

UNIVERSITI PUTRA MALAYSIA

STRUCTURE, MICROSTRUCTURE AND SUPERCONDUCTIVITY OF YBa2Cu3O7- WITH MAGNETIC NANOPARTICLE ADDITIVES

MOHD KAMARULZAMAN BIN MANSOR

FS 2010 6

STRUCTURE, MICROSTRUCTURE AND SUPERCONDUCTIVITY OF YBa₂Cu₃O₇₋₅ WITH MAGNETIC NANOPARTICLE ADDITIVES

MOHD KAMARULZAMAN BIN MANSOR

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2010

STRUCTURE, MICROSTRUCTURE AND SUPERCONDUCTIVITY OF YBa₂Cu₃O_{7-δ} WITH MAGNETIC NANOPARTICLE ADDITIVES

By

MOHD KAMARULZAMAN BIN MANSOR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master Science

February 2010

DEDICATION

To my mom and dad who love me so much

MALINI BINTI HUSSIN MANSOR BIN AHMAD

Beloved wife

HASNIDAR BINTI HAMID

Son

MUHAMMAD FATHI BIN MOHD KAMARULZAMAN

Sisters

NORSURIANI BINTI MANSOR NORHAFIZZAH BINTI MANSOR

Nephews

AMIR HARITH IMTIYAZ AFEEF HAZMAN IMTIYAZ

Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

STRUCTURE, MICROSTRUCTURE AND SUPERCONDUCTIVITY OF YBa₂Cu₃O_{7-δ} WITH MAGNETIC NANOPARTICLE ADDITIVES

By

MOHD KAMARULZAMAN BIN MANSOR

February 2010

Chairman: Professor Abdul Halim Shaari, PhD

Faculty: Science

Potential enhancement of flux pinning by rare-earth (RE) magnetic nanoparticles added into bulk of YBa₂Cu₃O_{7- δ} (YBCO) was studied experimentally. In particular, a comprehensive investigation of crystal structure, microstructure and superconducting properties of YBCO added with *x* weight percent (*x* = 0.0 - 0.6 wt. %) of nanosized (≤ 25 nm) Nd₂O₃, Sm₂O₃, Gd₂O₃ and Yb₂O₃ prepared via solid state technique was presented. X-ray diffraction (XRD) technique was used for crystal structure and phase formation identification. Detailed crystal structure analysis was carried out on each sample using the Rietveld refinement technique. The fractured cross section microstructure was observed using Scanning Electron Microscopy (SEM) and support by elemental analysis using Energy Dispersive X-ray (EDX) spectroscopy. Four point probe technique were employed to study the resistance dependence from room temperature down to 50 K.

The XRD patterns revealed that only YBCO phase peaks were observed for sample with $x \le 0.3$ and minor intensities of 211 secondary phase was observed for $x \ge 0.4$ in each

series. The XRD patterns of all samples were indexed in the orthorhombic structure with space group *Pmmm*. All refined R_{wp} factor values are in between 9 % - 12 % different, which support the refined structure model reasonably and reflected that the refined curve fit well with the measured ones. Refinement of the XRD patterns indicated that magnetic nanoparticles added changed the lattice constants of the unit cell due to the rare-earth (RE) ionic radius and their replacement sites. RE³⁺ was found to incorporate into the crystal structure and could replace either the Y-site or Ba-site. The size of the lattice mismatch created between non-substituted and substituted unit cell was comparable to the size of the vortex core which may provide a potential flux pinning sites.

Surface microstructure study showed the grain size, grain boundary and porosity of the each series was significantly influenced by the concentration of additives. Grain size in each series become smaller from low to high concentration and the mixture between rectangular plate-like and granular grains was observed. The change in microstructure significantly influenced the absolute value of resistance in the normal state. EDX analysis showed a typical YBCO energy spectrum together with added element in the samples. The energy spectrum corresponding to the added elements become more prominent as x increased confirming that RE³⁺ was actually incorporated into the system.

