U|PIM

UNIVERSITI PUTRA MALAYSIA

1[{f

ENHANCING XSS VULNERABILITY DETECTION AND REMOVAL IN
WEB APPLICATIONS USING GENETIC ALGORITHMS

By

ISATOU HYDARA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2024
FSKTM 2024 7

All material contained within the thesis, including without limitation text, logos,
icons, photographs, and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION
To my mother Oumie Kah and late father Sheriff Sulayman Hydara who raised me
with unconditional love.

To my wonderful husband, Lamin Saidykhan, who supported and encouraged me
throughout this research journey.

To my dear brother, Ebrima Hydara, and my sister, Ndey Awa Hydara, for their
endless love, prayers and support.

And to everyone else who has provided me guidance, support, and encouragement.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

ENHANCING XSS VULNERABILITY DETECTION AND REMOVAL IN
WEB APPLICATIONS USING GENETIC ALGORITHMS

By

ISATOU HYDARA

February 2024

Chairman : Professor Abu Bakar bin Md Sultan, PhD

Faculty - Computer Science and Information Technology

Cross-site scripting (XSS) vulnerabilities are a major security threat for both desktop
and mobile web applications. They occur due to lack of proper verification of the
user inputs, which enables hackers to inject and execute malicious scripts in the web
pages of an application. Successful XSS attacks can lead to serious security
violations such as account hijacking, denial of service, cookie theft, and web content
manipulations. Current approaches to addressing this problem are limited by large
number of false positives in their analysis results, non-inclusion of all types of XSS,
lack of focus on removing XSS vulnerabilities, and non-inclusion of mobile web

applications.

Static analysis techniques are good at detecting XSS vulnerabilities in the source
codes of web applications, and especially when combined with other techniques.
However, they tend to generate a lot of false positives since they are conservative
techniques. Another limitation is the limited or lack of focus on the removal of XSS

vulnerabilities after their detection in the source code. Consequently, an approach

called XSS-DETREM has been proposed with the objectives of combining genetic
algorithms with static analysis, and a code replacement technique to detect and
remove XSS vulnerabilities, respectively, to address the problem of XSS at the
source code level. The research used a quantitative research methodology and
randomised complete block design in the experimentation design whereby new

improvements were implemented in a software tool.

XSS-DETREM has been evaluated empirically using a data set of JSP and Android
web applications that have been used in previous studies. Comparisons of the
evaluation results have shown improvements in the detection and removal of XSS
vulnerabilities in desktop and mobile web applications. These improvements focused
on reducing the rate of false positives generated by static analysis, increasing the
vulnerability coverage for all types of XSS on both the server-side and client-side.
Consequently, the objectives of the research have been met and the expected results
were achieved. This new improved approach is significant in helping web
application developers to test their applications for all types of XSS and remove any
detected vulnerabilities before releasing them to the public. Also, as more users are
browsing the Internet through their mobile applications, this approach will help in
protecting their private data and make browsing safer for them with both Desktop

and Mobile web applications.

Keywords: cross-site scripting attack; cross-site scripting vulnerability, software
security, XSS vulnerability detection

SDG: GOAL 4: Quality Education

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

MEMPERTINGKATKAN PENGESANAN DAN PENGHAPUSAN
KERENTANAN PENSKRIPAN SILANG-TAPAK KE ATAS APPLIKASI
WEB MENGGUNAKAN ALGORITMA GENETIK

Oleh

ISATOU HYDARA

Februari 2024

Pengerusi : Profesor Abu Bakar bin Md Sultan, PhD

Fakulti : Sains Komputer dan Tekknologi Maklumat

Kerentanan pengskripan silang-tapak (XSS) merupakan ancaman keselamatan utama
kepada aplikasi web dan desktop. lanya berlaku disebabkan kelemahan verifikasi
input yang betul, membolehkan penggodam untuk menyuntik dan melaksanakan
skrip jahat kepada aplikasi di tapak web. Serangan XSS yang berjaya boleh
membawa kepada pelanggaran keselamatan yang serius seperti rampasan akaun,
penafian servis, kecurian kuki dan pemanipulasian kandungan web. Kaedah semasa
menangani masalah ini terhad akibat jumlah besar bilangan positif palsu dihasilkan
dalam analisis keputusan, dan tidak merangkumi semua jenis XSS, kurang tumpuan

untuk penghapusan kerentanan XSS, dan tidak merangkumi aplikasi mobile web.

Teknik-teknik analisis statik amat baik untuk mengesan kerentanan XSS pada kod
sumber aplikasi web, dan terutamanya bila digabungkan dengan teknik lain.
Bagaimanapun ianya cenderung untuk menjana banyak positif palsu kerana ianya

teknik konservatif. Kelemahan lain adalah teknik semasa kurang menumpu kepada

penghapusan kerentanan XSS selepas dikesan pada kod sumber. Seterusnya, kaedah
yang dipanggil XSS-DETREM telah dicadangkan dengan objektif untuk
mengabungkan algoritma genetik bersama analisis statik, dan teknik pengantian kod
untuk mengesan dan menghapuskan kerentanan XSS, masing-masing untuk
menagani masalah XSS di paras kod sumber. Penyelidikan ini menggunakan
metodologi kuantitatif dan rekabentuk blok rawak lengkap untuk pengujian yang

mana penambahbaikan baru dijalankan melalui alatan perisian.

