

BENCHMARKING ROUTING ALGORITHMS IN NoC-BASED MPSoCs USING GUARANTEED CONVERGENCE ARITHMETIC OPTIMIZATION WITH ARTIFICIAL NEURAL NETWORKS AND FUZZY MCDM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2024

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

BENCHMARKING ROUTING ALGORITHMS IN NoC-BASED MPSoCs USING GUARANTEED CONVERGENCE ARITHMETIC OPTIMIZATION WITH ARTIFICIAL NEURAL NETWORKS AND FUZZY MCDM

By

AL-MOLLA YOUSIF R MUHSIN

June 2024

Chairman: Nor Azura binti Husin, PhD

Faculty : Computer Science and Information Technology

Network-on-Chips (NoCs) serve as essential interconnection infrastructures in Multiprocessor System-on-Chip (MPSoC) designs, emphasizing flexibility, extensibility,
and low power consumption. The effectiveness of communication within NoCs relies
heavily on the routing algorithm employed. However, the routing process faces
significant challenges, such as deadlock, livelock, congestion, and faults, which
impact the Design Space Exploration process. In addition, the selection of appropriate
and effective routing algorithms poses a challenge for designers due to multiple
criteria, data fluctuations, and the importance of varying criteria.

This study proposed a prediction model-based Artificial Neural Network (ANN) with a Metaheuristic Optimization approach for predicting the utilized routing algorithm by the NoC-based MPSoC platform in order to reduce the time required to specify the NoC-based MPSoC platform configurations. Furthermore, the authors propose a comprehensive assessment of various routing algorithms, aiming to identify the most

suitable and effective routing algorithm that satisfies designers' system-level

requirements and assessment criteria.

The methodology includes two phases; phase 1 includes developing a prediction

model, specifically an ANN optimized using the Guaranteed Convergence Arithmetic

Optimization Algorithm (GCAOA-ANN). Whereas phase 2 integrates the fuzzy-

weighted zero-inconsistency method and the fuzzy decision-by-opinion score method.

The utilisation of the Z-Cloud Rough Numbers environment addresses the challenge

of two types of uncertainty.

The study result shows that the phase 1 hybrid GCAOA-ANN model demonstrated

superior performance compared to other models. At the same time, a multi-criteria

decision-making (MCDM) approach (phase 2) analysis reveals that Adaptive

Dimensional Bubble Routing, Message-based Congestion-Aware Routing, and

Dynamic and Adaptive Routing Algorithms are ranked as the top three routing

algorithms, respectively.

Keyword: Low Power Consumption, Artificial Neural Network, Network-On-Chips,

Fuzzy MCDM, Multi-Processor System-On-Chip SDG: Industry, Innovation and

Infrastructure

SDG: GOAL 9: Industry, Innovation and Infrastructure

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENANDAARASAN ALGORITMA PERALATAN DALAM MPSoCs BERASASKAN NoC DENGAN PENGOPTIMUMAN ARITHMETIK PERTUBUHAN YANG DIJAMIN DENGAN RANGKAIAN NEURAL TIRUAN DAN MCDM FUZZY

Oleh

AL-MOLLA YOUSIF R MUHSIN

Februari 2024

Pengerusi : Nor Azura binti Husin, PhD

Fakulti : Computer Science and Information Technology

Rangkaian dalam cip (NoCs) berfungsi sebagai infrastruktur perhubungan penting dalam reka bentuk Sistem Dalam Cip Multipemproses (MPSoC), yang mementingkan fleksibiliti, kebolehlanjutan dan penggunaan tenaga yang rendah. Keberkesanan komunikasi dalam NoCs sangat bergantung pada algoritma penghalaan yang digunakan. Walau bagaimanapun, proses penghalaan menghadapi cabaran yang ketara, seperti kebuntuan, gangguan hidup, kesesakan dan ralat, yang memberi kesan kepada proses Pemeriksaan Ruang Reka bentuk. Di samping itu, pemilihan algorithma penghalaan yang sesuai dan berkesan menimbulkan cabaran bagi pereka bentuk, memandangkan banyak kriteria penilaian, turun naik data dan kepentingan kriteria yang berbeza-beza.

Dalam kajian ini, kami mencadangkan ramalan berasaskan model Rangkaian Neural Buatan (ANN) dengan Pendekatan Pengoptimuman Metaheuristik untuk meramalkan algoritma penghalaan yang digunakan oleh NoC bedasarkan platform MPSoC semasa

untuk mengurangkan masa yang diperlukan untuk menentukan konfigurasi platform

NoC berasakan MPSoC. Tambahan pula, kami mencadangkan penilaian menyeluruh

terhadap pelbagai algoritma penghalaan, bertujuan untuk mengenal pasti algoritma

penghalaan yang paling sesuai dan berkesan yang memenuhi keperluan peringkat

sistem dan kriteria penilaian pereka.

Metodologi kajian ini merangkumi dua fasa. Fasa pertama termasuk membangunkan

model ramalan, khususnya ANN yang dioptimumkan menggunakan Algoritma

Pengoptimuman Aritmetik Penumpuan Terjamin (GCAOA-ANN). Di samping itu,

fasa kedua pula menyepadukan kaedah kabur berpemberat sifar ketaktekalan dan

kaedah keputusan fuzi berdasarkan skor pendapat menangani cabaran dua jenis

ketidakpastian.

Keputusan kajian menunjukkan bahawa model hibrid GCAOA-ANN menunjukkan

prestasi yang lebih baik berbanding model lain. Di samping itu, dalam pendekatan

Pembuatan Keputusan Berbilang Kriteria (MCDM) (fasa kedua), terdapat tiga

algoritma penghalaan berasingan yang dikenal pasti: Penghalaan Gelembung Dimensi

Mudah Suai Adaptive Dimensional Bubble Routing, Penghalaan Mesej Berasaskan

Kesedaran Kesesakan, dan Algoritma Penghalaan Mudah Suai dan Dinamik.

Kata kunci: Penggunaan Kuasa Rendah, Rangkaian Neural Buatan, Rangkaian-

Dalam-Cip, MCDM Kabur, Sistem-Dalam-Cip Pemproses Berbilang

SDG: MATLAMAT 9: Industri, Inovasi dan Infrastruktur

iv

ACKNOWLEDGEMENTS

With the name of Allah the Most Compassionate and Most Merciful

All praise and thanks to Almighty Allah, with His blessing giving me the strength and passion, could manage to finish the research until this manuscript completed be compiled.

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Nor Azura binti Husin, PhD

Senior Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Maslina binti Zolkepli, PhD

Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Noridayu binti Manshor, PhD

Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 October 2024

TABLE OF CONTENTS

				Page
ABSTRA ABSTRA ACKNO APPROV DECLAH LIST OF LIST OF LIST OF LIST OF	K WLED AL RATIO TABL FIGU APPE	N JES RES NDICES	S	i iii v vi viii xiii xv xvii xix
CHAPTI	ER			
1	INTR	ODUCT	ION I I I I I I I I I I I I I I I I I I	1
1	1.1	Backgro		1
	1.2		th Introduction	1
	1.3		ch Problem	9
	1.4		th Questions	13
	1.5		th Objectives	13
	1.6		eraction of Study Objectives, Research Questions,	
	1.0		search Problems	14
	1.7		of the Study	15
	1.8	-	cance of the Study and Research Contribution	16
	1.0	1.8.1	The Theoretical Importance of the Study	16
		1.8.2	The Practical Significance of the Study	17
	1.9	_	re of Thesis	19
				21
	1.10	Chapter	Summary	21
2	TTTE	DATUDI	E REVIEW	22
Z	2.1	Introdu		22
	2.1			23
		•	atic Review Protocol	
	2.3		ation Sources	24
	2.4 2.5	-	election and Criteria Exclusion Articles	25
			bllection Process	27
	2.6		al Analysis	27
	2.7		of Taxonomy	28
		2.7.1	Congestion Control	29
			Workload Distribution	37
			Fault Tolerance	43
			Multi-Criteria Decision-Making (MCDM)	45
	2.0		Machine Learning	66
	2.8	-	chensive Science Mapping Analysis for Literature	73 74
		2.8.1	Three-Field Plot	74 75
			Cloud of Words	75 76
	2.0	2.8.3	Country Collaboration	76
	2.9	Critical	Analysis	77

		2.9.1 Simulation Environment		77
		2.9.2 Evaluation Criteria		79
		2.9.3 Fuzzy Sets		80
		2.9.4 Gaps and Challenges		81
	2.10	Chapter Summary		85
3	RESI	EARCH METHODOLOGY		87
	3.1	Introduction		87
	3.2	Phase 1: Investigation Phase		89
	3.3	Phase 2: Machine Learning		89
		3.3.1 Stage 1: Create Dataset		89
		3.3.2 Stage 2: Guaranteed Convergence	e Arithmetic	
		Optimization Algorithm (GCAOA)		97
		3.3.3 Artificial Neural Network		104
	3.4	Phase 3: Multi-Criteria Decision-Making		106
		3.4.1 Stage 1: Identification of Decision M		106
		3.4.2 Stage 2: Z-number Cloud Rough N	•	
		Weighted Zero- Inconsistency (ZCR-		111
		3.4.3 Stage 3: Z-Number Cloud Rough N		
		Decision by Opinion Score Metho	d Bonferroni	100
		Aggregator (ZCR-FDOSM-BM)		122
	2.5	3.4.4 Group Decision Making		126
	3.5			129
	3.6	Chapter Summary		133
4	RESU	ULTS AND DISCUSSION OF MACHINE L	EARNING	134
	4.1	Introduction		134
	4.2	Result and Discussion of ML Phase		134
		4.2.1 Simulation Outcomes		134
		4.2.2 Dataset Validation Result		138
		4.2.3 Result of Model Configuration		139
	4.3	Validation and Comparing the Perform	ance of the	
		Algorithms with ANN		143
	4.4	Chapter Summary		145
5	RESU	ULT AND DISCUSSION OF MCDM METH	ODS	146
	5.1	Introduction		146
	5.2	Result and Discussion of MCDM Phase		146
		5.2.1 The ZCR-FWZIC Approach		146
		5.2.2 Evaluation the Results of Routing	•	
		Opinion, and Fuzzy Opinion Matrixe	S	159
		5.2.3 Group ZCR-FDOSM		168
	5.3	Validation		171
		5.3.1 The Objective Validation		172
		5.3.2 Sensitivity Analysis		174
		5.3.3 Spearman's Rank Correlation		175
	<i>-</i> .	5.3.4 Comparison Analysis		176
	5.4	Chapter Summary		180

6 CO I	NCLUSION				181
6.1	Introduction				181
6.2	Connection among	Research	Objectives,	Research	
	Methodology		-		181
6.3	Contribution to the Bo	dy of Know	ledge		183
6.4	Limitations of the Rese	earch	_		185
6.5	Future Work				187
6.6	Conclusion				187
REFERI	ENCES				189
APPENI	DICES				207
BIODAT	BIODATA OF STUDENT				
LIST OF	PUBLICATIONS				236

LIST OF TABLES

Table		Page
1.1	The Connectivity amongst Research Objectives, Questions, and Research Problem	14
2.1	Congestion Control in Routing Algorithms Based: Principle-based on Congestion Status Deadlock Approach, Adaptivity, Path Diversity Learning Approach	36
2.2	Workload Distribution in Routing Algorithms Based: Principle-based on Congestion Status Deadlock Approach, Adaptivity, Path Diversity Learning Approach	42
2.3	Fault Tolerance in Routing Algorithms Based: Principle-Based on Congestion Status, Deadlock Approach, Adaptivity, Path Diversity Learning Approach	45
2.4	Summary of Studies in the Health Field	52
2.5	Summary of Studies in the Sign Language Field	54
2.6	Summary of Studies in the Communication Field	58
2.7	Summary of Studies in the Sustainable Field	64
2.8	Summary of Studies in the Tourism Field	65
2.9	Description of Evaluation Criteria	79
3.1	NOXIM Simulation Configuration Setup	94
3.2	Alternatives Description	107
3.3	Decision Matrix of Routing Algorithms in NoC-based MPSoC	110
3.4	Five-Point Likert Scale	114
3.5	Expert Decision Matrix	115
3.6	Fuzzy Expert Decision Matrix	120
3.7	Converting the Linguistic Terms into ZC Likert Scales 5 for FWZIC	121
3.8	Converting the Linguistic Terms into ZC Likert scales 5 for FDOSM	125
4 1	ANN Hyperparameters	143

