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ENHANCING XSS VULNERABILITY DETECTION AND REMOVAL IN
WEB APPLICATIONS USING GENETIC ALGORITHMS

By

ISATOU HYDARA

February 2024

Chairman : Professor Abu Bakar bin Md Sultan, PhD

Faculty - Computer Science and Information Technology

Cross-site scripting (XSS) vulnerabilities are a major security threat for both desktop
and mobile web applications. They occur due to lack of proper verification of the
user inputs, which enables hackers to inject and execute malicious scripts in the web
pages of an application. Successful XSS attacks can lead to serious security
violations such as account hijacking, denial of service, cookie theft, and web content
manipulations. Current approaches to addressing this problem are limited by large
number of false positives in their analysis results, non-inclusion of all types of XSS,
lack of focus on removing XSS vulnerabilities, and non-inclusion of mobile web

applications.

Static analysis techniques are good at detecting XSS vulnerabilities in the source
codes of web applications, and especially when combined with other techniques.
However, they tend to generate a lot of false positives since they are conservative
techniques. Another limitation is the limited or lack of focus on the removal of XSS

vulnerabilities after their detection in the source code. Consequently, an approach



called XSS-DETREM has been proposed with the objectives of combining genetic
algorithms with static analysis, and a code replacement technique to detect and
remove XSS vulnerabilities, respectively, to address the problem of XSS at the
source code level. The research used a quantitative research methodology and
randomised complete block design in the experimentation design whereby new

improvements were implemented in a software tool.

XSS-DETREM has been evaluated empirically using a data set of JSP and Android
web applications that have been used in previous studies. Comparisons of the
evaluation results have shown improvements in the detection and removal of XSS
vulnerabilities in desktop and mobile web applications. These improvements focused
on reducing the rate of false positives generated by static analysis, increasing the
vulnerability coverage for all types of XSS on both the server-side and client-side.
Consequently, the objectives of the research have been met and the expected results
were achieved. This new improved approach is significant in helping web
application developers to test their applications for all types of XSS and remove any
detected vulnerabilities before releasing them to the public. Also, as more users are
browsing the Internet through their mobile applications, this approach will help in
protecting their private data and make browsing safer for them with both Desktop

and Mobile web applications.

Keywords: cross-site scripting attack; cross-site scripting vulnerability, software
security, XSS vulnerability detection
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MEMPERTINGKATKAN PENGESANAN DAN PENGHAPUSAN
KERENTANAN PENSKRIPAN SILANG-TAPAK KE ATAS APPLIKASI
WEB MENGGUNAKAN ALGORITMA GENETIK

Oleh

ISATOU HYDARA

Februari 2024

Pengerusi : Profesor Abu Bakar bin Md Sultan, PhD

Fakulti : Sains Komputer dan Tekknologi Maklumat

Kerentanan pengskripan silang-tapak (XSS) merupakan ancaman keselamatan utama
kepada aplikasi web dan desktop. lanya berlaku disebabkan kelemahan verifikasi
input yang betul, membolehkan penggodam untuk menyuntik dan melaksanakan
skrip jahat kepada aplikasi di tapak web. Serangan XSS yang berjaya boleh
membawa kepada pelanggaran keselamatan yang serius seperti rampasan akaun,
penafian servis, kecurian kuki dan pemanipulasian kandungan web. Kaedah semasa
menangani masalah ini terhad akibat jumlah besar bilangan positif palsu dihasilkan
dalam analisis keputusan, dan tidak merangkumi semua jenis XSS, kurang tumpuan

untuk penghapusan kerentanan XSS, dan tidak merangkumi aplikasi mobile web.

Teknik-teknik analisis statik amat baik untuk mengesan kerentanan XSS pada kod
sumber aplikasi web, dan terutamanya bila digabungkan dengan teknik lain.
Bagaimanapun ianya cenderung untuk menjana banyak positif palsu kerana ianya

teknik konservatif. Kelemahan lain adalah teknik semasa kurang menumpu kepada



penghapusan kerentanan XSS selepas dikesan pada kod sumber. Seterusnya, kaedah
yang dipanggil XSS-DETREM telah dicadangkan dengan objektif untuk
mengabungkan algoritma genetik bersama analisis statik, dan teknik pengantian kod
untuk mengesan dan menghapuskan kerentanan XSS, masing-masing untuk
menagani masalah XSS di paras kod sumber. Penyelidikan ini menggunakan
metodologi kuantitatif dan rekabentuk blok rawak lengkap untuk pengujian yang

mana penambahbaikan baru dijalankan melalui alatan perisian.

