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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

EFFECTIVE SOURCE NUMBER ENUMERATION APPROACH UNDER
SMALL SNAPSHOT NUMBERS

By

GE SHENGGUO

July 2024

Chairman : Siti Nurulain binti Mohd Rum, PhD

Faculty : Computer Science and Information Technology

Direction of Arrival (DOA) estimation of signal sources is one of the research hotspots
in the field of array signal processing. However, traditional DOA estimation methods
usually require many snapshots, a high Signal-to-Noise Ratio (SNR), and a Gaussian
white noise background, which are often difficult to meet in actual environments. To
solve this problem, this study proposes a signal source number estimation method
based on supplementary empirical mode decomposition (SEMD). The method first
uses the SEMD method to decompose the array signal, decomposing the complex
signal into several Intrinsic Mode Functions (IMFs), and then extracts features through
these IMFs to estimate the number of signal sources. To verify the performance of the
proposed SEMD method, this study designs a series of experiments, using theoretical
data and measured data from a radio frequency anechoic chamber laboratory as
research objects. The experimental conditions cover different snapshot numbers,
SNRs, and noise backgrounds, aiming to simulate various complex environments in
actual applications. Experimental results show that the SEMD-based method performs

significantly better than the traditional signal source number estimation algorithm in



these complex environments, especially under a small number of snapshots, the
SEMD method can still maintain a high estimation accuracy. This study also makes a
significant contribution to data science by providing a comprehensive method for
estimating the number of signal sources, which is integrated with a machine learning
model. This method overcomes the limitations of traditional methods in complex
environments by combining signal processing problems with pattern recognition
problems, significantly improves the accuracy of data analysis in complex
environments, and provides an innovative solution for signal processing and pattern

recognition in data science.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENDEKATAN NUMERASI NOMBOR SUMBER YANG BERKESAN DI
BAWAH NOMBOR GAMBAR KECIL

Oleh

GE SHENGGUO

Julai 2024

Pengerusi : Siti Nurulain binti Mohd Rum, PhD

Fakulti : Sains Komputer dan Teknologi Maklumat

Anggaran Arah Ketibaan (DOA) sumber isyarat merupakan salah satu titik panas
penyelidikan dalam bidang pemprosesan isyarat tatasusunan. Walau bagaimanapun,
kaedah anggaran DOA tradisional biasanya memerlukan banyak syot kilat, Nisbah
Isyarat-ke-Bunyi (SNR) yang tinggi dan latar belakang hingar putih Gaussian, yang
selalunya sukar ditemui dalam persekitaran sebenar. Untuk menyelesaikan masalah
ini, kajian ini mencadangkan kaedah anggaran nombor sumber isyarat berdasarkan
penguraian mod empirikal tambahan (SEMD). Kaedah ini mula-mula menggunakan
kaedah SEMD untuk menguraikan isyarat tatasusunan, menguraikan isyarat kompleks
kepada beberapa Fungsi Mod Intrinsik (IMF), dan kemudian mengekstrak ciri melalui
IMF ini untuk menganggarkan bilangan sumber isyarat. Untuk mengesahkan prestasi
kaedah SEMD yang dicadangkan, tesis ini mereka bentuk satu siri eksperimen,
menggunakan data teori dan data diukur dari makmal ruang anechoic frekuensi radio
sebagai objek kajian. Keadaan percubaan meliputi nombor syot kilat yang berbeza,
SNR dan latar belakang hingar, bertujuan untuk mensimulasikan pelbagai persekitaran

kompleks dalam aplikasi sebenar. Keputusan eksperimen menunjukkan bahawa



kaedah berasaskan SEMD menunjukkan prestasi yang lebih baik daripada algoritma
anggaran nombor sumber isyarat tradisional dalam persekitaran yang kompleks ini,
terutamanya di bawah sebilangan kecil syot kilat, kaedah SEMD masih boleh
mengekalkan ketepatan anggaran yang tinggi. Penyelidikan ini juga memberi
sumbangan penting kepada sains data dengan menyediakan kaedah komprehensif
untuk menganggar bilangan sumber isyarat, yang disepadukan dengan model
pembelajaran mesin. Kaedah ini mengatasi batasan kaedah tradisional dalam
persekitaran yang kompleks dengan menggabungkan masalah pemprosesan isyarat
dengan masalah pengecaman corak, meningkatkan ketepatan analisis data dengan
ketara dalam persekitaran yang kompleks, dan menyediakan penyelesaian inovatif

untuk pemprosesan isyarat dan pengecaman corak dalam sains data.

