
© C
OPYRIG

HT U
PM

i

ENHANCING XSS VULNERABILITY DETECTION AND REMOVAL IN

WEB APPLICATIONS USING GENETIC ALGORITHMS

By

ISATOU HYDARA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2024

 FSKTM 2024 7

© C
OPYRIG

HT U
PM

iii

All material contained within the thesis, including without limitation text, logos,

icons, photographs, and all other artwork, is copyright material of Universiti Putra

Malaysia unless otherwise stated. Use may be made of any material contained within

the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of

Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

iv

DEDICATION

To my mother Oumie Kah and late father Sheriff Sulayman Hydara who raised me

with unconditional love.

To my wonderful husband, Lamin Saidykhan, who supported and encouraged me

throughout this research journey.

To my dear brother, Ebrima Hydara, and my sister, Ndey Awa Hydara, for their

endless love, prayers and support.

And to everyone else who has provided me guidance, support, and encouragement.

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Doctor of Philosophy

ENHANCING XSS VULNERABILITY DETECTION AND REMOVAL IN

WEB APPLICATIONS USING GENETIC ALGORITHMS

By

ISATOU HYDARA

February 2024

Chairman : Professor Abu Bakar bin Md Sultan, PhD

Faculty : Computer Science and Information Technology

Cross-site scripting (XSS) vulnerabilities are a major security threat for both desktop

and mobile web applications. They occur due to lack of proper verification of the

user inputs, which enables hackers to inject and execute malicious scripts in the web

pages of an application. Successful XSS attacks can lead to serious security

violations such as account hijacking, denial of service, cookie theft, and web content

manipulations. Current approaches to addressing this problem are limited by large

number of false positives in their analysis results, non-inclusion of all types of XSS,

lack of focus on removing XSS vulnerabilities, and non-inclusion of mobile web

applications.

Static analysis techniques are good at detecting XSS vulnerabilities in the source

codes of web applications, and especially when combined with other techniques.

However, they tend to generate a lot of false positives since they are conservative

techniques. Another limitation is the limited or lack of focus on the removal of XSS

vulnerabilities after their detection in the source code. Consequently, an approach

© C
OPYRIG

HT U
PM

ii

called XSS-DETREM has been proposed with the objectives of combining genetic

algorithms with static analysis, and a code replacement technique to detect and

remove XSS vulnerabilities, respectively, to address the problem of XSS at the

source code level. The research used a quantitative research methodology and

randomised complete block design in the experimentation design whereby new

improvements were implemented in a software tool.

XSS-DETREM has been evaluated empirically using a data set of JSP and Android

web applications that have been used in previous studies. Comparisons of the

evaluation results have shown improvements in the detection and removal of XSS

vulnerabilities in desktop and mobile web applications. These improvements focused

on reducing the rate of false positives generated by static analysis, increasing the

vulnerability coverage for all types of XSS on both the server-side and client-side.

Consequently, the objectives of the research have been met and the expected results

were achieved. This new improved approach is significant in helping web

application developers to test their applications for all types of XSS and remove any

detected vulnerabilities before releasing them to the public. Also, as more users are

browsing the Internet through their mobile applications, this approach will help in

protecting their private data and make browsing safer for them with both Desktop

and Mobile web applications.

Keywords: cross-site scripting attack; cross-site scripting vulnerability, software

security, XSS vulnerability detection

SDG: GOAL 4: Quality Education

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

MEMPERTINGKATKAN PENGESANAN DAN PENGHAPUSAN

KERENTANAN PENSKRIPAN SILANG-TAPAK KE ATAS APPLIKASI

WEB MENGGUNAKAN ALGORITMA GENETIK

Oleh

ISATOU HYDARA

Februari 2024

Pengerusi : Profesor Abu Bakar bin Md Sultan, PhD

Fakulti : Sains Komputer dan Tekknologi Maklumat

Kerentanan pengskripan silang-tapak (XSS) merupakan ancaman keselamatan utama

kepada aplikasi web dan desktop. Ianya berlaku disebabkan kelemahan verifikasi

input yang betul, membolehkan penggodam untuk menyuntik dan melaksanakan

skrip jahat kepada aplikasi di tapak web. Serangan XSS yang berjaya boleh

membawa kepada pelanggaran keselamatan yang serius seperti rampasan akaun,

penafian servis, kecurian kuki dan pemanipulasian kandungan web. Kaedah semasa

menangani masalah ini terhad akibat jumlah besar bilangan positif palsu dihasilkan

dalam analisis keputusan, dan tidak merangkumi semua jenis XSS, kurang tumpuan

untuk penghapusan kerentanan XSS, dan tidak merangkumi aplikasi mobile web.

Teknik-teknik analisis statik amat baik untuk mengesan kerentanan XSS pada kod

sumber aplikasi web, dan terutamanya bila digabungkan dengan teknik lain.

Bagaimanapun ianya cenderung untuk menjana banyak positif palsu kerana ianya

teknik konservatif. Kelemahan lain adalah teknik semasa kurang menumpu kepada

© C
OPYRIG

HT U
PM

iv

penghapusan kerentanan XSS selepas dikesan pada kod sumber. Seterusnya, kaedah

yang dipanggil XSS-DETREM telah dicadangkan dengan objektif untuk

mengabungkan algoritma genetik bersama analisis statik, dan teknik pengantian kod

untuk mengesan dan menghapuskan kerentanan XSS, masing-masing untuk

menagani masalah XSS di paras kod sumber. Penyelidikan ini menggunakan

metodologi kuantitatif dan rekabentuk blok rawak lengkap untuk pengujian yang

mana penambahbaikan baru dijalankan melalui alatan perisian.