4.2	The Result of Validation	144
5.1	Preference of the 5 th Experts for Routing Algorithms Primary Criteria	148
5.2	Fuzzification Results of the Main Criteria	150
5.3	The Result of Equations 3.17-3.22	152
5.4	The Result of the First Expert by Equations 3.23 – 3.28	153
5.5	The Result of the All Experts by Equations 3.23 – 3.28	154
5.6	The Result of All Experts by Equation 3.30	156
5.7	The Local Weight for the Main Criteria	157
5.8	The Local Weight of the Sub-Criteria	157
5.9	The Final Weight	158
5.10	Opinion Decision Matrix	160
5.11	Fuzzy Opinion Matrix	161
5.12	Process of Equations 3.14 – 3.16	163
5.13	Result of Apr for the First Expert	164
5.14	Result of Apr for the First Expert	165
5.15	Result of Equations (3.23) – (3.28)	166
5.16	Final Results for Each Expert	166
5.17	The Internal Expert Groups	169
5.18	The External Expert Groups	170
5.19	Validation Results for the Internal Aggregation Group Decision- Making	172
5.20	Validation Results for the External Aggregation Group Decision- Making	173
5.21	Comparison between ZCR-FDOSM-BM and ZCR-MABAC	178
5.22	Comparison between ZCR-FWZIC and ZCR-BWM	179
6.1	Connection among Research Objectives, Research Methodology, and Goals	182

LIST OF FIGURES

Figure	e	Page
1.1	NoC-Based MPSoC Platform	2
1.2	Examples of Using MPSoC in IoT Applications	3
1.4	Role of NoC-Based MPSoC in IoT	5
1.5	Problem Statement Configuration	12
1.6	Research Scope	16
1.7	Structure of the Thesis	21
2.1	Literature Review Structure	23
2.2	Selection of Studies, Search Query, and Inclusion Criteria	26
2.3	Research Taxonomy	29
2.4	Three-Field Plot	74
2.5	Cloud Words	75
2.6	Country Collaboration	76
3.1	Research Methodology Phases	88
3.2	Flowchart of the Proposed GCAOA-ANN	98
3.3	Methodology of ZCR-FWZIC	112
3.4	Steps of the ZCRN-FDOSM-BM	122
3.5	Internal Aggregation	127
3.6	External Aggregation	128
4.1	(A) Network Throughput, (B) Total Received Flits, (C) Maximum and Average Network Latency. {NoC: 4x4, Topology: Mesh, Packet Size: 16, PIR: (0.001 – 0.05)}	136
4.2	Predicted Results by the Proposed Scheme at Traffic = Uniform, VC = 4, PIR = 0.001, Buffer: 8	137
4.3	5-Fold Cross-Validation	139

4.4	The Fitness Function of (A) AOA-ANN Algorithms, (B) SMA-ANN (C), PSOWO-ANN, (D) GCAOA-ANN Algorithms under Five Swarm Sizes	141
4.5	The Best Swarms From All Algorithms	142
5.1	Description Process of Converting Expert's Preference Values to the Fuzzy Number	149
5.2	The Process of Equations 3.14-3.16 for First Expert	151
5.3	The Procedure of Equation 3.30	155
5.4	The Sequence of Scenarios for Group Decision Making	168
5.5	Sensitivity Analysis	174
5.6	Spearman Correlation Coefficient	176
6.1	Research Contributions and Novelty Mapping	184

LIST OF APPENDICES

Appe	endix	Page
1	Demographic Data of the Experts	213
2	Expert Decision Matrix	214
3	Fuzzy Expert Decision Matrix	215
4	Opinion Matrix of First Expert	217
5	Fuzzy Opinion Matrix of First Expert	218
6	Opinion Matrix of Second Expert	221
7	Fuzzy Opinion Matrix of Second Expert	222
8	Opinion Matrix of Third Expert	225
9	Fuzzy Opinion Matrix of Third Expert	226
10	Result of Equations (3.23) – (3.28)	229
11	Result of Equation 3.37	232

LIST OF ABBREVIATIONS

A Alternative

ADBR Adaptive Dimensional Bubble Routing

AOA Arithmetic Optimization Algorithm

ANN Artificial Neural Network

C Criteria

CATRA Congestion Aware Trapezoid-based Routing Algorithm

DSE Design Space Exploration

DM Decision Matrix

DyAD Dynamic and Adaptive Routing Algorithm

EDM Constructing the Expert Decision Matrix

EDXY Enhanced-Dynamic-XY

FDOSM Fuzzy Decision-by-Opinion Score Method

FWZIC Fuzzy-Weighted Zero-Inconsistency

GCAOA Guaranteed Convergence Arithmetic Optimization

Algorithm

GOL Generalized Opposition Learning

Internet of Things

Lr Learning Rate

MAE Mean Absolute Error

MARE Mean Absolute Relative Error

MaS Making-a-Stop

MBE Mean Bias Error

MCAR Message-based Congestion-Aware Routing

ML Machine learning

MPSoC Multi-processor System-on-Chip

NoC Network-on-Chips

OE Odd-Even

PSOGW Particle Swarm Optimization Grey Wolf

QoS Quality of Service Support

R² R-squared

RMSE Root Means Squared Error

SEJ Structured Expert Judgement

SI Scatter Index

SMA Slime Mould Algorithm

ZCR-FDOSM Z-number Cloud Rough number Fuzzy-Weighted Zero-

Inconsistency

ZCR-FDOSM-BM Z-number Cloud Rough number fuzzy decision by

opinion score method Bonferroni aggregator

ZCRNs Z-Cloud Rough Numbers

CHAPTER 1

INTRODUCTION

1.1 Background

This chapter describes the study topic, problem statement, and research objectives. The experimental and technical scope of this study is also described in this chapter. Section 1.2 offers an overview of the elements of the study. Sections 1.3 and 1.4 introduce the problem statement and describe the research questions relevant to the current study. In addition, the research objectives are provided in Section 1.5, while the connection between the study objectives, questions, and the problem is discussed in Section 1.6. Furthermore, Sections 1.7 and 1.8 address the study's overall scope and significance. Section 1.9 describes the thesis's overall organization in short. Finally, Section 1.10 summarises the chapter.

1.2 Research Introduction

Internet of Things (IoT) refers to a network of physical devices embedded with sensors, actuators, and connectivity capabilities that enable them to collect and exchange data over the Internet (Al-Hchaimi et al., 2023). Multi-processor System-on-Chip (MPSoC) plays a significant role in the IoT domain. MPSoCs are powerful integrated circuits that combine multiple processing units, memory, and other system components on a single chip. Figure 1.1 shows the NoC-based MPSoC Platform.

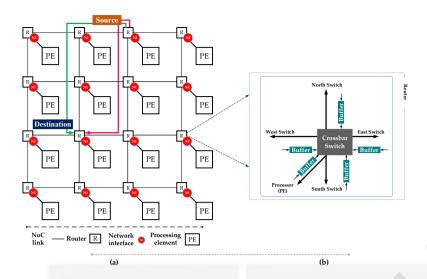


Figure 1.1: NoC-Based MPSoC Platform

Here are some key roles of MPSoCs in the IoT domain. Processing Power: MPSoCs provide high-performance computing capabilities, allowing IoT devices to handle complex tasks efficiently. Such devices can execute multiple processes in parallel, enabling real-time analytics, data processing, and machine learning algorithms at the edge. System Integration: MPSoCs integrate various components like CPUs, GPUs, DSPs, memory, interfaces, and peripherals into a single chip (Pujol et al., 2023). This integration minimizes the size, power consumption, and cost of IoT devices, making them more suitable for resource-constrained environments. (Loukil, 2023). Real-Time Processing: Many IoT applications require real-time processing, where data needs to be analyzed and responded to within strict time constraints. MPSoCs with dedicated real-time processing units and predictable interconnects can efficiently handle timesensitive tasks, such as control systems, robotics, and industrial automation. Energy Efficiency: IoT devices are often battery-powered or operate in energy-constrained environments. MPSoCs can be designed to optimize power consumption by incorporating low-power processor cores, power management units, and dynamic voltage and frequency scaling techniques (Nascimento et al., 2023). This enables longer battery life and reduced energy consumption, making them suitable for IoT deployments. MPSoC communication infrastructure is called Network-on-Chips (NoC) (Al-Hchaimi et al., 2022). Figure 1.2 shows the IoT applications.

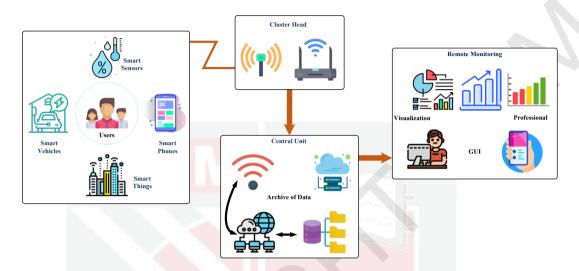


Figure 1.2: Examples of Using MPSoC in IoT Applications

NoC is the heart of MPSoC. NoC is an expanding technology for the formation of multiprocessor state interconnect patterns. NoC technology is modified to accommodate various multiprocessor needs. NoC gives MPSoC components a way to talk to each other that is reliable, fast, scalable, and uses little power (Rocha et al., 2023; Kumar et al., 2023). NoC is an interconnection design that consists of many processing elements linked to one another by routers and regular-sized wires (links). As seen in Figure 1.2, a processing element may be anything from a microprocessor to an application-specific integrated circuit to a chunk of intellectual property cores that execute a particular program. One of the critical components of NoC-based MPSoCs is the routing algorithm, which is responsible for guiding data packets among routers to ensure timely and reliable communication (Rocha et al., 2023).

The NoC router hosts routing algorithms to find the best path for data transmission between IP cores. Routing algorithms are a set of rules and logical operations performed by routers to determine the shortest path for delivering data packets from source to destination. Through the widespread use of NoC communication systems, routing algorithms have become an essential part)Wang et al., 2017; Soni et al., 2023) (see Figure 1.3). There is a potential competition in routing algorithms design and implementation extended in fields like NoC-based MPSoC performance (R.S. et al., 2022; Okuyama, et al., 2019), security (Al-Hchaimi et al., 2023; Soni et al., 2023), reliability (Seetharaman et al., 2022; Ikechukwu, et al., 2019), and adaptivity (Albahri et al., 2023; Kao et al., 2019; Manzoor et al., 2022). Routing algorithms control the majority of task mapping and resource sharing in the context of NoC-based MPSoC services (Cai et al., 2020). Routing algorithms play a critical role in the design and performance of NoC architectures. NoCs have emerged as efficient and scalable interconnection frameworks for MPSoCs. However, designing an optimal routing algorithm has become a formidable challenge for system designers and engineers in the IoT domain (Kumar et al., 2023). The first challenge arises from the diversity of available routing algorithms. A plethora of algorithms have been proposed to tackle various aspects of communication, including traffic congestion, deadlock prevention, and livelock mitigation (Gaffour et al., 2023; Javed et al., 2020b). Despite these efforts, no single routing technique has emerged as a universally superior solution. Consequently, selecting the most suitable routing algorithm has become a non-trivial task, and designers often struggle to strike the right balance between performance, efficiency, and adaptability (Ali et al., 2023). To address this challenge, researchers have turned to machine learning (ML) techniques as a promising approach to

predicting the most appropriate routing algorithm for a given scenario (R.S. et al., 2022). Figure 1.3. shows the role of NoC-based MPSoC.