XSS-DETREM telah dinilai secara empirikal mengunakan set data JSP dan aplikasi
web android yang digunakan dalam kajian sebelum. Peningkatan ini memfokus
kepada mengurangkan kadar positif palsu yang dijana oleh analisis static,
meningkatkan liputan kerentanan kepada semua jenis XSS dikedua-dua pelayan dan
pelanggan. Perbandingan ke atas hasil penilaian telah menunjukkan peningkatan
pengesanan dan penghapusan kerentanan XSS untuk aplikasi desktop dan aplikasi
mobil web. Seterusnya , objektif penyelidikan ini dicapai dan jangkaan keputusan
dicapai. Kaedah penambahbaikan baru amat signifikan untuk membantu pembangun
aplikasi web menguji aplikasi mereka sebelum digunakan oleh publik. Juga, semakin
ramai pengguna melayari internet melalui aplikasi mobil, kaedah ini akan
melindungi data peribadi dan menjadikan pelayaran selamat untuk mereka bagi

keduanya iaitu desktop dan aplikasi mobil web.

Kata Kunci: Serangan penskripan silang-tapak, kerentanan penskripan silang-tapak,
keselamatan perisian, Pengesanan kerentanan XSS
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Web applications, both desktop and mobile versions, have become an integral part of
our lives. We use them for accessing information, conducting business transactions
online, and interacting with family and friends on social media (CWE, 2024;
Krishnan et al., 2024; OWASP, 2024a). Many businesses and organizations also use
web applications to provide many of their services, not only on Desktop versions but
also on mobile versions as more people use their mobile phones to access some of
those services. However, as web applications become very important to the success
of businesses and organizations, their securities have increasingly become more
complex (OWASP, 2024a). Hence, more security issues have emerged due to the
increasing number of security threats affecting web applications (Thajeel et al.,

2023).

Security testing of web applications has, therefore, become a crucial issue to the
software security industry as well as governments, businesses, and organizations.
Static application security testing (SAST) is an automated static analysis testing
method for finding security vulnerabilities in web applications source code (Felderer
et al., 2016). It can be applied very early in the software development life cycle and
has an advantage over dynamic security testing as it can analyse all the control flows
of a program. Study of the major security threats in web applications has shown that
XSS vulnerabilities are among the top ten vulnerabilities, as reported by the Open

Web Application Security Project (OWASP) (OWASP, 2024a). OWASP identifies



and documents the most common of these security issues, known as input validation
vulnerabilities, that affect web applications. They keep an updated list of the top ten

of these vulnerabilities (OWASP, 2024c).

Cross-site scripting (XSS) vulnerabilities are input validation vulnerabilities found in
web applications and can be exploited through XSS attacks when such applications
are deployed and running online (CWE, 2024; OWASP, 2024a). XSS attacks are of
three types namely reflected, stored and DOM-based. Reflected XSS is executed by
the victim’s browser and occurs when the victim provides input to the web
application such as username and password. The second type, Stored XSS attacks
cab be stored in the web application’s databases where information is saved,
message forums, and comments fields. The malicious code is executed every time
users open it thereby passing their privileges to the attacker. Both reflected and
stored XSS take place on the application side. On the other hand, DOM-based XSS
attacks are executed on the client side. Attackers are able to collect sensitive or

important information from the user’s computer.

Injecting malicious scripts where these applications accept user inputs can result to
serious security breaches such as cookie theft, account hijacking, manipulation of
web content and theft of private information. Many security solutions have been
proposed, but the problem of XSS still remains and continues to affect many web
applications. Attention on software security is increasing and progress on detection
is being made but still more work needs to be done. New improvements on the
existing approaches and techniques need to be added in order to tackle the expanding

problem of XSS.



Genetic algorithms (GAs) have been the most commonly used of all optimization
algorithms in SBSE, although there have been few studies to establish any practical
performance differences among the algorithms. Genetic Algorithms (GAs) are a
subset of Evolutionary Algorithms (EAs), which are metaheuristic optimization
algorithms based on population and inspired by biology (Weise, 2009). They employ
mechanisms of natural evolution such as mutation, crossover, natural selection, and
survival of the fittest (Streichert, 2002) to find optimal solutions in a search space.
GAs are different from other EAs in that they have a crossover (recombination)
operation and use binary coding in bits or bit-strings to represent a population

(Streichert, 2002).

