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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 
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By 
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Chairman :   Professor Abu Bakar bin Md Sultan, PhD 

Faculty  :   Computer Science and Information Technology 

Cross-site scripting (XSS) vulnerabilities are a major security threat for both desktop 

and mobile web applications. They occur due to lack of proper verification of the 

user inputs, which enables hackers to inject and execute malicious scripts in the web 

pages of an application. Successful XSS attacks can lead to serious security 

violations such as account hijacking, denial of service, cookie theft, and web content 

manipulations. Current approaches to addressing this problem are limited by large 

number of false positives in their analysis results, non-inclusion of all types of XSS, 

lack of focus on removing XSS vulnerabilities, and non-inclusion of mobile web 

applications.  

Static analysis techniques are good at detecting XSS vulnerabilities in the source 

codes of web applications, and especially when combined with other techniques. 

However, they tend to generate a lot of false positives since they are conservative 

techniques. Another limitation is the limited or lack of focus on the removal of XSS 

vulnerabilities after their detection in the source code. Consequently, an approach 
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called XSS-DETREM has been proposed with the objectives of combining genetic 

algorithms with static analysis, and a code replacement technique to detect and 

remove XSS vulnerabilities, respectively, to address the problem of XSS at the 

source code level. The research used a quantitative research methodology and 

randomised complete block design in the experimentation design whereby new 

improvements were implemented in a software tool.  

XSS-DETREM has been evaluated empirically using a data set of JSP and Android 

web applications that have been used in previous studies. Comparisons of the 

evaluation results have shown improvements in the detection and removal of XSS 

vulnerabilities in desktop and mobile web applications. These improvements focused 

on reducing the rate of false positives generated by static analysis, increasing the 

vulnerability coverage for all types of XSS on both the server-side and client-side. 

Consequently, the objectives of the research have been met and the expected results 

were achieved. This new improved approach is significant in helping web 

application developers to test their applications for all types of XSS and remove any 

detected vulnerabilities before releasing them to the public. Also, as more users are 

browsing the Internet through their mobile applications, this approach will help in 

protecting their private data and make browsing safer for them with both Desktop 

and Mobile web applications. 

Keywords: cross-site scripting attack; cross-site scripting vulnerability, software 

security, XSS vulnerability detection 
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Kerentanan pengskripan silang-tapak (XSS) merupakan ancaman keselamatan utama 

kepada aplikasi web dan desktop. Ianya  berlaku disebabkan kelemahan verifikasi 

input yang betul, membolehkan penggodam untuk menyuntik dan melaksanakan 

skrip jahat kepada aplikasi di tapak web. Serangan XSS yang berjaya boleh 

membawa kepada pelanggaran keselamatan yang serius seperti rampasan akaun, 

penafian servis, kecurian kuki dan pemanipulasian kandungan web. Kaedah semasa 

menangani masalah ini terhad akibat jumlah besar bilangan positif palsu dihasilkan 

dalam analisis keputusan, dan tidak merangkumi semua jenis XSS, kurang tumpuan 

untuk penghapusan kerentanan XSS, dan tidak merangkumi aplikasi mobile web.  

Teknik-teknik   analisis statik  amat baik untuk mengesan kerentanan XSS pada kod 

sumber aplikasi web, dan terutamanya bila digabungkan dengan teknik lain. 

Bagaimanapun ianya cenderung untuk  menjana banyak positif palsu kerana ianya 

teknik konservatif. Kelemahan lain adalah teknik semasa kurang menumpu kepada 



© C
OPYRIG

HT U
PM

 

 

iv 

penghapusan kerentanan XSS selepas dikesan pada kod sumber.  Seterusnya, kaedah 

yang dipanggil XSS-DETREM telah dicadangkan dengan objektif untuk 

mengabungkan algoritma genetik bersama analisis statik, dan teknik pengantian kod 

untuk mengesan dan menghapuskan kerentanan XSS, masing-masing untuk 

menagani masalah XSS di paras kod sumber. Penyelidikan ini menggunakan 

metodologi kuantitatif dan rekabentuk blok rawak lengkap untuk pengujian yang 

mana penambahbaikan baru dijalankan melalui alatan perisian. 

