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Direction of Arrival (DOA) estimation of signal sources is one of the research hotspots 

in the field of array signal processing. However, traditional DOA estimation methods 

usually require many snapshots, a high Signal-to-Noise Ratio (SNR), and a Gaussian 

white noise background, which are often difficult to meet in actual environments. To 

solve this problem, this study proposes a signal source number estimation method 

based on supplementary empirical mode decomposition (SEMD). The method first 

uses the SEMD method to decompose the array signal, decomposing the complex 

signal into several Intrinsic Mode Functions (IMFs), and then extracts features through 

these IMFs to estimate the number of signal sources. To verify the performance of the 

proposed SEMD method, this study designs a series of experiments, using theoretical 

data and measured data from a radio frequency anechoic chamber laboratory as 

research objects. The experimental conditions cover different snapshot numbers, 

SNRs, and noise backgrounds, aiming to simulate various complex environments in 

actual applications. Experimental results show that the SEMD-based method performs 

significantly better than the traditional signal source number estimation algorithm in 
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these complex environments, especially under a small number of snapshots, the 

SEMD method can still maintain a high estimation accuracy. This study also makes a 

significant contribution to data science by providing a comprehensive method for 

estimating the number of signal sources, which is integrated with a machine learning 

model. This method overcomes the limitations of traditional methods in complex 

environments by combining signal processing problems with pattern recognition 

problems, significantly improves the accuracy of data analysis in complex 

environments, and provides an innovative solution for signal processing and pattern 

recognition in data science. 

Keywords: DOA Estimation, Signal Source Number Estimation, SEMD  
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Anggaran Arah Ketibaan (DOA) sumber isyarat merupakan salah satu titik panas 

penyelidikan dalam bidang pemprosesan isyarat tatasusunan. Walau bagaimanapun, 

kaedah anggaran DOA tradisional biasanya memerlukan banyak syot kilat, Nisbah 

Isyarat-ke-Bunyi (SNR) yang tinggi dan latar belakang hingar putih Gaussian, yang 

selalunya sukar ditemui dalam persekitaran sebenar. Untuk menyelesaikan masalah 

ini, kajian ini mencadangkan kaedah anggaran nombor sumber isyarat berdasarkan 

penguraian mod empirikal tambahan (SEMD). Kaedah ini mula-mula menggunakan 

kaedah SEMD untuk menguraikan isyarat tatasusunan, menguraikan isyarat kompleks 

kepada beberapa Fungsi Mod Intrinsik (IMF), dan kemudian mengekstrak ciri melalui 

IMF ini untuk menganggarkan bilangan sumber isyarat. Untuk mengesahkan prestasi 

kaedah SEMD yang dicadangkan, tesis ini mereka bentuk satu siri eksperimen, 

menggunakan data teori dan data diukur dari makmal ruang anechoic frekuensi radio 

sebagai objek kajian. Keadaan percubaan meliputi nombor syot kilat yang berbeza, 

SNR dan latar belakang hingar, bertujuan untuk mensimulasikan pelbagai persekitaran 

kompleks dalam aplikasi sebenar. Keputusan eksperimen menunjukkan bahawa 
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kaedah berasaskan SEMD menunjukkan prestasi yang lebih baik daripada algoritma 

anggaran nombor sumber isyarat tradisional dalam persekitaran yang kompleks ini, 

terutamanya di bawah sebilangan kecil syot kilat, kaedah SEMD masih boleh 

mengekalkan ketepatan anggaran yang tinggi. Penyelidikan ini juga memberi 

sumbangan penting kepada sains data dengan menyediakan kaedah komprehensif 

untuk menganggar bilangan sumber isyarat, yang disepadukan dengan model 

pembelajaran mesin. Kaedah ini mengatasi batasan kaedah tradisional dalam 

persekitaran yang kompleks dengan menggabungkan masalah pemprosesan isyarat 

dengan masalah pengecaman corak, meningkatkan ketepatan analisis data dengan 

ketara dalam persekitaran yang kompleks, dan menyediakan penyelesaian inovatif 

untuk pemprosesan isyarat dan pengecaman corak dalam sains data. 

Kata Kunci: Anggaran DOA, Anggaran Nombor Sumber Isyarat, SEMD 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

In this chapter, Section 1.1 provides an overview of the research context and 

establishes the background information necessary to understand the dissertation. 

Section 1.2 clearly defines the specific problem or research gap that the dissertation 

aims to address. Section 1.3 outlines the overall goal of the research and presents the 

specific objectives that the dissertation aims to achieve. Section 1.4 formulates the 

research questions that guide the investigation and help focus the study. Section 1.5 

highlights the original contributions or novel aspects of the research. Section 1.6 

emphasizes the broader significance and implications of the research. Section 1.7 

provides a reasonable organization and structure for the thesis. 