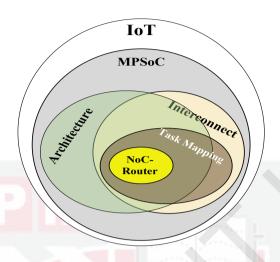


Figure 1.3: Role of NoC-Based MPSoC in IoT

ML models offer numerous advantages, such as improved performance prediction, reduced latency, energy efficiency, and scalability. Leveraging these models enables real-time or near-real-time decision-making when selecting the routing algorithm for incoming communication requests. ML enables the comparison of mesh and ML-mesh topologies, revealing that the latter yields 75% lesser FPGA resource utilization and 33.2% lower network latency under localized traffic (Parane et al., 2020). Another author (Bhowmik et al., 2021) employed ML to enable quick and accurate evaluation of various performance metrics, which is crucial for efficient architectural design. This approach contrasts with traditional NoC simulators that tend to be slow, particularly with varying architectural sizes. The proposed Linear Regression framework achieves impressive results, with up to 94% accuracy and a remarkable speedup of up to 2228×, providing valuable insights into network latency, hop count, maximum switch, and channel power consumption for varying mesh NoC parameters (Bhowmik et al., 2021). Moreover, simulations with real-world benchmarks demonstrate that the

Reinforcement Learning-based approach outperforms non-ML-based solutions, achieving a 30% reduction in the energy-delay product and a 50% improvement in throughput. This advancement is crucial in adapting NoC designs to the changing demands of heterogeneous components, optimizing performance, and energy consumption in modern multiprocessor systems-on-chip (Reza, 2020). NoC-based MPSoC platforms can achieve enhanced performance and adaptability, which is crucial for meeting the dynamic demands of IoT applications (Jallouli et al., 2022). Despite the strenuous efforts of previous studies to investigate MPSoC issues, the matter of assisting designers and engineers of NoC-based MPSoC platforms in predicting and evaluating routing algorithms has rarely been reported. Current literature on the prediction and evaluation of routing algorithms of NoC-based MPSoC is sparse. A few studies have discussed the ML prediction of NoC performance based on the communication channel's throughput and latency. However, they are limited to one aspect of performance evaluation while neglecting the other aspects, such as throughput and power dissipation (Bhowmik et al., 2021; Parane et al., 2020; Reza, 2020).

However, the successful implementation of ML-based prediction raises other challenges. Firstly, the difficulty lies in effectively selecting the ML algorithms in order to ascertain the most appropriate one for a specific undertaking. Whereas the excellent outcomes obtained by ML implementation are attractive, the level of complexity arises from a variety of algorithms. The ability to effectively choose a perfect algorithm and optimize its effectiveness is key to achieving the full promise of ML and guaranteeing successful and significant outcomes (Ibrahim et al., 2022a). Secondly, evaluating the design and performance of the predicted routing algorithms

effectively. The traditional evaluation process often involves comparing individual routing techniques based on isolated criteria, overlooking the interplay of trade-offs and conflicts that exist among different evaluation metrics (Balakrishnan et al., 2023). Design and performance metrics (Chen et al., 2022) of each routing algorithm are the criteria (size, topology, routing type, routing characteristics, packet flit size) and (power dissipation, packet injection rate, number of bits, latency, and throughput). Multi-criteria decision-making (MCDM) is one of the most popular techniques for solving evaluation problems and choosing the best routing algorithms.

MCDM is one of the most used approaches in expert systems and decision science domains to solve multi-criteria decision problems, particularly concerned with making a suitable decision based on the available data (Alsalem et al., 2021; Palanikumar et al., 2023; Uwe et al., 2022; Zaidan et al., 2023). The procedure for assessing and choosing the most suitable table routing algorithms with the MCDM method includes several significant steps. The first step is to determine the essential factors for choosing the most suitable routing algorithms. The second step is assigning weights to every factor based on its perceived importance. In the third step, evaluate the routing algorithms at hand against the relevant factors using an MCDM method; after the evaluation, determine the rank scores for every routing algorithm (Rashid et al., 2019; Alnoor et al., 2022; Liang et al., 2020; Qahtan et al., 2022). The last step, choosing the most suitable routing algorithms, becomes easy by comparing the weighted scores of every routing algorithm.

To the best of our knowledge, previous studies have mainly attempted to propose an integrated hybrid approach for predicting and evaluating the utilized routing

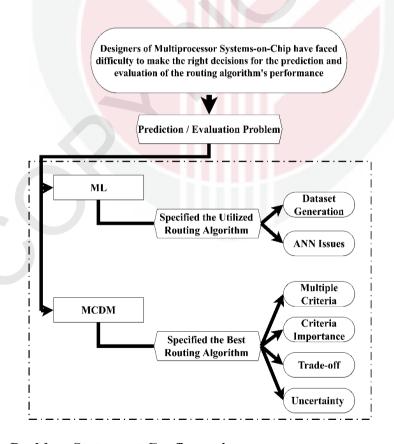
algorithms in the NoC-based MPSoC platform using ML techniques and MCDM methods. Two major criteria, namely, design and performance, are commonly used to evaluate the routing algorithms in the NoC-based MPSoC domain. The design contains a set of sub-criteria: size, topology, routing type, routing characteristics, and packet flit size (Gaffour et al., 2023; Shahane et al., 2022). In addition, the routing algorithm's performance has the sub-criteria: power dissipation, packet injection rate, number of bits, latency, and throughput (Akbar et al., 2020; Bahman et al., 2020). For instance, researchers highlighted the significance of congestion-aware routing algorithms in improving NoC performance and power consumption where the proposed two-phase approach, combined with turn restriction and virtual channels, proves to be effective in achieving better network performance and reduced average delays, making it a valuable contribution to the field of NoC design and optimization (Bahman et al., 2020). Therefore, the comprehensive MCDM approach of evaluation covers all the design and performance criteria, and sub-criteria should be developed. This integrated methodology will serve as an approach to support the decisions of the designers of MPSoCs platforms in predicting and evaluating alternative routing algorithms to determine the most efficient one. Moreover, the common thread that binds these two phases is the overarching goal of enhancing the performance of NoCbased MPSoCs. Phase 1 addresses the prediction of NoC throughput based on the routing algorithms that represent the design and performance metrics in the next phase, an evaluation and ranking based on MCDM methods. In contrast, Phase 2 focuses on addressing the optimal routing algorithm in NoC-based MPSoC. This thesis aims to contribute to these complex computing systems' overall performance and robustness by addressing these two aspects.

1.3 Research Problem

The designers and system engineers of NoC-based MPSoC in the network routers have faced difficulty in predicting and evaluating the performance of the utilized routing algorithm to route the data packets among routers of NoC and prevent different traffic congestion, deadlock, and livelock issues, especially because no single routing technique is superior to the rest (Amin et al., 2023; Nguyen et al., 2019). On the one hand, predicting the utilized routing algorithm in a NoC-based MPSoC platform by using ML techniques can offer several advantages such as improved performance, reduced latency, energy efficiency and lower design complexity, scalability, and fast decision making, where the ML models can make predictions quickly, allowing for real-time or near-real-time decision making when selecting the appropriate routing algorithm for incoming communication requests (Rizk et al., 2022).

MPSoC design optimization through routing techniques used in NoC architecture is critical for the best performance. The challenge is that there are no datasets that are accurate representations of what takes place in MPSoC communication (Gomatheeshwari et al., 2023; Ji et al., 2023), so creating a benchmark dataset that would cover both diverse applications, patterns, workload heterogeneity, and scalability in order to predict utilized routing algorithm in NoC-based MPSoC is needed (Chen et al., 2020). A wide variety of ML models have been used to predict in the MPSoC field. Artificial neural network (ANN) is one of the most popular models used to predict in many fields (Choudhary et al., 2023; Joshi et al., 2022; Zhou et al., 2022). However, there are some drawbacks of ANNs that you should be aware of (Khatir et al., 2021; G. Liang et al., 2021). ANNs require a lot of hyperparameters to be set, such as the number of layers, the number of nodes in each layer, the learning

rate, and the activation function (AbdulKareem, 2022; Ibrahim et al., 2022a). The complex interaction of these hyperparameters has a direct influence on the learning capacity of the network and its predictive power. Moreover, properly configuring these hyperparameters is a very critical and difficult task, as it needs to be tender enough to prevent overfitting or underfitting (Khatir et al., 2021; Liang et al., 2021). Fundamentally, the wise choice as well as adaptation of hyperparameters allow ANNs to exploit their complex structure potential and thereby improve their predictive accuracy and efficiency in different applications (Ibrahim et al., 2022a; Joshi et al., 2022). MPSoC designers have difficulty selecting the best algorithm to use due to the diversity among available routing algorithms.


The evaluation procedure is an important phase in comparing routing algorithms' performance under similar conditions and utilizing criteria to assess the performance of the routing algorithm. Also, there are rarely studies that have been reported regarding the evaluation and selection of the most suitable routing algorithm. Determining the best and worst routing algorithms helps designers and academics select the appropriate routing algorithm in the MPSoC-based IoT domain that helps solve design space exploration (DSE) issues such as design scalability, variety, and reliability.

For the purpose of shedding light on the specific problems related to routing algorithm selection, four issues are highlighted: (i) multiple criteria: Decision-makers face problems in various real-world situations that entail multiple criteria. They face challenges in achieving a collective agreement or assigning precedence to specific criteria. (ii) criterion importance: the evaluation of routing algorithms involves a set

of criteria, and each criterion's importance varies according to the objectives for which the model is developed. The importance of one evaluation criterion may be increased in exchange for the low importance of another, (iii) the trade-off and conflict: design and performance should be measured to evaluate routing algorithms. However, the comparison approach for the previous models in all reviewed studies disregards all evaluation criteria; it focuses on one aspect of the evaluation and ignores the rest because it is not flexible enough to address the conflict or trade-off among various criteria and sub-criteria such as (size, topology, routing type, routing characteristics, packet flit size) and (power dissipation, packet injection rate, number of bits, latency, and throughput) as a sub-criterion respectively (Chen et al., 2020; Choudhary et al., 2023; Gamatié et al., 2019; Jagadheesh et al., 2022), and (iv) ambiguity and uncertainty among the criteria the measurement becomes more difficult due to the ambiguity and uncertainty associated with human characteristics (Božanić et al., 2021; Riaz et al., 2022; Zaidan et al., 2023). To address MCDM problems under uncertainty, Bellman and Zadeh introduced the concept of fuzzy sets (Bellman & Zadeh, 1970). Preference evaluations of design alternatives very often involve two groups of uncertainties (Lou et al., 2020): (1) The interpersonal judgmental interaction caused by multiple people's subjective opinions according to their own background, knowledge, expertise, and insight, and (2) the intrapersonal preference vagueness originated from individual expert's fuzzy and inaccurate cognitive structures. As in prior studies, the fuzzy decision by opinion score method (FDOSM) and fuzzyweighted zero-inconsistency (FWZIC) have been recommended as efficient MCDM evaluation methods proposed for cloud computing and computer networks. Integrating FDOSM and FWZIC methods can help make rational decisions based on the experience of specialists (Albahri et al., 2022; Bager et al., 2022). FDOSM's key

aspect is to identify the best solution by employing the ideal solution concept and the opinion matrix to address actual issues in MCDM (i.e., time consumption, inconsistency, and understandable comparisons) (Alamoodi et al., 2022). FWZIC was introduced by (Mohammed et al., 2022), which is used to identify the essential criteria weights without any inconsistency.

Although FDOSM and FWZIC algorithms are considered the last advanced algorithms in the field of MCDM, the issue of extending MCDM methods to an advanced fuzzy environment, such as Z- Cloud Rough number (ZCR number), is regarded as a critical issue to address the problem of ambiguity, uncertainty, and accuracy. Sadly, previous research seldom takes into account both kinds of uncertainty. Figure 1.4 illustrates the problem statement configuration.