XSS-DETREM telah dinilai secara empirikal mengunakan set data JSP dan aplikasi

web android yang digunakan dalam kajian sebelum. Peningkatan ini memfokus

kepada mengurangkan kadar positif palsu yang dijana oleh analisis static,

meningkatkan liputan kerentanan kepada semua jenis XSS dikedua-dua pelayan dan

pelanggan. Perbandingan ke atas hasil penilaian telah menunjukkan peningkatan

pengesanan dan penghapusan kerentanan XSS untuk aplikasi desktop dan aplikasi

mobil web. Seterusnya , objektif penyelidikan ini dicapai dan jangkaan keputusan

dicapai. Kaedah penambahbaikan baru amat signifikan untuk membantu pembangun

aplikasi web menguji aplikasi mereka sebelum digunakan oleh publik. Juga, semakin

ramai pengguna melayari internet melalui aplikasi mobil, kaedah ini akan

melindungi data peribadi dan menjadikan pelayaran selamat untuk mereka bagi

keduanya iaitu desktop dan aplikasi mobil web.

Kata Kunci: Serangan penskripan silang-tapak, kerentanan penskripan silang-tapak,

keselamatan perisian, Pengesanan kerentanan XSS

SDG: MATLAMAT 4: Kualiti Pendidikan

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

Alhamdulillah, praise be to Allah in Whose blessings I found the strength to

accomplish this research work. I wish to thank all those who have contributed to the

success of this venture.

First of all, I would like to thank my supervisor, Prof. Dr. Abu Bakar bin Md Sultan,

and my co-supervisors Assoc. Prof. Dr. Hazura Zulzalil and Assoc. Prof. Ts. Dr.

Novia Admodisastro for their invaluable support and guidance from the inception of

my research work to its completion. Their constructive criticisms, comments, and

suggestions have gone a long way in making this research successful.

A sincere and special thank you goes to my loving family for their endless

encouragement, moral and financial support, prayers, and understanding.

A big thank you goes to the Ministry of Education, Malaysia for providing me with a

scholarship to pursue a PhD degree in Universiti Putra Malaysia. Their financial

support has gone a long way in alleviating any financial burden I could face and

enable me to focus on my research work.

Last, but not the least, I extend my gratitude to the Faculty of Computer Science and

Information Technology and all its staff and students for providing a conducive and

friendly environment that enabled me work and study in peace. My gratitude also

goes to my friend and closest lab mate Najla’a Ateeq Draib with whom I shared this

research journey. I am also thanking all those who, in one way or the other, have

contributed to the successful completion of this research work.

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Abu Bakar bin Md Sultan, PhD

Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Hazura binti Zulzalil, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Novia Admodisastro, PhD

Associate Professor, Ts

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 10 October 2024

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1
1.1 Background of the Research 1

1.2 Problem Statement 4

1.3 Objectives of the Research 6
1.4 Scope of the Research 7
1.5 Contributions of the Research 8

1.6 Organization of the Thesis 9

2 LITERATURE REVIEW 11
2.1 Introduction 11

2.2 Cross-site Scripting Vulnerabilities in Web Applications 11
2.2.1 Reflected Cross-site Scripting (XSS) 13

2.2.2 Stored Cross-site Scripting (XSS) 14
2.2.3 Document Object Model (DOM)-Based Cross-site

Scripting (XSS) 16

2.3 Existing XSS Detection and/or Removal Techniques 17
2.3.1 Static Analysis 18
2.3.2 Dynamic Analysis 19

2.3.3 Secure Programming 19
2.3.4 Modeling 20

2.3.5 Hybrid Analysis 20
2.4 Existing XSS Vulnerabilities Detection and Removal

Approaches 21
2.5 The OWASP's XSS Prevention Rules and the ESAPI API 30
2.6 Genetic Algorithms Encoding and Representation in

Security Testing 34
2.7 Motivation for Using Genetic Algorithm in XSS Mitigation 40

2.8 Overview of XSS-DETREM Approach 41
2.9 Taint Analysis 42

2.9.1 Coverage Criteria Selection 43
2.10 Summary 45

3 RESEARCH METHODOLOGY 47

3.1 Introduction 47

© C
OPYRIG

HT U
PM

xi

3.2 Step I - Literature Review 48
3.3 Step II - Design and Implementation of XSS-DETREM 49
3.4 Step III – Empirical Evaluation of XSS-DETREM 50

3.4.1 Experimental Definition 51

3.4.2 Experiment Planning 55
3.4.3 Experiment Operation 60
3.4.4 Threats to Validity 61

3.5 Step IV – Analysis and Discussion of Results 63
3.6 Summary 63

4 XSS-DETREM APROACH FOR XSS DETECTION AND

REMOVAL 64

4.1 Introduction 64
4.2 Overview of XSS-DETREM Approach 64
4.3 Using Taint Analysis to Identify Vulnerable Paths 66

4.3.1 The Coverage Criteria Selection 67
4.3.2 Illustrative Example of the Taint Analysis 68

4.4 XSS Detection using Genetic Algorithm 73
4.4.1 The Genetic Algorithm Representation 74
4.4.2 The Initial Population 74

4.4.3 The Fitness Function 75
4.4.4 Selection 77
4.4.5 Crossover 77

4.4.6 Mutation 78

4.5 XSS Vulnerabilities Removal 79
4.5.1 Input Validation and Sanitization 82
4.5.2 Output Encoding 83

4.6 Regression Testing 84
4.7 Summary 84

5 RESULTS ANALYSIS AND DISCUSSION 86
5.1 Introduction 86
5.2 Experiment Results 86

5.2.1 Results from XSS-DETREM Approach 87

5.2.2 Results from Other Approaches 89

5.3 Comparison of the Results 93
5.4 Statistical Evaluations 94

5.4.1 Evaluation of XSS Detection and Removal

Precision 94
5.4.2 Evaluation of XSS Detection and Removal Recall 95

5.4.3 Evaluation of XSS Detection and Removal F-

measure 95
5.5 Experiment Results on Mobile App 96
5.6 XSS Vulnerability Removal Results 98
5.7 Analysis and Discussion 100