The metallic behavior in the normal state of samples added with Gd_2O_3 and Yb_2O_3 was maintained until higher value of *x* added. However, the normal state behavior changes from metallic to semiconducting when the concentration of Nd_2O_3 and Sm_2O_3 increased. With the increase of additive concentration, the superconducting transition temperature

decreased from 92 K to a lower value depending on the type of additives and the weight percent added. The depression of T_{c-zero} value has been attributed by the variation of the mobile carrier density in the CuO₂ plane and various structure changes. It may also be due to the Cooper pair breaking caused by the RE³⁺ which partially substituted at Y-site and Ba-site in crystal structure.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

STRUKTUR, MIKROSTRUKTUR DAN KESUPERKONDUKSIAN YBa₂Cu₃O_{7-δ} DENGAN ADITIF ZARAH NANO BERMAGNET

Oleh

MOHD KAMARULZAMAN BIN MANSOR

Februari 2010

Pengerusi: Professor Abdul Halim Shaari, PhD

Fakulti: Sains

Potensi peningkatan pusat pengepinan fluks oleh bahan magnet nadir bumi berzarah nano ditambah dalam YBa₂Cu₃O_{7- δ} (YBCO) telah dikaji secara ekperimen. Secara khusus, penyelidikan secara meluas terhadap struktur kristal, mikrostruktur dan sifat superkonductor YBCO pukal ditambah dengan *x* peratus berat (*x* = 0.0 - 0.6 peratus berat) Nd₂O₃, Sm₂O₃, Gd₂O₃ dan Yb₂O₃ bersaiz nano (\leq 25 nm) yang disediakan melalui teknik keadaan pepejal telah ditunjukkan. Teknik pembelauan sinar-X telah digunakkan untuk mengenalpasti struktur hablur dan juga fasa yang terbentuk. Analisis secara mendalam telah dijalankan terhadap semua sampel dengan mengunakan teknik pemurnian Rietveld. Mikrostruktur patahan keratan rentas telah dilihat dengan menggunakan spektroskopi Pengimbas Elektron dan disokong oleh analisis unsur dengan menggunakan spektroskopi Penyerakan Tenaga Sinar-X. Penduga empat titik digunakan untuk mengkaji perubahan rintangan terhadap suhu dari suhu bilik kepada 50 K.

Corak pembelauan sinar-X menunjukkan fasa tunggal YBCO bagi sampel dengan $x \le 0.3$ dan fasa sekunder 211 minor dapat dilihat bagi $x \ge 0.4$ bagi setiap siri. Corak pembelauan sinar-X dapat diindekskan dalam struktur ortorombik dengan kumpulan ruang *Pmmm*. Semua nilai faktor R_{wp} adalah antara 9 % - 12 %, yang menyokong model struktur permunian secara munasabah dan membayangkan bahawa lengkungan termurni adalah sepadan dengan yang telah dikira. Pemurnian corak pembelauan sinar-X menunjukkan bahawa nano zarah yang ditambah telah mengubah pemalar kekisi dalam sel unit bergantung terhadap jajari ion RE³⁺ dan tapak penggantian. RE³⁺ di dapati masuk ke dalam struktur hablur dan boleh mengantikan sama ada tapak-Y atau tapak-Ba. Saiz ketidak sepadanan yang terbentuk antara sel unit yang terganti dan tidak terganti adalah sebanding dengan teras pusar dan ianya menyediakan tapak yang berpotensi sebagai pusat pengepinan fluks.

Kajian mikrostruktur permukaan menunjukkan bahawa saiz butiran, sempadan antara butiran dan keadaan berliang dalam setiap siri terpengaruh oleh jumlah aditif. Saiz butiran dalam setiap siri menjadi semakin kecil daripada jumlah aditif yang rendah kepada jumlah aditif yang tinggi dan campuran antara kepingan seperti segi empat tepat dan butiran dapat diperhatikan. Perubahan dalam mikrostruktur telah mempengaruhi nilai sebenar rintangan pada keadaan normal. Analysia Penyerakan Tenaga Sinar-X menunjukkan spektrum tenaga yang lazim bagi YBCO bersama unsur aditif dalam setiap sampel. Spektrum tenaga yang sepadan dengan unsur aditif menjadi lebih menonjol apabila nilai x meningkat dan mengesahkan bahawa RE³⁺ sebenarnya masuk ke dalam sistem hablur.