Figure 1.4: Problem Statement Configuration

1.4 Research Questions

- 1) What are the available techniques and methods to predict and evaluate routing algorithms in NoC-based MPSoC platforms?
- 2) What are the requirements needed for prediction and evaluation methodology for routing algorithms in NoC-based MPSoC?
- 3) Is there any integrated methodology to generate a dataset?
- 4) What are the optimal optimizer and machine learning algorithms?
- 5) What are the criteria that have been used to evaluate the routing algorithms in NoC-based MPSoC?
- 6) What are the suitable techniques for evaluating criteria and ranking alternatives?

1.5 Research Objectives

This study aims to develop a benchmarking methodology for routing algorithms using multicriteria decision-making methods. The objectives of this research are outlined as follows:

To investigate the existing design exploration processes in the context of NoC-based MPSoC platforms and employ routing algorithms and techniques.

- 1. To identify the metrics of routing algorithms performance and generate a dataset.
- 2. To develop a prediction model based on ML techniques by integrating the GCAOA with ANN.
- 3. To construct a decision matrix in order to identify multi-evaluation criteria.

4. To extend FWZIC and FDOSM into a new fuzzy environment (i.e., FWZIC with ZCR number) for weighting criteria and ranking the alternatives.

1.6 The Interaction of Study Objectives, Research Questions, and Research Problems

The research objectives give insight into the questions posed by the research questions, which in turn guide the investigation. Table 1.1 consists of the research questions and their solutions according to their respective aims, and it specifies which aspects of the study issue will be resolved by accomplishing each goal.

Table 1.1: The Connectivity amongst Research Objectives, Questions, and Research Problem

		Research p	Research problem mapping		
Research Questions	Research Objectives	Specific Problem	General problem		
What are the available techniques and methods to predict and evaluate routing algorithms in NoC-based MPSoC platforms? What are the requirements needed for prediction and evaluation methodology for routing algorithms in NoC-based MPSoC?	To investigate the existing design exploration processes in the context of NoC-based MPSoC platforms and employ routing algorithms and techniques.				
Is there any integrated methodology to generate a dataset?	To identify the metrics of routing algorithms performance and generate a dataset.	Generate the dataset	Selection and prediction (Benchmarking)		
What are the optimal optimizer and machine learning algorithms?	To integrate the GC-AOA with ANN	Hyperparameters of ANN			

Table 1.1: Continued

What are the criteria that have been used to evaluate the routing algorithms in NoC-based MPSoC?	To identify the core metrics that routing algorithms are based on in the context of NoC-based MPSoC.	-Multi Evaluation criteriaThere is a lack of definition of the NoC-based MPSoC evaluation criteria.	
What are the suitable techniques for evaluating criteria and ranking alternatives?	To extend FWZIC and FDOSM into a new fuzzy environment (i.e., FWZIC with ZCR number) for weighting criteria and ranking the alternatives.	The interpersonal and intrapersonal uncertainty Weighting criteria. Ranking routing algorithms - Importance of criteria Conflict and trade-off criteria.	

1.7 Scope of the Study

The scope of this study is to explore and improve the methods for assessing the effectiveness of routing algorithms by developing an intelligence module. Therefore, this study aims to develop a prediction module based on a metaheuristic algorithm with ANN, the decision matrix to evaluate routing algorithms, an MCDM approach to weight the criteria, and an MCDM approach to ranking routing algorithms. Figure 1.5 provides an overview of the research approach.

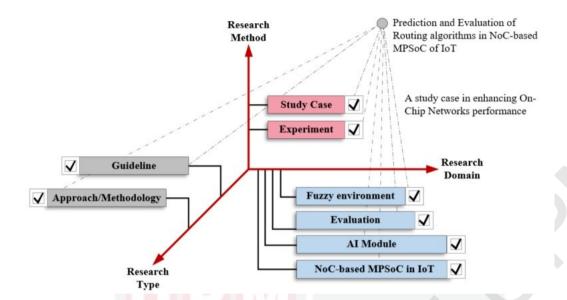


Figure 1.5: Research Scope

In Figure 1.6, the cross-disciplinary approach integrates principles from computer science, fuzzy environment, and network theory to evaluate various routing algorithms for NoC-based MPSoCs rigorously. The study identifies the most efficient and inefficient routing protocols by systematically analyzing each algorithm's performance under different conditions. The focus is on time consumption and latency metrics, aiming to optimize data transfer speeds and minimize delays. This comprehensive evaluation helps develop more robust, high-performance NoC systems crucial for advanced multiprocessor architectures.

1.8 Significance of the Study and Research Contribution

1.8.1 The Theoretical Importance of the Study

This study will contribute by adopting a systematic literature review approach to provide an overview of the existing information and evidence regarding our mission and assessment and comparison approach and highlight trends for research work on this topic. This study will also contribute to filling the research gap in this field. The proposed classification of the relevant literature in this study could also bring many benefits. Additionally, it will identify potential research directions in this area, reveal research gaps, and map the literature on automated methods for evaluating routing algorithms in all its fields. In addition, this study will provide a guide to the most important criteria to be adopted to assess routing algorithms. Finally, the study presents the most important methods used recently in the field of decision-making. On the other hand, the theoretical significance of AI resides in the latter's potential to improve the precision, efficiency, and efficacy of prediction in complex systems. This method can aid academics and designers in gaining fresh understanding, seeing developing patterns, making better judgments, and building intelligent models. On the other hand, the theoretical significance of combining fuzzy sets with MCDM techniques resides in their capacity to deal with uncertainty and vagueness in decisionmaking situations. The fuzzy set theory provides a mathematical structure that enables decision-makers to show and manage ambiguous and vague information by allocating membership degrees to the different components of a set. Using fuzzy set theory with FWZIC and FDOSM techniques enables the interpretation of ambiguity and vagueness in the assessment of alternatives against various criteria and converting the opinion matrix to a fuzzy opinion matrix, while the concept of zero-inconsistency helps to ensure that the weights assigned to the various criteria.

1.8.2 The Practical Significance of the Study

Applying a decision matrix to assess routing algorithms is practical and important for judgment in NoC-based MPSoC. A decision matrix is a structure that enables decision-makers to systematically assess and distinguish between various alternatives

according to various criteria. When employing the optimal routing algorithm in the context of a NoC-based MPSoC platform, the designers can gain the following practical significance:

- 1) Reduced Latency and Improved Throughput: Advanced routing algorithms can optimize the data paths and minimize the distance between communication endpoints, leading to reduced latency and improved throughput. This is especially critical in MPSoCs, where multiple processing elements need to communicate frequently, and any reduction in communication delays can enhance overall system performance.
- 2) Lower Power Consumption: Efficient routing algorithms can significantly impact power consumption by reducing unnecessary data movement and avoiding congested routes, leading to energy-efficient MPSoCs.
- 3) Enhanced Scalability: As MPSoCs grow in size and complexity, scalability becomes a major concern. Advanced routing algorithms ensure that as the number of processing elements increases, the communication infrastructure remains efficient and capable of handling the growing demands. This enables the creation of larger and more powerful MPSoCs without compromising performance.
- 4) Fault Tolerance and Reliability: NoCs are vulnerable to various faults, such as link failures or router malfunctions. Robust routing algorithms can adapt to these faults by finding alternative routes and maintaining communication even in the presence of failures. This fault tolerance enhances the reliability of the MPSoC system as a whole.
- 5) Quality of Service Support (QoS): Different applications in an MPSoC may have diverse requirements in terms of communication bandwidth, latency, and reliability. Advanced routing algorithms can support QoS by efficiently allocating network resources to meet the specific needs of different applications. This ensures that critical tasks receive the required resources and meet their performance targets.

- 6) The success of an ANN relies heavily on the hyperparameters that were chosen for it, so the last practical importance is to determine the hyperparameter of ANN easily and accurately by using GCAOA, which leads to a very accurate prediction process in order to support the designer to solve their problems.
- 7) Finally, the ZCR-FWZIC & ZCR-FDOSM-BM technique offers experts a more accurate and trustworthy method to improve decision-making. It works well in cases when there are many criteria being used, which may be difficult for more traditional models to manage decision-making. Expert judgments allow ZCR-FWZIC & ZCR-FDOSM-BM to capture a larger variety of information than mathematical models alone. Furthermore, the ZCR-FWZIC &ZCR-FDOSM-BM approach can improve efficiency in decision-making by decreasing the amount of time spent on the process and unnatural comparison.

1.9 Structure of Thesis

This research is composed of six chapters. These chapters are briefly reviewed as follows:

Chapter 1: Introduction: This chapter introduces the research background problem statement in addition to illustrating the research questions, objectives, and connectivity among research objectives, research questions, specific problems, and general problems. Moreover, this chapter presents the research scoop, the contribution to the body of knowledge, and the significance of the study.

Chapter 2: Literature Review: the analysis of a systematic review of the routing algorithms and MCDM methods and AI is present in this chapter. In addition, it will examine, analyze, and criticize the literature work and end with the open issues of evaluating the routing algorithms, ANN, and FWZIC & FDOSM.

Chapter 3: Research Methodology: describe the research methodology in detail, which consists of 4 main phases, namely, the investigation phase, the proposed routing algorithms evaluation criteria, the development phase that contains the development FDOSM & FWZIC, and the integration of the GCAOA with ANN, and evaluation and comparison study phase. Through the phases, this chapter will show precisely how the seven research objectives will be achieved.

Chapter 4: Results of Machine Learning: This chapter presents the results and discusses the benchmarking methodology for routing algorithms that were carried out. The chapter demonstrates how the results of the proposed methodology resolve the difficulties mentioned in the problem statement. In addition, the results of the proposed GCAOA-ANN are presented. Also, this chapter provides the results of the validation progression.

Chapter 5: Results of MCDM methods: This chapter presents the results and discusses the third phase in our methodology for routing algorithms. In addition, this chapter explains the results of ZCR-FWZIC and ZCR-FDOSM-BM. Also, this chapter presents the results of the validation process.

Chapter 6: Conclusion and Future Work: This chapter provides the study's conclusion and is followed by the highlights, the summary of research contributions, the limitations, and a discussion of future work. Figure 1.6 demonstrates the structure of the study.

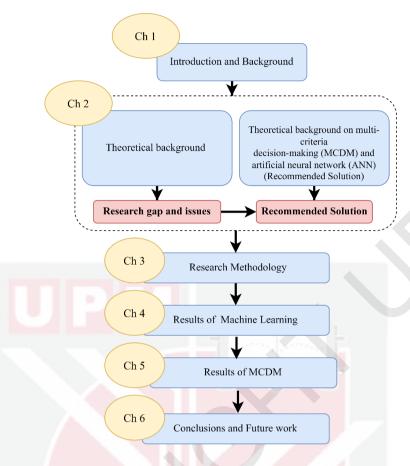


Figure 1.6: Structure of the Thesis

1.10 Chapter Summary

This chapter presents the background of the study. Specifically, it describes the stages of development of NoC-based MPSoC over the past decades and how to manage the growing demand for high performance. Also, it represents the concept of routing algorithms and the criteria used in the evaluation process. The most vital point of this study's background is the importance of the routing algorithm in the NoC-based MPSoC sector. As such, different criteria might measure the same routing algorithm and show comparison results differently. This chapter also shows the need to predict and evaluate routing algorithms to avoid time consumption. Finally, the detailed explanations of the problem statement, the research objectives, the scope, and the study's significance.