In today’s modern warfare, electronic countermeasures have become a key tactical 

means directly used in offense and defense (Lyu & Zhan, 2022). With the emergence 

of new aircraft, ships, satellites, and devices specially used for electronic 

countermeasures, such as anti-radiation missiles (Gupta, Jain, Kothari, & 

Chakravarthy, 2024), modern warfare has transformed into a multi-dimensional 

complex form of land, sea, air, space, and electricity (Chuchu, Guo, Chao, 

Zhengxiang, & Xiangming, 2022). The advent of these new devices expands the 

battlespace into the electromagnetic realm, allowing military operations to involve the 

jamming, detection, and protection of electronic signals. 
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In these new devices, the use of array antennas becomes crucial for receiving, 

processing and localizing electromagnetic signals in space (Friedlander, 2019). Array 

antennas can provide wider coverage and higher accuracy, enabling combat units on 

the battlefield to accurately obtain target information and conduct precise strikes 

(Reddy, Karthik, Vinyojitha, & Charulatha, 2023). At the same time, the array antenna 

also has anti-interference and anti-jamming capabilities, and can deal with electronic 

interference and strikes from the opponent (Yang, Wang, Liu, & Chen, 2022). 

Array signal processing is a technique that uses sensor arrays to collect signals and 

then analyze and process them (Wang, Gao, Jin, & Lin, 2019). This technique makes 

a difference in time or space when receiving a signal. By analyzing and processing 

these differences, relevant features of the signal, such as direction (Foutz, Spanias, & 

Banavar, 2022), frequency (Tan, Wang, & Li, 2020), waveform (Shi, Wang, Salous, 

Zhou, & Yan, 2021), etc., can be extracted. Therefore, it is widely used in wireless 

communication (Gao, Tian, Larsson, Pesavento, & Jin, 2019), radar (Xu et al., 2021), 

acoustics (Liu, Chen, & Wang, 2021), biomedical engineering (Zhengwu Liu et al., 

2020), and seismic exploration (Aliyu et al., 2021). The main research directions of 

array signal processing include beamforming (Feng, Cui, Yu, Zhang, & Kong, 2020), 

spatial spectrum estimation (Zhang, 2022), signal source separation (Wuth, Mahu, 

Cohen, Stern, & Yoma, 2024), signal source number estimation (Tian, Zhang, Liu, 

Chen, & Wang, 2024), array design (Zheng, Wang, Kong, & Zhang, 2019), and array 

calibration (RaviChandran, Aw, & McDaid, 2023). 

One of the areas of research in the field of signal processing that receives a lot of 

interest is DOA estimation, aims to achieve accurate estimation of specific parameters 

such as angle, distance, and azimuth of the source signal in space (Wei Wang et al., 
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2022). The high resolution of this technology enables accurate estimation of key 

parameters such as the range and azimuth of the source signal (Osman, Moussa, 

Tamazin, Korenberg, & Noureldin, 2020). In electronic countermeasures, high-

precision DOA estimation technology can achieve precise positioning of targets, 

providing a key basis for effective interception and precise strikes (Wan, Sun, Sun, 

Ning, & Rodrigues, 2020). High-precision DOA estimation technology can also play 

a crucial part in unmanned systems, navigation systems, and wireless communication 

systems (Zhimin Chen, Chen, Guo, Zhang, & Wang, 2023). By accurately estimating 

the direction and distance of the signal source, the unmanned system can achieve 

precise positioning and navigation, enhancing the effectiveness and precision of its 

task execution (Eling, Klingbeil, Wieland, & Kuhlmann, 2013). In wireless 

communication systems, DOA estimation technology can help to locate the signal 

source accurately and improve the quality of signal reception and anti-interference 

ability (Xie, Li, Wu, & Wang, 2021). To achieve high-precision DOA estimation, 

researchers continue to explore new algorithms and methods. These include 

techniques such as array signal processing, subspace decomposition, and time-

frequency analysis (Kou, 2022). At the same time, many new array antenna designs 

have emerged, such as a uniform linear array (ULA) (Shi & Li, 2022), uniform circular 

array (UCA) (Shi & Li, 2022), and adaptive array (Ai & Gan, 2021), to improve the 

performance and accuracy of DOA estimation. 

1.2 Problem Statement 

Among these spatial spectrum estimation algorithms, the subspace decomposition 

algorithm has become the most mainstream high-resolution spatial spectrum 

estimation algorithm due to its high precision and good robustness. Among them, there 
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are two most representative algorithms: one is the noise subspace algorithm 

represented by Multiple Signal Classification (MUSIC) (Elbir, 2020), and the second 

is the signal subspace algorithm, which is represented by Estimating Signal Parameter 

via Rotation Invariance Techniques (ESPRIT) (Ning, Ma, Meng, & Wu, 2020). 