5.8 Summary 102

6 CONCLUSION AND FUTURE WORK 103
6.1 Introduction 103
6.2 Conclusion 103

© C
OPYRIG

HT U
PM

xii

6.3 Future Work 105

REFERENCES 107
BIODATA OF STUDENT 115

LIST OF PUBLICATIONS 116

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 An Overview of Techniques to XSS Mitigation 21

2.2 Summary of Existing XSS Vulnerabilities Detection and Removal

Approaches 27

2.3 The OWASP XSS Prevention Rules 30

2.4 OSWASP DOM-Based XSS Prevention Rules 32

2.5 Summary of XSS Prevention Rules 34

3.1 Basic Information about the Test Subjects 56

3.2 Independent and Dependent Variables 59

3.3 Experiment Design 60

3.4 Overview of the Experiment Environment 61

4.1 Sample XSS Malicious Script Payloads 75

4.2 XSS Sanitization 82

4.3 XSS Encoding Mechanism 83

5.1 Experiment Results of the XSS-DETREM Approach 88

5.2 Experiment Results of the Z-Liu et al., 2022 Approach 90

5.3 Experiment Results of the Thome et al., 2017 Approach 90

5.4 Experiment Results of the Moller and Schwarz, 2014 Approach 91

5.5 Experiment Results of the Liu and Melanova, 2009 Approach 91

5.6 Experiment Results of the Livshits and Lam, 2005 Approach 92

5.7 Results Comparison 93

5.8 ANOVA Test Results for Precision 94

5.9 ANOVA Test Results for Recall 95

5.10 ANOVA Test Results for F-measure 95

5.11 Results for BarCodeScanner Mobile Web Application 97

5.12 Results for Vulnerabilities Removal 99

© C
OPYRIG

HT U
PM

xiv

LIST OF FIGURES

Figure Page

2.1 A High Level View of Typical XSS Attack 12

2.2 Example of Reflected XSS 14

2.3 Example of Stored XSS 15

2.4 Example of DOM-based XSS 17

2.5 XSS Detection and Removal Techniques 18

2.6 Genetic Algorithm Pseudocode (Avancini & Ceccato, 2011) 36

2.7 Genetic Algorithm Flowchart 37

3.1 Research Methodology 48

3.2 Overview of the Empirical Evaluation 51

4.1 Process of the Proposed Approach 66

4.2 A code snippet of a sample login servlet program 69

4.3 CFG of the Login Servlet Program 70

4.4 Potentially Vulnerable Paths of the Login Servlet Program 72

4.5 Genetic Algorithm Pseudocode 73

4.6 Fitness Function Algorithm 76

4.7 Crossover Algorithm 78

4.8 Mutation Algorithm 78

4.9 Vulnerability Removal Algorithm 80

4.10 Login Servlet Secured with ESAPI API 81

5.1 Comparison of Results 93

5.2 Results Comparison on Mobile App 98

© C
OPYRIG

HT U
PM

xv

LIST OF ABBREVIATIONS

OWASP Open Web Application Security Protocol

SDLC System Development Life Cycle

SBSE Search-Base Software Engineering

GA Genetic Algorithm

EA Evolutionary Algorithm

XSS Cross Site Scripting

SLR Systematic Literature Review

HTML Hyper Text Markup Language

WWW World Wide Web

DOM Document Object Model

RQ Research Question

QA Quality Assessment

JGAP Java Genetic Algorithm Package

IDE Integrated Development Environment

CFG Control Flow Graph

ESAPI Enterprise Security API

LOC Line Of Code

JDBC Java Data Base Connector

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Background of the Research

Web applications, both desktop and mobile versions, have become an integral part of

our lives. We use them for accessing information, conducting business transactions

online, and interacting with family and friends on social media (CWE, 2024;

Krishnan et al., 2024; OWASP, 2024a). Many businesses and organizations also use

web applications to provide many of their services, not only on Desktop versions but

also on mobile versions as more people use their mobile phones to access some of

those services. However, as web applications become very important to the success

of businesses and organizations, their securities have increasingly become more

complex (OWASP, 2024a). Hence, more security issues have emerged due to the

increasing number of security threats affecting web applications (Thajeel et al.,

2023).

Security testing of web applications has, therefore, become a crucial issue to the

software security industry as well as governments, businesses, and organizations.

Static application security testing (SAST) is an automated static analysis testing

method for finding security vulnerabilities in web applications source code (Felderer

et al., 2016). It can be applied very early in the software development life cycle and

has an advantage over dynamic security testing as it can analyse all the control flows

of a program. Study of the major security threats in web applications has shown that

XSS vulnerabilities are among the top ten vulnerabilities, as reported by the Open

Web Application Security Project (OWASP) (OWASP, 2024a). OWASP identifies

© C
OPYRIG

HT U
PM

2

and documents the most common of these security issues, known as input validation

vulnerabilities, that affect web applications. They keep an updated list of the top ten

of these vulnerabilities (OWASP, 2024c).

Cross-site scripting (XSS) vulnerabilities are input validation vulnerabilities found in

web applications and can be exploited through XSS attacks when such applications

are deployed and running online (CWE, 2024; OWASP, 2024a). XSS attacks are of

three types namely reflected, stored and DOM-based. Reflected XSS is executed by

the victim’s browser and occurs when the victim provides input to the web

application such as username and password. The second type, Stored XSS attacks

cab be stored in the web application’s databases where information is saved,

message forums, and comments fields. The malicious code is executed every time

users open it thereby passing their privileges to the attacker. Both reflected and

stored XSS take place on the application side. On the other hand, DOM-based XSS

attacks are executed on the client side. Attackers are able to collect sensitive or

important information from the user’s computer.