GAs have proven to be good solutions to many software engineering problems since
their discovery. Their successful use in software security testing (Avancini &
Ceccato, 2010) and intrusion detection systems (Bankovic et al., 2008) enlighten the
possibility of their usage in detecting and removing XSS vulnerabilities in web
applications. In addition GAs have some advantages compared to other machine
learning techniques (Bankovic et al., 2008), which are stated below:

e  GAs are intrinsically parallel, since they have multiple offspring, they can
explore the solution space in multiple directions at once. If one path turns
out to be a dead end, they can easily eliminate it and continue work on more

promising avenues.

e Due to the parallelism that allows them to implicitly evaluate many
schemas at once, genetic algorithms are particularly well-suited to solving
problems where the space of all potential solutions is truly huge - too vast

to search exhaustively in any reasonable amount of time, as network data is.

e  Working with populations of candidate solutions rather than a single

solution, and employing stochastic operators, to guide the search process



permit GAs to cope well with attribute interactions and to avoid getting
stuck in local maxima, which together make them very suitable for dealing

with identifying different vulnerabilities such as XSS.

e A system based on GA can easily be re-trained. This property provides the
adaptability of a GA-based system, which is an imperative quality of a
vulnerability detection application bearing in mind the high rate of new
attacks emerging.

1.2 Problem Statement

Cross-Site Scripting (XSS) vulnerabilities are a major security threat for both web
and mobile applications (CWE, 2024; OWASP, 2024a). XSS attacks can lead to loss
of private data, user account/session hijacking, web content manipulation, and
financial losses for both individuals and businesses. Business impacts of XSS attacks
can include system disruption, damaged reputation, legal issues, and financial losses
(OWASP, 2024c). One of the most known real world examples of XSS attacks was
the “Sammy worm” on the MySpace website in 2005 (Store, 2024). Since then,
many other big corporations including FaceBook, Fortnite, British Airways, the CIA,

and eBay have been victims of XSS attacks over the years (Store, 2024).

Many solutions have been proposed to address this problem at different stages of an
application development life cycle, such as the design, coding and testing stages.
Recent approaches to the mitigation of this problem at the testing stage include the
integration of static analysis and genetic algorithm (M. A. Ahmed & Ali, 2016; Z.
Liu et al., 2022; Tariq et al., 2021), the combination of static analysis and data
mining (Medeiros et al., 2016a), the use of program slicing and pruning techniques

(Thome et al., 2017), dynamic taint tracking technique (R. Wang, Xu, et al., 2017)



and the use of Genetic algorithm with other data mining techniques (Kareem Thajeel
et al., 2023; Krishnan et al., 2024; Tariq et al., 2021; Younas et al., 2024). Although
these solutions have proved effective in mitigating the problem of XSS to some

extent, they have limitations that open some research gaps to be further addressed.

Static analysis techniques are good at detecting XSS vulnerabilities in the source
codes of web applications, and especially when combined with other technigues.
However, they tend to generate a lot of false positives since they are conservative
techniques (Medeiros et al., 2016a; Thome et al., 2016, 2017). False positives occur
when non-vulnerable parts of a piece of code are identified as vulnerable (Thajeel et
al., 2023). In order to address this limitation, the underlying techniques and their

algorithms need to be improved in terms of precision, coverage and effectiveness.

Another limitation of the existing approaches is the limited or lack of focus on the
removal of XSS vulnerabilities after being detected in the source code. Detecting
vulnerabilities in web applications is very important but if not properly removed the
vulnerabilities will continue to cause security problems in the applications. Some
research work that have addressed vulnerability removal include the use of the
OWASP's escaping API and security guidelines (Lekies et al., 2017; Malviya et al.,
2021; Rodriguez et al., 2020; Shanmugasundaram et al., 2015; Shar & Tan, 2012).
The OWASP API (OWASP, 2024d) and security guidelines (OWASP, 2024f) do not
include all XSS wvulnerabilities in the context of their API. Therefore, these
techniques will not be able to detect XSS vulnerabilities that are out of this context.

There is need to extend these techniques in order to include all XSS vulnerabilities.



Another research work made use of data mining techniques (Medeiros et al., 2016a).
These data mining techniques employed by Medeiros et al. are reported to be good at
XSS vulnerability removal, but the techniques they used only included server-side

and not client-side vulnerabilities.