XSS-DETREM telah dinilai secara empirikal mengunakan set data JSP dan aplikasi
web android yang digunakan dalam kajian sebelum. Peningkatan ini memfokus
kepada mengurangkan kadar positif palsu yang dijana oleh analisis static,
meningkatkan liputan kerentanan kepada semua jenis XSS dikedua-dua pelayan dan
pelanggan. Perbandingan ke atas hasil penilaian telah menunjukkan peningkatan
pengesanan dan penghapusan kerentanan XSS untuk aplikasi desktop dan aplikasi
mobil web. Seterusnya , objektif penyelidikan ini dicapai dan jangkaan keputusan
dicapai. Kaedah penambahbaikan baru amat signifikan untuk membantu pembangun
aplikasi web menguji aplikasi mereka sebelum digunakan oleh publik. Juga, semakin
ramai pengguna melayari internet melalui aplikasi mobil, kaedah ini akan
melindungi data peribadi dan menjadikan pelayaran selamat untuk mereka bagi

keduanya iaitu desktop dan aplikasi mobil web.

Kata Kunci: Serangan penskripan silang-tapak, kerentanan penskripan silang-tapak,
keselamatan perisian, Pengesanan kerentanan XSS

SDG: MATLAMAT 4: Kualiti Pendidikan

ACKNOWLEDGEMENTS

Alhamdulillah, praise be to Allah in Whose blessings | found the strength to
accomplish this research work. I wish to thank all those who have contributed to the

success of this venture.

First of all, I would like to thank my supervisor, Prof. Dr. Abu Bakar bin Md Sultan,
and my co-supervisors Assoc. Prof. Dr. Hazura Zulzalil and Assoc. Prof. Ts. Dr.
Novia Admodisastro for their invaluable support and guidance from the inception of
my research work to its completion. Their constructive criticisms, comments, and

suggestions have gone a long way in making this research successful.

A sincere and special thank you goes to my loving family for their endless

encouragement, moral and financial support, prayers, and understanding.

A big thank you goes to the Ministry of Education, Malaysia for providing me with a
scholarship to pursue a PhD degree in Universiti Putra Malaysia. Their financial
support has gone a long way in alleviating any financial burden I could face and

enable me to focus on my research work.

Last, but not the least, | extend my gratitude to the Faculty of Computer Science and
Information Technology and all its staff and students for providing a conducive and
friendly environment that enabled me work and study in peace. My gratitude also
goes to my friend and closest lab mate Najla’a Ateeq Draib with whom I shared this
research journey. I am also thanking all those who, in one way or the other, have

contributed to the successful completion of this research work.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.
The members of the Supervisory Committee were as follows:

Abu Bakar bin Md Sultan, PhD

Professor

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Chairman)

Hazura binti Zulzalil, PhD

Associate Professor

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

Novia Admodisastro, PhD

Associate Professor, Ts

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean

School of Graduate Studies
Universiti Putra Malaysia

Date: 10 October 2024

vii

ABSTRACT
ABSTRAK

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

APPROVAL

DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION

11
1.2
13
1.4
1.5
1.6

Background of the Research
Problem Statement
Obijectives of the Research
Scope of the Research
Contributions of the Research
Organization of the Thesis

2 LITERATURE REVIEW

2.1
2.2

2.3

2.4

2.5
2.6

2.7
2.8
2.9

Introduction

Cross-site Scripting Vulnerabilities in Web Applications

2.2.1 Reflected Cross-site Scripting (XSS)

2.2.2 Stored Cross-site Scripting (XSS)

2.2.3 Document Object Model (DOM)-Based Cross-site
Scripting (XSS)

Existing XSS Detection and/or Removal Techniques

2.3.1 Static Analysis

2.3.2 Dynamic Analysis

2.3.3 Secure Programming

2.3.4 Modeling

2.3.5 Hybrid Analysis

Existing XSS Vulnerabilities Detection and Removal

Approaches

The OWASP's XSS Prevention Rules and the ESAPI API

Genetic Algorithms Encoding and Representation in

Security Testing

Motivation for Using Genetic Algorithm in XSS Mitigation

Overview of XSS-DETREM Approach

Taint Analysis

2.9.1 Coverage Criteria Selection

2.10 Summary

3 RESEARCH METHODOLOGY

3.1

Introduction

Page

VI
Viii
Xiii
Xiv
Xv

34
40
41
42
43
45

47
47

3.2
3.3
3.4

3.5
3.6

Step | - Literature Review

Step Il - Design and Implementation of XSS-DETREM
Step |11 — Empirical Evaluation of XSS-DETREM
3.4.1 Experimental Definition

3.4.2 Experiment Planning

3.4.3 Experiment Operation

3.4.4 Threats to Validity

Step IV — Analysis and Discussion of Results
Summary

XSS-DETREM APROACH FOR XSS DETECTION AND
REMOVAL

4.1
4.2
4.3

4.4

4.5

4.6
4.7

Introduction

Overview of XSS-DETREM Approach

Using Taint Analysis to Identify Vulnerable Paths
4.3.1 The Coverage Criteria Selection

4.3.2 lllustrative Example of the Taint Analysis
XSS Detection using Genetic Algorithm

4.4.1 The Genetic Algorithm Representation
4.4.2 The Initial Population

4.4.3 The Fitness Function

4.4.4 Selection

445 Crossover

44.6 Mutation

XSS Vulnerabilities Removal

45.1 Input Validation and Sanitization

4.5.2 Output Encoding

Regression Testing

Summary

RESULTS ANALYSIS AND DISCUSSION

5.1
5.2

5.3
5.4

5.5
5.6
5.7
5.8

Introduction

Experiment Results

5.2.1 Results from XSS-DETREM Approach

5.2.2 Results from Other Approaches

Comparison of the Results

Statistical Evaluations

54.1 Evaluation of XSS Detection and Removal
Precision

5.4.2 Evaluation of XSS Detection and Removal Recall

5.4.3 Evaluation of XSS Detection and Removal F-
measure

Experiment Results on Mobile App

XSS Vulnerability Removal Results

Analysis and Discussion

Summary

CONCLUSION AND FUTURE WORK

6.1
6.2

Introduction
Conclusion

Xi

48
49
50
51
55
60
61
63
63

64
64
64
66
67
68
73
74
74
75
77
77
78
79
82
83
84
84

86
86
86
87
89
93
94

94
95

95
96
98
100
102

103
103
103

6.3 Future Work

REFERENCES
BIODATA OF STUDENT
LIST OF PUBLICATIONS

Xii

105

107
115
116

Table

2.1

2.2

2.3
2.4
2.5
3.1
3.2
3.3
3.4
4.1
4.2
4.3
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12