Injecting malicious scripts where these applications accept user inputs can result to

serious security breaches such as cookie theft, account hijacking, manipulation of

web content and theft of private information. Many security solutions have been

proposed, but the problem of XSS still remains and continues to affect many web

applications. Attention on software security is increasing and progress on detection

is being made but still more work needs to be done. New improvements on the

existing approaches and techniques need to be added in order to tackle the expanding

problem of XSS.

© C
OPYRIG

HT U
PM

3

Genetic algorithms (GAs) have been the most commonly used of all optimization

algorithms in SBSE, although there have been few studies to establish any practical

performance differences among the algorithms. Genetic Algorithms (GAs) are a

subset of Evolutionary Algorithms (EAs), which are metaheuristic optimization

algorithms based on population and inspired by biology (Weise, 2009). They employ

mechanisms of natural evolution such as mutation, crossover, natural selection, and

survival of the fittest (Streichert, 2002) to find optimal solutions in a search space.

GAs are different from other EAs in that they have a crossover (recombination)

operation and use binary coding in bits or bit-strings to represent a population

(Streichert, 2002).

GAs have proven to be good solutions to many software engineering problems since

their discovery. Their successful use in software security testing (Avancini &

Ceccato, 2010) and intrusion detection systems (Bankovic et al., 2008) enlighten the

possibility of their usage in detecting and removing XSS vulnerabilities in web

applications. In addition GAs have some advantages compared to other machine

learning techniques (Bankovic et al., 2008), which are stated below:

• GAs are intrinsically parallel, since they have multiple offspring, they can

explore the solution space in multiple directions at once. If one path turns

out to be a dead end, they can easily eliminate it and continue work on more

promising avenues.

• Due to the parallelism that allows them to implicitly evaluate many

schemas at once, genetic algorithms are particularly well-suited to solving

problems where the space of all potential solutions is truly huge - too vast

to search exhaustively in any reasonable amount of time, as network data is.

• Working with populations of candidate solutions rather than a single

solution, and employing stochastic operators, to guide the search process

© C
OPYRIG

HT U
PM

4

permit GAs to cope well with attribute interactions and to avoid getting

stuck in local maxima, which together make them very suitable for dealing

with identifying different vulnerabilities such as XSS.

• A system based on GA can easily be re-trained. This property provides the

adaptability of a GA-based system, which is an imperative quality of a

vulnerability detection application bearing in mind the high rate of new

attacks emerging.

1.2 Problem Statement

Cross-Site Scripting (XSS) vulnerabilities are a major security threat for both web

and mobile applications (CWE, 2024; OWASP, 2024a). XSS attacks can lead to loss

of private data, user account/session hijacking, web content manipulation, and

financial losses for both individuals and businesses. Business impacts of XSS attacks

can include system disruption, damaged reputation, legal issues, and financial losses

(OWASP, 2024c). One of the most known real world examples of XSS attacks was

the “Sammy worm” on the MySpace website in 2005 (Store, 2024). Since then,

many other big corporations including FaceBook, Fortnite, British Airways, the CIA,

and eBay have been victims of XSS attacks over the years (Store, 2024).

Many solutions have been proposed to address this problem at different stages of an

application development life cycle, such as the design, coding and testing stages.

Recent approaches to the mitigation of this problem at the testing stage include the

integration of static analysis and genetic algorithm (M. A. Ahmed & Ali, 2016; Z.

Liu et al., 2022; Tariq et al., 2021), the combination of static analysis and data

mining (Medeiros et al., 2016a), the use of program slicing and pruning techniques

(Thome et al., 2017), dynamic taint tracking technique (R. Wang, Xu, et al., 2017)

© C
OPYRIG

HT U
PM

5

and the use of Genetic algorithm with other data mining techniques (Kareem Thajeel

et al., 2023; Krishnan et al., 2024; Tariq et al., 2021; Younas et al., 2024). Although

these solutions have proved effective in mitigating the problem of XSS to some

extent, they have limitations that open some research gaps to be further addressed.

Static analysis techniques are good at detecting XSS vulnerabilities in the source

codes of web applications, and especially when combined with other techniques.

However, they tend to generate a lot of false positives since they are conservative

techniques (Medeiros et al., 2016a; Thome et al., 2016, 2017). False positives occur

when non-vulnerable parts of a piece of code are identified as vulnerable (Thajeel et

al., 2023). In order to address this limitation, the underlying techniques and their

algorithms need to be improved in terms of precision, coverage and effectiveness.

Another limitation of the existing approaches is the limited or lack of focus on the

removal of XSS vulnerabilities after being detected in the source code. Detecting

vulnerabilities in web applications is very important but if not properly removed the

vulnerabilities will continue to cause security problems in the applications. Some

research work that have addressed vulnerability removal include the use of the

OWASP's escaping API and security guidelines (Lekies et al., 2017; Malviya et al.,

2021; Rodríguez et al., 2020; Shanmugasundaram et al., 2015; Shar & Tan, 2012).

The OWASP API (OWASP, 2024d) and security guidelines (OWASP, 2024f) do not

include all XSS vulnerabilities in the context of their API. Therefore, these

techniques will not be able to detect XSS vulnerabilities that are out of this context.

There is need to extend these techniques in order to include all XSS vulnerabilities.

© C
OPYRIG

HT U
PM

6

Another research work made use of data mining techniques (Medeiros et al., 2016a).

These data mining techniques employed by Medeiros et al. are reported to be good at

XSS vulnerability removal, but the techniques they used only included server-side

and not client-side vulnerabilities.

A new dynamic approach to XSS detection has been proposed (R. Wang, Xu, et al.,

2017). This approach proposed to use taint tracking technique on a browser's

rendering process to derive and verify vulnerabilities automatically. The limitations

of their work include the inability of the approach to handle two-order inputs and the

long time taken to generate attack vectors. In addition, this approach only focuses on

DOM-based XSS and not Reflected or Stored XSS vulnerabilities.

This research work, therefore, was focused on reducing false positives in the

detection of XSS vulnerabilities, increasing the coverage of XSS types addressed,

and eliminating detected vulnerabilities from the source to prevent future attacks.

