healthcare Marketing*, 15(2), 235–250. https://doi.org/10.1108/IJPHM-01-2020-0006
- Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018. *Symmetry*, 11(3), 350.
- Stolzmann, K., Meterko, M., Miller, C. J., Belanger, L., Seibert, M. N., & Bauer, M. S. (2019). Survey response rate and quality in a mental health clinic population: results from a randomized survey comparison. *The Journal of Behavioral Health Services & Research*, 46(3), 521–532.
- Straub, D., Boudreau, M.-C., & Gefen, D. (2004). Validation guidelines for IS positivist research. *Communications of the Association for Information Systems*, 13(1), 24.
- Suganthi, L. (2018). Multi expert and multi criteria evaluation of sectoral investments for sustainable development: An integrated fuzzy AHP, VIKOR/DEA methodology. *Sustainable Cities and Society*, 43, 144–156.
- Suh, M., Chen, C.-A., Woodbridge, J., Tu, M. K., Kim, J. I., Nahapetian, A., Evangelista, L. S., & Sarrafzadeh, M. (2011). A remote patient monitoring system for congestive heart failure. *Journal of Medical Systems*, *35*, 1165–1179.

- Sulaiman, H., & Magaireah, A. I. (2014). Factors affecting the adoption of integrated cloudbased e-health record in healthcare organizations: A case study of Jordan. *Proceedings of the 6th International Conference on Information Technology and Multimedia*, 102–107.
- Sullivan, G. M., & Artino Jr, A. R. (2013). Analyzing and interpreting data from Likert-type scales. *Journal of Graduate Medical Education*, *5*(4), 541–542.
- Sun, T. Q. (2021). Adopting artificial intelligence in public healthcare: the effect of social power and learning algorithms. *International Journal of Environmental Research and Public Health*, 18(23), 12682.
- SUROSO, J. S., & SUKMORO, T. C. (2021). Factors affecting behavior of the use of healthcare mobile application technology in indonesian society. *Journal of Theoretical and Applied Information Technology*, 99(15), 3923–3934.
- Tabish, S. A., & Nabil, S. (2015). Future of healthcare delivery: Strategies that will reshape the healthcare industry landscape. *International Journal of Science and Research*, 4(2), 727–758.
- Taherdoost, H. (2019). What Is the Best Response Scale for Survey and Questionnaire Design; Review of Different Lengths of Rating Scale / Attitude Scale / Likert Scale. *International Journal of Academic Research in Management (IJARM)*, 8(1), 1–10. https://hal.archives-ouvertes.fr/hal-02557308
- Tak, P., & Panwar, S. (2017). Using UTAUT 2 model to predict mobile app based shopping: evidences from India. *Journal of Indian Business Research*, 9(3), 248–264.
- Talukder, M. S., Sorwar, G., Bao, Y., Ahmed, J. U., & Palash, M. A. S. (2020). Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach. *Technological Forecasting and Social Change*, 150(November 2019), 119793. https://doi.org/10.1016/j.techfore.2019.119793
- Tanne, J. H., Hayasaki, E., Zastrow, M., Pulla, P., Smith, P., & Rada, A. G. (2020). Covid-19: How doctors and healthcare systems are tackling coronavirus worldwide. *The BMJ*, 368(March), 1–5. https://doi.org/10.1136/bmj.m1090
- Tavares, J., Goulão, A., & Oliveira, T. (2018). Electronic Health Record Portals adoption: Empirical model based on UTAUT2. *Informatics for Health and Social Care*, 43(2), 109–125. https://doi.org/10.1080/17538157.2017.1363759
- Tavares, J., & Oliveira, T. (2016). Electronic health record patient portal adoption by health care consumers: An acceptance model and survey. *Journal of Medical Internet Research*, 18(3). https://doi.org/10.2196/jmir.5069
- Tavares, J., & Oliveira, T. (2017). Electronic Health Record Portal Adoption: A cross country analysis. *BMC Medical Informatics and Decision Making*, 17(1), 1–17. https://doi.org/10.1186/s12911-017-0482-9

- Thakur, R., Hsu, S. H. Y., & Fontenot, G. (2012). Innovation in healthcare: Issues and future trends. *Journal of Business Research*, 65(4), 562–569.