REFERENCES

- AbdulKareem, B., Zubaidi, S. L., Ridha, H. M., Al-Ansari, N., & Al-Bdairi, N. S. S. (2022). Applicability of ANN Model and CPSOCGSA Algorithm for Multi-Time Step Ahead River Streamflow Forecasting. *Hydrology*, *9*(10), 171.
- Abdulkareem, K. H., Arbaiy, N., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Salih, M. M. (2020). A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. *International Journal of Information Technology & Decision Making*, 19(03), 909–957.
- Abualigah, L., Geem, Z. W., & Alshinwan. (2020). Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. *Neural Computing and Applications*, 32(16), 12381–12401.
- Abualigah, L. Shehab, M., & Alshinwan. (2021). Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. *Neural Computing and Applications*, 33(7), 2949–2972.
- Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. *Applied Sciences*, 10(11), 3827.
- Abualigah, L., Shehab, M., Alshinwan, M., & Alabool, H. (2020). Salp swarm algorithm: a comprehensive survey. *Neural Computing and Applications*, 32(15), 11195–11215.
- Adek, R. T., & Ula, M. (2020). A Survey on The Accuracy of Machine Learning Techniques for Intrusion and Anomaly Detection on Public Data Sets. 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), 19–27.
- Ahmed, U., Issa, G. F., Khan, M. A., Aftab, S., Khan, M. F., Said, R. A. T., Ghazal, T. M., & Ahmad, M. (2022). Prediction of diabetes empowered with fused machine learning. *IEEE Access*, 10, 8529–8538.
- Akbar, R., & Safaei, F. (2020). A novel congestion-aware routing algorithm with prediction in mesh-based networks-on-chip. *Nano Communication Networks*, 26, 100322. https://doi.org/10.1016/j.nancom.2020.100322
- Akbar, R, & Safaei, F. (2020). A novel congestion-aware routing algorithm with prediction in mesh-based networks-on-chip. *Nano Communication Networks*, 26, 100322. https://doi.org/https://doi.org/10.1016/j.nancom.2020.100322
- Akbar, Reza, & Safaei, F. (2021). A novel heterogeneous congestion criterion for mesh-based networks-on-chip. *Microprocessors and Microsystems*, 84(December 2020), 104056. https://doi.org/10.1016/j.micpro.2021.104056

- Akram, M., Dudek, W. A., & Ilyas, F. (2019). Group decision-making based on pythagorean fuzzy TOPSIS method. *International Journal of Intelligent Systems*, 34(7), 1455–1475.
- Al-Hchaimi, A. A. J., Flayyih, W. N., Hashim, F., Rusli, M. S., & Rokhani, F. Z. (2021). Review of 3D Networks-On-Chip Simulators and Plugins. *2021 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics* (*PrimeAsia*), 17–20. https://doi.org/10.1109/PrimeAsia51450.2021.9701472
- Al-Hchaimi, A. A. J., Sulaiman, N. Bin, Mustafa, M. A. Bin, Mohtar, M. N. Bin, Hassan, S. L. B. M., & Muhsen, Y. R. (2023). A comprehensive evaluation approach for efficient countermeasure techniques against timing side-channel attack on MPSoC-based IoT using multi-criteria decision-making methods. *Egyptian Informatics Journal*, 24(2), 351–364.
- Al-Hchaimi, A. A. J., Sulaiman, N. Bin, Mustafa, M. A. Bin, Mohtar, M. N. Bin, Mohd, S. L. B., & Muhsen, Y. R. (2022). Evaluation Approach for Efficient Countermeasure Techniques Against Denial-of-Service Attack on MPSoC-based IoT Using Multi-Criteria Decision-Making. *IEEE Access*.
- Al-Humairi, S., Hizami, A., Zaidan, A., Zaidan, B. B., Alsattar, H., Qahtan, S., Albahri, O., Talal, M., Alamoodi, A., & Mohammed, R. T. (2022). Towards Sustainable Transportation: A Pavement Strategy Selection Based on the Extension of Dual-Hesitant Fuzzy Multi-Criteria Decision-Making Methods.

 IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2022.3168050
- Al-Samarraay, M S, Zaidan, A. A., Albahri, O. S., Pamucar, D., AlSattar, H. A., Alamoodi, A. H., Zaidan, B. B., & Albahri, A. S. (2022). Extension of interval-valued Pythagorean FDOSM for evaluating and benchmarking real-time SLRSs based on multidimensional criteria of hand gesture recognition and sensor glove perspectives[Formula presented]. *Applied Soft Computing*, 116. https://doi.org/10.1016/j.asoc.2021.108284
- Al-Samarraay, Mohammed S., Salih, M. M., Ahmed, M. A., Zaidan, A. A., Albahri, O. S., Pamucar, D., AlSattar, H. A., Alamoodi, A. H., Zaidan, B. B., Dawood, K., & Albahri, A. S. (2022). A new extension of FDOSM based on Pythagorean fuzzy environment for evaluating and benchmarking sign language recognition systems. *Neural Computing and Applications*, 34(6), 4937–4955. https://doi.org/10.1007/s00521-021-06683-3
- Alamoodi, A. H., Albahri, O. S., Zaidan, A. A., AlSattar, H. A., Ahmed, M. A., Pamucar, D., Zaidan, B. B., Albahri, A. S., & Mahmoud, M. S. (2022). New Extension of Fuzzy-Weighted Zero-Inconsistency and Fuzzy Decision by Opinion Score Method Based on Cubic Pythagorean Fuzzy Environment: A Benchmarking Case Study of Sign Language Recognition Systems. *International Journal of Fuzzy Systems*, 1–18.

- Alamoodi, A. H., Mohammed, R. T., Albahri, O. S., Qahtan, S., Zaidan, A. A., Alsattar, H. A., Albahri, A. S., Aickelin, U., Zaidan, B. B., Baqer, M. J., & Jasim, A. N. (2022). Based on neutrosophic fuzzy environment: a new development of FWZIC and FDOSM for benchmarking smart e-tourism applications. *Complex and Intelligent Systems*, 8(4), 3479–3503. https://doi.org/10.1007/s40747-022-00689-7
- Alamoodi, A. Hb., Albahri, O. S., Zaidan, A. A., AlSattar, H. A., Ahmed, M. A., Pamucar, D., Zaidan, B. B., Albahri, A. S., & Mahmoud, M. S. (2022). New Extension of Fuzzy-Weighted Zero-Inconsistency and Fuzzy Decision by Opinion Score Method Based on Cubic Pythagorean Fuzzy Environment: A Case Study of Sign Language Recognition Systems. *International Journal of Fuzzy Systems*, 1–18.
- Alawsi, M. A., Zubaidi, S. L., Al-Ansari, N., Al-Bugharbee, H., & Ridha, H. M. (2022). Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting. *Atmosphere*, 13(9), 1436.
- Albahri, A. S., Albahri, O. S., Zaidan, A. A., Alnoor, A., Alsattar, H. A., Mohammed, R., Alamoodi, A. H., Zaidan, B. B., Aickelin, U., Alazab, M., Garfan, S., Ahmaro, I. Y. Y., & Ahmed, M. A. (2022). Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses. *Computer Standards and Interfaces*, 80(March 2021), 103572. https://doi.org/10.1016/j.csi.2021.103572
- Albahri, O S, Alamleh, A., Al-Quraishi, T., & Thakkar, R. (2023). Smart Real-Time IoT mHealth-based Conceptual Framework for Healthcare Services Provision during Network Failures. *Applied Data Science and Analysis*, 2023, 110–117.
- Albahri, O S, Zaidan, A. A., Albahri, A. S., Alsattar, H. A., Mohammed, R., Aickelin, U., Kou, G., Jumaah, F. M., Salih, M. M., & Alamoodi, A. H. (2022). Novel dynamic fuzzy decision-making framework for COVID-19 vaccine dose recipients. *Journal of Advanced Research*, 37, 147–168.
- Albahri, Osamah Shihab. (2020). Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. October. https://doi.org/10.1002/int.22322
- Alharbi, T., Ryan, J., Freak-Poli, R., Gasevic, D., Scali, J., Ritchie, K., Ancelin, M.-L., & Owen, A. J. (2022). Objectively Assessed Weight Change and All-Cause Mortality among Community-Dwelling Older People. *Nutrients*, *14*(14), 2983.
- Ali, A., & Rashid, T. (2019). Hesitant fuzzy best-worst multi-criteria decision-making method and its applications. *International Journal of Intelligent Systems*, 34(8), 1953–1967.
- Ali, J., Maqsood, T., Khalid, N., & Madani, S. A. (2023). Communication and aging aware application mapping for multicore based edge computing servers. *Cluster Computing*, 26(1), 223–235.

- Alnoor, A, Zaidan, A. A., Qahtan, S., Alsattar, H. A., Mohammed, R. T., K, K. W., Alazab, M., Y., T. S., & Albahri, A. S. (2022). Toward a Sustainable Transportation Industry: Oil Company Benchmarking based on the Extension of Linear Diophantine Fuzzy Rough Sets and Multicriteria Decision-Making Methods. *IEEE Transactions on Fuzzy Systems*, 1–11. https://doi.org/10.1109/TFUZZ.2022.3182778
- Alnoor, Alhamzah, Zaidan, A. A., Qahtan, S., Alsattar, H. A., Mohammed, R. T., K, K. W., Alazab, M., Y., T. S., & Albahri, A. S. (2022). Toward a Sustainable Transportation Industry: Oil Company Benchmarking based on the Extension of Linear Diophantine Fuzzy Rough Sets and Multicriteria Decision-Making Methods. *IEEE Transactions on Fuzzy Systems*, 1–11. https://doi.org/10.1109/TFUZZ.2022.3182778
- Alqaysi, M. E., Albahri, A. S., & Hamid, R. A. (2022). Hybrid Diagnosis Models for Autism Patients Based on Medical and Sociodemographic Features Using Machine Learning and Multicriteria Decision-Making (MCDM) Techniques: An Evaluation and Benchmarking Framework. 2022(ii).
- Alsalem, M A, Alsattar, H. A., Albahri, A. S., Mohammed, R. T., Albahri, O. S., Zaidan, A. A., Alnoor, A., Alamoodi, A. H., Qahtan, S., & Zaidan, B. B. (2021). Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. *Journal of Infection and Public Health*, 14(10), 1513–1559.
- Alsalem, Mohammed Assim, Mohammed, R., Albahri, O. S., Zaidan, A. A., Alamoodi, A. H., Dawood, K., Alnoor, A., Albahri, A. S., Zaidan, B. B., & Aickelin, U. (2021). Rise of multiattribute decision-making in combating COVID-19: A systematic review of the state-of-the-art literature. *International Journal of Intelligent Systems*.
- Alsattar, H. A., Qahtan, S., Mohammed, R. T., Zaidan, A. A., Albahri, O. S., Kou, G., Alamoodi, A. H., Albahri, A. S., Zaidan, B. B., & Al-Samarraay, M. S. (2022). Integration of FDOSM and FWZIC Under Homogeneous Fermatean Fuzzy Environment: A Prioritization of COVID-19 Patients for Mesenchymal Stem Cell Transfusion. *International Journal of Information Technology & Decision Making*, 1–41.
- Amin, W., Hussain, F., Anjum, S., Saleem, S., Ahmad, W., & Hussain, M. (2023). HyDra: Hybrid Task Mapping Application Framework for NOC-based MPSoCs. *IEEE Access*.
- Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. *Journal of Informetrics*, 11(4), 959–975.
- Bafail, O. A. (2022). Two New Approaches (RAMS-RATMI) in Multi-Criteria Decision-Making Tactics. 2022.
- Bahman, F., Reza, A., Reshadi, M., & Vazifedan, S. (2020). CACBR: Congestion Aware Cluster Buffer base routing algorithm with minimal cost on NOC. *CCF Transactions on High Performance Computing*, 2(3), 297–306.