1.3 Objectives of the Research

The main objective of this research is to propose an enhancement in the detection

and removal of XSS vulnerabilities from web and mobile applications using Genetic

Algorithms, static taint analysis and code replacements techniques. This research

work is proposed to make improvements to the limitations identified in the

previously proposed approaches on XSS vulnerability detection and removal. These

improvements will focus on reducing the rate of false positives generated by static

analysis, including both server-side and client-side XSS vulnerabilities and using

© C
OPYRIG

HT U
PM

7

code replacement technique to remove vulnerabilities. Hence, our specific objectives

are:

• To propose an improved GA based security testing approach to XSS

detection in desktop and mobile web applications that reduces false positive

rates

• To use an enhanced code replacement technique to remove the detected

XSS vulnerabilities

• To empirically evaluate and measure the effectiveness of XSS detection and

removal of the proposed approach

1.4 Scope of the Research

This research focuses on the security testing of web applications at the source code

level, and hence employs white box testing techniques. There are many security

vulnerabilities affecting web applications and XSS is among the top. Moreover, XSS

attacks target not only the web applications but the users as well. Therefore, this

research is focusing on improving the detection and removal of XSS vulnerabilities

by reducing false positives and eliminating detected vulnerabilities. The detection

and removal of all the three types of XSS vulnerabilities i.e., reflected, stored, and

DOM-based on both the server sides and client sides of web applications are also

addressed. In addition, the issue of cross-site scripting in mobile applications is also

included. Our proposed approach is designed for testing Java-based web applications

and Android mobile applications. Java Server Pages (JSP) are widely used for

developing web applications, and the Android applications are based on Java. The

limitation of the scope to Java-based web applications could impact the

© C
OPYRIG

HT U
PM

8

generalisation of the approach. However, with some modification in future research,

the approach can be adopted to other programming languages.

1.5 Contributions of the Research

This research produced an enhanced and improved approach to detecting and

removing XSS vulnerabilities in Java-based web and Android mobile applications.

Therefore, the main contributions of this research are:

• A comprehensive survey of existing XSS mitigation approaches

• An improved GA-based detection technique for all XSS types in Java-based

web applications

• An improved removal technique for all XSS types in Java-based web

applications

• A tool support for the automation of the detection and removal techniques

of XSS

• Empirical evidence that the proposed approach is effective in detecting and

removing XSS vulnerabilities from web applications

• The improvement on the detection and removal of XSS vulnerabilities in

the source code of web applications

• The implementation of a tool for the automation of the proposed approach

• Empirical evidence to show that the proposed approach can be more

effective in detecting and removing XSS vulnerabilities

© C
OPYRIG

HT U
PM

9

1.6 Organization of the Thesis

This thesis consists of seven chapters that are organized as follows:

Chapter 1 introduces the thesis and provides the general overview of the thesis. It

provides an overview of the research background and identifies the research

problem, the objectives to be achieved, as well as the research scope and

contributions.

Chapter 2 provides a detailed review of the literature related to this research work. It

discusses the existing research on XSS vulnerabilities detection and removal.

Different approaches and techniques to mitigate the XSS problems have been

reviewed and the research gaps found have been identified in this chapter.

In Chapter 3, the methodology of the research is presented in general overview. It

highlights the different steps of the methodology used in the research.

Chapter 4 describes our proposed XSS-DETREM approach for the detection and

removal of XSS vulnerabilities, demonstrating how the tool detects and removes

XSS vulnerabilities. It gives an illustrative example of how the proposed approach

works.

Chapter 5 presents the detailed implementation of the proposed approach to XSS

detection and removal. It describes the design and implementation of the tool

support.

© C
OPYRIG

HT U
PM

10

Chapter 6 provides the experiment results after the evaluation of XSS-DETREM

approach. The effectiveness of the approach is shown by the comparison results

against other approaches. The chapter also discusses the implications of the results

and findings.

Chapter 7 gives the conclusion of the thesis and discusses the new knowledge gained

from this research work. The shortcomings and limitations of the research work are

stated, and recommendations and suggestions are given for future research work.

© C
OPYRIG

HT U
PM

107

7 REFERENCES

Acunetix. (2024). Cross Site Scripting (XSS). Acunetix.

http://www.acunetix.com/websitesecurity/cross-site-scripting/

Ahmed, M. A., & Ali, F. (2016). Multiple-path testing for cross site scripting using

genetic algorithms. Journal of Systems Architecture, 64, 50–62.

https://doi.org/10.1016/j.sysarc.2015.11.001

Ahmed, M. a., & Hermadi, I. (2008). GA-based multiple paths test data generator.

Computers & Operations Research, 35(10), 3107–3124.

https://doi.org/10.1016/j.cor.2007.01.012

Aljahdali, S. H., Ghiduk, A. S., & El-Telbany, M. (2010). The limitations of genetic

algorithms in software testing. ACS/IEEE International Conference on

Computer Systems and Applications - AICCSA 2010, 1–7.

https://doi.org/10.1109/AICCSA.2010.5586984

Antunes, N., & Vieira, M. (2015). Assessing and Comparing Vulnerability Detection

Tools for Web Services: Benchmarking Approach and Examples. IEEE

Transactions on Services Computing, 8(2), 269–283.

https://doi.org/10.1109/TSC.2014.2310221

Avancini, A., & Ceccato, M. (2010). Towards Security Testing with Taint Analysis

and Genetic Algorithms. Proceedings of the 2010 ICSE Workshop on

Software Engineering for Secure Systems, Section 5, 65–71.