LIST OF TABLES

An Overview of Techniques to XSS Mitigation

Summary of Existing XSS Vulnerabilities Detection and Removal

Approaches

The OWASP XSS Prevention Rules

OSWASP DOM-Based XSS Prevention Rules

Summary of XSS Prevention Rules

Basic Information about the Test Subjects

Independent and Dependent Variables

Experiment Design

Overview of the Experiment Environment

Sample XSS Malicious Script Payloads

XSS Sanitization

XSS Encoding Mechanism

Experiment Results of the XSS-DETREM Approach
Experiment Results of the Z-Liu et al., 2022 Approach
Experiment Results of the Thome et al., 2017 Approach
Experiment Results of the Moller and Schwarz, 2014 Approach
Experiment Results of the Liu and Melanova, 2009 Approach
Experiment Results of the Livshits and Lam, 2005 Approach
Results Comparison

ANOVA Test Results for Precision

ANOVA Test Results for Recall

ANOVA Test Results for F-measure

Results for BarCodeScanner Mobile Web Application

Results for Vulnerabilities Removal

Xiii

Page

21

27
30
32
34
56
59
60
61
75
82
83
88
90
90
91
91
92
93
94
95
95
97
99

Figure

2.1
2.2
2.3
24
2.5
2.6
2.7
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
5.1

5.2

LIST OF FIGURES

A High Level View of Typical XSS Attack
Example of Reflected XSS

Example of Stored XSS

Example of DOM-based XSS

XSS Detection and Removal Techniques

Genetic Algorithm Pseudocode (Avancini & Ceccato, 2011)

Genetic Algorithm Flowchart

Research Methodology

Overview of the Empirical Evaluation

Process of the Proposed Approach

A code snippet of a sample login servlet program
CFG of the Login Servlet Program

Potentially Vulnerable Paths of the Login Servlet Program
Genetic Algorithm Pseudocode

Fitness Function Algorithm

Crossover Algorithm

Mutation Algorithm

Vulnerability Removal Algorithm

Login Servlet Secured with ESAPI API
Comparison of Results

Results Comparison on Mobile App

Xiv

Page

12
14
15
17
18
36
37
48
51
66
69
70
72
73
76
78
78
80
81
93
98

OWASP
SDLC
SBSE
GA

EA

XSS
SLR

HTML

DOM
RQ
QA
JGAP
IDE
CFG
ESAPI
LOC
JDBC

LIST OF ABBREVIATIONS

Open Web Application Security Protocol
System Development Life Cycle
Search-Base Software Engineering
Genetic Algorithm

Evolutionary Algorithm

Cross Site Scripting

Systematic Literature Review

Hyper Text Markup Language

World Wide Web

Document Object Model

Research Question

Quality Assessment

Java Genetic Algorithm Package
Integrated Development Environment
Control Flow Graph

Enterprise Security API

Line Of Code

Java Data Base Connector

XV

CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Web applications, both desktop and mobile versions, have become an integral part of
our lives. We use them for accessing information, conducting business transactions
online, and interacting with family and friends on social media (CWE, 2024;
Krishnan et al., 2024; OWASP, 2024a). Many businesses and organizations also use
web applications to provide many of their services, not only on Desktop versions but
also on mobile versions as more people use their mobile phones to access some of
those services. However, as web applications become very important to the success
of businesses and organizations, their securities have increasingly become more
complex (OWASP, 2024a). Hence, more security issues have emerged due to the
increasing number of security threats affecting web applications (Thajeel et al.,

2023).

Security testing of web applications has, therefore, become a crucial issue to the
software security industry as well as governments, businesses, and organizations.
Static application security testing (SAST) is an automated static analysis testing
method for finding security vulnerabilities in web applications source code (Felderer
et al., 2016). It can be applied very early in the software development life cycle and
has an advantage over dynamic security testing as it can analyse all the control flows
of a program. Study of the major security threats in web applications has shown that
XSS vulnerabilities are among the top ten vulnerabilities, as reported by the Open

Web Application Security Project (OWASP) (OWASP, 2024a). OWASP identifies

and documents the most common of these security issues, known as input validation
vulnerabilities, that affect web applications. They keep an updated list of the top ten

of these vulnerabilities (OWASP, 2024c).

Cross-site scripting (XSS) vulnerabilities are input validation vulnerabilities found in
web applications and can be exploited through XSS attacks when such applications
are deployed and running online (CWE, 2024; OWASP, 2024a). XSS attacks are of
three types namely reflected, stored and DOM-based. Reflected XSS is executed by
the victim’s browser and occurs when the victim provides input to the web
application such as username and password. The second type, Stored XSS attacks
cab be stored in the web application’s databases where information is saved,
message forums, and comments fields. The malicious code is executed every time
users open it thereby passing their privileges to the attacker. Both reflected and
stored XSS take place on the application side. On the other hand, DOM-based XSS
attacks are executed on the client side. Attackers are able to collect sensitive or

important information from the user’s computer.