A new dynamic approach to XSS detection has been proposed (R. Wang, Xu, et al.,
2017). This approach proposed to use taint tracking technique on a browser's
rendering process to derive and verify vulnerabilities automatically. The limitations
of their work include the inability of the approach to handle two-order inputs and the
long time taken to generate attack vectors. In addition, this approach only focuses on

DOM-based XSS and not Reflected or Stored XSS vulnerabilities.

This research work, therefore, was focused on reducing false positives in the
detection of XSS vulnerabilities, increasing the coverage of XSS types addressed,

and eliminating detected vulnerabilities from the source to prevent future attacks.

1.3 Objectives of the Research

The main objective of this research is to propose an enhancement in the detection
and removal of XSS vulnerabilities from web and mobile applications using Genetic
Algorithms, static taint analysis and code replacements techniques. This research
work is proposed to make improvements to the limitations identified in the
previously proposed approaches on XSS vulnerability detection and removal. These
improvements will focus on reducing the rate of false positives generated by static

analysis, including both server-side and client-side XSS vulnerabilities and using



code replacement technique to remove vulnerabilities. Hence, our specific objectives

are:

e To propose an improved GA based security testing approach to XSS
detection in desktop and mobile web applications that reduces false positive

rates

e To use an enhanced code replacement technique to remove the detected

XSS vulnerabilities

e  Toempirically evaluate and measure the effectiveness of XSS detection and
removal of the proposed approach

1.4 Scope of the Research

This research focuses on the security testing of web applications at the source code
level, and hence employs white box testing techniques. There are many security
vulnerabilities affecting web applications and XSS is among the top. Moreover, XSS
attacks target not only the web applications but the users as well. Therefore, this
research is focusing on improving the detection and removal of XSS vulnerabilities
by reducing false positives and eliminating detected vulnerabilities. The detection
and removal of all the three types of XSS vulnerabilities i.e., reflected, stored, and
DOM-based on both the server sides and client sides of web applications are also
addressed. In addition, the issue of cross-site scripting in mobile applications is also
included. Our proposed approach is designed for testing Java-based web applications
and Android mobile applications. Java Server Pages (JSP) are widely used for
developing web applications, and the Android applications are based on Java. The

limitation of the scope to Java-based web applications could impact the



generalisation of the approach. However, with some modification in future research,

the approach can be adopted to other programming languages.

15 Contributions of the Research

This research produced an enhanced and improved approach to detecting and
removing XSS vulnerabilities in Java-based web and Android mobile applications.
Therefore, the main contributions of this research are:

e A comprehensive survey of existing XSS mitigation approaches

e Animproved GA-based detection technique for all XSS types in Java-based

web applications

e An improved removal technique for all XSS types in Java-based web
applications

e A tool support for the automation of the detection and removal techniques
of XSS

e  Empirical evidence that the proposed approach is effective in detecting and

removing XSS vulnerabilities from web applications

e  The improvement on the detection and removal of XSS vulnerabilities in

the source code of web applications
e  The implementation of a tool for the automation of the proposed approach

e  Empirical evidence to show that the proposed approach can be more

effective in detecting and removing XSS vulnerabilities



1.6 Organization of the Thesis

This thesis consists of seven chapters that are organized as follows:

Chapter 1 introduces the thesis and provides the general overview of the thesis. It
provides an overview of the research background and identifies the research
problem, the objectives to be achieved, as well as the research scope and

contributions.

Chapter 2 provides a detailed review of the literature related to this research work. It
discusses the existing research on XSS vulnerabilities detection and removal.
Different approaches and techniques to mitigate the XSS problems have been

reviewed and the research gaps found have been identified in this chapter.

In Chapter 3, the methodology of the research is presented in general overview. It

highlights the different steps of the methodology used in the research.

Chapter 4 describes our proposed XSS-DETREM approach for the detection and
removal of XSS wvulnerabilities, demonstrating how the tool detects and removes
XSS vulnerabilities. It gives an illustrative example of how the proposed approach

works.

Chapter 5 presents the detailed implementation of the proposed approach to XSS
detection and removal. It describes the design and implementation of the tool

support.



Chapter 6 provides the experiment results after the evaluation of XSS-DETREM
approach. The effectiveness of the approach is shown by the comparison results
against other approaches. The chapter also discusses the implications of the results

and findings.

Chapter 7 gives the conclusion of the thesis and discusses the new knowledge gained
from this research work. The shortcomings and limitations of the research work are

stated, and recommendations and suggestions are given for future research work.

10
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