- https://doi.org/10.1007/s42514-020-00027-8
- Balakrishnan, M. T., Venkatesh, T. G., & Bhaskar, A. V. (2023). Design and implementation of congestion aware router for network-on-chip. *Integration*, 88, 43–57. https://doi.org/https://doi.org/10.1016/j.vlsi.2022.08.012
- Baqer, N. S., Albahri, A. S., Mohammed, H. A., Zaidan, A. A., Amjed, R. A., Al-Bakry, A. M., Albahri, O. S., Alsattar, H. A., Alnoor, A., & Alamoodi, A. H. (2022). Indoor air quality pollutants predicting approach using unified labelling process-based multi-criteria decision making and machine learning techniques. *Telecommunication Systems*, 1–23.
- Bayatvarkeshi, M., Mohammadi, K., Kisi, O., & Fasihi, R. (2020). A new wavelet conjunction approach for estimation of relative humidity: wavelet principal component analysis combined with ANN. *Neural Computing and Applications*, 32(9), 4989–5000. https://doi.org/10.1007/s00521-018-3916-0
- Beechu, N. K. R., Harishchandra, V. M., & Balachandra, N. K. Y. (2017). High-performance and energy-efficient fault-tolerance core mapping in NoC. Sustainable Computing: Informatics and Systems, 16, 1–10.
- Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.
- Bhosle, N. (2024). Optimization of re-configurable multi-core processors and security based on field programmable gate arrays. *Indonesian Journal of Electrical Engineering and Computer Science*, 33(1), 568–580.
- Bhowmik, B., Hazarika, P., Kale, P., & Jain, S. (2021). AI technology for NoC performance evaluation. *IEEE Transactions on Circuits and Systems II:* Express Briefs, 68(12), 3483–3487.
- Božani, D., Pamu, D., & Marinkovi, D. (2022). Weights (LMAW) by a Triangular Fuzzy Number and Its.
- Božanić, D., Milić, A., Tešić, D., Sałabun, W., & Pamučar, D. (2021). D numbers fucom fuzzy rafsi model for selecting the group of construction machines for enabling mobility. *Facta Universitatis, Series: Mechanical Engineering*, 19(3 Special Issue), 447–471. https://doi.org/10.22190/FUME210318047B
- Bramer, W. M., Rethlefsen, M. L., Kleijnen, J., & Franco, O. H. (2017). Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. *Systematic Reviews*, 6(1), 1–12.
- Bui, D. T., Khosravi, K., Tiefenbacher, J., Nguyen, H., & Kazakis, N. (2020). Improving prediction of water quality indices using novel hybrid machine-learning algorithms. *Science of the Total Environment*, 721, 137612.
- Cai, Y., Xiang, D., & Ji, X. (2020). Deadlock-free adaptive 3D network-on-chips routing algorithm with repetitive turn concept. *IET Communications*, 14(11), 1783–1792.

- Canwen, X., Minxuan, Z., Yong, D., & Zhitong, Z. (2008). Dimensional bubble flow control and fully adaptive routing in the 2-d mesh network on chip. 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 1, 353–358.
- Cardona, J., Hernandez, C., Abella, J., & Cazorla, F. J. (2018). EOmesh: combined flow balancing and deterministic routing for reduced WCET estimates in embedded real-time systems. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 37(11), 2451–2461.
- Charif, A., Coelho, A., Zergainoh, N.-E., & Nicolaidis, M. (2017). MINI-ESPADA: A low-cost fully adaptive routing mechanism for Networks-on-Chips. 2017 18th IEEE Latin American Test Symposium (LATS), 1–4.
- Chen, K.-C. J., & Ebrahimi, M. (2022). Routing algorithm design for power-and temperature-aware NoCs. In *Advances in Computers* (Vol. 124, pp. 117–150). Elsevier.
- Chen, K.-C. J., Ebrahimi, M., Wang, T.-Y., Yang, Y.-C., & Liao, Y.-H. (2020). A NoC-based simulator for design and evaluation of deep neural networks. *Microprocessors and Microsystems*, 77, 103145.
- Chen, K.-C., & Wang, T.-Y. (2018). NN-noxim: High-level cycle-accurate NoC-based neural networks simulator. 2018 11th International Workshop on Network on Chip Architectures (NoCArc), 1–5.
- Choudhary, J., Sudarsan, C. S., & J., S. (2023). A performance-centric ML-based multi-application mapping technique for regular Network-on-Chip. *Memories Materials, Devices, Circuits and Systems, 4*, 100059. https://doi.org/https://doi.org/10.1016/j.memori.2023.100059
- da Silva, E. A., Kreutz, M. E., & Zeferino, C. A. (2019). RedScarf: an open-source multi-platform simulation environment for performance evaluation of Networks-on-Chip. *Journal of Systems Architecture*, 99, 101633.
- Dai, Y., Khandelwal, M., Qiu, Y., Zhou, J., Monjezi, M., & Yang, P. (2022). A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting. *Neural Computing and Applications*, 34(8), 6273–6288.
- Deb, D., Jose, J., Das, S., & Kapoor, H. K. (2019). Cost effective routing techniques in 2D mesh NoC using on-chip transmission lines. *Journal of Parallel and Distributed Computing*, 123, 118–129. https://doi.org/10.1016/j.jpdc.2018.09.009
- Destercke, S. (2018). A generic framework to include belief functions in preference handling and multi-criteria decision. *International Journal of Approximate Reasoning*, 98, 62–77. https://doi.org/10.1016/j.ijar.2018.04.005
- do Nascimento, D. V. C., Georgiou, K., Eder, K. I., & Xavier-de-Souza, S. (2023). Evaluating the effects of reducing voltage margins for energy-efficient

- operation of MPSoCs. IEEE Embedded Systems Letters.
- Fang, J., Zhang, D., & Li, X. (2020). ParRouting: An efficient area partition-based congestion-aware routing algorithm for NoCs. *Micromachines*, 11(12), 1034.
- Fasiku, A. I., Ojedayo, B. O., & Oyinloye, O. E. (2020). Effect of routing algorithm on wireless network-on-chip performance. 2020 Second International Sustainability and Resilience Conference: Technology and Innovation in Building Designs (51154), 1–5.
- Fu, B., & Kim, J. (2017). Footprint: Regulating routing adaptiveness in networks-on-chip. *Proceedings of the 44th Annual International Symposium on Computer Architecture*, 691–702.
- Fusella, E., & Cilardo, A. (2017). Lattice-based turn model for adaptive routing. *IEEE Transactions on Parallel and Distributed Systems*, 29(5), 1117–1130.
- Gaffour, K., Benhaoua, M. K., Benyamina, A. H., & Zahaf, H.-E. (2023). A new congestion-aware routing algorithm in network-on-chip: 2D and 3D comparison. *International Journal of Computers and Applications*, 45(1), 27–35.
- Gamatié, A., An, X., Zhang, Y., Kang, A., & Sassatelli, G. (2019). Empirical model-based performance prediction for application mapping on multicore architectures. *Journal of Systems Architecture*, 98, 1–16.
- Garg, H., Munir, M., Ullah, K., Mahmood, T., & Jan, N. (2018). Algorithm for T-spherical fuzzy multi-attribute decision making based on improved interactive aggregation operators. *Symmetry*, 10(12), 670.
- Gogoi, A., Ghoshal, B., & Manna, K. (2023). Fault-aware routing approach for meshbased Network-on-Chip architecture. *Integration*. https://doi.org/https://doi.org/10.1016/j.vlsi.2023.05.007
- Gogoi, A., Ghoshal, B., Sachan, A., Kumar, R., & Manna, K. (2022). Application driven routing for mesh based network-on-chip architectures. *Integration*, 84, 26–36.
- Gomatheeshwari, B., Gopi, K., & Mathias, A. (2023). Low-complex resource mapping heuristics for mobile and iot workloads on NoC-HMPSoC architecture. *Microprocessors and Microsystems*, 98, 104802.
- Gomes de Araujo Rocha, H. M., Schneider Beck, A. C., Eduardo Kreutz, M., Diniz Monteiro Maia, S. M., & Magalhães Pereira, M. (2023). Using evolutionary metaheuristics to solve the mapping and routing problem in networks on chip. *Design Automation for Embedded Systems*, 1–33.
- Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. *Research Synthesis Methods*, 11(2), 181–217.

- Hu, C., Meyer, M. C., Jiang, X., & Watanabe, T. (2020). A fault-tolerant Hamiltonian-based odd-even routing algorithm for network-on-chip. 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), 217–222.
- Huang, G., Xiao, L., Pedrycz, W., Pamucar, D., & Zhang, G. (2022). Design alternative assessment and selection: A novel Z-cloud rough number-based BWM-MABAC model. *Information Sciences*, 603, 149–189. https://doi.org/10.1016/j.ins.2022.04.040
- Huang, G., Xiao, L., & Zhang, G. (2021). Assessment and prioritization method of key engineering characteristics for complex products based on cloud rough numbers. *Advanced Engineering Informatics*, 49, 101309.
- Huu, P. N., & Minh, Q. T. (2020). An ANN-based gesture recognition algorithm for smart-home applications. KSII Transactions on Internet and Information Systems (TIIS), 14(5), 1967–1983.
- Ibrahim, K. S. M. H., Huang, Y. F., Ahmed, A. N., Koo, C. H., & El-Shafie, A. (2022a). A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting. *Alexandria Engineering Journal*, 61(1), 279–303. https://doi.org/10.1016/j.aej.2021.04.100
- Ibrahim, K. S. M. H., Huang, Y. F., Ahmed, A. N., Koo, C. H., & El-Shafie, A. (2022b). A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting. *Alexandria Engineering Journal*, 61(1), 279–303.
- Jagadheesh, S., & Bhanu, P. V. (2022). Noc application mapping optimization using reinforcement learning. ACM Transactions on Design Automation of Electronic Systems (TODAES), 27(6), 1–16.
- Jain, A., Laxmi, V., Tripathi, M., Gaur, M. S., & Bishnoi, R. (2020). TRACK: An algorithm for fault-tolerant, dynamic and scalable 2D mesh network-on-chip routing reconfiguration. *Integration*, 72, 92–110.
- Jallouli, K., Mazouzi, M., Diguet, J.-P., Monemi, A., & Hasnaoui, S. (2022). MIMO-OFDM LTE system based on a parallel IFFT/FFT on NoC-based FPGA. *Annals of Telecommunications*, 77(9–10), 689–702.
- Javed, A., Harkin, J., McDaid, L., & Liu, J. (2021). Predicting Networks-on-Chip traffic congestion with Spiking Neural Networks. *Journal of Parallel and Distributed Computing*, 154, 82–93.
- Javed, A., Harkin, J., McDaid, L., & Liu, J. (2020a). Exploring spiking neural networks for prediction of traffic congestion in networks-on-chip. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5.
- Javed, A., Harkin, J., McDaid, L., & Liu, J. (2020b). Minimising Impact of Local Congestion in Networks-on-Chip Performance by Predicting Buffer Utilisation. 2020 31st Irish Signals and Systems Conference (ISSC), 1–6.

- Ji, N., Zhou, X., & Yang, Y. (2023). A high-performance fully adaptive routing based on software defined network-on-chip. *Microelectronics Journal*, 141, 105950.
- Joshi, B., & Thakur, M. K. (2022). A Traffic Intensive Virtual Channels Allocation Scheme in Network-on-Chip. *Arabian Journal for Science and Engineering*, 1–15.
- Kale, P., Hazarika, P., Jain, S., & Bhowmik, B. (2022). Performance evaluation in 2d nocs using ann. *International Conference on Advanced Information Networking and Applications*, 360–369.
- Kao, S.-C., Yang, C.-H. H., Chen, P.-Y., Ma, X., & Krishna, T. (2019). Reinforcement learning based interconnection routing for adaptive traffic optimization. *Proceedings of the 13th IEEE/ACM International Symposium on Networks-on-Chip*, 1–2.
- Kaur, H., & Kumari, V. (2022). Predictive modelling and analytics for diabetes using a machine learning approach. *Applied Computing and Informatics*, 18(1/2), 90–100.
- Khairan, H. E., Zubaidi, S. L., Muhsen, Y. R., & Al-Ansari, N. (2022). Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions. *Atmosphere*, 14(1), 77.
- Khan, S., Abdullah, S., Ashraf, S., Chinram, R., & Baupradist, S. (2020). Decision Support Technique Based on Neutrosophic Yager Aggregation Operators: Application in Solar Power Plant Locations—Case Study of Bahawalpur, Pakistan. *Mathematical Problems in Engineering*, 2020.
- Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S., & Wahab, M. A. (2021). An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates. *Composite Structures*, 273, 114287.
- Khaw, K. W., Alnoor, A., Al-Abrrow, H., Chew, X., Sadaa, A. M., Abbas, S., & Khattak, Z. Z. (2022). Modelling and evaluating trust in mobile commerce: a hybrid three stage Fuzzy Delphi, structural equation modeling, and neural network approach. *International Journal of Human–Computer Interaction*, 1–17.
- Khurshid, A., Sethi, M. A. J., Ullah, R., Ahmed, I., Ullah, A., Naveed, J., & Karami, G. M. (2021). Congestion-aware routing algorithm for NoC using data packets. *Wireless Communications & Mobile Computing (Online)*, 2021.
- Koczkodaj, W. W., & Urban, R. (2018). Axiomatization of inconsistency indicators for pairwise comparisons. *International Journal of Approximate Reasoning*, 94, 18–29. https://doi.org/10.1016/j.ijar.2017.12.001
- Krishnan, E., Albahri, O. S., Zaidan, B. B., & Hamid, R. A. (2021). *Interval type 2 trapezoidal fuzzy weighted with zero inconsistency combined with VIKOR for*