Injecting malicious scripts where these applications accept user inputs can result to
serious security breaches such as cookie theft, account hijacking, manipulation of
web content and theft of private information. Many security solutions have been
proposed, but the problem of XSS still remains and continues to affect many web
applications. Attention on software security is increasing and progress on detection
is being made but still more work needs to be done. New improvements on the
existing approaches and techniques need to be added in order to tackle the expanding

problem of XSS.

Genetic algorithms (GAs) have been the most commonly used of all optimization
algorithms in SBSE, although there have been few studies to establish any practical
performance differences among the algorithms. Genetic Algorithms (GAs) are a
subset of Evolutionary Algorithms (EAs), which are metaheuristic optimization
algorithms based on population and inspired by biology (Weise, 2009). They employ
mechanisms of natural evolution such as mutation, crossover, natural selection, and
survival of the fittest (Streichert, 2002) to find optimal solutions in a search space.
GAs are different from other EAs in that they have a crossover (recombination)
operation and use binary coding in bits or bit-strings to represent a population

(Streichert, 2002).

GAs have proven to be good solutions to many software engineering problems since
their discovery. Their successful use in software security testing (Avancini &
Ceccato, 2010) and intrusion detection systems (Bankovic et al., 2008) enlighten the
possibility of their usage in detecting and removing XSS vulnerabilities in web
applications. In addition GAs have some advantages compared to other machine
learning techniques (Bankovic et al., 2008), which are stated below:

e GAs are intrinsically parallel, since they have multiple offspring, they can
explore the solution space in multiple directions at once. If one path turns
out to be a dead end, they can easily eliminate it and continue work on more

promising avenues.

e Due to the parallelism that allows them to implicitly evaluate many
schemas at once, genetic algorithms are particularly well-suited to solving
problems where the space of all potential solutions is truly huge - too vast

to search exhaustively in any reasonable amount of time, as network data is.

e Working with populations of candidate solutions rather than a single

solution, and employing stochastic operators, to guide the search process

permit GAs to cope well with attribute interactions and to avoid getting
stuck in local maxima, which together make them very suitable for dealing

with identifying different vulnerabilities such as XSS.

e A system based on GA can easily be re-trained. This property provides the
adaptability of a GA-based system, which is an imperative quality of a
vulnerability detection application bearing in mind the high rate of new
attacks emerging.

1.2 Problem Statement

Cross-Site Scripting (XSS) vulnerabilities are a major security threat for both web
and mobile applications (CWE, 2024; OWASP, 2024a). XSS attacks can lead to loss
of private data, user account/session hijacking, web content manipulation, and
financial losses for both individuals and businesses. Business impacts of XSS attacks
can include system disruption, damaged reputation, legal issues, and financial losses
(OWASP, 2024c). One of the most known real world examples of XSS attacks was
the “Sammy worm” on the MySpace website in 2005 (Store, 2024). Since then,
many other big corporations including FaceBook, Fortnite, British Airways, the CIA,

and eBay have been victims of XSS attacks over the years (Store, 2024).

Many solutions have been proposed to address this problem at different stages of an
application development life cycle, such as the design, coding and testing stages.
Recent approaches to the mitigation of this problem at the testing stage include the
integration of static analysis and genetic algorithm (M. A. Ahmed & Ali, 2016; Z.
Liu et al., 2022; Tariq et al., 2021), the combination of static analysis and data
mining (Medeiros et al., 2016a), the use of program slicing and pruning techniques

(Thome et al., 2017), dynamic taint tracking technique (R. Wang, Xu, et al., 2017)

and the use of Genetic algorithm with other data mining techniques (Kareem Thajeel
et al., 2023; Krishnan et al., 2024; Tariq et al., 2021; Younas et al., 2024). Although
these solutions have proved effective in mitigating the problem of XSS to some

extent, they have limitations that open some research gaps to be further addressed.

Static analysis techniques are good at detecting XSS vulnerabilities in the source
codes of web applications, and especially when combined with other technigues.
However, they tend to generate a lot of false positives since they are conservative
techniques (Medeiros et al., 2016a; Thome et al., 2016, 2017). False positives occur
when non-vulnerable parts of a piece of code are identified as vulnerable (Thajeel et
al., 2023). In order to address this limitation, the underlying techniques and their

algorithms need to be improved in terms of precision, coverage and effectiveness.

Another limitation of the existing approaches is the limited or lack of focus on the
removal of XSS vulnerabilities after being detected in the source code. Detecting
vulnerabilities in web applications is very important but if not properly removed the
vulnerabilities will continue to cause security problems in the applications. Some
research work that have addressed vulnerability removal include the use of the
OWASP's escaping API and security guidelines (Lekies et al., 2017; Malviya et al.,
2021; Rodriguez et al., 2020; Shanmugasundaram et al., 2015; Shar & Tan, 2012).
The OWASP API (OWASP, 2024d) and security guidelines (OWASP, 2024f) do not
include all XSS wvulnerabilities in the context of their API. Therefore, these
techniques will not be able to detect XSS vulnerabilities that are out of this context.

There is need to extend these techniques in order to include all XSS vulnerabilities.

Another research work made use of data mining techniques (Medeiros et al., 2016a).
These data mining techniques employed by Medeiros et al. are reported to be good at
XSS vulnerability removal, but the techniques they used only included server-side

and not client-side vulnerabilities.

A new dynamic approach to XSS detection has been proposed (R. Wang, Xu, et al.,
2017). This approach proposed to use taint tracking technique on a browser's
rendering process to derive and verify vulnerabilities automatically. The limitations
of their work include the inability of the approach to handle two-order inputs and the
long time taken to generate attack vectors. In addition, this approach only focuses on

DOM-based XSS and not Reflected or Stored XSS vulnerabilities.