Sifat metalik pada keadaan normal bagi sampel yang ditambah dengan Gd_2O_3 dan Yb_2O_3 adalah kekal sehingga nilai tertinggi. Walau bagaimanpun sifat pada keadaan normal berubah daripada sifat metalik kepada semikonduksian apabila jumlah Nd_2O_3 dan Sm_2O_3 meningkat. Dengan penambahan jumlah bahan aditif, nilai suhu peralihan berkurangan daripada 92 K kepada nilai yang lebih rendah berkantung kepada jenis aditif dan peratus berat yang ditambah. Penurunan pada nilai T_{c-zero} adalah disebabkan oleh perubahan kepadatan mobil pembawa dalam satah CuO_2 dan kepelbagaian perubahan struktur. Ianya juga mungkin disebabkan oleh pemisahan pasangan Cooper oleh RE^{3+} yang telah terganti secara separa pada tapak-Y dan tapak-Ba dalam struktur hablur.

ACKNOWLEDGEMENTS

First and foremost, I would like to extent my deepest praise to Allah s.w.t that has given me patience, strength, determination and courage to complete this research. I would like to express my utmost gratitude to Prof. Dr. Abdul Halim Shaari, Dr. Cheen Soo Kien and Dr. Malik Idries Adam for their constant monitoring, support, encouragement and sponsoring during period of this research. Working with them has provided me with vast understanding on materials science and theoretical knowledge from which I will continue to draw benefit in the future.

I am grateful to my group members Mohd Faisal Mohd Aris, Dr. Walter Charles Primus, Dr. Kong Wei and all my laboratory colleague for their tremendous assistance and support throughout this study. I am also grateful to Madam Yasmin and Mr. Rafi from SEM unit in Institute Biosains (IBS) for their guidance and assistance.

Finally, I would like to express my fullest appreciation to my parents for being so understanding. To my mom and my wife, I love both of you so much.

M. Kamarulzaman

I certify that a Thesis Examination Committee has met on 23 February 2010 to conduct the final examination of Mohd. Kamarulzaman Bin Mansor on his thesis entitled "Structure, Microstructure and Superconductivity of $YBa_2Cu_3O_{7-\delta}$ with Magnetic Nanoparticle Additives" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master.

Members of The Thesis Examination Committee were as follows:

Zulkifli Abas, PhD

Faculty of Science Universiti Putra Malaysia (Chairrman)

Zainal Abidin Talib, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Kamirul Amin Matori, PhD

Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Roslan Ab. Shukor, PhD

Professor School of Applied Physics Universiti Kebangsaan Malaysia Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master. The members of the Supervisory Committee were as follows:

Abdul Halim Shaari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Chen Soo Kien, PhD Faculty of Science

Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 13 May 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHD KAMARULZAMAN BIN MANSOR

Date: 23 February 2010

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	111
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	xxi

CHAPTER

1	INTR	KODUCTION	1
	1.1	Introduction	1
	1.2	Objectives of the Study	5
	1.3	Scope of the Study	5
	1.4	Overview of the Thesis	6
2	LITE	CRATURE REVIEW	7
	2.1	Rare-earth Doping and Adding in YBCO	7
	2.2	Nd, Sm Gd and Yb Adding and Doping in YBCO	9
	2.3	Adding and Doping in Other Cuprate System	10
3	THE	ORY	13
	3.1	Structure of YBCO	13
	3.2	Rare-earth Substitutions or Additions on YBCO	14
	3.3	Magnetic Pinning Center	16
	3.4	Nanosize Pinning Centers	16
	3.5	Rietveld Refinement	17
	3.6	Theoretical Basis of Superconductivity	19
	3.7	Vortex Matter	24
	3.8	Vortex Motion	25
	3.9	Vortex Pinning	26
	3.10	Mechanisms of Vortex Pinning	27
4	МАТ	ERIALS AND METHODS	29
	4.1	Sample Preparation	29
	4.2	Characterization Methods	33
		4.2.1 X-ray Diffraction (XRD) and Crystal Structure Analysis	34