However, the prerequisite for the use of the subspace decomposition algorithm is that 

the number of signal sources has been determined. Although the current subspace 

decomposition algorithms that do not need the number of sources are also researched 

by many scholars. However, this type of algorithm either has a large amount of 

calculation, or requires a high SNR, or is prone to false peaks. Therefore, the 

prerequisite for good performance of the subspace decomposition algorithm is still 

that the number of signal sources is known or correctly estimated. The array antenna’s 

signals must be used to accurately estimate the number of signal sources in various 

real circumstances where the number of signal sources must frequently be 

approximated.  

If there are errors in the estimation of the number of signal sources, the performance 

of the spatial spectrum estimation algorithm will be significantly affected, leading to 

rapid deterioration or even failure (Zhou, Gao, & Wang, 2012). This is primarily due 

to the inability to accurately obtain the corresponding noise subspace. Specifically, if 

the estimated value is smaller than the actual value, certain signal eigenvectors are 

erroneously classified as part of the noise subspace. Consequently, the dimension of 

the signal subspace decreases, resulting in the disappearance of certain spectral peaks 

in the signal space spectrum. Furthermore, the orthogonality between the signal 

subspace and the noise subspace is compromised, leading to missing alarms and 

significant deviations in the spatial spectrum estimation when employing the subspace 
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decomposition algorithm. Conversely, if the estimated value exceeds the actual value, 

the noise component is erroneously included within the signal subspace. Although this 

causes the subspace decomposition algorithm to generate false alarms, it does not 

impact the orthogonality between the signal subspace and the noise subspace. 

Consequently, this effect can be disregarded when the SNR is high. 

Therefore, To achieve accurate DOA estimation, it is crucial to accurately estimate 

the number of signal sources. Empirical mode decomposition (EMD) can decompose 

non-stationary and nonlinear signals into a series of IMFs. In signal source number 

estimation, EMD can be used to extract signal features and analyze them. It is more 

suitable for signal source number estimation problems involving nonlinear 

interactions. However, EMD has the disadvantage of end effect, that is, there may be 

overlap between different intrinsic mode functions, making it difficult to clearly 

separate different frequency components. Therefore, suppressing end effect can 

effectively improve the performance of the EMD method in source number estimation. 

Mirror Extension Empirical Mode Decomposition (MEEMD) (Jian Wang, Liu, & 

Zhang, 2019) and Augmented Empirical Mode Decomposition (AEMD) (Oh, Zhuang, 

Toh, & Lin, 2019) eliminate the end effect, thus improving the accuracy of signal 

decomposition.  

However, in real-world environments, the estimation algorithm for the number of 

signal sources is influenced by various factors. These factors include the number of 

snapshots, the number of signal sources, the number of array elements, and the colored 

noise background. When these factors become more challenging, the performance of 

most algorithms tends to degrade or even fail. Hence, the research direction is to 

develop a high-performance source number estimation algorithm capable of 
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functioning effectively in extreme environments. Existing work has limitations, and 

many source number estimation algorithms have poor estimation performance: 

i. When the signal is decomposed by EMD, there are errors in the signal 

components, which affects the accuracy of the estimation (Jian Wang et al., 2019; 

Oh et al., 2019; Pan, Mei, Tian, Ling, & Wang, 2018). 

ii. When the noise background is colored noise, it is more difficult to implement 

the algorithm (Yuan, Zhang, Liu, & Wang, 2020; Zhang, Zhang, & Leung, 2020; 

Pan, Zhang, Hu, & Zheng, 2019). 

iii. When the number of signal sources is close to the number of array elements, the 

low SNR will decrease the accuracy of the source number estimation algorithm 

(Yameng, Yue, & Lin, 2021; Pan, Mei, Tian, Ling, & Wang, 2018; ). 

iv. When the number of signal sources is close to the number of array elements, the 

small number of snapshots will decrease the accuracy of the source number 

estimation algorithm (Garg, Santamaria, Ramirez, & Scharf, 2019; Yang, Gao, 

Qian, & Liao, 2019).  

In summary, signal source number estimation is the primary task of most DOA 

estimation algorithms. However, existing signal source number estimation algorithms 

have requirements for SNR, number of snapshots, noise background, and number of 

array elements. Therefore, the purpose of this study is to propose a new high-

performance signal source number estimation method that can achieve source number 

estimation with a low SNR, a small number of snapshots, a colored noise background, 

and when the number of signal sources is close to the number of array elements. 
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1.3 Research Questions  

This study attempts to use experimental simulations to answer the following questions: 

i. How does EMD affect the true decomposition of a signal? 

ii. How do different signal noise backgrounds affect the source number estimation 

algorithm? 

iii. How do different SNRs affect the estimation of the number of signal sources? 

iv. How do different snapshot numbers affect the estimation of signal source 

numbers? 