This research work, therefore, was focused on reducing false positives in the
detection of XSS vulnerabilities, increasing the coverage of XSS types addressed,

and eliminating detected vulnerabilities from the source to prevent future attacks.

1.3 Objectives of the Research

The main objective of this research is to propose an enhancement in the detection
and removal of XSS vulnerabilities from web and mobile applications using Genetic
Algorithms, static taint analysis and code replacements techniques. This research
work is proposed to make improvements to the limitations identified in the
previously proposed approaches on XSS vulnerability detection and removal. These
improvements will focus on reducing the rate of false positives generated by static

analysis, including both server-side and client-side XSS vulnerabilities and using

code replacement technique to remove vulnerabilities. Hence, our specific objectives

are:

e To propose an improved GA based security testing approach to XSS
detection in desktop and mobile web applications that reduces false positive

rates

e To use an enhanced code replacement technique to remove the detected

XSS vulnerabilities

e Toempirically evaluate and measure the effectiveness of XSS detection and
removal of the proposed approach

1.4 Scope of the Research

This research focuses on the security testing of web applications at the source code
level, and hence employs white box testing techniques. There are many security
vulnerabilities affecting web applications and XSS is among the top. Moreover, XSS
attacks target not only the web applications but the users as well. Therefore, this
research is focusing on improving the detection and removal of XSS vulnerabilities
by reducing false positives and eliminating detected vulnerabilities. The detection
and removal of all the three types of XSS vulnerabilities i.e., reflected, stored, and
DOM-based on both the server sides and client sides of web applications are also
addressed. In addition, the issue of cross-site scripting in mobile applications is also
included. Our proposed approach is designed for testing Java-based web applications
and Android mobile applications. Java Server Pages (JSP) are widely used for
developing web applications, and the Android applications are based on Java. The

limitation of the scope to Java-based web applications could impact the

generalisation of the approach. However, with some modification in future research,

the approach can be adopted to other programming languages.

15 Contributions of the Research

This research produced an enhanced and improved approach to detecting and
removing XSS vulnerabilities in Java-based web and Android mobile applications.
Therefore, the main contributions of this research are:

e A comprehensive survey of existing XSS mitigation approaches

e Animproved GA-based detection technique for all XSS types in Java-based

web applications

e An improved removal technique for all XSS types in Java-based web
applications

e A tool support for the automation of the detection and removal techniques
of XSS

e Empirical evidence that the proposed approach is effective in detecting and

removing XSS vulnerabilities from web applications

e The improvement on the detection and removal of XSS vulnerabilities in

the source code of web applications
e The implementation of a tool for the automation of the proposed approach

e Empirical evidence to show that the proposed approach can be more

effective in detecting and removing XSS vulnerabilities

1.6 Organization of the Thesis

This thesis consists of seven chapters that are organized as follows:

Chapter 1 introduces the thesis and provides the general overview of the thesis. It
provides an overview of the research background and identifies the research
problem, the objectives to be achieved, as well as the research scope and

contributions.

Chapter 2 provides a detailed review of the literature related to this research work. It
discusses the existing research on XSS vulnerabilities detection and removal.
Different approaches and techniques to mitigate the XSS problems have been

reviewed and the research gaps found have been identified in this chapter.

In Chapter 3, the methodology of the research is presented in general overview. It

highlights the different steps of the methodology used in the research.

Chapter 4 describes our proposed XSS-DETREM approach for the detection and
removal of XSS wvulnerabilities, demonstrating how the tool detects and removes
XSS vulnerabilities. It gives an illustrative example of how the proposed approach

works.

Chapter 5 presents the detailed implementation of the proposed approach to XSS
detection and removal. It describes the design and implementation of the tool

support.

Chapter 6 provides the experiment results after the evaluation of XSS-DETREM
approach. The effectiveness of the approach is shown by the comparison results
against other approaches. The chapter also discusses the implications of the results

and findings.

Chapter 7 gives the conclusion of the thesis and discusses the new knowledge gained
from this research work. The shortcomings and limitations of the research work are

stated, and recommendations and suggestions are given for future research work.

10

REFERENCES

Acunetix. (2024). Cross Site Scripting (XSS). Acunetix.
http://www.acunetix.com/websitesecurity/cross-site-scripting/

Ahmed, M. A., & Ali, F. (2016). Multiple-path testing for cross site scripting using
genetic algorithms. Journal of Systems Architecture, 64, 50-62.
https://doi.org/10.1016/j.sysarc.2015.11.001

Ahmed, M. a., & Hermadi, I. (2008). GA-based multiple paths test data generator.
Computers & Operations Research, 35(10), 3107-3124.
https://doi.org/10.1016/j.cor.2007.01.012

Aljahdali, S. H., Ghiduk, A. S., & El-Telbany, M. (2010). The limitations of genetic
algorithms in software testing. ACS/IEEE International Conference on
Computer Systems and Applications - AICCSA 2010, 1-7.
https://doi.org/10.1109/AICCSA.2010.5586984

Antunes, N., & Vieira, M. (2015). Assessing and Comparing Vulnerability Detection
Tools for Web Services: Benchmarking Approach and Examples. IEEE
Transactions on Services Computing, 8(2), 269-283.
https://doi.org/10.1109/TSC.2014.2310221

Avancini, A., & Ceccato, M. (2010). Towards Security Testing with Taint Analysis
and Genetic Algorithms. Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, Section 5, 65-71.