- evaluating smart e tourism applications. April. https://doi.org/10.1002/int.22489
- Kumar, A. S., & Naresh Kumar Reddy, B. (2023). An Efficient Real-Time Embedded Application Mapping for NoC Based Multiprocessor System on Chip. *Wireless Personal Communications*, 128(4), 2937–2952.
- Kumar, A. S., & Rao, T. V. K. H. (2021). An adaptive core mapping algorithm on NoC for future heterogeneous system-on-chip. *Computers and Electrical Engineering*, 95, 107441.
- Lee, Y. S., Kim, Y. W., & Han, T. H. (2022). MRCN: Throughput-Oriented Multicast Routing for Customized Network-on-Chips. *IEEE Transactions on Parallel and Distributed Systems*, 34(1), 163–179.
- Li, Jiao, Qin, C., & Sun, X. (2023). An efficient adaptive routing algorithm for the Cooptimization of fault tolerance and congestion awareness based on 3D NoC. *Microelectronics Journal*, 142, 105989.
- Li, Jing, Fang, H., & Song, W. (2019). Sustainable supplier selection based on SSCM practices: A rough cloud TOPSIS approach. *Journal of Cleaner Production*, 222, 606–621.
- Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors (Switzerland), 18(8), 1–29. https://doi.org/10.3390/s18082674
- Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. *Omega*, 96, 102175.
- Liang, G., Panahi, F., Ahmed, A. N., Ehteram, M., Band, S. S., & Elshafie, A. (2021). Predicting municipal solid waste using a coupled artificial neural network with archimedes optimisation algorithm and socioeconomic components. *Journal of Cleaner Production*, 315, 128039.
- Lou, S., Feng, Y., Li, Z., Zheng, H., Gao, Y., & Tan, J. (2020). An edge-based distributed decision-making method for product design scheme evaluation. *IEEE Transactions on Industrial Informatics*, 17(2), 1375–1385.
- Loukil, K. (2023). Energy Saving Multi-Relay Technique for Wireless Sensor Networks Based on Hw/Sw MPSoC System. *IEEE Access*, 11, 27919–27927.
- Luo, Y., Meyer, M. C., Jiang, X., & Watanabe, T. (2019). A hotspot-pattern-aware routing algorithm for networks-on-chip. 2019 IEEE 13th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC), 229–235.
- Mahapatra, C., & Mohanty, A. R. (2022). Explosive sound source localization in indoor and outdoor environments using modified Levenberg Marquardt algorithm. *Measurement*, 187, 110362.

- Mahmoud, U. S., Albahri, A. S., AlSattar, H. A., Zaidan, A. A., Talal, M., Mohammed, R. A., Albahri, O. S., Zaidan, B. B., Alamoodi, A. H., & Hadi, S. M. (2021). A Methodology of DASs Benchmarking to Support Industrial Community Characteristics in Designing and Implementing Advanced Driver Assistance Systems Within Vehicles.
- Mahto, A. K., Alam, M. A., Biswas, R., Ahmed, J., & Alam, S. I. (2021). Short-term forecasting of agriculture commodities in context of Indian market for sustainable agriculture by using the artificial neural network. *Journal of Food Quality*, 2021.
- Manzoor, M., Mir, R. N., & Hakim, N. ud din. (2022). PAAD (Partially adaptive and deterministic routing): A deadlock free congestion aware hybrid routing for 2D mesh network-on-chips. *Microprocessors and Microsystems*, 92(April), 104551. https://doi.org/10.1016/j.micpro.2022.104551
- Mardani, A., Nilashi, M., Zavadskas, E. K., Awang, S. R., Zare, H., & Jamal, N. M. (2018). Decision Making Methods Based on Fuzzy Aggregation Operators: Three Decades Review from 1986 to 2017. In *International Journal of Information Technology and Decision Making* (Vol. 17, Issue 2, pp. 391–466). https://doi.org/10.1142/S021962201830001X
- Methods, C., Mech, A., Abualigah, L., Diabat, A., Mirjalili, S., & Abd, M. (2021). ScienceDirect The Arithmetic Optimization Algorithm. *Computer Methods in Applied Mechanics and Engineering*, 376, 113609. https://doi.org/10.1016/j.cma.2020.113609
- Mi, X., Liao, H., & Xiao-Jun, Z. (2020). Investment decision analysis of international megaprojects based on cognitive linguistic cloud models. *International Journal of Strategic Property Management*, 24(6), 414.
- Mikaeeli Mamaghani, S., & Jabraeil Jamali, M. A. (2019). A load-balanced congestion-aware routing algorithm based on time interval in wireless network-on-chip. *Journal of Ambient Intelligence and Humanized Computing*, 10(7), 2869–2882. https://doi.org/10.1007/s12652-018-1020-z
- Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. *Advances in Engineering Software*, 69, 46–61.
- Mirmahaleh, S. Y. H., & Rahmani, A. M. (2019). DNN pruning and mapping on NoC-Based communication infrastructure. *Microelectronics Journal*, *94*, 104655. https://doi.org/https://doi.org/10.1016/j.mejo.2019.104655
- Mohammed, H., Hizam, H., Mirjalili, S., Lutfi, M., Effendy, M., & Ahmadipour, M. (2022). Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods. *Renewable and Sustainable Energy Reviews*, 162(March), 112436. https://doi.org/10.1016/j.rser.2022.112436

- Mohammed, R. T., Zaidan, A. A., Yaakob, R., Sharef, N. M., Abdullah, R. H., Zaidan, B. B., Albahri, O. S., & Abdulkareem, K. H. (2022). Determining importance of many-objective optimisation competitive algorithms evaluation criteria based on a novel fuzzy-weighted zero-inconsistency method. *International Journal of Information Technology & Decision Making*, 21(01), 195–241.
- Mohammed, T. J., Albahri, A. S., Zaidan, A. A., Albahri, O. S., Al-Obaidi, J. R., Zaidan, B. B., Larbani, M., Mohammed, R. T., & Hadi, S. M. (2021). Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. *Applied Intelligence*, 51(5), 2956–2987.
- Mohr, F., & van Rijn, J. N. (2023). Fast and informative model selection using learning curve cross-validation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(8), 9669–9680.
- Moréac, E., Rossi, A., Laurent, J., & Bomel, P. (2017). Bit-accurate energy estimation for Networks-on-Chip. *Journal of Systems Architecture*, 77, 112–124.
- Muhammad, S. T., Saad, M., El-Moursy, A. A., El-Moursy, M. A., & Hamed, H. F. A. (2019). CFPA: Congestion aware, fault tolerant and process variation aware adaptive routing algorithm for asynchronous Networks-on-Chip. *Journal of Parallel and Distributed Computing*, 128, 151–166. https://doi.org/https://doi.org/10.1016/j.jpdc.2019.03.001
- Munguía-López, A. del C., & Ponce-Ortega, J. M. (2021). Fair allocation of potential COVID-19 vaccines using an optimization-based strategy. *Process Integration and Optimization for Sustainability*, 5(1), 3–12.
- Nguyen, H. K., & Tran, X.-T. (2019). A novel reconfigurable router for QoS guarantees in real-time NoC-based MPSoCs. *Journal of Systems Architecture*, 100, 101664.
- Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., Le, H. Van, Tran, V. Q., Prakash, I., & Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. *Mathematical Problems in Engineering*, 2021, 1–15.
- Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. *Engineering Applications of Artificial Intelligence*, 60, 97–116.
- Ong, A. K. S., Prasetyo, Y. T., Yuduang, N., Nadlifatin, R., Persada, S. F., Robas, K. P. E., Chuenyindee, T., & Buaphiban, T. (2022). Utilization of Random Forest Classifier and Artificial Neural Network for Predicting Factors Influencing the Perceived Usability of COVID-19 Contact Tracing "MorChana" in Thailand. *International Journal of Environmental Research and Public Health*, 19(13). https://doi.org/10.3390/ijerph19137979

- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. *Journal of Clinical Epidemiology*, 134, 103–112.
- Palanikumar, M., Arulmozhi, K., Jana, C., & Pal, M. (2023). Multiple-attribute decision-making spherical vague normal operators and their applications for the selection of farmers. *Expert Systems*, 40(3), e13188.
- Pallathadka, H., Mustafa, M., Sanchez, D. T., Sekhar Sajja, G., Gour, S., & Naved, M. (2021). IMPACT OF MACHINE learning ON Management, healthcare AND AGRICULTURE. *Materials Today: Proceedings, xxxx*. https://doi.org/10.1016/j.matpr.2021.07.042
- Pano, V., Lerner, S., Yilmaz, I., Lui, M., & Taskin, B. (2018). Workload-aware routing (WAR) for network-on-chip lifetime improvement. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5.
- Parane, K., Prabhu Prasad, B. M., & Talawar, B. (2020). P-noc: performance evaluation and design space exploration of nocs for chip multiprocessor architecture using fpga. *Wireless Personal Communications*, 114(4), 3295–3319.
- Peng, T., Zhou, J., Zhang, C., & Fu, W. (2017). Streamflow forecasting using empirical wavelet transform and artificial neural networks. *Water*, 9(6), 406.
- Perea, R. G., Poyato, E. C., Montesinos, P., & Díaz, J. A. R. (2019). Optimisation of water demand forecasting by artificial intelligence with short data sets. *Biosystems Engineering*, 177, 59–66.
- Pujol, R., Jorba, J., Tabani, H., Kosmidis, L., Mezzetti, E., Abella, J., & Cazorla, F. (2023). Vector extensions in COTS processors to increase guaranteed performance in real-time systems. *ACM Transactions on Embedded Computing Systems*, 22(2), 1–26.
- Punhani, A., Kumar, P., & Nitin. (2019). E-XY: an entropy based XY routing algorithm. *International Journal of Grid and Utility Computing*, 10(2), 179–186.
- Qahtan, S., Alsattar, H. A., Zaidan, A. A., Deveci, M., Pamucar, D., & Ding, W. (2022). A Novel Fuel Supply System Modelling Approach for Electric Vehicles Under Pythagorean Probabilistic Hesitant Fuzzy Sets. *Information Sciences*.
- Qahtan, S., Alsattar, H. A., Zaidan, A. A., Pamucar, D., & Deveci, M. (2022). Integrated sustainable transportation modelling approaches for electronic passenger vehicle in the context of industry 5.0. *Journal of Innovation and Knowledge*, 7(4), 100277. https://doi.org/10.1016/j.jik.2022.100277
- Qahtan, S., Sharif, K. Y., Zaidan, A. A., Alsattar, H. A., Albahri, O. S., Zaidan, B. B., Zulzalil, H., Osman, M. H., Alamoodi, A. H., & Mohammed, R. T. (2022).