- Thongpila, K. (2019). Fabricated Future: applying the Theory of Planned Behavior to influence purchaseintention of green fashion made from recycled plastic in Thailand.
- To, W. M., Lee, P. K. C., Lu, J., Wang, J., Yang, Y., & Yu, Q. (2019). What motivates chinese young adults to use mhealth? *Healthcare (Switzerland)*, 7(4). https://doi.org/10.3390/healthcare7040156
- Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). *Processes of technological innovation*. Lexington books.
- Tran, A. Q., Nguyen, L. H., Nguyen, H. S. A., Nguyen, C. T., Vu, L. G., Zhang, M., Vu, T. M. T., Nguyen, S. H., Tran, B. X., & Latkin, C. A. (2021). Determinants of Intention to Use Artificial Intelligence-Based Diagnosis Support System Among Prospective Physicians. Frontiers in Public Health, 9.
- Tsai, J.-M., Cheng, M.-J., Tsai, H.-H., Hung, S.-W., & Chen, Y.-L. (2019). Acceptance and resistance of telehealth: The perspective of dual-factor concepts in technology adoption. *International Journal of Information Management*, 49, 34–44.
- Tyagi, S., Agarwal, A., & Maheshwari, P. (2016). A Conceptual Framework for IoT-Based Healthcare System using Cloud Computing. *Proceedings of the 2016 6th International Conference Cloud System and Big Data Engineering, Confluence 2016*, 503–507. https://doi.org/10.1109/CONFLUENCE.2016. 7508172
- Van Os, H. J. A., Mulder, I. A., Van Der Schaaf, I. C., Van Walderveen, M. A. A., Kapelle, L. J., Ferrari, M. D., Algra, A., & Wermer, M. J. H. (2015). Concomitant headache in acute ischaemic stroke: Relation with ct angiography and ct perfusion characteristics. *International Journal of Stroke*, 10, 217. http://www.embase.com/search/results?subaction=viewrecord&from=export &id=L72034289%5Cnhttp://dx.doi.org/10.1111/ijs.12479
- Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions Subject Areas: Design Characteristics, Interventions. *Decision Sciences*, 39(2), 273–315. http://www.vvenkatesh.com/wp-content/uploads/2015/11/Venkatesh_Bala_DS_2008.pdf
- Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. *Management Science*, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
- Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. *MIS Quarterly*, 157–178.

- Venugopal, P., Priya, S. A., Manupati, V. K., Varela, M. L. R., Machado, J., & Putnik, G. D. (2018). An analysis of the impact of UTAUT predictors on the intention and usage of electronic health records and telemedicine from the perspective of clinical staffs. *International Journal of Mechatronics and Applied Mechanics*, 2018(4), 263–269. https://doi.org/10.17683/ijomam/issue4.37
- Vichitkraivin, P., & Naenna, T. (2021). Factors of healthcare robot adoption by medical staff in Thai government hospitals. *Health and Technology*, 11(1), 139–151. https://doi.org/10.1007/s12553-020-00489-4
- Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. *Handbook of Partial Least Squares*, 47–82.
- Viswanath Venkatesh, Morris, M. G., Davis, G. B., & Davis, F. D. (2003). *User acceptance of information technology:TOWARD A UNIFIED VIEW.* 27(3), 425–478. https://doi.org/10.2307/30036540
- Wang, H., Tao, D., Yu, N., & Qu, X. (2020). Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. *International Journal of Medical Informatics*, 139(October 2019). https://doi.org/10.1016/j.ijmedinf.2020.104156
- Wang, H., Zhang, J., Luximon, Y., Qin, M., Geng, P., & Tao, D. (2022). The Determinants of User Acceptance of Mobile Medical Platforms: An Investigation Integrating the TPB, TAM, and Patient-Centered Factors. International Journal of Environmental Research and Public Health, 19(17), 10758.