Avancini, A., & Ceccato, M. (2011). Security Testing of Web Applications: A
Search-Based Approach for Cross-Site Scripting Vulnerabilities. 2011 IEEE
11th International Working Conference on Source Code Analysis and
Manipulation, 85-94. https://doi.org/10.1109/SCAM.2011.7

Avancini, A., & Ceccato, M. (2013). Comparison and integration of genetic
algorithms and dynamic symbolic execution for security testing of cross-site
scripting vulnerabilities. Information and Software Technology, 55(12), 2209-
2222. https://doi.org/10.1016/j.infsof.2013.08.001

Bankovic, Z., Bojanic, S., Nieto, O., & Badii, A. (2008). Unsupervised Genetic
Algorithm Deployed for Intrusion Detection. In E. Corchado, A. Abraham, &
W. Perdrycz (Eds.), Lecture Notes in Computer Science (vol 5271, pp. 132—
139). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-
87656-4_17

Bankovié, Z., Stepanovi¢, D., Bojani¢, S., & Nieto-Taladriz, O. (2007). Improving
network security using genetic algorithm approach. Computers & Electrical
Engineering, 33(5-6), 438-451. https://doi.org/10.1016/j.compeleceng.
2007.05.010

107

Caturano, F., Perrone, G., & Romano, S. Pietro. (2021). Discovering reflected cross-
site scripting vulnerabilities using a multiobjective reinforcement learning
environment. Computers and Security, 103, 102204. https://doi.org/10.1016/
j.c0se.2021.102204

Chakraborty, R. C. (2010). Fundamentals of Genetic Algorithms.
http://www.myreaders.info/09_Genetic_Algorithms.pdf

Chen, Y. L., Lee, H. M., Jeng, A. B., & Wei, T. E. (2015). DroidCIA: A novel
detection method of code injection attacks on HTML5-based mobile apps.
Proceedings - 14th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom 2015, 1, 1014-1021.
https://doi.org/10.1109/Trustcom.2015.477

CWE. (2024). CWE - CWE-79: Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting’) (2.5). The MITRE Corporation.
http://cwe.mitre.org/data/definitions/79.html

Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C., & Vigna, G.
(2013). DeDacota: Toward preventing server-side XSS via automatic code
and data separation. Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, 1205-1216. https://doi.org/10.1145/
2508859.2516708

Dua, M., & Singh, H. (2018). Detection & prevention of website vulnerabilities:
Current scenario and future trends. Proceedings of the 2nd International
Conference on Communication and Electronics Systems, ICCES 2017, 429-
435. https://doi.org/10.1109/CESYS.2017.8321315

Duchene, F., Groz, R., Rawat, S., & Richier, J.-L. (2012). XSS Vulnerability
Detection Using Model Inference Assisted Evolutionary Fuzzing. 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, Itea 2, 815-817. https://doi.org/10.1109/ICST.2012.181

Elhakeem, Y. F. G. M., & Barry, B. I. A. (2013). Developing a security model to
protect websites from cross-site scripting attacks using ZEND framework
application. Proceedings - 2013 International Conference on Computer,

Electrical and Electronics Engineering: “Research Makes a Difference”,
ICCEEE 2013, 624-629. https://doi.org/10.1109/ICCEEE.2013.6634012

Felderer, M., Buchler, M., Johns, M., Brucker, A. D., Breu, R., & Pretschner, A.
(2016). Chapter One — Security Testing: A Survey. In A. M. Memon (Ed.),
Advances in Computers (1st Editio, Vol. 101, pp. 1-51). Elsevier Inc.
https://doi.org/10.1016/bs.adcom.2015.11.003

Fogie, S., Grossman, J., Hansen, R., Rager, A., & Petkov, P. D. (2007). XSS Attacks:
Cross Site Scripting Exploits and Defense (S. Forgie (ed.)). Elsevier,
Inc/Syngress Publishing, Inc.

108

Gol, D., & Shah, N. (2015). Detection of Web Appication Vulnerability Based on
RUP Model. National Conference on Recent Advances in Electronics &
Computer Engineering (RAECE), 96-100. https://doi.org/10.1109/
RAECE.2015.7510233

Grabowski, R., Hofmann, M., & Li, K. (2012). Type-Based Enforcement of Secure
Programming Guidelines — Code Injection Prevention at SAP. FAST 2011,
Lecture Notes in Computer Science, 7140, 182-197.

Gupta, S., & Gupta, B. B. (2016). CSSXC: Context-sensitive Sanitization
Framework for Web Applications against XSS Vulnerabilities in Cloud
Environments. Procedia Computer Science, 85(Cms), 198-205.
https://doi.org/10.1016/j.procs.2016.05.211

Gupta, S., & Gupta, B. B. (2018). XSS-secure as a service for the platforms of online
social network-based multimedia web applications in cloud. Multimedia Tools
and Applications, 77(4), 4829-4861. https://doi.org/10.1007/s11042-016-
3735-1

Gupta, S., Gupta, B. B., & Chaudhary, P. (2018). Hunting for DOM-Based XSS
vulnerabilities in mobile cloud-based online social network. Future
Generation Computer Systems, 79, 319-336. https://doi.org/10.1016/
j.future.2017.05.038

Hanif, H., Nasir, M. H. N. M., Ab Razak, M. F., Firdaus, A., & Anuar, N. B. (2021).
The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches. Journal of Network and
Computer Applications, 179(November 2020), 1030009.
https://doi.org/10.1016/j.jnca.2021.103009

Hermadi, I. (2004). Genetic algorithm based test data generator [King Fahd
university of Petroleum and Minerals]. https://doi.org/10.1109/
CEC.2003.1299560

Islam, A. B. . A. Al, Azad, M. A., Alam, M. K., & Alam, M. S. (2007). Security
Attack Detection using Genetic Algorithm (GA) in Policy Based Network.
2007 International Conference on Information and Communication
Technology, 341-347. https://doi.org/10.1109/ICICT.2007.375407

Jin, X., Hu, X., Ying, K., Du, W., Yin, H., & Peri, G. N. (2014). Code Injection
Attacks on HTML5-based Mobile Apps: Characterization, Detection and
Mitigation. CCS ’14 Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 66-77. https://doi.org/10.1145/
2660267.2660275

Johns, M., Beyerlein, C., Giesecke, R., & Posegga, J. (2010). Secure Code
Generation for Web Applications. Lecture Notes in Computer Science, 5965,
96-113.