XSS-DETREM telah dinilai secara empirikal mengunakan set data JSP dan aplikasi 

web android yang digunakan dalam kajian sebelum.  Peningkatan ini memfokus 

kepada mengurangkan kadar positif palsu yang dijana oleh analisis static, 

meningkatkan liputan kerentanan kepada semua jenis XSS dikedua-dua pelayan dan 

pelanggan. Perbandingan ke atas hasil penilaian telah menunjukkan peningkatan 

pengesanan dan penghapusan kerentanan XSS untuk aplikasi desktop dan aplikasi 

mobil web.  Seterusnya , objektif penyelidikan ini dicapai dan jangkaan keputusan 

dicapai.  Kaedah penambahbaikan baru amat signifikan untuk membantu pembangun 

aplikasi web menguji aplikasi mereka sebelum digunakan oleh publik. Juga, semakin 

ramai pengguna melayari internet melalui aplikasi mobil, kaedah ini akan 

melindungi data peribadi dan menjadikan pelayaran selamat untuk mereka bagi 

keduanya iaitu desktop dan aplikasi mobil web.  

Kata Kunci: Serangan penskripan silang-tapak, kerentanan penskripan silang-tapak, 

keselamatan perisian, Pengesanan kerentanan XSS 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Research 

Web applications, both desktop and mobile versions, have become an integral part of 

our lives. We use them for accessing information, conducting business transactions 

online, and interacting with family and friends on social media (CWE, 2024; 

Krishnan et al., 2024; OWASP, 2024a). Many businesses and organizations also use 

web applications to provide many of their services, not only on Desktop versions but 

also on mobile versions as more people use their mobile phones to access some of 

those services. However, as web applications become very important to the success 

of businesses and organizations, their securities have increasingly become more 

complex (OWASP, 2024a). Hence, more security issues have emerged due to the 

increasing number of security threats affecting web applications (Thajeel et al., 

2023).  

Security testing of web applications has, therefore, become a crucial issue to the 

software security industry as well as governments, businesses, and organizations. 

Static application security testing (SAST) is an automated static analysis testing 

method for finding security vulnerabilities in web applications source code (Felderer 

et al., 2016). It can be applied very early in the software development life cycle and 

has an advantage over dynamic security testing as it can analyse all the control flows 

of a program. Study of the major security threats in web applications has shown that 

XSS vulnerabilities are among the top ten vulnerabilities, as reported by the Open 

Web Application Security Project (OWASP) (OWASP, 2024a). OWASP identifies 
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and documents the most common of these security issues, known as input validation 

vulnerabilities, that affect web applications. They keep an updated list of the top ten 

of these vulnerabilities (OWASP, 2024c).  

Cross-site scripting (XSS) vulnerabilities are input validation vulnerabilities found in 

web applications and can be exploited through XSS attacks when such applications 

are deployed and running online (CWE, 2024; OWASP, 2024a). XSS attacks are of 

three types namely reflected, stored and DOM-based. Reflected XSS is executed by 

the victim’s browser and occurs when the victim provides input to the web 

application such as username and password. The second type, Stored XSS attacks 

cab be stored in the web application’s databases where information is saved, 

message forums, and comments fields. The malicious code is executed every time 

users open it thereby passing their privileges to the attacker. Both reflected and 

stored XSS take place on the application side. On the other hand, DOM-based XSS 

attacks are executed on the client side. Attackers are able to collect sensitive or 

important information from the user’s computer. 

Injecting malicious scripts where these applications accept user inputs can result to 

serious security breaches such as cookie theft, account hijacking, manipulation of 

web content and theft of private information. Many security solutions have been 

proposed, but the problem of XSS still remains and continues to affect many web 

applications. Attention on software security is increasing and progress on detection 

is being made but still more work needs to be done. New improvements on the 

existing approaches and techniques need to be added in order to tackle the expanding 

problem of XSS. 
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Genetic algorithms (GAs) have been the most commonly used of all optimization 

algorithms in SBSE, although there have been few studies to establish any practical 

performance differences among the algorithms. Genetic Algorithms (GAs) are a 

subset of Evolutionary Algorithms (EAs), which are metaheuristic optimization 

algorithms based on population and inspired by biology (Weise, 2009). They employ 

mechanisms of natural evolution such as mutation, crossover, natural selection, and 

survival of the fittest (Streichert, 2002) to find optimal solutions in a search space. 

GAs are different from other EAs in that they have a crossover (recombination) 

operation and use binary coding in bits or bit-strings to represent a population 

(Streichert, 2002). 