		4.2.2 M	licrostructure Analysis	35
		4.2.3 E	lemental Analysis	36
		4.2.4 D	C Electrical Resistance Measurement	36
	4.3	Experime	ental Errors	38
5	RES	ULTS AND	DISCUSSION	39
	5.1	Introduct	ion	39
	5.2	X-Ray D	iffraction and Crystal Structure Analysis	39
	5.3	Microstru	ucture Analysis	60
		5.3.1 M	licrostructure Analysis of Pure YBCO	60
		5.3.2 M	licrostructure Analysis of Samples with Additives	62
	5.4	Elementa	l Analysis	79
	5.5	DC Elect	rical Resistance Measurement	82
		5.5.1 R pi	esistance Dependence of Temperature of ure YBCO	82
		5.5.2 R Y	esistance Dependence of Temperature of BCO + x wt. % of Nd ₂ O ₃	83
		5.5.3 R Y	esistance Dependence of Temperature of BCO + x wt. % of Sm ₂ O ₃	87
		5.5.4 R Y	esistance Dependence on Temperature of $BCO + x$ wt. % of Gd_2O_3	90
		5.5.5 R Y	esistance Dependence on Temperature of $BCO + x$ wt. % of Yb_2O_3	93
6	CON STU	CLUSION DY	AND SUGGESTIONS FOR FUTURE	98
	6.1	Conclusio	on	98
	6.2	Suggestic	ons	101
REFEREN	ICES			103
APPENDI	ХA			109
BIODATA	OF ST	UDENT		113

LIST OF TABLES

Table		Page
4.1	Crystallographic information data of Rietveld refinement of YBCO	35
5.1	Refined lattice parameters and R-factor values for YBCO added with various amounts of Nd_2O_3	49
5.2	Refined lattice parameters and R-factor values for YBCO added with various amounts of Sm_2O_3	52
5.3	Refined lattice parameters and R-factor values for YBCO added with various amounts of Gd_2O_3	54
5.4	Refined lattice parameters and R-factor values for YBCO added with various amounts of Yb_2O_3	57
5.5	The resistance dependence of temperature relationship for samples added with various amounts of Nd_2O_3	86
5.6	The resistance dependence of temperature relationship for samples added with various amounts of Sm_2O_3	89
5.7	The resistance dependence of temperature relationship for samples added with various amounts of Gd_2O_3	93
5.8	The resistance dependence of temperature relationship for samples added with various amounts of Yb_2O_3	96

LIST OF FIGURES

Figure		Page
3.1	Schematic of the crystalline structure of $YBa_2Cu_3O_{7-\delta}$	13
3.2	Electrical resistance versus temperature of a superconductor	20
3.3	Magnetic field dependence of magnetization for type-I superconductor	22
3.4	Meissner Effect	22
3.5	Magnetic field dependence of magnetization for type-II superconductor	23
3.6	Superconductivity critical values T_c , J_c and H_c	24
3.7	Vortices subjected to the Lorentz force	25
4.1	Schematic drawing of the sample preparation and characterization process	30
4.2	The heat treatment profile used in the sample preparation process. (a) calcination and (b) sintering	33
4.3	Basic setup of the four point probe system	37
5.1	X-ray diffraction pattern for pure YBCO sample	40
5.2	X-ray powder diffraction patterns of YBCO samples added with various amounts of Nd_2O_3	42
5.3	X-ray powder diffraction patterns of YBCO samples added with various amounts of Sm_2O_3	43
5.4	X-ray powder diffraction patterns of YBCO samples added with various amounts of Gd_2O_3	44
5.5	X-ray powder diffraction patterns of YBCO samples added with various amounts of Yb_2O_3	45
5.6	Variation in intensity and position of (013) and (103) peaks for YBCO added with various amounts of (a) Nd_2O_3 , (b) Sm_2O_3 , (c) Gd_2O_3 and (d) Yb_2O_3 respectively	47