Kallin, J., & Valbuena, I. L. (2019). Excess XSS: A comprehensive tutorial on cross-
site scripting. Excess-Xss.Com. https://excess-xss.com/

109

Kareem Thajeel, I., Samsudin, K., Jahari Hashim, S., & Hashim, F. (2023). Dynamic
feature selection model for adaptive cross site scripting attack detection using
developed multi-agent deep Q learning model. Journal of King Saud
University - Computer and Information Sciences, XXXX.
https://doi.org/10.1016/j.jksuci.2023.01.012

Kaur, G., Pande, B., Bhardwaj, A., Bhagat, G., & Gupta, S. (2018). Efficient yet
Robust Elimination of XSS Attack Vectors from HTML5 Web Applications
Hosted on OSN-Based Cloud Platforms. Procedia Computer Science, 125,
669-675. https://doi.org/10.1016/j.procs.2017.12.086

Koraé¢, D., Damjanovié, B., Simi¢, D., & Choo, K. K. R. (2022). A hybrid XSS
attack (HYXSSA) based on fusion approach: Challenges, threats and
implications in cybersecurity. Journal of King Saud University - Computer
and Information Sciences, 34(10), 9284-9300. https://doi.org/10.1016/j.jksuci.
2022.09.008

Krishnan, M., Lim, Y., Perumal, S., & Palanisamy, G. (2024). Detection and
defending the XSS attack using novel hybrid stacking ensemble learning-
based DNN approach. Digital Communications and Networks, 10(3), 716—
727. https://doi.org/10.1016/j.dcan.2022.09.024

Kurniawan, A., Abbas, B. S., Trisetyarso, A., & lIsa, S. M. (2018). Static Taint
Analysis Traversal with Object Oriented Component for Web File Injection
Vulnerability Pattern Detection. Procedia Computer Science, 135, 596-605.
https://doi.org/10.1016/j.procs.2018.08.227

Lekies, S., Kotowicz, K., GroB, S., Vela Nava, E. A., & Johns, M. (2017). Code-
Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via
Script Gadgets. Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’17, 1709-1723.
https://doi.org/10.1145/3133956.3134091

Liu, Y., & Milanova, A. (2009). Practical Static Analysis for Inference of Security-
Related Program Properties. IEEE 17th International Conference on Program
Comprehension, 50-59. https://doi.org/10.1109/ICPC.2009.5090027

Liu, Z., Fang, Y., Huang, C., & Xu, Y. (2022). GAXSS: Effective Payload
Generation Method to Detect XSS WVulnerabilities Based on Genetic
Algorithm. Security and Communication Networks, 2022, 1-15.
https://doi.org/10.1155/2022/2031924

Livshits, B., & Lam, M. S. (2005). Finding Security Vulnerabilities in Java
Applications with Static Analysis. USENIX Security, 18. http://portal.acm.org/
citation.cfm?id=1251416

Malviya, V. K., Rali, S., & Gupta, A. (2021). Development of web browser prototype
with embedded classification capability for mitigating Cross-Site Scripting
attacks. Applied Soft Computing, 102, 106873. https://doi.org/10.1016/j.asoc.
2020.106873

110

Marashdih, A. W., Zaaba, Z. F., Suwais, K., & Mohd, N. A. (2019). Web application
security: An investigation on static analysis with other algorithms to detect
cross site scripting. Procedia Computer Science, 161, 1173-1181.
https://doi.org/10.1016/j.procs.2019.11.230

McGraw, G. (2006). Software Security: Building Security In (1st Editio). Addison
Wesley Profesional.

Medeiros, 1., Neves, N., & Correia, M. (2016a). Detecting and Removing Web
Application Vulnerabilities with Static Analysis and Data Mining. IEEE
Transactions on Reliability, 65(1), 54-69. https://doi.org/10.1109/
TR.2015.2457411

Medeiros, 1., Neves, N., & Correia, M. (2016b). Equipping WAP with WEAPONS
to detect vulnerabilities: Practical experience report. Proceedings - 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2016, 630-637. https://doi.org/10.1109/DSN.2016.63

Mohammadi, M., Chu, B., & Lipford, H. R. (2017). Detecting cross-site scripting
vulnerabilities through automated unit testing. Proceedings - 2017 IEEE
International Conference on Software Quality, Reliability and Security, QRS
2017, 364-373. https://doi.org/10.1109/QRS.2017.46

Magller, A., & Schwarz, M. (2014). Automated detection of client-state manipulation
vulnerabilities. ACM Transactions on Software Engineering and Methodology
(TOSEM) - Special Issue International Conference on Software Engineering
(ICSE 2012) and Regular Papers, 23(4), 29:1-29:30. https://doi.org/10.1145/
2531921

OWASP. (2024a). Cross Site Scripting (XSS). OWASP Foundation.
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

OWASP. (2024b). DOM based XSS Prevention Cheat Sheet. OWASP Foundation.
https://www.owasp.org/index.php/DOM_based XSS _Prevention_Cheat_Shee
t

OWASP. (2024c). Mobile Top 10 2024-M4 - OWASP. OWASP Foundation.
https://owasp.org/www-project-mobile-top-10/

OWASP. (2024d). OWASP Enterprise Security APl - OWASP. OWASP Foundation.
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security A
Pl

OWASP. (2024e). OWASP Java HTML Sanitizer. OWASP Foundation.
https://www.owasp.org/index.php/OWASP_Java HTML_Sanitizer_Project

OWASP. (2024f). XSS (Cross Site Scripting) Prevention Cheat Sheet. OWASP
Foundation.
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_C
heat_Sheet

111

Rathore, A. (2011). Application of Genetic Algorithm and Tabu Search in Software
Testing. Proceedings of the Fourth Annual ACM Bangalore Conference, 1-4.

Rodriguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020). Cross-site
scripting (XSS) attacks and mitigation: A survey. Computer Networks, 166,
1-23. https://doi.org/10.1016/j.comnet.2019.106960

Shanmugasundaram, G., Ravivarman, S., & Thangavellu, P. (2015). A study on
removal techniques of Cross-Site Scripting from web applications. 4th IEEE
Sponsored International Conference on Computation of Power, Energy,
Information and Communication, ICCPEIC 2015, 436-442.
https://doi.org/10.1109/ICCPEIC.2015.7259498

Shar, L. K., & Tan, H. B. K. (2012). Automated removal of cross site scripting
vulnerabilities in web applications. Information and Software Technology,
54(5), 467-478. https://doi.org/10.1016/j.infsof.2011.12.006

Shuai, B., Li, M., Li, H., Zhang, Q., & Tang, C. (2013). Software vulnerability
detection using genetic algorithm and dynamic taint analysis. 2013 3rd
International Conference on Consumer Electronics, Communications and
Networks, 589-593. https://doi.org/10.1109/CECNet.2013.6703400

Singh, M., Singh, P., & Kumar, P. (2020). An Analytical Study on Cross-Site
Scripting. 2020 International Conference on Computer Science, Engineering
and Applications (ICCSEA), March, 1-13. https://doi.org/10.1109/
ICCSEA49143.2020.9132894

Srivastava, P. R., & Kim, T. (2009). Application of Genetic Algorithm in Software
Testing. Intenational Journal of Software Engineering and Its Applications,
3(4), 87-96.

Steinhauser, A., & Gauthier, F. (2016). JSPChecker: Static detection of context-
sensitive cross-site scripting flaws in legacy web applications. PLAS 2016 -
Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, Co-Located with CCS 2016, 57-68.
https://doi.org/10.1145/2993600.2993606

Store, W. S. (2024). 5 Real-World Cross Site Scripting Examples.
https://websitesecuritystore.com/blog/real-world-cross-site-scripting-
examples/

Streichert, F. (2002). Introduction to Evolutionary Algorithms. MathFinance
Workshop, 1-21.

Tariq, 1., Sindhu, M. A., Abbasi, R. A., Khattak, A. S., Magbool, O., & Siddiqui, G.
F. (2021). Resolving cross-site scripting attacks through genetic algorithm and
reinforcement learning. Expert Systems with Applications, 168(November
2020). https://doi.org/10.1016/j.eswa.2020.114386

112

Thajeel, I. K., Samsudin, K., Hashim, S. J., & Hashim, F. (2023). Machine and Deep
Learning-based XSS Detection Approaches: A Systematic Literature Review.
Journal of King Saud University - Computer and Information Sciences, 35(7),
101628. https://doi.org/10.1016/j.jksuci.2023.101628

Thome, J., Shar, L. K., & Briand, L. (2016). Security slicing for auditing XML,
XPath, and SQL injection vulnerabilities. 2015 IEEE 26th International
Symposium on Software Reliability Engineering, ISSRE 2015, 553-564.
https://doi.org/10.1109/ISSRE.2015.7381847

Thome, J., Shar, L. K., & Briand, L. (2017). Security slicing for auditing common
injection vulnerabilities. The Journal of Systems and Software, 0, 1-18.
https://doi.org/10.1016/j.jss.2017.02.040

Van Rijsbergen, C. J. (1979). Information Retrieval (2nd Ed.). Butterworth-
Heinemann.

Wang, C. H., & Zhou, Y. S. (2016). A New Cross-Site Scripting Detection
Mechanism Integrated with HTML5 and CORS Properties by Using Browser
Extensions. Proceedings - 2016 International Computer Symposium, ICS
2016, 264—-269. https://doi.org/10.1109/1CS.2016.0060

Wang, R., Xu, G., Zeng, X., Li, X., & Feng, Z. (2017). TT-XSS: A novel taint
tracking based dynamic detection framework for DOM Cross-Site Scripting.
Journal of Parallel and Distributed Computing, 4-10.
https://doi.org/10.1016/j.jpdc.2017.07.006

Wang, R., Zhu, Y., Tan, J., & Zhou, B. (2017). Detection of malicious web pages
based on hybrid analysis. Journal of Information Security and Applications,
35, 68—74. https://doi.org/10.1016/j.jisa.2017.05.008

Weise, T. (2009). Global Optimization Algorithms — Theory and Application — (2nd
Ed.).

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslen, A.
(2000). Experimentation in software engineering An Introduction (V. R. Basili
(ed.); Ist ed.). Springer Science+Business Media, LLC.
https://doi.org/10.1007/978-1-4615-4625-2

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2012). Experimentation in Software Engineering. In Experimentation in
Software Engineering. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-29044-2

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R. A., & Jia, H. (2024). An
efficient artificial intelligence approach for early detection of cross-site
scripting attacks. Decision Analytics Journal, 11(January), 100466.
https://doi.org/10.1016/j.dajour.2024.100466

113

Zhou, Y., & Wang, P. (2019). An ensemble learning approach for XSS attack
detection with domain knowledge and threat intelligence. Computers and
Security, 82, 261-269. https://doi.org/10.1016/j.cose.2018.12.016

Zimmer, D. (2008). Real World XSS. XSSed.Com.
http://www.xssed.com/article/21/Paper_Real World_ XSS/

114