Avancini, A., & Ceccato, M. (2011). Security Testing of Web Applications: A

Search-Based Approach for Cross-Site Scripting Vulnerabilities. 2011 IEEE

11th International Working Conference on Source Code Analysis and

Manipulation, 85–94. https://doi.org/10.1109/SCAM.2011.7

Avancini, A., & Ceccato, M. (2013). Comparison and integration of genetic

algorithms and dynamic symbolic execution for security testing of cross-site

scripting vulnerabilities. Information and Software Technology, 55(12), 2209–

2222. https://doi.org/10.1016/j.infsof.2013.08.001

Bankovic, Z., Bojanic, S., Nieto, O., & Badii, A. (2008). Unsupervised Genetic

Algorithm Deployed for Intrusion Detection. In E. Corchado, A. Abraham, &

W. Perdrycz (Eds.), Lecture Notes in Computer Science (vol 5271, pp. 132–

139). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-

87656-4_17

Banković, Z., Stepanović, D., Bojanić, S., & Nieto-Taladriz, O. (2007). Improving

network security using genetic algorithm approach. Computers & Electrical

Engineering, 33(5–6), 438–451. https://doi.org/10.1016/j.compeleceng.

2007.05.010

© C
OPYRIG

HT U
PM

108

Caturano, F., Perrone, G., & Romano, S. Pietro. (2021). Discovering reflected cross-

site scripting vulnerabilities using a multiobjective reinforcement learning

environment. Computers and Security, 103, 102204. https://doi.org/10.1016/

j.cose.2021.102204

Chakraborty, R. C. (2010). Fundamentals of Genetic Algorithms.

http://www.myreaders.info/09_Genetic_Algorithms.pdf

Chen, Y. L., Lee, H. M., Jeng, A. B., & Wei, T. E. (2015). DroidCIA: A novel

detection method of code injection attacks on HTML5-based mobile apps.

Proceedings - 14th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, TrustCom 2015, 1, 1014–1021.

https://doi.org/10.1109/Trustcom.2015.477

CWE. (2024). CWE - CWE-79: Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting’) (2.5). The MITRE Corporation.

http://cwe.mitre.org/data/definitions/79.html

Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C., & Vigna, G.

(2013). DeDacota: Toward preventing server-side XSS via automatic code

and data separation. Proceedings of the 2013 ACM SIGSAC Conference on

Computer and Communications Security, 1205–1216. https://doi.org/10.1145/

2508859.2516708

Dua, M., & Singh, H. (2018). Detection & prevention of website vulnerabilities:

Current scenario and future trends. Proceedings of the 2nd International

Conference on Communication and Electronics Systems, ICCES 2017, 429–

435. https://doi.org/10.1109/CESYS.2017.8321315

Duchene, F., Groz, R., Rawat, S., & Richier, J.-L. (2012). XSS Vulnerability

Detection Using Model Inference Assisted Evolutionary Fuzzing. 2012 IEEE

Fifth International Conference on Software Testing, Verification and

Validation, Itea 2, 815–817. https://doi.org/10.1109/ICST.2012.181

Elhakeem, Y. F. G. M., & Barry, B. I. A. (2013). Developing a security model to

protect websites from cross-site scripting attacks using ZEND framework

application. Proceedings - 2013 International Conference on Computer,

Electrical and Electronics Engineering: “Research Makes a Difference”,

ICCEEE 2013, 624–629. https://doi.org/10.1109/ICCEEE.2013.6634012

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R., & Pretschner, A.

(2016). Chapter One – Security Testing: A Survey. In A. M. Memon (Ed.),

Advances in Computers (1st Editio, Vol. 101, pp. 1–51). Elsevier Inc.

https://doi.org/10.1016/bs.adcom.2015.11.003

Fogie, S., Grossman, J., Hansen, R., Rager, A., & Petkov, P. D. (2007). XSS Attacks:

Cross Site Scripting Exploits and Defense (S. Forgie (ed.)). Elsevier,

Inc/Syngress Publishing, Inc.

© C
OPYRIG

HT U
PM

109

Gol, D., & Shah, N. (2015). Detection of Web Appication Vulnerability Based on

RUP Model. National Conference on Recent Advances in Electronics &

Computer Engineering (RAECE), 96–100. https://doi.org/10.1109/

RAECE.2015.7510233

Grabowski, R., Hofmann, M., & Li, K. (2012). Type-Based Enforcement of Secure

Programming Guidelines — Code Injection Prevention at SAP. FAST 2011,

Lecture Notes in Computer Science, 7140, 182–197.

Gupta, S., & Gupta, B. B. (2016). CSSXC: Context-sensitive Sanitization

Framework for Web Applications against XSS Vulnerabilities in Cloud

Environments. Procedia Computer Science, 85(Cms), 198–205.

https://doi.org/10.1016/j.procs.2016.05.211

Gupta, S., & Gupta, B. B. (2018). XSS-secure as a service for the platforms of online

social network-based multimedia web applications in cloud. Multimedia Tools

and Applications, 77(4), 4829–4861. https://doi.org/10.1007/s11042-016-

3735-1

Gupta, S., Gupta, B. B., & Chaudhary, P. (2018). Hunting for DOM-Based XSS

vulnerabilities in mobile cloud-based online social network. Future

Generation Computer Systems, 79, 319–336. https://doi.org/10.1016/

j.future.2017.05.038

Hanif, H., Nasir, M. H. N. M., Ab Razak, M. F., Firdaus, A., & Anuar, N. B. (2021).

The rise of software vulnerability: Taxonomy of software vulnerabilities

detection and machine learning approaches. Journal of Network and

Computer Applications, 179(November 2020), 103009.

https://doi.org/10.1016/j.jnca.2021.103009

Hermadi, I. (2004). Genetic algorithm based test data generator [King Fahd

university of Petroleum and Minerals]. https://doi.org/10.1109/

CEC.2003.1299560

Islam, A. B. . A. Al, Azad, M. A., Alam, M. K., & Alam, M. S. (2007). Security

Attack Detection using Genetic Algorithm (GA) in Policy Based Network.