5.7	Rietveld refinement profile of pure YBCO sample	
5.8	Variation of lattice constants along a -, b -, c -axis and V for YBCO added with various amounts of Nd ₂ O ₃	
5.9	Variation of lattice constants along a -, b -, c -axis and V for YBCO added with various amounts of Sm_2O_3	53
5.10	Variation of lattice constants along a -, b -, c -axis and V for YBCO added with various amounts of Gd_2O_3	55
5.11	Variation of lattice constants along a -, b -, c -axis and V for YBCO added with various amounts of Yb ₂ O ₃	58
5.12	Surface of YBCO + 0.2 wt. % Nd_2O_3 sample with ten selected spots area randomly	79
5.13	EDX spectrum of pure YBCO sample	80
5.14	EDX spectrum of YBCO + 0.6 wt. % of Nd_2O_3	80
5.15	EDX spectrum of YBCO + 0.3 wt. % of Sm_2O_3	81
5.16	EDX spectrum of YBCO + 0.5 wt. % of Gd_2O_3	81
5.17	EDX spectrum of YBCO + 0.2 wt. % of Yb_2O_3	81
5.18	The resistance dependence of temperature for the pure YBCO sample. Inset shows the transition step taken	83
5.19	The resistance dependence of temperature for samples added with various amounts of Nd_2O_3	85
5.20	The variation of the superconducting transition temperature, $T_{c-Onset}$ and T_{c-zero} dependence of the content of Nd ₂ O ₃ . Inset shows transition step of each samples	87
5.21	The resistance dependence of temperature for samples sintered with various amounts of Sm_2O_3	88
5.22	The variation of the superconducting transition temperature, $T_{c-Onset}$ and T_{c-zero} dependence of the content of Sm_2O_3 . Inset shows transition step of each samples	90
5.23	The resistance dependence of temperature for samples added with various amounts of Gd_2O_3	91

5.24	The variation of the superconducting transition temperature, $T_{c-Onset}$ and T_{c-zero} dependence of the content of Gd_2O_3 . Inset shows transition step of each samples	93
5.25	The resistance dependence of temperature for samples added with various amounts of Yb_2O_3	95
5.26	The variation of the superconducting transition temperature, $T_{c-Onset}$ and T_{c-zero} dependence of the content of Yb ₂ O ₃ . Inset shows transition step of each samples	97
A.1	Rietveld refinement profile of YBCO + x wt % of Nd ₂ O ₃ . (a) $x = 0.1$, (b) $x = 0.2$, (c) $x = 0.3$, (d) $x = 0.4$, (e) $x = 0.5$ and (f) $x = 0.6$	109
A.2	Rietveld refinement profile of YBCO + x wt % of Sm ₂ O ₃ . (a) $x = 0.1$, (b) $x = 0.2$, (c) $x = 0.3$, (d) $x = 0.4$, (e) $x = 0.5$ and (f) $x = 0.6$	110
A.3	Rietveld refinement profile of YBCO + x wt % of Gd ₂ O ₃ . (a) $x = 0.1$, (b) $x = 0.2$, (c) $x = 0.3$, (d) $x = 0.4$, (e) $x = 0.5$ and (f) $x = 0.6$	111
A.4	Rietveld refinement profile of YBCO + x wt % of Yb ₂ O ₃ . (a) $x = 0.1$, (b) $x = 0.2$, (c) $x = 0.3$, (d) $x = 0.4$, (e) $x = 0.5$ and (f) $x = 0.6$	112