- Wang, J., & Wang, X. (2019). Structural equation modeling: Applications using Mplus. John Wiley & Sons.
- Wang, S. L., & Lin, H. I. (2019). Integrating TTF and IDT to evaluate user intention of big data analytics in mobile cloud healthcare system. *Behaviour & Information Technology*, 38(9), 974–985.
- Wang, T.-K., Zhang, Q., Chong, H.-Y., & Wang, X. (2017). Integrated supplier selection framework in a resilient construction supply chain: An approach via analytic hierarchy process (AHP) and grey relational analysis (GRA). *Sustainability*, 9(2), 289.
- Warrens, M. J. (2015). Five ways to look at Cohen's kappa. *Journal of Psychology & Psychotherapy*, 5(4), 1.
- Werber, B., Baggia, A., & Žnidaršič, A. (2018). Factors Affecting the Intentions to Use RFID Subcutaneous Microchip Implants for Healthcare Purposes. *Organizacija*, 51(2), 121–133. https://doi.org/10.2478/orga-2018-0010
- West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies.

- Wiig, S., & O'Hara, J. K. (2021). Resilient and responsive healthcare services and systems: challenges and opportunities in a changing world. *BMC Health Services Research*, 21, 1–5.
- Wolverton, C. C., & Lanier, P. A. (2019). Utilizing the Technology-Organization-Environment framework to examine the adoption decision in a healthcare context. In *Handbook of Research on the Evolution of IT and the Rise of E-Society* (pp. 401–423). IGI Global.
- Wong, W. H., & Mo, W. Y. (2019). A study of consumer intention of mobile payment in Hong Kong, based on perceived risk, perceived trust, perceived security and Technological Acceptance Model. *Journal of Advanced Management Science Vol*, 7(2), 33–38.
- Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., & Du, H.-Y. (2010). Research on the architecture of Internet of Things. 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 5, V5-484.
- Wu, P., Zhang, R., Luan, J., & Zhu, M. (2022). Factors affecting physicians using mobile health applications: an empirical study. *BMC Health Services Research*, 22(1), 1–14. https://doi.org/10.1186/s12913-021-07339-7
- XIA, J.-J., GAO, M., QIU, S., SANG, X.-X., MA, X.-L., & LEE, C.-Y. (2019). Research on Patient Acceptance Behavior of Online Medical APP Based on UTAUT Improved Model. *DEStech Transactions on Economics, Business and Management, icem*, 104–108. https://doi.org/10.12783/dtem/icem2019/31155
- Yan, H. C., Adina, A., Zakiuddin, A., Himanshi, G., Toh, T. H., Parisa, K., Hana, M., Animesh, N., Mulya, N., & Shweta, P. (2022). Mapping national information and communication technology (ICT) infrastructure to the requirements of potential digital health interventions in low-and middle-income countries. *Journal of Global Health*, 12.
- Yang, G., Xie, L., Mäntysalo, M., Zhou, X., Pang, Z., Da Xu, L., Kao-Walter, S., Chen, Q., & Zheng, L.-R. (2014). A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. *IEEE Transactions on Industrial Informatics*, 10(4), 2180–2191.
- Yang, Z., Kankanhalli, A., Ng, B.-Y., & Lim, J. T. Y. (2013). Analyzing the enabling factors for the organizational decision to adopt healthcare information systems. *Decision Support Systems*, 55(3), 764–776.
- Yang, Z., Zhou, Q., Lei, L., Zheng, K., & Xiang, W. (2016). An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. *Journal of Medical Systems*, 40(12). https://doi.org/10.1007/s10916-016-0644-9
- Yeganeh, H. (2019). An analysis of emerging trends and transformations in global healthcare. *International Journal of Health Governance*, 24(2), 169–180.