Kata Kunci: Anggaran DOA, Anggaran Nombor Sumber Isyarat, SEMD
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In this chapter, Section 1.1 provides an overview of the research context and
establishes the background information necessary to understand the dissertation.
Section 1.2 clearly defines the specific problem or research gap that the dissertation
aims to address. Section 1.3 outlines the overall goal of the research and presents the
specific objectives that the dissertation aims to achieve. Section 1.4 formulates the
research questions that guide the investigation and help focus the study. Section 1.5
highlights the original contributions or novel aspects of the research. Section 1.6
emphasizes the broader significance and implications of the research. Section 1.7

provides a reasonable organization and structure for the thesis.

In today’s modern warfare, electronic countermeasures have become a key tactical
means directly used in offense and defense (Lyu & Zhan, 2022). With the emergence
of new aircraft, ships, satellites, and devices specially used for electronic
countermeasures, such as anti-radiation missiles (Gupta, Jain, Kothari, &
Chakravarthy, 2024), modern warfare has transformed into a multi-dimensional
complex form of land, sea, air, space, and electricity (Chuchu, Guo, Chao,
Zhengxiang, & Xiangming, 2022). The advent of these new devices expands the
battlespace into the electromagnetic realm, allowing military operations to involve the

jamming, detection, and protection of electronic signals.



In these new devices, the use of array antennas becomes crucial for receiving,
processing and localizing electromagnetic signals in space (Friedlander, 2019). Array
antennas can provide wider coverage and higher accuracy, enabling combat units on
the battlefield to accurately obtain target information and conduct precise strikes
(Reddy, Karthik, Vinyojitha, & Charulatha, 2023). At the same time, the array antenna
also has anti-interference and anti-jamming capabilities, and can deal with electronic

interference and strikes from the opponent (Yang, Wang, Liu, & Chen, 2022).

Array signal processing is a technique that uses sensor arrays to collect signals and
then analyze and process them (Wang, Gao, Jin, & Lin, 2019). This technique makes
a difference in time or space when receiving a signal. By analyzing and processing
these differences, relevant features of the signal, such as direction (Foutz, Spanias, &
Banavar, 2022), frequency (Tan, Wang, & Li, 2020), waveform (Shi, Wang, Salous,
Zhou, & Yan, 2021), etc., can be extracted. Therefore, it is widely used in wireless
communication (Gao, Tian, Larsson, Pesavento, & Jin, 2019), radar (Xu et al., 2021),
acoustics (Liu, Chen, & Wang, 2021), biomedical engineering (Zhengwu Liu et al.,
2020), and seismic exploration (Aliyu et al., 2021). The main research directions of
array signal processing include beamforming (Feng, Cui, Yu, Zhang, & Kong, 2020),
spatial spectrum estimation (Zhang, 2022), signal source separation (Wuth, Mahu,
Cohen, Stern, & Yoma, 2024), signal source number estimation (Tian, Zhang, Liu,
Chen, & Wang, 2024), array design (Zheng, Wang, Kong, & Zhang, 2019), and array

calibration (RaviChandran, Aw, & McDaid, 2023).

One of the areas of research in the field of signal processing that receives a lot of
interest is DOA estimation, aims to achieve accurate estimation of specific parameters

such as angle, distance, and azimuth of the source signal in space (Wei Wang et al.,
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2022). The high resolution of this technology enables accurate estimation of key
parameters such as the range and azimuth of the source signal (Osman, Moussa,
Tamazin, Korenberg, & Noureldin, 2020). In electronic countermeasures, high-
precision DOA estimation technology can achieve precise positioning of targets,
providing a key basis for effective interception and precise strikes (Wan, Sun, Sun,
Ning, & Rodrigues, 2020). High-precision DOA estimation technology can also play
a crucial part in unmanned systems, navigation systems, and wireless communication
systems (Zhimin Chen, Chen, Guo, Zhang, & Wang, 2023). By accurately estimating
the direction and distance of the signal source, the unmanned system can achieve
precise positioning and navigation, enhancing the effectiveness and precision of its
task execution (Eling, Klingbeil, Wieland, & Kuhlmann, 2013). In wireless
communication systems, DOA estimation technology can help to locate the signal
source accurately and improve the quality of signal reception and anti-interference
ability (Xie, Li, Wu, & Wang, 2021). To achieve high-precision DOA estimation,
researchers continue to explore new algorithms and methods. These include
techniques such as array signal processing, subspace decomposition, and time-
frequency analysis (Kou, 2022). At the same time, many new array antenna designs
have emerged, such as a uniform linear array (ULA) (Shi & Li, 2022), uniform circular
array (UCA) (Shi & Li, 2022), and adaptive array (Ai & Gan, 2021), to improve the

performance and accuracy of DOA estimation.