1.4 Research Goal and Objectives 

The main goal of this research is to transform the problem of signal source number 

estimation into pattern recognition based on mathematical modeling, and use neural 

network to realize the signal source number estimation. The specific goals are as 

follows: 

i. To propose a method to suppress the end effect in EMD and achieve more 

realistic signal decomposition. 

ii. To develop a neural network model for source number estimation, convert 

complex signal source number estimation into pattern recognition, thereby 

achieving signal source number estimation more effectively. 

iii. To create a high-dimensional data set suitable for source number estimation 

under low SNR. 
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iv. To propose an efficient source number estimation algorithm that can estimate 

signals with a small number of snapshots. 

1.5 Research Contributions 

The main contribution of this research is to propose a source number enumeration 

method based on SEMD, so as to realize the estimation of signal source number and 

provide accurate prior conditions for subsequent DOA estimation algorithms. Several 

contributions are as follows: 

i. The SEMD method is proposed, which solves the problem of end effect in 

the EMD method. 

ii. A high-dimensional dataset is created, suitable for source number estimation 

under low SNR. 

iii. A source enumeration method is proposed to simplify the complex signal 

processing problem into a pattern recognition problem, thereby realizing the 

source number estimation when the number of signal sources is close to the 

number of array elements. 

iv. A neural network model suitable for one-dimensional signal data 

classification was designed, which improved the accuracy of the source 

number estimation algorithm in the background of colored noise. 

1.6 Significance of Research 

Most methods used to estimate the angle of arrival for directional signals encounter a 

significant challenge in accurately determining the number of signal sources. To solve 
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this problem, this research work introduces a high-precision algorithm that can 

precisely estimate the number of signal sources. This algorithm delivers accurate 

estimations even in demanding scenarios characterized by low SNR, limited sampling 

snapshots, and the presence of colored noise. Consequently, it surpasses the 

limitations faced by traditional algorithms for estimating the number of sources when 

handling extreme conditions (small snapshot number, low SNR, colored noise 

background, small number of array elements). 

Moreover, this research enhances the EMD method by mitigating the end effect that 

arise during the mathematical modeling of signal data. This advancement enables us 

to achieve precise decomposition of non-stationary signals, thereby providing accurate 

and reliable data for subsequent engineering applications. By improving the EMD 

method, we enhance its capability to process signal data, subsequently elevating the 

accuracy and dependability of signal analysis. Consequently, this research provides 

crucial technical support for signal processing research and applications, offering 

more reliable solutions for real-world tasks such as signal source localization, 

communication systems, and radar systems. 

Additionally, this research has the potential to expand its application areas further. By 

combining the proposed algorithm with machine learning techniques, we can estimate 

the number of signal sources even more precisely in complicated situations. 

In conclusion, this research work makes significant strides in addressing the 

challenges associated with angle-of-arrival estimation for directional signals. By 

proposing a high-precision signal source number estimation algorithm and an 

enhanced empirical mode decomposition method, Even under complex and 
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challenging conditions, it can provide accurate and reliable signal analysis results. 

These accomplishments not only offer technical support for signal processing research 

but also provide more reliable solutions for practical applications, such as signal 

source localization, communication systems, and radar systems. 

1.7 Thesis Organization 

This thesis is divided into six chapters as follows: 

i. Introduction: This chapter serves as the foundation for the entire dissertation, 

introducing key elements such as the research background, problem statement, 

research aims and objectives, research questions, research contributions, and 

research significance. Together, these components lay the groundwork for 

subsequent chapters. 

ii. Literature Review: This chapter provides an in-depth analysis of the pertinent 

literature, including the array signal mathematical model, DOA estimation 

algorithm, source number estimation algorithm. The literature review critically 

analyzes existing research, theories, and findings directly relevant to the thesis’s 

topic. 

iii. Methodology: This chapter explains the methodology of information source 

enumeration. This methodology covers the entire process of source number 

enumeration method research. 

iv. Source Number Enumeration Approach: This chapter introduces the source 

number enumeration method in detail. SEMD is a new signal decomposition 

method proposed in this thesis. It has been determined that the instantaneous 

phase can be used for feature extraction. Then the other steps of the source 
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enumeration method are introduced, including obtaining the instantaneous phase, 

feature extraction, obtaining high-dimensional data sets, and the neural network 

model for source enumeration. 

v. Results and Discussion: In this chapter, both the traditional algorithm and the 

proposed algorithm are simulated and evaluated. Through analysis, the 

practicality and superiority of the algorithm proposed in this thesis are 

demonstrated. 

vi. Conclusions and Recommendations for Future Work: This chapter summarizes 

the source number enumeration method. It points out existing issues related to 

this method and provides recommendations for potential research directions in 

the future. 
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