- Novel Multi Security and Privacy Benchmarking Framework for Blockchain-Based IoT Healthcare Industry 4.0 Systems. *IEEE Transactions on Industrial Informatics*, 18(9), 6415–6423. https://doi.org/10.1109/TII.2022.3143619
- Qi, J., Hu, J., & Peng, Y.-H. (2020). Integrated rough VIKOR for customer-involved design concept evaluation combining with customers' preferences and designers' perceptions. *Advanced Engineering Informatics*, 46, 101138.
- R.S., R. R., R., Shahreyar, M. S., Raut, A., P.N., P., Kalady, S., & P.B., J. (2022). DeepNR: An adaptive deep reinforcement learning based NoC routing algorithm. *Microprocessors and Microsystems*, 90, 104485. https://doi.org/https://doi.org/10.1016/j.micpro.2022.104485
- Reshma Raj, R. S., Gayathri, C., Kalady, S., & Jayaraj, P. B. (2019). Odd-even based adaptive two-way routing in mesh NoCs for hotspot mitigation. *Proceedings of the 20th International Conference on Distributed Computing and Networking*, 248–252.
- Reza, M. F. (2020). Reinforcement learning based dynamic link configuration for energy-efficient noc. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 468–473.
- Riaz, M., Muhammad, H., Farid, A., & Wang, W. (2022). *Interval-Valued Linear Diophantine Fuzzy Frank Aggregation Operators with Multi-Criteria Decision-Making*. 1–36.
- Ridha, H. M., Hizam, H., Mirjalili, S., Othman, M. L., Ya'acob, M. E., & Ahmadipour, M. (2022). Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods. *Renewable and Sustainable Energy Reviews*, 162(March), 112436. https://doi.org/10.1016/j.rser.2022.112436
- Ridha, H. M., Hizam, H., Mirjalili, S., Othman, M. L., Ya'acob, M. E., Ahmadipour, M., & Ismaeel, N. Q. (2022). On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula. *Energy Conversion and Management*, 256(February), 115403. https://doi.org/10.1016/j.enconman.2022.115403
- Rizk, M., Martin, K. J. M., & Diguet, J.-P. (2022). Run-time remapping algorithm of dataflow actors on NoC-based heterogeneous MPSoCs. *IEEE Transactions on Parallel and Distributed Systems*, 33(12), 3959–3976.
- Rohbani, N., Shirmohammadi, Z., Zare, M., & Miremadi, S.-G. (2017). LAXY: A location-based aging-resilient Xy-Yx routing algorithm for network on chip. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 36(10), 1725–1738.
- RS, R. R., Rohit, R., Shahreyar, M. S., Raut, A., Pournami, P. N., Kalady, S., & Jayaraj, P. B. (2022). DeepNR: An adaptive deep reinforcement learning based

- NoC routing algorithm. Microprocessors and Microsystems, 90, 104485.
- Salih, M. M., Al-Qaysi, Z. T., Shuwandy, M. L., Ahmed, M. A., Hasan, K. F., & Muhsen, Y. R. (2022). A new extension of fuzzy decision by opinion score method based on Fermatean fuzzy: A benchmarking COVID-19 machine learning methods. *Journal of Intelligent & Fuzzy Systems, Preprint*, 1–11.
- Salih, M. M., Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Jumaah, F. M., & Albahri, A. S. (2021). Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. *Telecommunication Systems*, 77(3), 493–522.
- Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020a). Fuzzy decision by opinion score method. *Applied Soft Computing Journal*, 96, 106595. https://doi.org/10.1016/j.asoc.2020.106595
- Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020b). Fuzzy decision by opinion score method. *Applied Soft Computing*, 96, 106595. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106595
- Seetharaman, G., & Pati, D. (2022). Reliable fault-tolerance routing technique for network-on-chip interconnect. In *Intelligent Sustainable Systems* (pp. 767–775). Springer.
- Shahane, P., & Kshirsagar, U. (2022). Performance Efficient NoC Router Implementation on FPGA. In Smart Trends in Computing and Communications (pp. 449–462). Springer.
- Singh, R., Bohra, M., Hemrajani, P., Kalla, A., Bhatt, D. P., Purohit, N., & Daneshtalab, M. (2022). Review, analysis, and implementation of path selection strategies for 2D NoCS. *IEEE Access*.
- Soni, M., & Shnan, M. A. (2023). Scalable Neural Network Algorithms for High Dimensional Data. *Mesopotamian Journal of Big Data*, 2023, 1–11.
- Taherdoost, H. (2019). What is the best response scale for survey and questionnaire design; review of different lengths of rating scale/attitude scale/Likert scale. *Hamed Taherdoost*, 1–10.
- Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., & Morgan, R. E. (2017). Two hidden layers are usually better than one. *International Conference on Engineering Applications of Neural Networks*, 279–290.
- Touati, H. C., & Boutekkouk, F. (2017). A weighted minimal fully adaptive congestion aware routing algorithm for network on chip. 2017 First International Conference on Embedded & Distributed Systems (EDiS), 1–5.
- Touati, H. C., & Boutekkouk, F. (2018). FACARS: A novel fully adaptive congestion aware routing scheme for network on chip. 2018 7th Mediterranean Conference on Embedded Computing (MECO), 1–6.

- Trik, M., Molk, A. M. N. G., Ghasemi, F., & Pouryeganeh, P. (2022). A hybrid selection strategy based on traffic analysis for improving performance in networks on chip. *Journal of Sensors*, 2022.
- Umapathy, S., Shah, M., & Wang, N. (2018). Encircle routing: An efficient deterministic network on chip routing algorithm. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 895–899.
- Uwe, A. S. A., Zaidan, A. B. B., Ali, M. J. B., & Jasim, N. (2022). Based on neutrosophic fuzzy environment: a new development of FWZIC and FDOSM for benchmarking smart e-tourism applications. *Complex & Intelligent Systems*. https://doi.org/10.1007/s40747-022-00689-7
- Valencia, P., Muller, E., & Wang, N. (2017). ZigZag: An efficient deterministic Network-on-chip routing algorithm design. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 1–5.
- Velangi, R., & Kerur, S. S. (2021). Hardware Implementation and Comparison of OE Routing Algorithm with Extended XY Routing Algorithm for 2D Mesh on Network on Chip. *International Conference on Micro-Electronics and Telecommunication Engineering*, 159–171.
- Vu, H.-T., Okuyama, Y., & Abdallah, A. Ben. (2019). Analytical performance assessment and high-throughput low-latency spike routing algorithm for spiking neural network systems. *The Journal of Supercomputing*, 75, 5367–5397.
- Vu, T. H., Ikechukwu, O. M., & Abdallah, A. Ben. (2019). Fault-tolerant spike routing algorithm and architecture for three dimensional NoC-based neuromorphic systems. *IEEE Access*, 7, 90436–90452.
- Vu, T. H., Okuyama, Y., & Abdallah, A. Ben. (2019). Comprehensive analytic performance assessment and K-means based multicast routing algorithm and architecture for 3D-NoC of spiking neurons. *ACM Journal on Emerging Technologies in Computing Systems (JETC)*, 15(4), 1–28.
- Wang, K., & Louri, A. (2020). Cure: A high-performance, low-power, and reliable network-on-chip design using reinforcement learning. *IEEE Transactions on Parallel and Distributed Systems*, 31(9), 2125–2138.
- Wang, L., Ma, S., Li, C., Chen, W., & Wang, Z. (2017). A high performance reliable NoC router. *Integration*, 58, 583–592. https://doi.org/https://doi.org/10.1016/j.vlsi.2016.10.016
- Wang, X., Xu, K., Guo, Y., Wang, H., Fu, S., Li, Q., Wu, B., & Wu, J. (2024). Toward Practical Inter-Domain Source Address Validation. *IEEE/ACM Transactions on Networking*.

- Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1(1), 67–82.
- Xiao, L., Huang, G., & Zhang, G. (2021). Improved assessment model for candidate design schemes with an interval rough integrated cloud model under uncertain group environment. *Engineering Applications of Artificial Intelligence*, 104, 104352.
- Xie, R., Cai, J., Xin, X., & Yang, B. (2017). MCAR: Non-local adaptive Network-on-Chip routing with message propagation of congestion information. *Microprocessors and Microsystems*, 49, 117–126.
- Xu, S., & Wang, Y. (2017). Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. *Energy Conversion and Management*, 144, 53–68.
- Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. *IEEE Transactions on Systems, Man, and Cybernetics*, 18(1), 183–190.
- Yazdanpanah, F. (2023). A two-level network-on-chip architecture with multicast support. *Journal of Parallel and Distributed Computing*, 172, 114–130. https://doi.org/https://doi.org/10.1016/j.jpdc.2022.10.011
- Yazdi, A. K., Komijan, A. R., Wanke, P. F., & Sardar, S. (2020). Oil project selection in Iran: A hybrid MADM approach in an uncertain environment. *Applied Soft Computing*, 88, 106066.
- Yazdi, A. K., Wanke, P. F., Hanne, T., Abdi, F., & Sarfaraz, A. H. (2022). Supplier selection in the oil & gas industry: A comprehensive approach for Multi-Criteria Decision Analysis. *Socio-Economic Planning Sciences*, 79, 101142.
- Yazdi, A. K., Wanke, P. F., Hanne, T., & Bottani, E. (2020). A decision-support approach under uncertainty for evaluating reverse logistics capabilities of healthcare providers in Iran. *Journal of Enterprise Information Management*.
- Young, A., Oram, R., & Napier, J. (2019). Hearing people perceiving deaf people through sign language interpreters at work: on the loss of self through interpreted communication. *Journal of Applied Communication Research*, 47(1), 90–110.
- Zaidan, A. A., Alsattar, H. A., Qahtan, S., Zaidan, A. A., Deveci, M., Pamucar, D., & Delen, D. (2023). Performance Assessment of Sustainable Transportation in the Shipping Industry Using a q-Rung Orthopair Fuzzy Rough Sets-Based Decisioning Methodology. *Expert Systems with Applications*, 119958.
- Zamili, H., Bakan, G., Zubaidi, S. L., & Alawsi, M. A. (2023). Water quality index forecast using artificial neural network techniques optimized with different metaheuristic algorithms. *Modeling Earth Systems and Environment*, 0123456789. https://doi.org/10.1007/s40808-023-01750-1

- Zhang, H., Cai, Z., Ye, X., Wang, M., Kuang, F., Chen, H., Li, C., & Li, Y. (2022). A multi-strategy enhanced salp swarm algorithm for global optimization. *Engineering with Computers*, 1–27.
- Zhao, L., Li, J., Feng, L., Zhang, C., Zhang, W., Wang, C., He, Y., Wen, D., & Song, W. (2022). Depicting Developing Trend and Core Knowledge of Primary Open-Angle Glaucoma: A Bibliometric and Visualized Analysis. *Frontiers in Medicine*, 9.
- Zhao, S., Xu, W., & Chen, L. (2022). The modeling and products prediction for biomass oxidative pyrolysis based on PSO-ANN method: An artificial intelligence algorithm approach. *Fuel*, *312*, 122966.
- Zhou, S., Guo, S., Du, B., Huang, S., & Guo, J. (2022). A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network. *Sustainability*, 14(17), 11086.
- Zhou, W., Ouyang, Y., Lu, Y., & Liang, H. (2022). A router architecture with dual input and dual output channels for Networks-on-Chip. *Microprocessors and Microsystems*, 90, 104464.
- Zubaidi, S. L., Al-Bugharbee, H., Muhsen, Y. R., Hashim, K., Alkhaddar, R. M., & Hmeesh, W. H. (2019). The prediction of municipal water demand in Iraq: a case study of Baghdad governorate. 2019 12th International Conference on Developments in ESystems Engineering (DeSE), 274–277.
- Zubaidi, S. L., Kumar, P., Al-Bugharbee, H., Ahmed, A. N., Ridha, H. M., Mo, K. H., & El-Shafie, A. (2023). Developing a hybrid model for accurate short-term water demand prediction under extreme weather conditions: a case study in Melbourne, Australia. *Applied Water Science*, 13(9), 184.
- Zubaidi, S. L., Ortega-Martorell, S., Al-Bugharbee, H., Olier, I., Hashim, K. S., Gharghan, S. K., Kot, P., & Al-Khaddar, R. (2020). Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. *Water* (*Switzerland*), 12(7), 1–17. https://doi.org/10.3390/W12071885
- Zughoul, O., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alazab, M., Amomeni, U., Albahri, A. S., Salih, M. M., Mohammed, R. T., & Mohammed, K. I. (2021). Novel triplex procedure for ranking the ability of software engineering students based on two levels of AHP and group TOPSIS techniques. *International Journal of Information Technology & Decision Making*, 20(01), 67–135.