2007 International Conference on Information and Communication

Technology, 341–347. https://doi.org/10.1109/ICICT.2007.375407

Jin, X., Hu, X., Ying, K., Du, W., Yin, H., & Peri, G. N. (2014). Code Injection

Attacks on HTML5-based Mobile Apps: Characterization, Detection and

Mitigation. CCS ’14 Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, 66–77. https://doi.org/10.1145/

2660267.2660275

Johns, M., Beyerlein, C., Giesecke, R., & Posegga, J. (2010). Secure Code

Generation for Web Applications. Lecture Notes in Computer Science, 5965,

96–113.

Kallin, J., & Valbuena, I. L. (2019). Excess XSS: A comprehensive tutorial on cross-

site scripting. Excess-Xss.Com. https://excess-xss.com/

© C
OPYRIG

HT U
PM

110

Kareem Thajeel, I., Samsudin, K., Jahari Hashim, S., & Hashim, F. (2023). Dynamic

feature selection model for adaptive cross site scripting attack detection using

developed multi-agent deep Q learning model. Journal of King Saud

University - Computer and Information Sciences, xxxx.

https://doi.org/10.1016/j.jksuci.2023.01.012

Kaur, G., Pande, B., Bhardwaj, A., Bhagat, G., & Gupta, S. (2018). Efficient yet

Robust Elimination of XSS Attack Vectors from HTML5 Web Applications

Hosted on OSN-Based Cloud Platforms. Procedia Computer Science, 125,

669–675. https://doi.org/10.1016/j.procs.2017.12.086

Korać, D., Damjanović, B., Simić, D., & Choo, K. K. R. (2022). A hybrid XSS

attack (HYXSSA) based on fusion approach: Challenges, threats and

implications in cybersecurity. Journal of King Saud University - Computer

and Information Sciences, 34(10), 9284–9300. https://doi.org/10.1016/j.jksuci.

2022.09.008

Krishnan, M., Lim, Y., Perumal, S., & Palanisamy, G. (2024). Detection and

defending the XSS attack using novel hybrid stacking ensemble learning-

based DNN approach. Digital Communications and Networks, 10(3), 716–

727. https://doi.org/10.1016/j.dcan.2022.09.024

Kurniawan, A., Abbas, B. S., Trisetyarso, A., & Isa, S. M. (2018). Static Taint

Analysis Traversal with Object Oriented Component for Web File Injection

Vulnerability Pattern Detection. Procedia Computer Science, 135, 596–605.

https://doi.org/10.1016/j.procs.2018.08.227

Lekies, S., Kotowicz, K., Groß, S., Vela Nava, E. A., & Johns, M. (2017). Code-

Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via

Script Gadgets. Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security - CCS ’17, 1709–1723.

https://doi.org/10.1145/3133956.3134091

Liu, Y., & Milanova, A. (2009). Practical Static Analysis for Inference of Security-

Related Program Properties. IEEE 17th International Conference on Program

Comprehension, 50–59. https://doi.org/10.1109/ICPC.2009.5090027

Liu, Z., Fang, Y., Huang, C., & Xu, Y. (2022). GAXSS: Effective Payload

Generation Method to Detect XSS Vulnerabilities Based on Genetic

Algorithm. Security and Communication Networks, 2022, 1–15.

https://doi.org/10.1155/2022/2031924

Livshits, B., & Lam, M. S. (2005). Finding Security Vulnerabilities in Java

Applications with Static Analysis. USENIX Security, 18. http://portal.acm.org/

citation.cfm?id=1251416

Malviya, V. K., Rai, S., & Gupta, A. (2021). Development of web browser prototype

with embedded classification capability for mitigating Cross-Site Scripting

attacks. Applied Soft Computing, 102, 106873. https://doi.org/10.1016/j.asoc.

2020.106873

© C
OPYRIG

HT U
PM

111

Marashdih, A. W., Zaaba, Z. F., Suwais, K., & Mohd, N. A. (2019). Web application

security: An investigation on static analysis with other algorithms to detect

cross site scripting. Procedia Computer Science, 161, 1173–1181.

https://doi.org/10.1016/j.procs.2019.11.230

McGraw, G. (2006). Software Security: Building Security In (1st Editio). Addison

Wesley Profesional.

Medeiros, I., Neves, N., & Correia, M. (2016a). Detecting and Removing Web

Application Vulnerabilities with Static Analysis and Data Mining. IEEE

Transactions on Reliability, 65(1), 54–69. https://doi.org/10.1109/

TR.2015.2457411

Medeiros, I., Neves, N., & Correia, M. (2016b). Equipping WAP with WEAPONS

to detect vulnerabilities: Practical experience report. Proceedings - 46th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, DSN 2016, 630–637. https://doi.org/10.1109/DSN.2016.63

Mohammadi, M., Chu, B., & Lipford, H. R. (2017). Detecting cross-site scripting

vulnerabilities through automated unit testing. Proceedings - 2017 IEEE

International Conference on Software Quality, Reliability and Security, QRS

2017, 364–373. https://doi.org/10.1109/QRS.2017.46

Møller, A., & Schwarz, M. (2014). Automated detection of client-state manipulation

vulnerabilities. ACM Transactions on Software Engineering and Methodology

(TOSEM) - Special Issue International Conference on Software Engineering

(ICSE 2012) and Regular Papers, 23(4), 29:1-29:30. https://doi.org/10.1145/

2531921

OWASP. (2024a). Cross Site Scripting (XSS). OWASP Foundation.

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

OWASP. (2024b). DOM based XSS Prevention Cheat Sheet. OWASP Foundation.

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Shee

t

OWASP. (2024c). Mobile Top 10 2024-M4 - OWASP. OWASP Foundation.

https://owasp.org/www-project-mobile-top-10/

OWASP. (2024d). OWASP Enterprise Security API - OWASP. OWASP Foundation.

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_A

PI

OWASP. (2024e). OWASP Java HTML Sanitizer. OWASP Foundation.