GAs have proven to be good solutions to many software engineering problems since 

their discovery. Their successful use in software security testing (Avancini & 

Ceccato, 2010) and intrusion detection systems (Bankovic et al., 2008) enlighten the 

possibility of their usage in detecting and removing XSS vulnerabilities in web 

applications. In addition GAs have some advantages compared to other machine 

learning techniques (Bankovic et al., 2008), which are stated below: 

• GAs are intrinsically parallel, since they have multiple offspring, they can 

explore the solution space in multiple directions at once. If one path turns 

out to be a dead end, they can easily eliminate it and continue work on more 

promising avenues. 

• Due to the parallelism that allows them to implicitly evaluate many 

schemas at once, genetic algorithms are particularly well-suited to solving 

problems where the space of all potential solutions is truly huge - too vast 

to search exhaustively in any reasonable amount of time, as network data is. 

• Working with populations of candidate solutions rather than a single 

solution, and employing stochastic operators, to guide the search process 
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permit GAs to cope well with attribute interactions and to avoid getting 

stuck in local maxima, which together make them very suitable for dealing 

with identifying different vulnerabilities such as XSS. 

• A system based on GA can easily be re-trained. This property provides the 

adaptability of a GA-based system, which is an imperative quality of a 

vulnerability detection application bearing in mind the high rate of new 

attacks emerging. 

 

1.2 Problem Statement 

Cross-Site Scripting (XSS) vulnerabilities are a major security threat for both web 

and mobile applications (CWE, 2024; OWASP, 2024a). XSS attacks can lead to loss 

of private data, user account/session hijacking, web content manipulation, and 

financial losses for both individuals and businesses. Business impacts of XSS attacks 

can include system disruption, damaged reputation, legal issues, and financial losses 

(OWASP, 2024c). One of the most known real world examples of XSS attacks was 

the “Sammy worm” on the MySpace website in 2005 (Store, 2024). Since then, 

many other big corporations including FaceBook, Fortnite, British Airways, the CIA, 

and eBay have been victims of XSS attacks over the years (Store, 2024).       

Many solutions have been proposed to address this problem at different stages of an 

application development life cycle, such as the design, coding and testing stages. 

Recent approaches to the mitigation of this problem at the testing stage include the 

integration of static analysis and genetic algorithm (M. A. Ahmed & Ali, 2016; Z. 

Liu et al., 2022; Tariq et al., 2021),  the combination of static analysis and data 

mining (Medeiros et al., 2016a), the use of program slicing and pruning techniques 

(Thome et al., 2017), dynamic taint tracking technique (R. Wang, Xu, et al., 2017) 
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and the use of Genetic algorithm with other data mining techniques (Kareem Thajeel 

et al., 2023; Krishnan et al., 2024; Tariq et al., 2021; Younas et al., 2024). Although 

these solutions have proved effective in mitigating the problem of XSS to some 

extent, they have limitations that open some research gaps to be further addressed.  

Static analysis techniques are good at detecting XSS vulnerabilities in the source 

codes of web applications, and especially when combined with other techniques. 

However, they tend to generate a lot of false positives since they are conservative 

techniques (Medeiros et al., 2016a; Thome et al., 2016, 2017). False positives occur 

when non-vulnerable parts of a piece of code are identified as vulnerable (Thajeel et 

al., 2023). In order to address this limitation, the underlying techniques and their 

algorithms need to be improved in terms of precision, coverage and effectiveness. 

Another limitation of the existing approaches is the limited or lack of focus on the 

removal of XSS vulnerabilities after being detected in the source code. Detecting 

vulnerabilities in web applications is very important but if not properly removed the 

vulnerabilities will continue to cause security problems in the applications. Some 

research work that have addressed vulnerability removal include the use of the 

OWASP's escaping API and security guidelines (Lekies et al., 2017; Malviya et al., 

2021; Rodríguez et al., 2020; Shanmugasundaram et al., 2015; Shar & Tan, 2012). 

The OWASP API (OWASP, 2024d) and security guidelines (OWASP, 2024f) do not 

include all XSS vulnerabilities in the context of their API. Therefore, these 

techniques will not be able to detect XSS vulnerabilities that are out of this context. 

There is need to extend these techniques in order to include all XSS vulnerabilities. 
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Another research work made use of data mining techniques (Medeiros et al., 2016a). 

These data mining techniques employed by Medeiros et al. are reported to be good at 

XSS vulnerability removal, but the techniques they used only included server-side 

and not client-side vulnerabilities.  

A new dynamic approach to XSS detection has been proposed (R. Wang, Xu, et al., 

2017). This approach proposed to use taint tracking technique on a browser's 

rendering process to derive and verify vulnerabilities automatically. The limitations 

of their work include the inability of the approach to handle two-order inputs and the 

long time taken to generate attack vectors. In addition, this approach only focuses on 

DOM-based XSS and not Reflected or Stored XSS vulnerabilities. 