1.2 Problem Statement

Among these spatial spectrum estimation algorithms, the subspace decomposition
algorithm has become the most mainstream high-resolution spatial spectrum

estimation algorithm due to its high precision and good robustness. Among them, there



are two most representative algorithms: one is the noise subspace algorithm
represented by Multiple Signal Classification (MUSIC) (Elbir, 2020), and the second
is the signal subspace algorithm, which is represented by Estimating Signal Parameter
via Rotation Invariance Techniques (ESPRIT) (Ning, Ma, Meng, & Wu, 2020).
However, the prerequisite for the use of the subspace decomposition algorithm is that
the number of signal sources has been determined. Although the current subspace
decomposition algorithms that do not need the number of sources are also researched
by many scholars. However, this type of algorithm either has a large amount of
calculation, or requires a high SNR, or is prone to false peaks. Therefore, the
prerequisite for good performance of the subspace decomposition algorithm is still
that the number of signal sources is known or correctly estimated. The array antenna’s
signals must be used to accurately estimate the number of signal sources in various
real circumstances where the number of signal sources must frequently be

approximated.

If there are errors in the estimation of the number of signal sources, the performance
of the spatial spectrum estimation algorithm will be significantly affected, leading to
rapid deterioration or even failure (Zhou, Gao, & Wang, 2012). This is primarily due
to the inability to accurately obtain the corresponding noise subspace. Specifically, if
the estimated value is smaller than the actual value, certain signal eigenvectors are
erroneously classified as part of the noise subspace. Consequently, the dimension of
the signal subspace decreases, resulting in the disappearance of certain spectral peaks
in the signal space spectrum. Furthermore, the orthogonality between the signal
subspace and the noise subspace is compromised, leading to missing alarms and

significant deviations in the spatial spectrum estimation when employing the subspace



decomposition algorithm. Conversely, if the estimated value exceeds the actual value,
the noise component is erroneously included within the signal subspace. Although this
causes the subspace decomposition algorithm to generate false alarms, it does not
impact the orthogonality between the signal subspace and the noise subspace.

Consequently, this effect can be disregarded when the SNR is high.

Therefore, To achieve accurate DOA estimation, it is crucial to accurately estimate
the number of signal sources. Empirical mode decomposition (EMD) can decompose
non-stationary and nonlinear signals into a series of IMFs. In signal source number
estimation, EMD can be used to extract signal features and analyze them. It is more
suitable for signal source number estimation problems involving nonlinear
interactions. However, EMD has the disadvantage of end effect, that is, there may be
overlap between different intrinsic mode functions, making it difficult to clearly
separate different frequency components. Therefore, suppressing end effect can
effectively improve the performance of the EMD method in source number estimation.
Mirror Extension Empirical Mode Decomposition (MEEMD) (Jian Wang, Liu, &
Zhang, 2019) and Augmented Empirical Mode Decomposition (AEMD) (Oh, Zhuang,
Toh, & Lin, 2019) eliminate the end effect, thus improving the accuracy of signal

decomposition.

However, in real-world environments, the estimation algorithm for the number of
signal sources is influenced by various factors. These factors include the number of
snapshots, the number of signal sources, the number of array elements, and the colored
noise background. When these factors become more challenging, the performance of
most algorithms tends to degrade or even fail. Hence, the research direction is to

develop a high-performance source number estimation algorithm capable of

5



functioning effectively in extreme environments. Existing work has limitations, and

many source humber estimation algorithms have poor estimation performance:

When the signal is decomposed by EMD, there are errors in the signal
components, which affects the accuracy of the estimation (Jian Wang et al., 2019;

Oh et al., 2019; Pan, Mei, Tian, Ling, & Wang, 2018).

When the noise background is colored noise, it is more difficult to implement
the algorithm (Yuan, Zhang, Liu, & Wang, 2020; Zhang, Zhang, & Leung, 2020;

Pan, Zhang, Hu, & Zheng, 2019).

When the number of signal sources is close to the number of array elements, the
low SNR will decrease the accuracy of the source number estimation algorithm

(Yameng, Yue, & Lin, 2021; Pan, Mei, Tian, Ling, & Wang, 2018; ).

When the number of signal sources is close to the number of array elements, the
small number of snapshots will decrease the accuracy of the source number
estimation algorithm (Garg, Santamaria, Ramirez, & Scharf, 2019; Yang, Gao,

Qian, & Liao, 2019).

In summary, signal source number estimation is the primary task of most DOA

estimation algorithms. However, existing signal source number estimation algorithms

have requirements for SNR, number of snapshots, noise background, and number of

array elements. Therefore, the purpose of this study is to propose a new high-

performance signal source number estimation method that can achieve source number

estimation with a low SNR, a small number of snapshots, a colored noise background,

and when the number of signal sources is close to the number of array elements.