LIST	OF	PLATES

Plate		Page
4.1	TEM images of each type of nanoparticle. (a) Nd_2O_3 , (b) Sm_2O_3 , (c) Gd_2O_3 and (d) Yb_2O_3	31
5.1	SEM micrograph of pure YBCO sample at 1000X	61
5.2	SEM micrograph of pure YBCO sample at 5000X	61
5.3	SEM micrograph of YBCO + 0.1 wt. % Nd_2O_3	66
5.4	SEM micrograph of YBCO + 0.2 wt. % Nd_2O_3	66
5.5	SEM micrograph of YBCO + 0.3 wt. % Nd ₂ O ₃	67
5.6	SEM micrograph of YBCO + 0.4 wt. % Nd_2O_3	67
5.7	SEM micrograph of YBCO + 0.5 wt. % Nd_2O_3	68
5.8	SEM micrograph of YBCO + 0.6 wt. % Nd_2O_3	68
5.9	SEM micrograph of YBCO + x wt. % of Nd ₂ O ₃ samples: (a) $x = 0.1$ (b) $x = 0.6$	69
5.10	SEM micrograph of YBCO + 0.1 wt. % Sm_2O_3	69
5.11	SEM micrograph of YBCO + 0.2 wt. % Sm ₂ O ₃	70
5.12	SEM micrograph of YBCO + 0.3 wt. % Sm ₂ O ₃	70
5.13	SEM micrograph of YBCO + 0.4 wt. % Sm_2O_3	71
5.14	SEM micrograph of YBCO + 0.5 wt. % Sm_2O_3	71
5.15	SEM micrograph of YBCO + 0.6 wt. % Sm ₂ O ₃	72
5.16	SEM micrograph of YBCO + 0.1 wt. % Gd_2O_3	72
5.17	SEM micrograph of YBCO + 0.2 wt. % Gd_2O_3	73
5.18	SEM micrograph of YBCO + 0.3 wt. % Gd_2O_3	73
5.19	SEM micrograph of YBCO + 0.4 wt. % Gd_2O_3	74

5.20	SEM micrograph of YBCO + 0.5 wt. % Gd_2O_3	74
5.21	SEM micrograph of YBCO + 0.6 wt. % Gd ₂ O ₃	75
5.22	SEM micrograph of YBCO + 0.1 wt. % Yb_2O_3	75
5.23	SEM micrograph of YBCO + 0.2 wt. % Yb ₂ O ₃	76
5.24	SEM micrograph of YBCO + 0.3 wt. % Yb_2O_3	76
5.25	SEM micrograph of YBCO + 0.4 wt. % Yb_2O_3	77
5.26	SEM micrograph of YBCO + 0.5 wt. % Yb_2O_3	77
5.27	SEM micrograph of YBCO + 0.6 wt. % Yb ₂ O ₃	78
5.28	SEM micrograph of YBCO + 0.6 wt. % Yb ₂ O ₃ at 5000X	78

LIST OF ABBREVIATIONS

YBCO	Yttrium Barium Copper Oxide
YbBCO	Ytterbium Barium Copper Oxide
NdBCO	Neodymium Barium Copper Oxide
Y123	Yttrium Barium Copper Oxide
Pr123	Praseodymium Barium Copper Oxide
REBCO	Rear-earth Barium Cooper Oxide
HTSC	High Temperature Superconductor
XRD	X-ray Diffraction
SEM	Scanning Electron Microscopy
EDX	Energy Dispersion X-ray
TEM	Transmission Electron Microscopy
ZFC	Zero Field Cool
UPM	Universiti Putra Malaysia
PLD	Pulse Laser Deposition
DC	Direct Current
RE	Rare-earth
U.S	United State
1 G	First generation
2 G	Second generation
А	Ampere
Ι	Current
R	Resistance

V	Voltage
Х	Magnification
Ν	Total number of points
Р	Adjusted parameters
С	Number of constrains applied
В	Magnetic Field
Н	Magnetic Field
H _e	Magnetic field applied
H _c	Critical field
М	Magnetization
H _{c2}	Upper critical magnetic field
H _{c1}	Lower critical magnetic field
T _c	Critical temperature
J _c	Critical current
T _s	Spin gap temperature
T _{c-Onset}	Onset critical temperature
T _{c-zero}	Zero critical temperature
T _{c max}	Maximum critical temperature
ΔT_{c}	Delta critical temperature
wt.	Weight
nm	Nanometer
mm	Millimeter
μm	Micrometer

kV	Kilovolt
R _{exp}	Expected R-factor
\mathbf{R}_{wp}	Weighted pattern R-factor
\mathbf{R}_p	Profile R-factor
Y _{oi}	Observed intensities
Y _{ci}	calculated intensities
Σ_i	Total of steps
i	Number of step
W_i	Weight
а	Lattice parameter
b	Lattice parameter
С	Lattice parameter
V	Unit cell volume
р	Hole concentration
x	Amount of weight percent added
θ	Theta
ξ	Coherence length
δ	Delta
=	Equal
\leq	Less than or equal to
\geq	Greater than or equal to
>	Bigger than
Å	Angstrom Unit