This research work, therefore, was focused on reducing false positives in the 

detection of XSS vulnerabilities, increasing the coverage of XSS types addressed, 

and eliminating detected vulnerabilities from the source to prevent future attacks. 

1.3 Objectives of the Research 

The main objective of this research is to propose an enhancement in the detection 

and removal of XSS vulnerabilities from web and mobile applications using Genetic 

Algorithms, static taint analysis and code replacements techniques. This research 

work is proposed to make improvements to the limitations identified in the 

previously proposed approaches on XSS vulnerability detection and removal. These 

improvements will focus on reducing the rate of false positives generated by static 

analysis, including both server-side and client-side XSS vulnerabilities and using 
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code replacement technique to remove vulnerabilities. Hence, our specific objectives 

are: 

• To propose an improved GA based security testing approach to XSS 

detection in desktop and mobile web applications that reduces false positive 

rates 

• To use an enhanced code replacement technique to remove the detected 

XSS vulnerabilities 

• To empirically evaluate and measure the effectiveness of XSS detection and 

removal of the proposed approach 

 

1.4 Scope of the Research 

This research focuses on the security testing of web applications at the source code 

level, and hence employs white box testing techniques. There are many security 

vulnerabilities affecting web applications and XSS is among the top. Moreover, XSS 

attacks target not only the web applications but the users as well. Therefore, this 

research is focusing on improving the detection and removal of XSS vulnerabilities 

by reducing false positives and eliminating detected vulnerabilities. The detection 

and removal of all the three types of XSS vulnerabilities i.e., reflected, stored, and 

DOM-based on both the server sides and client sides of web applications are also 

addressed. In addition, the issue of cross-site scripting in mobile applications is also 

included. Our proposed approach is designed for testing Java-based web applications 

and Android mobile applications. Java Server Pages (JSP) are widely used for 

developing web applications, and the Android applications are based on Java. The 

limitation of the scope to Java-based web applications could impact the 
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generalisation of the approach. However, with some modification in future research, 

the approach can be adopted to other programming languages. 

1.5 Contributions of the Research 

This research produced an enhanced and improved approach to detecting and 

removing XSS vulnerabilities in Java-based web and Android mobile applications. 

Therefore, the main contributions of this research are: 

• A comprehensive survey of existing XSS mitigation approaches 

• An improved GA-based detection technique for all XSS types in Java-based 

web applications 

• An improved removal technique for all XSS types in Java-based web 

applications 

• A tool support for the automation of the detection and removal techniques 

of XSS 

• Empirical evidence that the proposed approach is effective in detecting and 

removing XSS vulnerabilities from web applications 

• The improvement on the detection and removal of XSS vulnerabilities in 

the source code of web applications  

• The implementation of a tool for the automation of the proposed approach 

• Empirical evidence to show that the proposed approach can be more 

effective in detecting and removing XSS vulnerabilities 

 

 

 



© C
OPYRIG

HT U
PM

 

 

9 

1.6 Organization of the Thesis 

This thesis consists of seven chapters that are organized as follows: 

Chapter 1 introduces the thesis and provides the general overview of the thesis. It 

provides an overview of the research background and identifies the research 

problem, the objectives to be achieved, as well as the research scope and 

contributions. 

Chapter 2 provides a detailed review of the literature related to this research work. It 

discusses the existing research on XSS vulnerabilities detection and removal. 

Different approaches and techniques to mitigate the XSS problems have been 

reviewed and the research gaps found have been identified in this chapter. 

In Chapter 3, the methodology of the research is presented in general overview. It 

highlights the different steps of the methodology used in the research.  

Chapter 4 describes our proposed XSS-DETREM approach for the detection and 

removal of XSS vulnerabilities, demonstrating how the tool detects and removes 

XSS vulnerabilities. It gives an illustrative example of how the proposed approach 

works.  

Chapter 5 presents the detailed implementation of the proposed approach to XSS 

detection and removal. It describes the design and implementation of the tool 

support. 
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Chapter 6 provides the experiment results after the evaluation of XSS-DETREM 

approach. The effectiveness of the approach is shown by the comparison results 

against other approaches. The chapter also discusses the implications of the results 

and findings.  

Chapter 7 gives the conclusion of the thesis and discusses the new knowledge gained 

from this research work. The shortcomings and limitations of the research work are 

stated, and recommendations and suggestions are given for future research work. 
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