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

OWASP. (2024f). XSS (Cross Site Scripting) Prevention Cheat Sheet. OWASP

Foundation.

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_C

heat_Sheet

© C
OPYRIG

HT U
PM

112

Rathore, A. (2011). Application of Genetic Algorithm and Tabu Search in Software

Testing. Proceedings of the Fourth Annual ACM Bangalore Conference, 1–4.

Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020). Cross-site

scripting (XSS) attacks and mitigation: A survey. Computer Networks, 166,

1–23. https://doi.org/10.1016/j.comnet.2019.106960

Shanmugasundaram, G., Ravivarman, S., & Thangavellu, P. (2015). A study on

removal techniques of Cross-Site Scripting from web applications. 4th IEEE

Sponsored International Conference on Computation of Power, Energy,

Information and Communication, ICCPEIC 2015, 436–442.

https://doi.org/10.1109/ICCPEIC.2015.7259498

Shar, L. K., & Tan, H. B. K. (2012). Automated removal of cross site scripting

vulnerabilities in web applications. Information and Software Technology,

54(5), 467–478. https://doi.org/10.1016/j.infsof.2011.12.006

Shuai, B., Li, M., Li, H., Zhang, Q., & Tang, C. (2013). Software vulnerability

detection using genetic algorithm and dynamic taint analysis. 2013 3rd

International Conference on Consumer Electronics, Communications and

Networks, 589–593. https://doi.org/10.1109/CECNet.2013.6703400

Singh, M., Singh, P., & Kumar, P. (2020). An Analytical Study on Cross-Site

Scripting. 2020 International Conference on Computer Science, Engineering

and Applications (ICCSEA), March, 1–13. https://doi.org/10.1109/

ICCSEA49143.2020.9132894

Srivastava, P. R., & Kim, T. (2009). Application of Genetic Algorithm in Software

Testing. Intenational Journal of Software Engineering and Its Applications,

3(4), 87–96.

Steinhauser, A., & Gauthier, F. (2016). JSPChecker: Static detection of context-

sensitive cross-site scripting flaws in legacy web applications. PLAS 2016 -

Proceedings of the 2016 ACM Workshop on Programming Languages and

Analysis for Security, Co-Located with CCS 2016, 57–68.

https://doi.org/10.1145/2993600.2993606

Store, W. S. (2024). 5 Real-World Cross Site Scripting Examples.

https://websitesecuritystore.com/blog/real-world-cross-site-scripting-

examples/

Streichert, F. (2002). Introduction to Evolutionary Algorithms. MathFinance

Workshop, 1–21.

Tariq, I., Sindhu, M. A., Abbasi, R. A., Khattak, A. S., Maqbool, O., & Siddiqui, G.

F. (2021). Resolving cross-site scripting attacks through genetic algorithm and

reinforcement learning. Expert Systems with Applications, 168(November

2020). https://doi.org/10.1016/j.eswa.2020.114386

© C
OPYRIG

HT U
PM

113

Thajeel, I. K., Samsudin, K., Hashim, S. J., & Hashim, F. (2023). Machine and Deep

Learning-based XSS Detection Approaches: A Systematic Literature Review.

Journal of King Saud University - Computer and Information Sciences, 35(7),

101628. https://doi.org/10.1016/j.jksuci.2023.101628

Thome, J., Shar, L. K., & Briand, L. (2016). Security slicing for auditing XML,

XPath, and SQL injection vulnerabilities. 2015 IEEE 26th International

Symposium on Software Reliability Engineering, ISSRE 2015, 553–564.

https://doi.org/10.1109/ISSRE.2015.7381847

Thome, J., Shar, L. K., & Briand, L. (2017). Security slicing for auditing common

injection vulnerabilities. The Journal of Systems and Software, 0, 1–18.

https://doi.org/10.1016/j.jss.2017.02.040

Van Rijsbergen, C. J. (1979). Information Retrieval (2nd Ed.). Butterworth-

Heinemann.

Wang, C. H., & Zhou, Y. S. (2016). A New Cross-Site Scripting Detection

Mechanism Integrated with HTML5 and CORS Properties by Using Browser

Extensions. Proceedings - 2016 International Computer Symposium, ICS

2016, 264–269. https://doi.org/10.1109/ICS.2016.0060

Wang, R., Xu, G., Zeng, X., Li, X., & Feng, Z. (2017). TT-XSS: A novel taint

tracking based dynamic detection framework for DOM Cross-Site Scripting.

Journal of Parallel and Distributed Computing, 4–10.

https://doi.org/10.1016/j.jpdc.2017.07.006

Wang, R., Zhu, Y., Tan, J., & Zhou, B. (2017). Detection of malicious web pages

based on hybrid analysis. Journal of Information Security and Applications,

35, 68–74. https://doi.org/10.1016/j.jisa.2017.05.008

Weise, T. (2009). Global Optimization Algorithms – Theory and Application – (2nd

Ed.).

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslen, A.

(2000). Experimentation in software engineering An Introduction (V. R. Basili

(ed.); 1st ed.). Springer Science+Business Media, LLC.

https://doi.org/10.1007/978-1-4615-4625-2

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.

(2012). Experimentation in Software Engineering. In Experimentation in

Software Engineering. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-29044-2

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R. A., & Jia, H. (2024). An

efficient artificial intelligence approach for early detection of cross-site

scripting attacks. Decision Analytics Journal, 11(January), 100466.

https://doi.org/10.1016/j.dajour.2024.100466

© C
OPYRIG

HT U
PM

114

Zhou, Y., & Wang, P. (2019). An ensemble learning approach for XSS attack

detection with domain knowledge and threat intelligence. Computers and

Security, 82, 261–269. https://doi.org/10.1016/j.cose.2018.12.016

Zimmer, D. (2008). Real World XSS. XSSed.Com.

http://www.xssed.com/article/21/Paper_Real_World_XSS/