- Yi, Y., Tung, L. L., & Wu, Z. (2003). Incorporating Technology Readiness (TR) Into TAM: Are Individual Traits Important to Understand Technology Acceptance? *DIGIT* 2003 Proceedings 2, 2, 1–27. http://aisel.aisnet.org/digit2003/2
- Yousef, C. C., Salgado, T. M., Farooq, A., Burnett, K., McClelland, L. E., Abu Esba, L. C., Alhamdan, H. S., Khoshhal, S., Aldossary, I. F., Alyas, O. A., & DeShazo, J. P. (2021). Health Care Providers' Acceptance of a Personal Health Record: Cross-sectional Study. *Journal of Medical Internet Research*, 23(10), e31582. https://doi.org/10.2196/31582
- Yousef, C. C., Salgado, T. M., Farooq, A., Burnett, K., McClelland, L. E., Thomas, A., Alenazi, A. O., Esba, L. C. A., AlAzmi, A., Alhameed, A. F., Hattan, A., Elgadi, S., Almekhloof, S., AlShammary, M. A., Alanezi, N. A., Alhamdan, H. S., Khoshhal, S., & DeShazo, J. P. (2021). Predicting patients' intention to use a personal health record using an adapted unified theory of acceptance and use of technology model: Secondary data analysis. *JMIR Medical Informatics*, 9(8). https://doi.org/10.2196/30214
- Yuan, S., Ma, W., Kanthawala, S., & Peng, W. (2015). Keep Using My Health Apps: Discover Users' Perception of Health and Fitness Apps with the UTAUT2 Model. *Telemedicine and E-Health*, 21(9), 735–741. https://doi.org/10.1089/tmj.2014.0148
- Zailani, S., Iranmanesh, M., Nikbin, D., & Beng, J. K. C. (2015). Determinants of RFID adoption in Malaysia's healthcare industry: occupational level as a moderator. *Journal of Medical Systems*, 39(1), 1–11.
- Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data. *ArXiv Preprint ArXiv:1301.0159*.
- Zeadally, S., Siddiqui, F., Baig, Z., & Ibrahim, A. (2020). Smart healthcare: Challenges and potential solutions using internet of things (IoT) and big data analytics. *PSU Research Review*, 4(2), 149–168.
- Zhang, X., Han, X., Dang, Y., Meng, F., Guo, X., & Lin, J. (2017). User acceptance of mobile health services from users' perspectives: The role of self-efficacy and response-efficacy in technology acceptance. *Informatics for Health and Social Care*, 42(2), 194–206. https://doi.org/10.1080/17538157.2016.1200053
- Zhang, Y., Liu, C., Luo, S., Xie, Y., Liu, F., Li, X., & Zhou, Z. (2019). Factors influencing patients' intentions to use diabetes management apps based on an extended unified theory of acceptance and use of technology model: webbased survey. *Journal of Medical Internet Research*, 21(8), e15023.
- Zhao, X., Liu, J. S., & Deng, K. (2013). Assumptions behind intercoder reliability indices. *Annals of the International Communication Association*, 36(1), 419–480.
- Zhou, J., Leppanen, T., Harjula, E., Ylianttila, M., Ojala, T., Yu, C., Jin, H., & Yang, L. T. (2013). Cloudthings: A common architecture for integrating the internet

- of things with cloud computing. Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 651–657.
- Zikopoulos, P., & Eaton, C. (2011). *Understanding big data: Analytics for enterprise class hadoop and streaming data*. McGraw-Hill Osborne Media.
- Zubair Elahi, M., Liang, G., Jawad Malik, M., Dilawar, S., & Ilyas, B. (2021). Fear of Covid-19 and Intentions towards Adopting E-Health Services: Exploring the Technology Acceptance Model in the Scenario of Pandemic. *International Journal of Business, Economics and Management*, 8(4), 270–291. https://doi.org/10.18488/journal.62.2021.84.270.291