1.3 Research Questions

This study attempts to use experimental simulations to answer the following questions:

I. How does EMD affect the true decomposition of a signal?

ii.  How do different signal noise backgrounds affect the source number estimation
algorithm?

iii.  How do different SNRs affect the estimation of the number of signal sources?

iv. How do different snapshot numbers affect the estimation of signal source

numbers?

1.4 Research Goal and Objectives

The main goal of this research is to transform the problem of signal source number
estimation into pattern recognition based on mathematical modeling, and use neural
network to realize the signal source number estimation. The specific goals are as

follows:

I. To propose a method to suppress the end effect in EMD and achieve more

realistic signal decomposition.

ii. To develop a neural network model for source number estimation, convert
complex signal source number estimation into pattern recognition, thereby

achieving signal source number estimation more effectively.

iii. To create a high-dimensional data set suitable for source number estimation

under low SNR.



iv.

1.5

To propose an efficient source number estimation algorithm that can estimate

signals with a small number of snapshots.

Research Contributions

The main contribution of this research is to propose a source number enumeration

method based on SEMD, so as to realize the estimation of signal source number and

provide accurate prior conditions for subsequent DOA estimation algorithms. Several

contributions are as follows:

1.6

The SEMD method is proposed, which solves the problem of end effect in

the EMD method.

A high-dimensional dataset is created, suitable for source number estimation

under low SNR.

A source enumeration method is proposed to simplify the complex signal
processing problem into a pattern recognition problem, thereby realizing the
source number estimation when the number of signal sources is close to the

number of array elements.

A neural network model suitable for one-dimensional signal data
classification was designed, which improved the accuracy of the source

number estimation algorithm in the background of colored noise.

Significance of Research

Most methods used to estimate the angle of arrival for directional signals encounter a

significant challenge in accurately determining the number of signal sources. To solve



this problem, this research work introduces a high-precision algorithm that can
precisely estimate the number of signal sources. This algorithm delivers accurate
estimations even in demanding scenarios characterized by low SNR, limited sampling
snapshots, and the presence of colored noise. Consequently, it surpasses the
limitations faced by traditional algorithms for estimating the number of sources when
handling extreme conditions (small snapshot number, low SNR, colored noise

background, small number of array elements).

Moreover, this research enhances the EMD method by mitigating the end effect that
arise during the mathematical modeling of signal data. This advancement enables us
to achieve precise decomposition of non-stationary signals, thereby providing accurate
and reliable data for subsequent engineering applications. By improving the EMD
method, we enhance its capability to process signal data, subsequently elevating the
accuracy and dependability of signal analysis. Consequently, this research provides
crucial technical support for signal processing research and applications, offering
more reliable solutions for real-world tasks such as signal source localization,

communication systems, and radar systems.

Additionally, this research has the potential to expand its application areas further. By
combining the proposed algorithm with machine learning techniques, we can estimate

the number of signal sources even more precisely in complicated situations.

In conclusion, this research work makes significant strides in addressing the
challenges associated with angle-of-arrival estimation for directional signals. By
proposing a high-precision signal source number estimation algorithm and an
enhanced empirical mode decomposition method, Even under complex and
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challenging conditions, it can provide accurate and reliable signal analysis results.

These accomplishments not only offer technical support for signal processing research

but also provide more reliable solutions for practical applications, such as signal

source localization, communication systems, and radar systems.

1.7

Thesis Organization

This thesis is divided into six chapters as follows:

Introduction: This chapter serves as the foundation for the entire dissertation,
introducing key elements such as the research background, problem statement,
research aims and objectives, research questions, research contributions, and
research significance. Together, these components lay the groundwork for

subsequent chapters.

Literature Review: This chapter provides an in-depth analysis of the pertinent
literature, including the array signal mathematical model, DOA estimation
algorithm, source number estimation algorithm. The literature review critically
analyzes existing research, theories, and findings directly relevant to the thesis’s

topic.

Methodology: This chapter explains the methodology of information source
enumeration. This methodology covers the entire process of source number

enumeration method research.

Source Number Enumeration Approach: This chapter introduces the source
number enumeration method in detail. SEMD is a new signal decomposition
method proposed in this thesis. It has been determined that the instantaneous

phase can be used for feature extraction. Then the other steps of the source

10



Vi.

enumeration method are introduced, including obtaining the instantaneous phase,
feature extraction, obtaining high-dimensional data sets, and the neural network

model for source enumeration.

Results and Discussion: In this chapter, both the traditional algorithm and the
proposed algorithm are simulated and evaluated. Through analysis, the
practicality and superiority of the algorithm proposed in this thesis are

demonstrated.

Conclusions and Recommendations for Future Work: This chapter summarizes
the source number enumeration method. It points out existing issues related to
this method and provides recommendations for potential research directions in

the future.
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